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1. INTRODUCTION

A fundamental goal of modeling �ber communications systems is to understand the

physics of the system behavior and to develop computational tools to design sys-

tems and predict their performance. Transmission of data through a �ber-optic link

unavoidably leads to bit errors due to various e�ects, the dominant of which are

noise from optical ampli�ers, �ber nonlinearity, polarization e�ects, and non-ideal

transmitters and receivers. There exist numerous studies that provide techniques to

characterize all of these e�ects and to calculate the bit error ratio (BER) due to

them [1]�[4]. However, there are still many important unanswered questions and one

of them is how to accurately calculate the bit error ratio (BER) in the presence of

nonlinear signal distortion.

Why is a careful analysis of nonlinear e�ects in optical �ber communications

systems important? Nearly all modern systems operate in the linear propagation

regime, in which the signal evolution is almost linear [5]. However, there always

exist small nonlinear interactions and small nonlinear signal distortions accumulated

during transmission over long distances can lead to an increase in the error rate.

Reducing the optical power decreases the importance of the nonlinear interactions,

but it also decreases the signal-to-noise ratio. There exists an optimal power level at

which the BER is minimal. Even if the power level is much lower than optimum, the

accumulation of nonlinear distortions during transmission over hundreds or thousands

of kilometers of �ber can introduce a signi�cant system penalty [6]�[9]. Calculating

the BER in such a regime or �nding the optimal power level requires an accurate

1
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model of the nonlinear interactions.

The main challenge in characterizing the nonlinear penalty is that it is a statistical

quantity. In on-o� keyed systems, a digital 1 (mark) is represented by the presence of

an optical pulse and a digital 0 (space) is represented by its absence. The amount of

distortion that an optical pulse su�ers depends on the particular pattern of surround-

ing pulses, which is e�ectively random as these pulses represent the information bits,

and the information sequence of bits is quasi-random. This e�ect is often referred

to as the nonlinear pattern dependence e�ect [1], [10]. In single-channel transmis-

sion, dispersion leads to the spread of optical signals, causing approximately three to

seven adjacent pulses to interfere [5], [11]. Therefore, a common approach to account

for pattern-dependent nonlinear e�ects is to use a pseudo-random sequence of bits,

which is typically 23 − 27 bits, to �nd the worst-case bit in the sequence. When we

consider a multi-channel system, this approach is inappropriate since there are many

more pulses interacting with each other due to the dispersive walko� between the fre-

quency channels. As an illustration, Fig. 1.1 shows three simulated eye diagrams of a

noise-free signal in the center channel of a 10 Gb/s wavelength-division multiplexed

(WDM) return-to-zero (RZ) system after propagating over 5000 km. We used nine

co-polarized channels spaced by 50 GHz and the average power was approximately

−0.7 dBm per channel. We used three di�erent sets of bit patterns in di�erent WDM

channels, while the bit pattern in the center channel remained unchanged. As we

move from 1.1a to 1.1c, it is apparent that the eye changes from being almost com-

pletely open to completely closed. In this case, �nding the worst-case performance

becomes not only prohibitively time-consuming since the number of possible inter-

action patterns grows exponentially, but it is also not useful because the likelihood

of the worst-case pattern is negligibly small. Therefore, a probabilistic approach is

necessary to treat this problem.

Typically, the dominant nonlinear e�ect in modern high-speed systems operating
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(a)

(b)

(c)

Fig. 1.1: Nonlinear pattern dependence e�ect in a WDMRZ system. The bit pattern
in the center channel is �xed. As we change the patterns in the neighboring
channels, the eye in the center channel goes from (a) almost completely
open to (b) only partially open to (c) almost completely closed.

at 10 GB/s, is cross-phase modulation [7], [8], [12]�[15]. The phase of an optical

pulse is changed by the presence of pulses in either the same or neighboring wave-

length channels. This phase change leads to intensity distortion by means of �ber

dispersion. The manifestation of this e�ect depends on the light modulation format.

In non-return-to-zero (NRZ) transmission, the signal distortion appears in the form

of amplitude jitter [14], [16]�[18], while in the RZ systems, the dominant nonlinear

e�ect is typically collision-induced timing-jitter [12], [19]�[23]. This fact requires the

development of completely di�erent approaches to account for the nonlinear e�ects
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in these two types of systems. We note that at present, the NRZ and RZ modulation

formats are still the most commonly used formats in optical �ber communications

systems. The NRZ format is the simplest form of intensity modulation and it has

been historically the format of choice for many system providers. Recently, it has

been discovered that the RZ-modulated signal undergoes less intersymbol interfer-

ence in the receiver and is more robust to �ber nonlinearities and thus more capable

of long-haul data transmission [11], [22], [24]�[27]. Because the NRZ modulation

has been used for many years, techniques have been developed to characterize the

nonlinear e�ects in WDM NRZ transmission [14], [16]�[18], [28]�[36], and the BER

calculations based on these techniques agree well with experimental results. The basic

idea in these approaches [16], [30]�[32] is to utilize a pump-probe method, in which

the cross-phase modulation-induced distortion is treated as an additive perturbation.

An exception is [36] where the authors treat the distortion as multiplicative. In order

to determine the in�uence of the nonlinearity on the system performance, one further

assumes that the XPM-induced distortion may be treated as additive Gaussian noise

and a correction to the Q-factor is calculated [14], [16], [30], [33]�[35], [37].

The major nonlinear e�ect in WDM RZ systems, collision-induced timing jitter,

has also been well studied in both soliton and linear systems [12], [19]�[21], [38]�[44].

It is well known how to calculate the time shift that results from a collision of a pair of

pulses and to calculate the standard deviation of the time shift. However, no accurate

BER calculation that takes into account the inter-channel nonlinear bit-pattern e�ect

due to this timing jitter has been reported in the literature.

The purpose of this dissertation research is to develop a method that allows one

to accurately account for inter-channel nonlinear crosstalk in calculations of BER in

WDM RZ systems.

Our method of computing the BER in the presence of the nonlinear distortion

and ampli�ed spontaneous emission noise, is based on calculations of the complete
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probability density function (pdf) of the nonlinearly-induced amplitude or timing

jitter. Using the knowledge of the pdf of the noise-induced amplitude variation, we

combine the noise and nonlinear contributions to calculate the resulting BER.

The dissertation is organized as follows:

In the second chapter, we describe a prototypical undersea system to which we

apply our BER calculation technique. We discuss some system design tradeo�s and

the performance optimization issues.

In the third chapter, we review methods commonly used to characterize the e�ects

of �ber nonlinearity in optical �ber communications systems.

The fourth chapter contains a summary and discussion of the biased Monte Carlo

methods that can be used to estimate the pdf of the received current or the time shift

of a pulse for the values of the pdf ranging over many orders of magnitude.

In the �fth chapter, we introduce the time shift function, a function that describes

the time shift of a pulse in a two-pulse collision, depending on the frequency and

initial time separation of the two pulses. We discuss the properties of the time shift

function and use it to calculate the pdf of the collision-induced time shift by means

of the characteristic function method. Finally, we validate this method of computing

the pdf of the time shift with biased Monte Carlo simulations.

In the sixth chapter, we present and validate a method for evaluating the pdf of

the received current due to nonlinear e�ects in transmission. Then, we describe an

additive white Gaussian noise model for calculating the pdf of the received current

and show how to calculate the BER using the methods that we presented.

The seventh chapter contains the conclusions that summarize the main results of

the dissertation.



2. TEST SYSTEM

In this chapter, we present a prototypical long-haul undersea system that uses WDM

technology and an RZ modulation format. Long-haul submarine transmission sys-

tems represent a signi�cant and rapidly growing portion of the world �ber optic net-

work [45] and a large portion of current transoceanic transmission lines operate using

the RZ modulation format, including cable systems built by Tyco Telecommunica-

tions, Marconi, NEC Submarine Systems, and Fujitsu. These systems typically have

shorter values of ampli�er spacing and longer transmission distances than terrestrial

systems. The propagation length in these systems is limited by the tradeo� between

the signal-to-noise ratio and the accumulation of the nonlinear penalties. Hence it

is especially important to develop accurate tools to model nonlinear impairments for

these types of systems.

The original goal of this dissertation was to perform a comparative study of spec-

tral e�ciency of di�erent modulation formats. In order to do this, we had to optimize

system parameters for each format and di�erent values of channel spacing. In particu-

lar, for a given channel spacing we varied the average map dispersion and the pre- and

post-compensation to determine the optimal dispersion pro�le for each modulation

format. During the initial study, we encountered the nonlinear pattern-dependence

e�ect [1], [10]. Exploration of this matter led us to a more general, and, in our view,

more important research topic. The current goal of this dissertation is to develop new

and accurate tools to evaluate the e�ect of �ber nonlinearity on the performance of

RZ systems. In this chapter, we describe only the RZ system that we used to develop

6
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our methodology, and we summarize the optimization of the dispersion pro�le for this

system.
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2.1 System model

Typical modern �ber communications systems contain a large number of optical com-

ponents such as lasers, modulators and demodulators, multiplexers and demultiplex-

ers, �lters, optical �bers, and ampli�ers [1], [2]. In addition, there is an extensive set

of electrical equipment at the receiver, such as photodiodes, electrical �lters, ampli-

�ers, and decision circuits. When simulating these components, the level of detail of

the model must be appropriate for the system under study. For example, a lumped

ampli�er model is used often for optical ampli�ers, in which the optical �eld is simply

multiplied by a factor. We use this model in the simulations in this dissertation.

More realistic models can include ampli�ed spontaneous emission noise, gain satura-

tion, the gain pro�le, polarization hole burning, and transients [46]. The �rst step

of any simulation is to simplify the system and to restrict the model of the optical

propagation to the essential e�ects. The nature of the most important e�ects strongly

depends on the type of the optical system. In particular, the amount of nonlinearity

has an important impact on the evolution of the signal and the noise.

Figure 2.1 shows a schematic illustration of a simple model of an optical �ber com-

munications system that is used in this dissertation. The optical signal is generated

by a transmitter and inserted into the �ber. It then passes through a transmission

line that primarily consists of �ber spans and optical ampli�ers. At the end of the

transmission line, the signal is optically �ltered and enters a receiver, where it is

converted to an electrical current by a high-speed photodiode. This current passes

Fig. 2.1: Simple communications system. Reproduced from [149].
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through a low-pass �lter and enters a decision circuit.

In a typical digital optical �ber transmission system, the pulses are either directly

created by an optical laser, or the output of a constant wave laser is modulated

by an external modulator. We will only discuss on-o� keying in this dissertation.

In RZ transmission, the marks are represented by isolated optical pulses, while in

NRZ signaling, a sequence of marks is represented by a continuous constant light

intensity. We assume that the amplitude modulation is produced by a Mach-Zehnder

interferometer. The functional form of the RZ or chirped-RZ (CRZ) complex �eld

envelope that is used in this dissertation is

U(t) =

√
1

2

[
1 + cos

(
π sin

πt

T

)]
exp

(
iCπ cos

2πt

T

)
, (2.1)

where T is the bit period and C is the chirp parameter [11], [47]. The parameter C

equals zero for the unchirped RZ signal. The pulse stream may then be combined with

pulse streams with di�erent central frequencies to make a single WDM signal [1], [2].

In this work, we used nine co-polarized WDM channels, spaced by 50 GHz, each

carrying a 10-GB/s unchirped RZ signal. We used di�erent values of peak power in

the system optimization step; however, we set the peak power to 5 mW per channel

in the rest of the study.

Transmission of light through optical �ber can be described by the nonlinear

Schrödinger (NLS) equation [48]

∂u(z, t)

∂z
+ i

β′′(z)

2

∂2u(z, t)

∂t2
− iγ|u(z, t)|2u(z, t) = g(z)u(z, t), (2.2)

where u(z, t) is the electric �eld envelope, z is the physical distance, t is the retarded

time with respect to the central frequency of the signal, β′′ is the local dispersion, γ

is the Kerr coe�cient, and g(z) is the �ber loss and gain coe�cient. This form of

the NLS equation is based on the negative carrier frequency convention in which the
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Fourier transform pairs are de�ned as

x(t) =
1

2π

∫ ∞

−∞
X̃(ω) exp(−iωt) dω, X̃(ω) =

∫ ∞

−∞
x(t) exp(iωt) dt. (2.3)

This convention is common in the physics literature, but electrical engineers and

mathematicians typically use the opposite convention. The literature on optical com-

munications is mixed and it is not uncommon to �nd work in which authors switch

from one convention to the other without making any note of it. While this issue

is usually not important, it can sometimes lead to errors. The implications of the

di�erent carrier conventions are thoroughly discussed in [49], [50]. We note as well

that (2.2) does not include polarization e�ects. In practice, polarization e�ects are

important because it is common to use orthogonal polarization between neighboring

channels or even neighboring bits to reduce the e�ects of nonlinearity [8], [11], [51].

We do not take these e�ects into account here because they have no impact on the

techniques that we present and would complicate the discussion.

The receiver subsystem includes an optical demultiplexer, square-law photode-

tector, and a low-pass electrical �lter as shown in Fig. 2.1. The photodetector is

modeled as an ideal square-law detector without noise. We choose the spectral trans-

mission function of the optical demultiplexer to be third-order super-Gaussian, where

a super-Gaussian function of m-th order is de�ned as exp(−x2m). The bandwidth of

the optical �lter was optimized to maximize the eye opening after demultiplexing a

WDM signal back-to-back and it is found to be 35 GHz for the channel spacing of

50 GHz and the unchirped RZ signal. The electrical �lter is a �fth-order Bessel �lter,

which is a typical �lter in modern optical �ber communications systems, and its 3-dB

bandwidth is set to 8 GHz.

Finally, the decision and clock recovery circuit in this work is modeled by simply

calculating the central time of a pulse at the receiver in a given channel. Since
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the time reference frame is moving with the group velocity of the center channel,

the pulses in the center channel do not move in this time frame due to dispersion.

For pulses in other frequency channels, one can analytically account for the group

delay corresponding to the particular channel. We chose this model of clock recovery

because it is simple and insensitive to nonlinear distortions, which enables us to obtain

a reliable estimate of the system performance. A more realistic model of the clock

recovery is based on calculating the phase of one of the strong frequency components

of the signal at the receiver [52], [53].

In this chapter, we discuss some aspects of system design and optimization of

system parameters. For the purpose of parameter optimization, we take the eye

opening at the clock recovery time as a measure of the system performance, which

is de�ned as the di�erence between the average current of a mark and the average

current of a space at the detection time in the receiver.

Calculations of the eye opening are complicated by the e�ect of pattern depen-

dence during transmission due to nonlinear interactions. In a single channel system,

each bit only interacts with its neighbors. All bit patterns of length n are contained

in a de Bruijn pseudo-random bit sequence (PRBS) of length N = 2n [54]. If we in-

crease the length of the PRBS, the rails of the eye diagram converge. In other words,

there is a certain number of surrounding bits, n, that a�ect the center bit, which is

determined by the amount of pulse stretching due to dispersion during transmission.

Hence if we consider a PRBS of length N = 2n or larger, we will include all possible

interaction patterns that may occur in any data stream in a single-channel system.

The situation becomes much more complicated when we add WDM channels to

the system. In addition to interacting with a limited number of neighboring bits in

the same channel, a single bit will also interact with many bits in the neighboring

channels. For a �xed bit string in the center channel, the resulting eye diagram, will

depend on both the bit strings in the adjacent channels and the relative positions of
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these bit strings. The consequence of this e�ect was illustrated in Fig. 1.1. An exact

treatment of this problem requires a probabilistic approach, in which all possible bit

patterns in the neighboring channels are considered. This approach will be discussed

in the following chapters. For the purpose of �nding a set of system parameters that

optimize the performance, we run a large number of simulations, in which we keep

the bit string in the center channel �xed and we randomly vary the bit strings in the

side channels. We compute the average eye opening from these simulations. While it

is not possible to accurately infer a BER from this procedure, it is possible to reliably

infer the system parameters that will produce the best performance.
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2.2 Dispersion map design

All recently deployed systems employ dispersion management, in which the dispersion

varies periodically. Each period consists of a concatenation of several �ber spans with

di�erent local �ber dispersions, and the variation of dispersion in one period is referred

to as the dispersion map. The dispersion map is characterized by the average map

dispersion Dmap. For a map consisting of two �ber links, Dmap given by

Dmap =
D1L1 + D2L2

L1 + L2

, (2.4)

where D1 and D2 are dispersion of the �rst and the second sections of the map and

L1 and L2 are the corresponding �ber lengths. The dispersion parameter D is in the

units of ps/nm�km, which is commonly used in optical communications. It is related

to the second-order dispersion β′′ in the units of ps/km2 used in (2.2) by the relation

D = −2πc

λ2
β′′. (2.5)

If Dmap 6= 0 then the residual accumulated dispersion is compensated at the

terminals by means of extra links of �ber known as pre- and post-compensation

�bers [11], [47], [55]�[59]. It is typically bene�cial to operate the system at non-zero

average dispersion. Using dispersion pre-compensation results in spreading out the

optical pulses initially, which reduces the e�ects of four-wave mixing and cross-phase

modulation [11], [22], [25]. However, excessive spreading leads to intra-channel four-

wave mixing [60]. This tradeo� determines the optimal value of Dmap, which we will

discuss further in this section. The amount of both the pre- and post-compensation

dispersion must be carefully chosen as an improper choice may result in substantial

intra-channel cross-phase modulation [47], [58], [61], [62].
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2.2.1 Dispersion slope-matched �ber pair

An important milestone in the development of optical �ber communications systems

was the introduction of dispersion-sloped matched �bers [63], [64], which allowed

an increase in the reach of the systems and a decrease in the cost of the terminal

equipment. Dispersion slope compensation has become a key technology for both 10

and 40 Gb/s WDM systems [51], [59], [65]�[67]. In this work, we study a system

based on dispersion slope matched �bers [63], [64], often called D+ and D− �bers,

whose characteristics are shown in Table 2.1. The �ber transmission link is based on

a dispersion map of length L, in which the �rst two-thirds consist of D+ �ber and

the remaining one-third consists of D− �ber. The exact proportion is determined by

the desired map average dispersion, Dmap = (D+L+ + D−L−)/L, where L+ and L−

are the lengths of the D+ and D− �bers respectively.

Parameter D+ �ber D− �ber SMF DCF

Dispersion (ps/nm�km) at λ = 1500 nm 20.17 �40.8 17.0 �95.0

Dispersion slope (ps/nm2�km) 0.062 �0.124 0.075 �0.2

Attenuation (dB/km) 0.192 0.251 0.21 0.5

E�ective area (µm2) 106.7 31.1 47.0 20.0

n2 (×10−20 W−1) 1.7 2.2 2.6 2.6

Tab. 2.1: Characteristics of D+/D− and SMF/DCF �ber

pairs.

The main advantage of the D+/D− pair is that the average dispersion slope is

much smaller than when an SMF/DCF pair is used. We demonstrate this feature

in Fig. 2.2. The horizontal axis represents the average map dispersion Dmap(λc) of

the center channel located at λc =1550 nm. The vertical axis shows the di�erence

between the average map dispersions for the edge channel λe and the center channel:
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Fig. 2.2: Dispersion slope characteristics of two �ber pairs

∆Dmap = |Dmap(λe) − Dmap(λc)|. In this case, 2|λc − λe| = 32 nm, which corre-

spond to a WDM signal with 40 channels spaced by 100 GHz. In the case of D+/D−

�bers, the variation in the average map dispersion of the center channel is very small

and does not exceed a few percent. Consequently, all channels experience almost

the same average map dispersion. By contrast, the SMF/DCF pair exhibits a strong

wavelength dependence of the average map dispersion. For all values of Dmap(λc), the

side channels will have an average map dispersion Dmap(λe) that di�ers from that of

the center channel by 0.4�0.5 ps/nm�km. For this reason it is useless to optimize the

map's average dispersion for the SMF/DCF �ber pair since di�erent wavelengths will

have completely di�erent average dispersions. By contrast, using D+/D− �ber pair

one may optimize the average map dispersion for WDM transmission. Other signif-

icant advantages of D+/D− �bers include reduced nonlinearity due to an increased

e�ective core area and reduced polarization mode dispersion.
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2.2.2 Optimization of dispersion pro�le

To optimize the dispersion pro�le, we considered a noiseless transmission model, based

on the NLS equation (2.2), which allows us to separate the e�ects of nonlinearity and

dispersion from the e�ects of the signal-noise interaction. The measure of perfor-

mance was the eye opening of the optical signal in the center channel at the end of

transmission.

We consider a system with a propagation distance of 5000 km and an ampli�er

spacing of 50 km. The dispersion map consists of 34 km of D+ �ber and approximately

16 km of D− �ber followed by an ampli�er. This layout is typical for modern undersea

systems [11], [51]. Since the e�ective nonlinearity of the D− �ber is larger than that

of the D+ �ber, the ampli�er is placed after the D− �ber. Thus the signal power

at the input of the D− �ber is low, which reduces the nonlinear impairments in the

system.

Optimization of dispersion pre- and post-compensation

The nonlinear interactions during transmission result in two major types of signal

distortion: amplitude and timing jitter. These e�ects originate both from intra-

channel and inter-channel interactions [10]. With properly selected pre- and post-

compensation one can signi�cantly improve the transmission quality [11], [24], [57],

[58], [61]. The physical principle behind this improvement is as follows: Phase mod-

ulation induced by the nonlinear pulse interactions is converted into amplitude mod-

ulation by dispersion; this amplitude modulation then causes waveform distortion.

By adjusting the amount of dispersion pre-compensation and total dispersion of the

transmission line this amplitude modulation can be partially reversed [37]. It has been

shown that the best dispersion-compensation scheme is nearly symmetric [11], [58],

[61]. Timing jitter reduction can be explained as follows: If we consider a simpli�ed

situation, in which only two pulses interact with each other [58], one can show that
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the nonlinear interactions induce opposite frequency shifts for the two pulses. Due

to the dispersion, these frequency shifts translate into time shifts. The magnitude of

the time shifts is proportional to the dispersion and the magnitude of the frequency

shift. If the accumulated dispersion is a symmetric function of distance, it changes

its sign in the middle of the transmission. Hence the time shifts change their direc-

tion, and the resulting timing jitter is thus canceled at the end of the transmission

line. However, in realistic systems the optimum accumulated dispersion function is

not perfectly symmetric and nonzero residual dispersion is often preferable, due to

self-phase modulation and to the non-constant power pro�le.

In this work, we optimize the compensation scheme by numerically �nding the one

that results in the maximum eye opening. In order to do so, we use single-channel

transmission, so that we are only minimizing the intra-channel nonlinear e�ects. We

�x all the system parameters except for the amount of pre- and post-compensation,

and we automatically adjust this amount to achieve the maximum optical eye opening.

Figure 2.3 illustrates the improvement that is achieved by optimizing the dispersion
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Fig. 2.3: RZ eye diagrams with (a) suboptimal and (b) optimal pre- and post-
compensation with the corresponding accumulated dispersion functions.
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compensation scheme for our test system. We have consistently found in numerical

simulations that the accumulated dispersion is a nearly symmetric function of distance

and that a positive amount of residual dispersion is required to compensate for self-

phase-modulation-induced distortions. We see from Fig. 2.3 that undercompensated

dispersion results in an eye closure penalty. These results are consistent with previous

studies [11], [24], [57], [58], [61].
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Fig. 2.4: Collision-induced timing jitter as a function of distance.

We note that we performed optimization of the pre- and post-compensation only

for a single channel system. However, our recent results indicate that when we add

WDM channels to this system, the optimum compensation we found for the single-

channel case also results in minimizing inter-channel collision-induced timing jitter.

Figure 2.4 shows the timing jitter, which is the standard deviation of collision-induced
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time shift as a function of transmission distance. The minimum of the timing jitter

occurs right at the end of the transmission, as shown in the inset, indicating that the

previous choice of the pre-and post-compensation is optimum in the WDM case as

well. This e�ect is due to the symmetry of the dispersion function, since time shifts

induced in the �rst and the second half of the transmission tend to cancel out.

Optimization of average map dispersion

The purpose of this part of the study was to �nd the optimal average map dispersion

for a given value of channel spacing. The measure of performance is the optical

eye opening in the center channel, which we compute as a function of the average

map dispersion for di�erent power levels and channel spacings. Note that for each

simulation, we optimized the dispersion pre- and post-compensation for the center

channel.

Figure 2.5 summarizes the results of the average map dispersion study. The dif-

ferent curves in each subplot correspond to di�erent power levels of the signal and

di�erent subplots represent the results for the channel spacing values of 25, 50, and

100 GHz. All curves have a minimum around Dmap = 0, but, for the lowest input

power level (diamonds), the minimum is less deep because the nonlinear interactions

become weaker with a lower signal power. We also see that the range of the optimal

map dispersion is large spanning from �1 to �0.3 ps/nm/km and variation in eye

opening in this range are small. Existence of the optimum range of map dispersion

values is explained by the tradeo� between the intra- and inter-channel nonlinear

interactions. For large values of dispersion, the adjacent channels slide through each

other faster, thus reducing inter-channel crosstalk. However, large values of disper-

sion cause a larger number of bits within one channel to overlap, resulting in an

increase in the intra-channel distortion. When the total map dispersion is close to

zero, intra-channel e�ects are weak, and the inter-channel crosstalk dominates the
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eye closure [10]. Note that some of the curves are not smooth, which is attributed to

inter-channel pattern dependence e�ects.

For all channel spacings, the results are qualitatively the same: If the average map

dispersion is close to zero, the system performance is substantially worse for all three

channel spacings, but this e�ect is more noticeable for systems with smaller channel

spacing, since the inter-channel interactions increase when the channel spacing is

decreased [10]. Moreover, as the channel spacing decreases, the absolute values of

optimum map dispersion increase.

The dispersion map parameters and other system data that we used in this work

are summarized in Table 2.2.

Pre-compensation 51 km of D+ �ber

Post-compensation 90 km of D− �ber

Length of D+ �ber in one map 34 km

Length of D− �ber in one map 17.44 km

Number of dispersion map periods 100

Input peak power 5 mW

Bit rate 10 Gb/s

Pulse width (FWHM) 35 ps

Channel spacing 50 GHz

Number of channels 9

Optical demultiplexor 3-rd order super Gaussian, FWHM = 35 GHz

Electrical �lter 5-th order Bessel, HWHM = 8 GHz

Tab. 2.2: System parameters.
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Fig. 2.5: Eye opening as a function of average map dispersion.



3. MODELING THE EFFECTS OF FIBER

NONLINEARITY IN OPTICAL

COMMUNICATIONS

In this chapter we discuss commonly-used techniques to model the e�ect of �ber

nonlinearity on the light propagation.

The nonlinearities in silica �bers can be classi�ed into two categories: stimulated

scattering and the Kerr e�ect that manifests itself in a nonlinear index of refrac-

tion [48], [68]�[72]. Raman and Brillouin scattering causes a power-dependent gain or

loss, and the Kerr e�ect causes an intensity-dependent phase change, which coupled

with the dispersion leads to amplitude distortion of the signal. In Brillouin scatter-

ing, an optical wave interacts with a sound wave (acoustic phonons) in the medium

and can produce a Stokes wave downshifted from the pump wave in frequency. The

typical Stokes shift in Brillouin scattering is on the order of 10 GHz and therefore

it does not cause interchannel crosstalk. The Brillouin gain linewidth is on the or-

der of 20 MHz and hence it typically has a negligible e�ect on modulated signals.

Stimulated Raman scattering is due to the interaction of light and the molecular

vibrations of the medium (optical phonons). In amorphous materials such as silica,

molecular vibrational frequencies spread into bands that overlap and create a contin-

uum [73]. Therefore the Raman gain in silica extends over a frequency range of more

than 40 THz, which is large compared to Brillouin gain bandwidth. The peak of the

Raman gain occurs near 13 THz. The wideband Raman gain leads to a noticeable

22
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crosstalk between WDM channels that are separated in wavelength by as much as

10 nm.

The intensity-dependent refractive index gives rise to three e�ects: self-phase mod-

ulation (SPM), cross-phase modulation (XPM), and four-wave mixing (FWM) [10],

[74]. Self-phase modulation refers to the phase modulation of the signal within one

frequency channel due to the intensity changes in this channel, while XPM refers to

the phase changes induced by the intensity variations in di�erent frequency channels

of a WDM system. These e�ects lead to spectral broadening of the signals, and

phase modulation is converted into intensity �uctuations by the �ber dispersion. In

FWM, the beating between the optical waves of di�erent frequencies leads to energy

exchange between them and to the generation of light at new frequencies. When

three waves of frequencies fi, fj, and fk interact, they generate a wave at a frequency

fijk = fi + fj − fk. Thus, three co-propagating waves generate nine new optical

waves [74]. If the frequency channels are evenly spaced, FWM leads to energy ex-

change between these channels causing crosstalk. Signi�cant FWM occurs only if the

relative phase of the mixing waves nearly vanishes. The e�ciency of FWM is roughly

inversely proportional to the square of �ber dispersion. In modern �bers the e�ciency

of FWM is greatly reduced by the use of a large local dispersion, so that the impact

of FWM on the system is much smaller than the e�ects of SPM and XPM.

In this work we focus our attention on the e�ects of SPM and XPM.
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3.1 Full system model

3.1.1 Split-step Fourier method: Theory

By a full system model, we mean a model of light transmission through an optical �ber

based on the NLS equation (2.2) and using the exact input pulse shape (2.1). A full

system model involves solving (2.2) numerically and then calculating the waveform

distortion due to the �ber nonlinearity. One may use Monte Carlo approach in which

one repeatedly solves (2.2) while changing the input bit sequences in all the WDM

channels at random for each new run. One can then build a histogram of the received

current to estimate its pdf as, for example, in [75]. A more common approach is to

solve (2.2) once for a randomly chosen set of bit strings to calculate the standard

deviation of the sampled current [7], [18]. The length of the bit sequences should be

long enough for this standard deviation to converge, as it was shown in [18].

Equations of type (2.2) may be solved numerically using either the �nite di�erence

or split-step Fourier methods [76], [77]. The split-step Fourier method is convenient

for its simplicity and �exibility in dealing with higher-order dispersion, the Raman

e�ect and �ltering and therefore it is the most widely used approach [7], [10], [18],

[48], [78]�[81].

The e�ciency of the split-step method depends on both the time (or frequency)

domain resolution and the distribution of step sizes along the �ber. In simulations of

optical �ber transmission systems, the time and frequency resolutions are respectively

determined by the bandwidth of the signal and the number of bits that are to be

propagated through the system. Consequently, the properties of the signal determine

the minimum required number of Fourier modes. Although the number of Fourier

modes a�ects the accuracy of the numerical solution, as was shown in [80], it does not

change the qualitative behavior of the spatial step size selection algorithm. Therefore,

we only discuss the accuracy and e�ciency of di�erent spatial step size selection
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criteria.

A variety of step size selection criteria, most based on physical intuition, have

been proposed for optimizing the split-step method. The �gure of merit for each

criterion is the computational cost for a given resulting global accuracy. Historically,

in numerical methods used to solve (2.2) the step-size distribution was optimized

for simulating soliton propagation. However, this optimization is not necessarily

appropriate for modeling modern transmission systems, which often feature both

high and low dispersion and relatively small nonlinearity, by which we mean that the

nonlinear length scale is long compared to typical dispersion length scales.

In the numerical simulations performed in this dissertation, we used a a method

called the local error method, in which the step size is selected by bounding the rel-

ative local error of the step [80]. We will describe this method in this section and

compare its performance to four commonly used step-size selection methods that are

based on physical intuition. In the �rst of these four methods, called the nonlinear

phase rotation method, the step size is chosen so that the phase change due to non-

linearity does not exceed a certain limit [10]. This method was designed with soliton

propagation in mind. The second, the logarithmic step size method, is designed to ef-

�ciently suppress spurious four-wave mixing, by employing a logarithmic distribution

of the step sizes [82]. In the third method, the walk-o� method, the step size is chosen

to be inversely proportional to the product of the absolute value of dispersion and

the spectral bandwidth of the signal. The idea behind this criterion is to resolve the

collisions between pulses in di�erent channels or at least to have a measure for the

violation of this criterion. This method was designed for low power, multi-channel

systems. In the fourth, the constant step size method, the step sizes are kept constant

along the whole transmission path.

The local error method is inspired by and closely related to widely-used algorithms

for adaptively controlling the step size in ordinary di�erential equation solvers [83]. In
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particular, we have adopted the well-known techniques of step-doubling to estimate

the local error and linear extrapolation to obtain the higher-order solution. As is

typically the case for higher-order schemes, our scheme has the advantage that it

is much more computationally e�cient than a second-order scheme when the global

accuracy is high [84]. On the other hand, it can be less e�cient at low accuracy. This

behavior is consistent with the results of Fornberg and Driscoll [85], who compared

split-step methods of order 2, 4, and 6 with several higher-order linear multistep

methods. For a two-soliton collision, Fornberg and Driscoll showed that for the global

error range of 10−3�10−2, the second-order split-step scheme is more e�cient than the

fourth- and sixth-order schemes. However, for global errors smaller than 10−4, the

higher-order schemes become more e�cient. We found similar qualitative behavior

for the second-order schemes and third-order local error method that we discuss here.

Origin of the split-step error

To estimate the local and global errors in the split-step Fourier method it is convenient

to represent (2.2) in the form

∂u(z, t)

∂z
= (D̂ + N̂ [u])u(z, t), (3.1)

where D̂ = −i(β′′/2)∂2/∂t2+g is the linear operator and N̂ [u] = iγ|u|2 is the nonlinear
operator. In the symmetric split-step scheme, the solution to (3.1) is approximated

by

u(z + h, t) ≈ exp
(h

2
D̂

)
exp

{
hN̂

[
u
(
z +

h

2
, t

)]}
exp

(h

2
D̂

)
. (3.2)

Since operators D̂ and N̂ do not commute in general, the solution (3.2) is only an

approximation to the exact solution. An argument based on the Baker-Campbell-

Hausdor� formula shows that the local error, which is the error incurred in a single

step of the symmetric split-step scheme, has a leading order term which is of third
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order in the step size h, i.e., the error is O(h3) [86]. Since the total number of steps

in a �ber span is inversely proportional to the average step size, the global error

accumulated over a �ber span is second order in the step size, O(h2).

Finding an optimal step size distribution depends on the particular optical trans-

mission system. We will review several criteria for choosing the step size in the

split-step Fourier method, and we will introduce a new criterion based on a measure

of the local error.

Nonlinear Phase Rotation Method

The nonlinear phase rotation method is a variable step size method that is designed

for systems in which nonlinearity plays a major role. For a step of size h, the e�ect of

the nonlinear operator N̂ is to increment the phase of u by an amount φNL = γ|u|2h.
If we impose an upper limit φmax

NL on the nonlinear phase increment φNL, we obtain

the bound on the step size:

h ≤ φmax
NL

γ|u|2 . (3.3)

This criterion for selecting the step size was originally applied to simulate soliton

propagation and is widely used in optical �ber transmission simulators. However, as

we will show, this approach is far from optimal for many modern communications

systems.

Spurious Four-Wave Mixing and Logarithmic Step Size Distribution

An improper distribution of the step sizes may lead not only to a general reduction of

accuracy, but also to numerical artifacts. Forghieri [87] demonstrates that the power

of the four-wave mixing products can be greatly overestimated by a constant step

size method since four-wave mixing is a resonance e�ect. To e�ciently suppress this

numerical artifact, Bosco, et al. [82] used a logarithmic distribution of the step sizes

to keep the spurious four-wave mixing components below a certain level. For a �ber
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span of length L and loss coe�cient g, the step size of n-th step is given by

hn = − 1

2g
ln

[ 1− nσ

1− (n− 1)σ

]
, (3.4)

where σ =
[
1− exp(−2gL)

]
/K, and K is the number of steps per �ber span. We will

call this implementation of the split-step method the logarithmic step size method.

Walk-o� Method

In many optical �ber communications systems chromatic dispersion is the dominant

e�ect, and nonlinearity only plays a secondary role, particularly in multi-channel

systems in which the wavelength channels cover a broad spectrum. In this case it

can be reasonable to use the walk-o� method, in which the step size is determined

by the largest group velocity di�erence between channels. The basic idea is to choose

the step size to be smaller than a characteristic walk-o� length. In a multi-channel

system with large local dispersion, pulses in di�erent channels move through each

other very rapidly. To resolve the collisions between pulses in di�erent channels, the

step size in the walk-o� method is chosen so that in a single step two pulses in the two

edge channels shift with respect to each other by a time which is a speci�ed fraction

of the pulse width. Consequently, the step size is given by

h =
C

∆Vg
, (3.5)

where ∆Vg is the largest group velocity di�erence between channels and C is a con-

stant that can vary from system to system. In any system, ∆Vg =
∣∣D2λ2 − D1λ1

∣∣,
where D1 and D2 are the dispersions corresponding to the smallest and largest wave-

lengths λ1 and λ2. Since ∆Vg is constant in any particular kind of �ber, the step size is

constant in each �ber segment. The walk-o� method can be applied to single-channel

as well as multi-channel systems by choosing λ1 and λ2 at the two edges of the signal
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spectrum.

Constant Step Size Method

The simplest way to implement the split-step Fourier method is to use a constant

step size along the whole transmission path. The global accuracy can be improved

only by increasing the total number of steps. Note that the walk-o� and constant

step size methods are identical in systems with only one type of �ber.

Local Error Method

In practice, it is desirable to have a general criterion for choosing the step size dis-

tribution that is close to optimal for an arbitrary system. Adaptive methods for

controlling the step size using a measure of the local error are widely used in ordinary

di�erential equation solvers [83]. We have implemented a scheme based on bounding

the error in each step using the technique of step-doubling and local extrapolation.

Given the �eld u at a distance z, our aim is to compute the �eld at z + 2h. Suppose

that we perform one step of size 2h in a symmetric split-step scheme. We will refer

to the solution obtained at z + 2h as the coarse solution, uc. Since the local error in

the symmetric split-step scheme is third order, there is a constant κ so that

uc = ut + κ(2h)3 + O(h4), (3.6)

where the true solution ut is the exact solution at z + 2h obtained from the given

solution at z. When we write that u = v + O(h4) for some functions u and v, we

mean that |u− v| < Ch4, for some constant C. Next, we return to z and compute

the �ne solution uf at the same distance z + 2h using two steps of size h. As above,

the �ne solution is related to the true solution by

uf = ut + 2κh3 + O(h4). (3.7)
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By taking an appropriate linear combination of the �ne and coarse solutions we can

obtain an approximate solution at z + 2h for which the leading order error term

is of fourth order in the step size h [83]. From (3.6) and (3.7) it follows that this

higher-order solution is given by

u4 =
4

3
uf − 1

3
uc = ut + O(h4), (3.8)

which we take as the input to the next step of size 2h.

In the local error method the step size is adaptively chosen so that the local error

incurred from z to z +2h is bounded within a speci�ed range. The relative local error

δ4 of the higher-order solution is de�ned by

δ4 =
‖u4 − ut‖
‖ut‖ , (3.9)

where the norm ‖u‖ is de�ned as ‖u‖ =
( ∫ |u(t)|2dt

)1/2

. However, since we cannot

compute the true solution ut in practice, we cannot compute the local error using (3.9).

Instead, we de�ne the relative local error of a step to be the local error in the coarse

solution relative to the �ne solution:

δ =
‖uf − uc‖
‖uf‖ . (3.10)

Notice that δ is a measure of the true local error δ4, since δ can be obtained from

3δ4 by replacing ut by uf . The step size is chosen by keeping the relative local error

δ within a speci�ed range (1/2δG, δG), where δG is a speci�ed local error target. If

δ > 2δG, the solution is discarded and the step size is halved. If δ is in the range

(δG, 2δG), the step size is divided by a factor of 21/3 for the next step. If δ < 1/2δG,

the step size is multiplied by a factor of 21/3 for the next step. The reason for choosing

this factor is that the local error should change by a factor less than 2, since it is



31

proportional to h3.

Rather than simply computing the �ne solution, our method computes both the

�ne and coarse solutions. Although it requires 50% more Fourier transforms than does

the standard symmetric split-step method, the method yields both a higher-order

solution, which is globally third-order accurate and a measure of the relative local

error, which is used to control the step size. However, it is important to understand

that the higher-order solution u4 is not always more accurate than the �ne solution

uf , especially when the step size is large, since we are bounding the local error δ of

the coarse solution relative to the �ne solution, rather than using the true local error

δ4.

Since we do not make any assumptions about the physical properties of the system,

such as the amount of nonlinearity or dispersion, we expect the local error method

to work well in an arbitrary system. In order to simulate a system with optimal

e�ciency, one must �rst ascertain the major sources of the split-step error. Assuming

that the system is dominated by one source of error, one can select an appropriate

criterion for choosing the step sizes. The local error method allows us to deal with

general systems when the major source of error is unknown or may even change

during the propagation, or when performing a series of simulations in which the

system parameters are varied. The method can be applied to a variety of systems

without sacri�cing too much computational e�ciency.

3.1.2 Split-step Fourier method: Numerical examples

In this part we compare the e�ciency of the �ve implementations of the split-step

method described above. Since most of the computational time is consumed by

evaluating fast Fourier transforms (FFTs), we use the number of FFTs per simulation

as a measure of the total computational cost [85]. We used the following scheme to

compare the di�erent methods. First, we compute a solution ua that is accurate to
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machine precision using the standard symmetric split-step method (with step sizes

on the order of 5 cm). Next we compute the numerical solution un for each of the

di�erent split-step implementations, and calculate the global relative error ε de�ned

by

ε =
‖un − ua‖
‖ua‖ , (3.11)

where we use the norm de�ned in Section 3.1.1. We compare the performance of the

di�erent methods by plotting the number of FFTs versus the global relative error.

Higher-Order Solitons

We start with the propagation of second- and �fth-order solitons. These systems

are both highly nonlinear. In addition, higher-order solitons are very sensitive to

numerical errors, thus requiring an e�cient adaptive algorithm. The exact functional

form of the N -soliton solution can be found in [88]�[93]. We use an anomalous-

dispersion �ber with β′′= −0.1 ps2/km. The initial pulse is a hyperbolic secant

of the form u(t) = Aη
(|β′′|/γ)1/2sech(ηt), where the nonlinear coe�cient is γ =

2.2 W−1km−1, the inverse pulse duration is η = 0.44 ps−1, and where A = 2 and

A = 5 for the second-order and �fth-order solitons respectively. The corresponding

FWHM pulse duration is 4 ps and the peak powers are 35 mW and 220 mW for

the second- and �fth-order solitons respectively. The number of Fourier modes is

1024 and the simulation time window is 50 ps. We show the performance of the

di�erent implementations of the split-step method applied to the second-order soliton

in Fig. 3.1(a) and to the �fth-order soliton in Fig. 3.1(b).

In Fig. 3.1, we have plotted the number of FFTs versus the global relative error for

the di�erent step-size criteria. Although the performance of the local error method is

not signi�cantly better in the range of low accuracy values 10−2�10−3, at high accuracy

the computational cost of the local error method is one or two orders of magnitude

less than for other methods. Notice that the nonlinear phase method performs better
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Fig. 3.1: Plot of the total number of FFTs versus global relative error ε for second-
order (a) and �fth-order (b) solitons.

than the constant step size method, consistent with the system's large nonlinearity.

The slope of the local error method curve is less than those of the other two methods

since the constant step size and nonlinear phase methods are globally second-order

accurate, while the local error method is globally third-order accurate. The walk-o�

and constant step size methods are identical since this system includes only one type

of �ber. The logarithmic step size method reduces to the constant step size method

because the �ber is lossless, and (3.4) leads to a constant step size distribution.

Soliton Collisions

Soliton collisions can be a good test for numerical methods because the subtle e�ect

of four-wave mixing cancellation after the collision is very sensitive to numerical

errors [89]. The �ber type and the initial pulse shape are the same as in the previous

section, except that A = 1. The pulse duration is 4 ps and the peak power is 8.8 mW.
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Fig. 3.2: Plot of the total number of FFTs versus global relative error ε for a collision
of two �rst-order solitons.

We launch two soliton pulses separated in time by 100 ps and with a central frequency

di�erence of 800 GHz. The number of Fourier modes is 3072 and the simulation time

window is 400 ps. We show the performance of the di�erent methods in Fig. 3.2. The
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Fig. 3.3: Step size h as a function of distance for the local error method applied to
a collision of two �rst-order solitons.

local error, constant step size, and nonlinear phase rotation methods perform equally

well at low accuracy, when the global error is in the range 10−3�10−1, while the local

error method is much more e�cient when the global error is less than 10−4. Global

errors less than 10−4 are required to estimate the four-wave mixing terms correctly
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and to have them cancel out after the collision. The nonlinear phase method still

works better than the constant step size method because the nonlinear interactions

are critical in the propagation. As before, the logarithmic step size and walk-o�

methods reduce to the constant step size method.

Using the example of a soliton collision, we illustrate the adaptive behavior of the

local error algorithm. Fig. 3.3 shows the step size as a function of propagation distance

for the soliton collision when the targeted range for the local error is (0.5×10−5, 10−5)

and the initial guess for the step size is 1000 m. Since the local error for this initial

step is much less than the targeted range of values, at each step the step sizes are

increased until the local error is within the targeted range. The pulse collision occurs

at a distance of 200 km. At this point, we observe a signi�cant decrease in the step

size, which is necessary to accurately resolve the collision. After the collision, the step

size is increased to the same value as before the collision. The last step is smaller

than the previous step simply because the remaining section of the �ber is shorter

than the step size chosen by the algorithm.

Single-Channel Systems

In this part we study periodically-stationary dispersion-managed soliton (DMS) and

chirped-return-to-zero (CRZ) systems that resemble experimental systems [55], [94].

The DMS system is highly nonlinear, meaning that both dispersion and nonlinearity

determine the signal evolution, while the CRZ system is quasi-linear and the evolution

is mostly determined by dispersion [95]. Thus we are studying the four split-step

implementations using two di�erent types of systems. We include �ber attenuation

and gain, but we do not consider ampli�er noise. We use 64-bit random bit streams

that repeat periodically. We stress that our goal is to test the performance of the

numerical methods for realistic systems rather than to achieve optimal propagation.

Consequently, it is important that we have pulse streams rather than single pulses,
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that we use dispersion management, and that we include the e�ects of �ber loss and

ampli�er gain.

The DMS system is based on a 107 km dispersion map, which consists of four

dispersion-shifted �ber spans, each of 25 km, with normal dispersion equal to

−1.10 ps/nm-km, followed by 7 km of standard single-mode �ber with anomalous

dispersion of 16.6 ps/nm-km at 1551 nm [94]. The loss in both �bers is 0.21 dB/km,

and the ampli�er spacing is 25 km with an additional ampli�er after the standard

single-mode �ber. We use Gaussian pulses with a FWHM duration of 9 ps, as is

appropriate for a 10 Gbit/s bit rate. The peak power is 8 mW. The signal is launched

in the middle of a span of anomalous �ber to ensure the periodicity of the pulse shape

as it propagates along the �ber. The propagation distance is 1,280 km. The simu-

lation time window is 6400 ps and the number of Fourier modes is 6144. We have

not included a dispersion slope in this system since there is only a single channel and

previous work indicates that higher-order dispersion plays no role [94].

The CRZ system is based on a 180 km dispersion map consisting of 160 km of

dispersion-shifted �ber with dispersion −2.44 ps/nm-km, followed by 20 km of stan-

dard �ber with dispersion 16.55 ps/nm-km [55]. The dispersion slope is 0.075 ps2/nm-

km and the �ber loss is 0.21 dB/km for both �bers, while the ampli�er spacing

is 45 km. Symmetric dispersion pre- and post-compensation is performed using

�ber spans of length 2.0 km, where the dispersion is 93.5 ps/nm-km, the slope is

−0.2 ps2/nm-km and the loss is 0.5 dB/km. The initial pulses are phase-modulated,

raised-cosine pulses with 1 mW peak power and a chirp parameter equal to −0.6 [95].

The bit rate is 10 Gbit/s and the propagation distance is 1,800 km. The simulation

time window is 6400 ps and the number of Fourier modes is 4096.

The performance of the four split-step implementations for the single-channel DMS

and CRZ systems is shown in Figs. 3.4(a) and (b) respectively. In both systems, the

local error method performs best over the entire range. Due to its higher order of ac-
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Fig. 3.4: Plot of the total number of FFTs versus global relative error ε for the
single-channel (a) DMS and (b) CRZ systems.

curacy, the data points for the local error method lie on a line with a smaller absolute

slope than those of the other methods, as expected. However, all methods become

comparable in the range of global errors 10−3�10−1, the region of most interest in sim-

ulating �ber optic links. We note however, that in the CRZ system the performance

of the logarithmic step size method is somewhat poorer than that of the nonlinear

phase and walk-o� methods.
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Multi-Channel CRZ System

In order to compare the split-step implementations for modeling multi-channel com-

munications systems, we used the same CRZ system as described above. In Fig. 3.5,

we show the performance of the split-step selection criteria on a 5-channel CRZ system

with a 50 GHz channel spacing. As in the single-channel case, the local error method

is much more e�cient at high accuracy. However, at low accuracy, with the global

error in the range 10−3�10−1, the walk-o� method performs best. At low accuracy, the

local error method does not perform as well as the walk-o� method for the following

reasons. First, in the multi-channel CRZ system, the step size within each �ber in

the local error method varies approximately within a factor of two, and the average

value is comparable to the step size in the walk-o� method for a given global error.

However, each pair of steps in the local error method is 50% more expensive than in

the walk-o� method. In addition, when the step size is large and the global accuracy

is low, the higher-order solution u4 may not be as accurate as the �ne solution uf .

Indeed, we have observed that the local error method performs slightly better at low

global accuracy if we keep the �ne solution uf instead of the higher-order solution u4

at each step.

Next, we observe that the nonlinear phase rotation method does not perform as

well as the walk-o� method in the multi-channel CRZ system, although the perfor-

mance of the two methods is comparable in the single-channel DMS and CRZ systems.

There are two major reasons for this behavior. First, in contrast to the single-channel

case, the walk-o� criterion becomes more physically relevant in a WDM system, in

which pulses in di�erent channels collide. Second, the step size in the nonlinear

phase rotation method is determined by the peak power in the time domain. In the

single-channel CRZ system, the power function contains spikes due to the overlap

between neighboring pulses. However, between ampli�ers the peak power decreases

monotonically with distance due to �ber attenuation. By contrast, the peak power
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Fig. 3.5: Plot of the total number of FFTs versus global relative error ε for the
multichannanel CRZ system.

of the multi-channel system does not decrease monotonically with distance but con-

tains irregular spikes because pulses from di�erent channels rapidly pass through each

other. As a consequence, there is a signi�cant proportion of step sizes in the nonlinear

phase rotation method that are much smaller than they need to be for a given global

accuracy. The logarithmic step size method is not e�cient in the CRZ system be-

cause the step size choice is only based on limiting spurious four-wave mixing, which

is only one of the potential sources of error in a multi-channel simulation. We also

found that in the logarithmic step size method, the error grows most rapidly in �bers

with high dispersion. We �nd that the constant step size method is ine�cient in the

multi-channel CRZ system. The reason it performs so poorly is that for a given step

size the global error does not accumulate linearly with distance. Consequently, in

some sections of the transmission line the global error grows rapidly, while in others

the error accumulates very slowly and computational e�ort is wasted.

In Figure 3.6, we show the step sizes in the local error method as a function of

propagation distance when the targeted range for the local error is (0.5 × 10−4, 2 ×
10−4). The upper two plots show the step sizes for the �rst two and last two periods

of the dispersion map, and the lower two plots show the corresponding portions of
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the dispersion map. The ampli�ers, marked by triangles, are placed after the pre-

compensation �ber, and then every 45 km. Notice that the step size increases as

the signal power and the strength of the nonlinear interactions decrease due to the

�ber loss. Also note that step size is smaller in �bers with higher dispersion since the

pulses in neighboring channels move faster with respect to each other.

Variation of Method Parameters

In this part we address two important questions concerning how the method param-

eter should be chosen to achieve a desired global accuracy. The method parameter

is the parameter in a split-step method that we vary to adjust the accuracy of the
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method. First, for a given global error, how much does the method parameter depend

on the particular system? Second, by what factor should the method parameter be

decreased to halve the global error?
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Fig. 3.7: Plot of the global error as a function of method parameter for (a) local er-
ror, (b) walk-o�, (c) nonlinear phase, (d) logarithmic step, and (e) constant
step methods.

To answer the �rst question, in Figs. 3.7(a)�(e), we show the dependence of the

global error on the method parameter for the local error, walk-o�, nonlinear phase,



42

logarithmic step, and constant step size methods respectively. Although the walk-o�

method is the most e�cient in some cases, it exhibits the worst system dependence. In

particular, for the �ve systems we studied, when the global error is 10−3 the walk-o�

parameter varies over �ve orders of magnitude, whereas the parameter for the other

three methods vary only over one to two orders of magnitude. Even omitting the

two soliton systems from the comparison, the walk-o� method has a greater system

dependence than the local error method. Consequently, each new system requires a

signi�cantly di�erent walk-o� parameter to achieve the same global accuracy.

To answer the second question we examine the slopes of the curves in Fig. 3.7.

For the walk-o�, nonlinear phase, and logarithmic steps methods, the slopes are

approximately 2, as expected, since these three schemes are second order and the

step sizes depend linearly on the method parameter. Ideally, the global error should

depend linearly on the local error. However, for the local error method the slopes

of the curves in Fig. 3.7(a) are approximately 1.3, rather than 1. The reason for

this discrepancy is that the true local error (3.9) is unavailable. Instead, we use an

estimate of local error given by (3.10). In addition, in our local error algorithm,

the local error (3.10) is maintained within a range of values rather than being kept

constant.
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3.2 Common reduced models

Solving the NLS equation numerically enables one to calculate the solution with high

accuracy, typically limited by the numerical roundo� error. However, in many cases

the computational cost of the numerical solution for WDM systems is unacceptable. A

typical approach to e�ciently evaluate the nonlinear crosstalk is to separate di�erent

nonlinear e�ects and calculate the signal distortion, the eye opening penalty, or the Q-

factor degradation [7], [14], [33], [34], [48], [74], [96]. There exists a variety of methods

for the evaluation of di�erent nonlinear e�ects [7], [12], [16], [18]�[20], [28]�[30], [32],

[35]�[37], [39], [41], [74], [97], [98], most of which are focused on the e�ect of XPM,

as the dominant nonlinear e�ect in modern optical �ber communications systems.

3.2.1 Non-return-to-zero transmission

Most of the work to date on nonlinear impairments for the NRZ format is based on a

pump-probe analysis and linearization of the distortion around the signal. The per-

turbation of the signal due to nonlinear interactions is assumed to be small compared

to the signal and then one can derive linear equations for the perturbation. It is

also typical to neglect the e�ects of self-phase modulation and dispersion on pump

signal [16], [28]�[30] or to assume that dispersion is small [31], [37]. We will review

the most common methods and we will only focus on the theoretical results of the

publications discussed.

Additive perturbation approach

Chiang, et al. [28] introduced a pump-probe model to estimate the XPM-induced

phase shift. The starting point is the equation for the electric �eld envelope of the
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probe wave uj in the presence of a pump wave with the envelope uk,

∂uj

∂z
+

α

2
uj +

1

vj

∂uj

∂t
= iγ(|uj|2 + 2|uk|2)uj, (3.12)

where α is the attenuation coe�cient, vj is the group velocity of the j-th wave,

and γ is the nonlinear coe�cient. The e�ect of chromatic dispersion within a single

wavelength channel is neglected. The evolution of the power Pk of the pump wave is

assumed to be in the form

Pk(z, t) =

∣∣∣∣uk

(
0, t− z

vk

+ djkz

)∣∣∣∣
2

e−αz, (3.13)

where djk = v−1
j − v−1

k ≈ D(λj − λk) is the walko� parameter, with D being �ber

dispersion and λj, k the wavelengths of the probe and pump. Assuming a continuous-

wave (cw) probe and a sinusoidally-modulated pump,

Pj(0, t) = |uj(0, t)|2 = Pj 0 (3.14a)

Pk(0, t) = |uk(0, t)|2 = Pk 0 + Pkm cos(ωt + θ), (3.14b)

Chiang, et al. show that the phase of the probe wave is given by

φj(z, t) = γ(Pj 0 + 2Pk 0)Le� + 2γPkm
√

ηLe� cos

[
ω(t− z

vj

+ θ + ϕ)

]
, (3.15)

where Le� = (1− e−αL)/α, η is the XPM e�ciency given by

η =
α2

α2 + ω2d2
jk

[
1 +

4 sin2(ω djk L/2)e−αL

(1− e−αL)2

]
, (3.16)
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and

ϕ = arg(α + iωdjk) + arg [e−αL cos(ωdjkL)− 1− ie−αL sin(ωdjkL)]. (3.17)

The power of an arbitrarily modulated signal can be represented as a Fourier

integral

Pk(z, t) =
1

2π

∫ ∞

−∞
P̃k(z, ω) exp(−iωt)dω, (3.18)

where P̃k(z, ω) is the spectrum of the pump wave intensity. Then the XPM-induced

phase shift is given by

φj(z, t) =
1

2π

∫ ∞

−∞
H(ω)P̃k(0, ω) cos

[
ω

(
t− z

vj

)
+ θ

]
exp(−iωt)dω, (3.19)

where H(ω) is the �ber XPM frequency response

H(ω) = 2γ
√

η(ω) Le� exp[iϕ(ω)] (3.20)

Equations (3.19) and (3.20) suggest that XPM acts on a signal as a phase modulator.

The input to this modulator is the pump wave modi�ed by the �ber response function

H(ω). The authors also extend the analysis to the multi-span transmission systems.

This analysis does not provide the amplitude distortion that occurs due to the action

of dispersion on the cross-phase-modulated signal.

Hui, et al. [16] extended the work by Chiang, et al. [28] by calculating XPM-

induced amplitude distortion and including the e�ect of dispersion on the probe sig-

nal. The theoretical model of XPM-induced crosstalk is also based on a pump-probe

approach, in which the probe is cw and the pump is arbitrarily modulated, while the

distortion induced by XPM is considered a small perturbation. The starting point

is a propagation equation that is similar to (3.12) but it includes dispersion in the
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probe signal so that

∂uj

∂z
+

α

2
uj +

1

vj

∂uj

∂t
+ i

β′′

2

∂2uj

∂t2
= iγ(|uj|2 + 2|uk|2)uj, (3.21)

where β′′ is the chromatic dispersion. The pump wave is assumed undistorted and

its evolution is described by (3.14b). Assuming that the phase and amplitude pertur-

bations are small and using a variable separation technique similar to the split-step

method, one can obtain the following expression for the XPM-induced power varia-

tion:

δs̃jk(ω, z) = 4γ Pj(0)P̃k(0, ω)
sin(β′′ω2z/2)

α + iωdjk

exp (iωz/vj − αz) . (3.22)

This result is then generalized to the case of multi-span systems. For an arbitrary

pump and probe waveform, Hui, et al. �nd that the crosstalk is given by

Cjk(t) = FT−1

{
FT[mk(t)]

δs̃jk(ω, z)

Pj exp(−αz)
HR(ω)

}
mj(t), (3.23)

where HR(ω) is the receiver frequency response function, mj(t) and mk(t) are the

normalized probe and pump waveforms at the transmitter, and FT(·) indicates the

Fourier transform, de�ned by (2.3). The system impact is de�ned in this work as

the maximum eye closure. We note that no justi�cation was given for the undis-

torted pump assumption. Since Hui, et al. did not compare their results to exact

simulations it is not possible to assess the importance of this assumption from this

work. Cartaxo [32], [99] showed that this assumption leads to inaccurate results in

multi-span systems.

A related approach that is often cited in the literature is the small signal analysis

that was originally developed by Wang and Petermann [100] to study the propaga-

tion of a noisy signal from a laser diode through a dispersive �ber. This approach
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describes the conversion of intensity and phase modulation originating from an ar-

bitrary noise source. The main analytical result of this work is that given a weak

intensity modulation ∆Sin(ω) normalized to the average input intensity and a weak

phase modulation φin(ω), the intensity and phase at the �ber output are given by

∆Sout(ω) = cos(ω2F ) ∆Sin(ω) + sin(ω2 F ) φin(ω) (3.24a)

φout(ω) = − sin(ω2F ) ∆Sin(ω) + cos(ω2 F ) φin(ω), (3.24b)

where F = −β′′z/2. Equations (3.24a) and (3.24b) relate intensity and phase modu-

lation during transmission through the �ber. Although this approach does not take

into account �ber nonlinearity, it can be used to calculate the intensity and phase

modulation that is induced by the Kerr e�ect.

Using the small signal analysis, Cartaxo [32] derives an expression for the intensity

of the XPM-induced distortion. The input to the �ber is a cw probe and a modulated

pump signal. Using (3.12), one can calculate the phase modulation produced along

the �ber, and, assuming that it is small, apply (3.24a) and (3.24b) to calculate the

intensity distortion. In this approach, the e�ect of �ber dispersion on the pump

waveform is taken into account only approximately. The evolution of the pump

waveform is calculated using the small signal analysis:

P̃k(z, ω) = P̃k(0, ω) cos(qz) exp (−αz + iωz/vk) , (3.25)

where q = ω2Dkλ
2
k/(4πc) with Dk, and λk being dispersion coe�cient and wavelength

of the pump channel. Note that this approximation is only valid for weak dispersion

and narrow-band signals. It cannot be applied to typical RZ-modulated signals as

RZ pulses typically undergo signi�cant dispersive broadening. It can then be shown
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that the XPM-induced intensity variation is described by [32]

P̃XPM(ω) = 2γPj(0)P̃k(0, ω) exp (−αz + iω/vjz)

·( 1

a2 + (b + q)2

{
a sin(bz)− (b + q) cos(bz) + [a sin(qz) + (b + q) cos(qz)]e−αz

}

+
1

a2 + (b− q)2

{
a sin(bz)− (b− q) cos(bz)− [a sin(qz) + (b− q) cos(qz)]e−αz

}),

(3.26)

where a = α + iω djk, b = ω2Djλ
2
j/(4πc), with Dj and λj being dispersion coe�cient

and wavelength of the probe pump channel. For an arbitrary modulation, the pump

intensity can be represented using (3.18). Then the intensity �uctuation is given by

Pmod
XPM(t) =

1

2π

∫ ∞

−∞
HXPM(ω)P̃k(ω) exp(−iωt)dω, (3.27)

where HXPM(ω) is determined from (3.26) as HXPM(ω) = P̃XPM(ω)/P̃k(ω). The anal-

ysis is then generalized for multi-span systems [32]. In the case of negligible pump

envelope change and large channel spacing the approaches of Hui [16] and Cartaxo [32]

give the same result, as shown by Bellotti [30].

Bellotti, et al. [30] used essentially the same theoretical approach to derive the

XPM-induced power variation as in [31], [32] employing the small signal analysis [100],

except that the pump waveform distortion due to chromatic dispersion was neglected.

The work by Jiang, et al. [35] also uses the small signal analysis as in [99] neglecting the

pump wave distortion but including the Raman e�ect. Later, Luís and Cartaxo [37]

extended the analysis by including the e�ect of SPM on the probe wave. They found

that including the SPM e�ect can be important when propagating a probe signal with

a power of 7 dBm and a pump signal with a power of 4 dBm over sixteen 80 km-long

spans of standard SMF and DCF �ber.

The validity of the additive perturbation methods described above is commonly
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assessed by estimating the accuracy of the normalized power distortion as a function

of modulated frequency. The analytical results are in good agreement with both full

numerical simulations [16], [28], [30], [32], [37] and experiments [16], [28], [96]. The

main limitation is the assumption that the pump is either undistorted or approxi-

mated by (3.25). In [16], [30], the authors showed a good agreement between the

analytical and numerical approaches by comparing the NRZ waveform distortions.

In [37], [96] the authors calculated the standard deviation of the received current

analytically and showed a good agreement with the numerical simulations. The ap-

proaches described in [16], [28], [30], [32], [37] fail at high power and high dispersion.

No accurate BER calculation has been presented in the literature.

Multiplicative perturbation approach

Ciaramella and Forestieri [36] showed that using a multiplicative perturbation instead

of the traditional additive perturbation can be more accurate in evaluating the wave-

form distortion due to the Kerr e�ect. Consider a normalized NLS equation in which

the �eld envelope is rede�ned such that u(z, t) := u(z, t) exp (αz/2),

∂u(z, t)

∂z
+ i

β′′(z)

2

∂2u(z, t)

∂t2
− iγe−αz|u(z, t)|2u(z, t) = 0. (3.28)

Given the linear solution u0(z, t) of (3.28) in the case γ = 0, the general solution

to (3.28) is assumed to be of the form

u(z, t) = u0(z, t) exp [−iγϑ(z, t)] , (3.29)

where ϑ(z, t) is a complex-valued function that also depends on γ. Assuming that γ

is small, one may expand ϑ in a Maclaurin series in γ as

ϑ =
∞∑

k=0

ϑkγ
k. (3.30)
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The �rst-order perturbation can be obtained by using the �rst term ϑ0 from (3.30).

Then the evolution of ϑ0 is described by a linear equation

∂ϑ0

∂z
= i

β′′

2

(
2

u0

∂ϑ0

∂t

∂u0

∂t
+

∂2ϑ0

∂t2

)
+ e−αz|u0|2. (3.31)

Using the split-step Fourier method, one then �nds that the solution of (3.31) may

be written [36],

ϑ0(z, t) =
1

u0(z, t)

∫ z

0

[|u0(x, t)|2u0(x, t)
]⊗ h(z − x, t)e−αxdx, (3.32)

where h(z, t) = FT−1 [exp(iβ′′ω2z/2)] is the linear �ber impulse response, and the

symbol ⊗ denotes the convolution [36].

Calculating the second term ϑ1 in (3.30), one can obtain the second order pertur-

bation

ϑ1(z, t) =
1

2
iϑ2

0(z, t)

− i
1

u0(z, t)

∫ z

0

{
[2ϑ0(x, t)− ϑ∗0(x, t)]|u0(x, t)|2u0(x, t)

}⊗ h(z − x, t)e−αxdx.

(3.33)

Even though we consider the �rst-order term γϑ1 in (3.30), the perturbation is called

the second order in the original work [36] because of an extra factor of γ in the

exponent in (3.29).

As a result, (3.29), (3.32), and (3.33) are the approximate solution to the NLS

equation (3.28) for an arbitrary input signal, which can be either a single channel

or multiple channels in a WDM system. As a measure of accuracy Ciaramella and

Forestieri used the normalized square deviation between the accurate and approximate

solutions for a 16-bit NRZ waveform and they showed that for a single channel NRZ

system, the �rst-order multiplicative perturbation approach is comparable to the
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�rst-order additive approach [101], while the second-order multiplicative approach

is up to two orders of magnitude more accurate than the additive theory for the

same computational e�ort. A signi�cant drawback of this approach is that the signal

u0(z, t) in the denominator of (3.32) and (3.33) can become zero leading to numerical

problems. A suggested way to overcome these problems is to set a �nite extinction

ratio or to use the expansion exp(x) ≈ 1 + x in (3.29) when u0(z, t) becomes small.

In this case the multiplicative perturbation reduces to the additive perturbation.

However, this approach requires a time- and distance-dependent switch inside the

computation and seriously complicates it. This problem could in principle be resolved

by using a combined additive and multiplicative perturbation approach developed by

Secondini [102], [103], where he introduced an extra variable to avoid the singularity,

but this approach has yet to be applied to nonlinear signal propagation.

Impact on the system performance

In all the work described above, except [36], the e�ect of XPM is characterized by the

variance of the received current. The XPM impact on the system in [30] is estimated

by �rst calculating the probe waveform distortion using a 128-bit pseudo-random

sequence in the pump channel and then calculating the standard deviation of the

probe intensity at the receiver. The impact of XPM on the system performance can be

estimated as a variance σ2
XPM of the received current using the power spectral density

SP (f) of the received current of the probe signal, as has been done in [35], [37], [96].

The power spectral density of a signal is de�ned as the Fourier transform of its

autocorrelation function [104]. Using (3.27), one can obtain [104]

SP (ω) = 4Pj(0)|HXPM(ω)|2Smod(0, ω). (3.34)
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The input power spectral density of the intensity-modulated signal with random bi-

nary data Smod(0, ω) is expressed as [104]

Smod(0, ω) =
1

4T
|P̃p(ω)|2 +

1

4T 2

∞∑

k=−∞

1

2π

∣∣∣∣P̃p

(
k

Tbit

)∣∣∣∣
2

δ

(
ω − 2πk

Tbit

)
, (3.35)

where Tbit is the bit period, and P̃p(ω) is the Fourier transform of a single pulse. The

current variance is then given by

σ2
XPM =

1

Pj(0)

∫ ∞

−∞
SP (ω)|He(ω)|2dω

2π
, (3.36)

where He(ω) is the electrical �lter transfer function.

3.2.2 Return-to-zero transmission

Both soliton and linear WDM RZ systems are mainly a�ected by the �ber nonlinearity

in the form of collision-induced timing jitter, which has been a maior focus of recent

research [12], [19], [20], [39], [41], [74], [98], [105]�[110]. All this work is based on

the analysis of two-pulse collisions. The analysis starts with the reduced propagation

equation for a pulse u in the presence of another pulse v that is o�set from u in both

time and central frequency

∂u(z, t)

∂z
+ i

β′′(z)

2

∂2u(z, t)

∂t2
− iγ

[|u(z, t)|2 + 2|v(z, t)|2] u(z, t) = g(z)u(z, t), (3.37)

with the same variables and parameters as in (2.2). The propagation equation (3.37)

is obtained from (2.2) assuming that the frequency separation between the pulses

u and v is much larger than their spectral bandwidths. Also, FWM is neglected

in (3.37). Commonly, the central time and frequency of the pulse u is de�ned as [12],
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[20], [105]�[107]

Tc =
1

E

∫ ∞

−∞
t|u|2dt, (3.38a)

Ωc =
1

E

∫ ∞

−∞
Im

(
∂u∗

∂t
u

)
dt, (3.38b)

where E =
∫∞
−∞ |u|2dt. Using these de�nitions, one can obtain the following dynamic

equations for the central time and frequency from (3.37)

dTc

dz
= β′′Ωc, (3.39a)

dΩc

dz
= −2γ

E

∫ ∞

−∞
|u|2∂|v|2

∂t
dt. (3.39b)

Equations (3.39a) and (3.39b) are the starting point for most of the published work [12],

[20], [105]�[107], and they can be used to calculate collision-induced frequency and

time shifts for a given system and pulse shape.

Classical solitons are known to be transparent to complete collisions, so that there

is no change in the central frequency, energy, and shape [89], [105]. Mollenauer, et

al. [106] showed that solitons remain transparent in systems with �ber loss and lumped

ampli�cation, as long as the length of the collision is long enough compared to the

ampli�er spacing or to a period of variation in some other parameter, such as the

�ber's chromatic dispersion. Mollenauer, et al. [106] also derived the �rst analytical

expression for the frequency shift of a soliton during a two-soliton collision for a

periodically-ampli�ed system with periodically varying dispersion. Let us make the

transformation

u := u/
√

G and z := z ∆, (3.40)

where dG/dz = 2gG, and ∆ = D/〈D〉 is the dispersion parameter normalized to the

path-averaged dispersion 〈D〉. Then the original variations in dispersion and gain

and loss are equivalent to variations in the nonlinear coe�cient γ(z) := γG(z)/∆(z).
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The solution of the propagation equation is assumed to be in the form u = sech(t +

Ωz) exp(−iΩz + iφ) [106], where 2Ω is the frequency separation between the pulses u

and v. By performing a spatial Fourier transform of γ(z) as

γ(z) =
1

2π

∫
γ̃(k) exp(ikz)dk, (3.41)

one can obtain the collision-induced frequency shift δΩ [106],

δΩ = Im32

π2

∫ ∞

0

γ̃(k)

k

x4

sinh2(x)
dk, (3.42)

where x = πk/(4Ω).

The approach of Mollenauer, et al. [106] has been extended to calculate the stan-

dard deviation of the collision-induced time shift for a large number of pulse collisions

in WDM soliton systems with dispersion decreasing �bers [19], [20], [109].

Devaney, et al. [107] have applied Mollenauer's theory [106] to two-step dispersion-

managed soliton systems and have shown that the maximum frequency shift decreases

with the strength of the dispersion management irrespective of the �ber sequence.

Devaney, et al. [107] showed that the e�ectiveness of the dispersion management has

two sources: First, the large local dispersion reduces the residual frequency shift that

is due to single-soliton collisions, and second, the modi�ed collision dynamics, whereby

each complete interaction comprises a number of self-canceling fast crossings. A

similar result was obtained by Hirooka and Hasegawa [111] that includes a description

of the behavior of chirped solitons and a derivation of more accurate expressions for

Gaussian pulses as opposed to using the formulae for hyperbolic-secant pulses.

Collision-induced timing jitter in quasi-linear systems has recently been studied

by Grigoryan and Richter [12], Ablowitz, et al. [39], and Ahrens, et al. [41]. These

methods can be applied to both quasi-linear and soliton systems. In [12], the authors

used a numerical approach to calculate the time shift directly from (3.39a) by solving
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the NLS to obtain the pulse shape u as a function of distance. They also calculated

the standard deviation of the time shift. This approach can e�ciently be applied

to arbitrary WDM RZ systems and it takes into account the exact evolution of the

pulses. Ablowitz, et al. [39] calculated the collision-induced time shift in a quasi-linear

system analytically using asymptotic analysis. The pulse shape in [39] is assumed

to be Gaussian and the evolution of the pulses is assumed to be linear. Then by

integrating (3.39a) and (3.39b) and using Gaussian pulses, one can obtain expressions

of form
∫

f(z) exp[−ηφ(z)]dz. The parameter η À 1 is proportional to the square of

the channel spacing and φ(z) > 0. Integrals of this type are amenable to asymptotic

analysis, speci�cally, by Laplace's method [112]. For large η the exponent decays

rapidly away from the minimum points of φ(z) and the integrals can be evaluated

as sums of Gaussian-type integrals. Physically, the minima of φ(z) are located at

the centers of collisions. For a complete collision, the residual collision-induced time

shift δti is approximately given by

δti ∼ γE

2Ω〈D〉 , (3.43)

where E is the initial pulse energy, 〈D〉 is the path-averaged dispersion and 2Ω is the

frequency separation between the pulses. For an incomplete collision [113],

δtc ∼ γE

4ΓΩ〈D〉za

{ξ(fa, fb) + g([θ/2− fbθ]za)− g([θ/2− faθ]za)

+g([θ/2 + fa(1− θ)]za)− g([θ/2 + fb(1− θ)za]) }
(3.44)

where Γ is the loss coe�cient, za is the ampli�er spacing, fa = 1/2 − z0/Lc, fb =

1/2 + (L − z0)/Lc, ξ(fa, fb) = 0 if (fa − 1/2)(fb − 1/2) > 0 and ξ(fa, fb) = 2Γza if

(fa − 1/2)(fb − 1/2) < 0, and the function g(z) is given by

g(z) =
2Γza

1− exp(−2Γza)
exp(−2Γz). (3.45)
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The parameter θ is the fraction of the map with dispersion D1 of a two-step dispersion

map. Ahrens, et al. [41] extended this approach for the case of quasi-linear systems

with dispersion pre- and post-compensation. This asymptotic approach agrees well

with full numerical simulations for a 10 Gb/s system with Gaussian pulses and chan-

nel spacing larger than 100 GHz. However, approximating a realistic raised-cosine

pulse (2.1) with a Gaussian pulse shape and using channel spacings smaller than

100 GHz limits the accuracy of this approach.

In all published work on RZ systems just discussed, the measure of system per-

formance was collision-induced time or frequency shift and their standard deviation,

except for [20], in which the authors used the BER, assuming that there is an error if

the timing shift exceeds a maximum tolerable time shift at the receiver. No accurate

BER calculation for RZ systems that takes into account nonlinear signal distortion

has been reported in the literature prior to our work.



4. STATISTICAL METHODS

Many of the e�ects that degrade the performance of communications systems are

random in nature. Nonlinear crosstalk, noise generated in the ampli�ers, and ran-

domly varying birefringence are just a few. To calculate the BER due to these e�ects,

one must �rst compute the probability density functions (pdfs) of the variables that

describe the performance of the system. In the work presented here, these variables

are either the collision-induced time shift or the received current. In this chapter, we

describe statistical methods that we have used to compute the required pdfs. The

main advantage of a statistical method is that it allows one to use the full system

model, for which analytical solutions do not exist, so that one can in principle produce

an arbitrarily accurate estimate of the pdfs.

We use the following scheme in our statistical approach: We solve the propagation

equation for the system numerically and compute the time shift of a target pulse at

the end of the transmission or the value of the received current at the clock recovery

time. We run a set of Monte Carlo simulations in which we change the input bit

strings in the WDM channels that are neighbors of the target pulse, and we build a

histogram of the time shift or the current, from which we estimate the corresponding

pdf. We assume that the bit strings have a uniform distribution, i.e., each bit has

a probability of 1/2 of being 0 or 1. In standard Monte Carlo simulations, we draw

samples (bit strings) from a uniform distribution. However, most of the samples in

a standard Monte Carlo simulation are near the mean of the pdf, while tails remain

undersampled. In order to estimate the pdf more e�ciently, we use biased Monte

57
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Carlo sampling techniques � the standard importance sampling method (IS) and

the multicanonical Monte Carlo method (MMC). Both of these techniques have been

discussed in the literature [75], [114]�[131], and we only review the basics.
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4.1 Importance sampling

4.1.1 Biasing distribution

Suppose one has a random vector z= (z1, z2, ..., zn) de�ned on a sample space Ω. In

our case, the vector z is discrete, and it represents the set of bits in all the channels:

zl = 0 or 1, where l = 1, ..., n. We want to compute the average

P = E[f(z)] =
∑
Ω

f(zk)p(zk), (4.1)

where E(·) denotes the statistical average with respect to p(z), f(z) is an indicator

function that is equal to 1 if some quantity X(z) falls into a desired subspace S of Ω:

f(z) = IS [X(z)] . (4.2)

In our studies, the quantity X(z) is either the collision-induced time shift or the

received current. As was mentioned earlier, calculating (4.1) exactly is not possible

since f(z) is a complicated nonlinear function of the signal and system parameters.

We estimate (4.1) in a set of Monte Carlo simulations,

P̂ =
1

M

M∑
m=1

f(zm), (4.3)

where M is the number of Monte Carlo samples. In a standard Monte Carlo simu-

lation, one draws samples zm from a distribution p(z). In this case, the estimator P̂

is just the number of hits in the subspace of interest S divided by the total number

of samples. It follows from (4.3) that E(P̂ ) = P . Typically, we are interested in

rare events, for example, large nonlinear distortions that lead to transmission errors,

and a standard Monte Carlo simulation would require us to pick a prohibitively large

number of samples to observe a small number of events in the region of interest in
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the sample space that lead to errors. In standard importance sampling (IS), we use

a modi�ed probability distribution p∗(z) to draw samples,

P =
∑
Ω

f(zk)
p(zk)

p∗(zk)
p∗(zk) = E∗

[
f(zk)

p(zk)

p∗(zk)

]
. (4.4)

The function

L(z) =
p(z)
p∗(z) (4.5)

is called the likelihood ratio, and the distribution p∗(z) is called the biasing distribu-

tion. Then the estimator of P , denoted P̂ ∗, with IS becomes

P̂ ∗ =
1

M

M∑
m=1

f(zm)L(zm), (4.6)

where the samples are now drawn from the biasing distribution. Intuitively, we can

sample region of interest S in the sample space more e�ciently if we choose the biasing

distribution such that p∗(z) > p(z). Then the number of samples falling into S will be

larger. Another way to understand the bene�t of IS is to look at the variance of the

estimates P̂ and P̂ ∗ in that region. If the samples zm are statistically independent,

the variance σ2
P̂
of P̂ is determined by the sample variance σ2

f ,

σ2
P̂

= σ2
f/M, (4.7)

and similarly

σ∗ 2
P̂ ∗ = σ∗ 2

f∗ /M, (4.8)

where f ∗ = fL. In the unbiased case, the sample variance is given by [116], [124]

σ2
f = E[f 2]− E[f ]2 = P − P 2, (4.9)
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where we used the relation for an indicator function, f(z)2 = f(z). The biased

variance is given by

σ∗ 2
f∗ = E∗[f ∗ 2]− E∗[f ∗]2 =

∑
Ω

f 2(zk)
p2(zk)

p∗ 2(zk)
p∗(zk)− P 2

=
∑
Ω

f(zk)L(zk)p(zk)− P 2. (4.10)

From Eqs. (4.7) and (4.9), it follows that when we look into rare events such that

P ¿ 1, the relative variance of the estimator P̂ is very large:

σP̂

P
≈ 1√

MP
. (4.11)

With IS, the variance can be signi�cantly reduced if we choose an appropriate biasing

distribution such that L(z) is small, as can be seen from Eqs. (4.9) and (4.10).

4.1.2 Multiple importance sampling and the balance

heuristic

In practice, it is hard to �nd a single biasing distribution that will e�ciently sample

all the regions of the sample space that are needed to create a histogram of X(z) that

includes a representation of the subspace of interest S. It is necessary then to use

several biasing distributions, and the technique of using several biasing distributions

simultaneously is called multiple importance sampling. In this case, one needs an

appropriate method to combine the results from all the biasing distributions. A

typical way to do it is to weight the Nb di�erent distributions p∗i as follows,

P =

Nb∑
i=1

Pi =

Nb∑
i=1

∑
zk∈Ω

wi(zk)f(zk)Li(zk)p
∗
i (zk), (4.12)
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where Li(z) = p(z)/p∗i (z). In general, the weights w(zk) are functions of z, which

enables one to e�ciently combine the results from di�erent biased samples. The

estimator for P with multiple IS is then

P̂ =

Nb∑
i=1

P̂i =

Nb∑
i=1

1

Mi

Mi∑
m=1

wi(zi
m)f(zi

m)Li(zi
m), (4.13)

where zi
m is the m-th sample from the distribution p∗i , and Mi is the total number of

samples taken from the i-th distribution.

An e�cient way to assign weights to the di�erent biasing distributions is the

balance heuristic method. The weight associated with a given sample z is determined

by the relative likelihood of realizing this sample with the i -th biasing distribution

relative to the total probability of realizing the same sample with all other biasing

distributions,

wi(z) =
Mip

∗
i (z)∑Nb

j=1 Mjp∗j(z)
. (4.14)

The numerator in (4.14), and hence the i -th weight, is proportional to the expected

number of hits from the i -th distribution. Therefore, according to (4.14), each dis-

tribution is weighted most heavily in those regions of the sample space where it is

largest.

Given an estimator P̂ (4.13), one can show that an unbiased estimator of its

variance is given by [117]

σ̂2
P̂

=

Nb∑
j=1

1

Mj(Mj − 1)

Mi∑
m=1

[
wi(zi

m)f(zi
m)Li(zi

m)− P̂j

]2

. (4.15)

One can also obtain σ̂2
P̂
without storing all the individual samples by using the recur-

sion relation

σ̂2
P̂

=

Nb∑
j=1

Sj, Mj

Mj(Mj − 1)
, (4.16)
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where

Ŝj, m = Ŝj, m−1 +
m− 1

m

[
wj(zj

m)f(zj
m)Lj(zj

m)− P̂j, m−1

]2

(4.17)

and

P̂j, m =
m− 1

m
P̂j, m−1 +

1

m
wj(zj

m)f(zj
m)Lj(zj

m). (4.18)

The balance heuristic method has been shown to be close to optimal as the number

of samples increases [117]. Therefore, in this work, we will use this technique of

combining results from di�erent biasing distributions.
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4.2 Multicanonical Monte Carlo simulations

In this work we also used another statistical method, the multicanonical Monte Carlo

(MMC) method, to compute low-probability tails of the pdfs. This method was pro-

posed by Berg and Neuhaus to simulate �rst-order phase transitions in statistical

physics [132] and recently has been applied to di�erent areas of optical communica-

tions to model statistical e�ects of polarization mode dispersion, noise and nonlinear-

ity [75], [118]�[120], [123], [125]�[131].

Why is the MMC algorithm so attractive? Like IS, MMC increases the number

of events in the area of interest by biasing the distribution of the input random

variables. With IS, we need to guess a set of biases based on some knowledge of the

system properties. In our case, we know for example which bit strings contribute

towards large values of collision-induced time shifts. Based on that, we can �nd

e�cient biasing distributions of the input bit strings. The major advantage of MMC

is that it does not require a priori knowledge of these biased distributions. Instead,

the algorithm iteratively converges to a set of biases that yields a uniform expected

number of samples across the histogram.

Our goal is to compute the pdf of a quantity X(z), which in our studies is either

the received current or the time shift, as discussed in the previous section. We divide

the sample space Ω into K subspaces Ωk:

Ωk = {z ∈ Ω | (k − 1)∆X ≤ X(z) < k∆X}, (4.19)

where ∆X is the size of the histogram bin, and k = 1, ..., K. The function fk(z) will

be the indicator function that is equal to one when X(z) falls into the subspace Ωk.

As in IS, the MMC algorithm uses the biasing distribution

Pk =
∑
zs∈Ω

fk(zs)
p(zs)

p∗(zs)
p∗(zs). (4.20)
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The estimate P̂k for the probability Pk in Monte Carlo simulations is then

P̂ ∗
k =

1

M

M∑
m=1

fk(zm)
p(zm)

p∗(zm)
, (4.21)

where the samples zm are drawn from the biasing distribution p∗ and M is the total

number of samples. The optimal biasing distribution that minimizes the variance of

the estimate P̂ is

p∗opt =
fk(z)p(z)

Pk

. (4.22)

However, (4.22) implies that Pk is unknown. Hence this result is of no practical

use. While in standard IS, one attempts to use a priori knowledge to �nd a biasing

distribution that is close to p∗opt, MMC iterates over biasing distributions p∗ j that

approach the optimal distribution. In the j-th iteration, the biasing distribution is

given by

p∗ j =
p(z)
cjP j

k

, (4.23)

where P j
k > 0,

∑K
k=1 P j

k = 1, and cj is an unknown normalization constant that is

chosen to satisfy the pdf normalization condition for p∗ j. Quantities 1/P j
k play the

role of the weights in multiple IS. The P j
k are the probabilities, and they are updated

on each iteration in such a way that the expected number of hits in each bin of the

histogram is equal. After a large number of iterations, the P j
k approach Pk [132].

The Metropolis algorithm is employed within each iteration [133]. This algorithm

produces samples in a random walk whose limiting distribution is p∗ by using the

following rule: In the m-th step, one goes from zm = za to zm+1 = zb = za + εj∆z,

where ∆z is a random vector in the sampling space with no preferred direction, and εj

is a constant that may change from iteration to iteration depending on the acceptance

ratio. The Metropolis algorithm usually performs best when the number of accepted

and rejected steps is approximately equal. So, we adjust εj to keep the acceptance
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ratio near 1/2. Each step is accepted with the probability πab,

πab = min
[
p∗ j(zb)

p∗ j(za)
, 1

]
. (4.24)

The limiting distribution of the random walk with the transition probability (4.24) is

pj ∗ [133].

Before describing the iteration procedure, it is important to note that in the

Metropolis random walk, one does not use the biased distributions pj ∗ explicitly.

From (4.23) it follows that the transition probability is given by

πab = min
[

p(zb)P
j
ka

p(za)P
j
kb

, 1

]
. (4.25)

Thus one controls the random walk using the initial unbiased pdf p(z) and the P j
k .

The limiting distribution of the random walk is pj ∗.

In each iteration, one records a histogram Hj of X so that in each bin k

Hj
k =

Mj∑
m=1

fk(zm) (4.26)

is the number of samples that fall into Ωk. One sets P 1
k = 1/M for the �rst iteration.

At the end of each iteration one updates P j
k by �rst setting P j+1

1 = 1. Any positive

number can be used, as the quantities P j+1
k are normalized later. One uses then the

recursion relations [132]

P j+1
k+1 =

P j+1
k P j

k+1

P j
k

(
Hj

k+1

Hj
k

)ĝj
k

, (4.27)

where

ĝj
k =

gj
k∑j

l=1 gl
k

, gl
k =

H l
kH

l
k+1

H l
k + H l

k+1

. (4.28)
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In (4.27), one sets ĝj
k = 0 when gj

k = 0 and gl
k = 0 when H l

k +H l
k+1 = 0. Thus one uses

statistical information from all previous iterations. Finally, one normalizes P j+1
k so

that
∑K

k=1 P j+1
k = 1. The combination of the Metropolis algorithm and the iterative

procedure enables the algorithm to converge to the optimal set of biases without a

priori knowledge of how to bias the distributions.



5. DETERMINISTIC METHOD FOR

CALCULATION OF THE PDF OF

COLLISION-INDUCED TIME SHIFT

In this chapter, we present a method for the calculating the pdf of the collision-induced

time shift. We �rst derive the equations that describe the evolution of frequency and

time shifts of a pulse in WDM RZ systems. A similar methodology is typically used

in both soliton and quasi-linear systems [12], [19]�[21], [23], [38]�[44], [108], [134].

In this work, we use the semi-analytical approach presented in [12], which allows us

to obtain an accurate solution for the collision-induced time shift numerically. One

could also use an analytical asymptotic approach presented by Ahrens [41]. While

it provides more insight into the nature of the timing jitter and describes well the

asymptotic behavior, it is not accurate for small channel spacings and realistic pulse

shapes. We then introduce the concept of the time shift function and discuss the

shape and scaling of this function.

Next, we use the characteristic function method to derive the pdf of the collision-

induced time shift. The time shift pdf can be approximated by a Gaussian function

based on the central limit theorem. We show that the Gaussian function diverges

signi�cantly in the tails from the true pdf. We validate our results using IS and

MMC simulations.

The pdf of the collision-induced time shift is the key component in the evaluation

of the BER in the presence of nonlinear pattern-dependent distortion.

68
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5.1 Calculation of collision-induced time shift

The starting point is the NLS equation:

∂u(z, t)

∂z
+ i

β′′(z)

2

∂2u(z, t)

∂t2
− iγ|u(z, t)|2u(z, t) = g(z)u(z, t), (5.1)

where u(z, t) is the electric �eld envelope, z is the physical distance, t is the retarded

time with respect to the center frequency of the signal, β′′ is the local dispersion, γ is

the Kerr coe�cient, g(z) is the �ber loss and gain coe�cient. While including higher-

order dispersion poses no di�culty in principal, its e�ect on the system under study

in this work is negligible and we set it to zero for simplicity. The signal we want to

propagate through the �ber consists of several WDM channels, well-separated from

each other in frequency,

u(z, t) =
∑

n

un(z, t) exp(−iΩnt), (5.2)

where un(z, t) is the electric �eld envelope of the signal in the n-th channel and Ωn

is the frequency o�set of the n-th channel. By substituting (5.2) into Eq. 5.1 and

requiring all terms proportional to exp(iΩnt) to vanish independently for di�erent n,

we obtain the following equation for the signal in the n-th channel,

[
∂un

∂z
+ i

β′′

2

(
∂2un

∂t2
− 2iΩn

∂un

∂t
− Ω2

nun

)
− gun

]
exp(−iΩnt) =

∑

j,k,l:
Ωj−Ωk+Ωl=Ωn

iγuju
∗
kul exp [−i(Ωj − Ωk + Ωl)t] . (5.3)

Modern transmission �bers typically have large values of dispersion that signi�cantly

reduce four-wave mixing e�ciency, so that the signal distortion due to the four-wave

mixing is negligibly small compared to that of the cross-phase modulation. Hence, we

only keep terms of the form |uk|2un, which are responsible for self- and cross-phase
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modulation, and we obtain

∂un

∂z
+ i

β′′

2

(
∂2un

∂t2
− 2iΩn

∂un

∂t
− Ω2

nun

)
− gun

= iγ

(
|un|2 + 2

∑

k 6=n

|uk|2
)

un, (5.4)

Next, we make the variable transformation

t := t− β′′Ωnz, (5.5a)

u := u exp

(
i

2
β′′Ω2

nz

)
, (5.5b)

so that we change the time reference system to one that moves with the speed of light

in the n-th channel and remove a common constant phase factor

∂un

∂z
+ i

β′′

2

∂2un

∂t2
− gun = iγ

(
|un|2 + 2

∑

k 6=n

|uk|2
)

un. (5.6)

Our goal is to compute the time shift of a pulse in the target channel n that is a

result of collisions with pulses in other frequency channels. We consider just one pulse

in the target channel, called the target pulse, and we assume that all other channels

have an arbitrary sequence of pulses. Let αkl be the information bit contained in the

l-th bit slot of the k-th channel, so that αkl = 1 or 0 depending on whether a mark

or a space is transmitted. Then the �eld envelope in the k-th channel may be written

as

uk =
∑

l

αklukl, (5.7)

where ukl is the �eld envelope of the pulse located in the l-th bit slot of the k-th chan-

nel. We are making an assumption that pulses in one channel are well-separated in
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time during the propagation so that for each channel k we can use the approximation,

|uk|2 =

∣∣∣∣∣
∑

l

αklukl

∣∣∣∣∣

2

≈
∑

l

αkl|ukl|2. (5.8)

Originally, this assumption was used in the theory of collision-induced timing jitter

for solitons and was well justi�ed because in soliton communications systems, pulses

in one channel do not overlap. In modern quasi-linear RZ systems, a pulse overlaps

with many of its neighbors due to a large dispersive spread. However, the approx-

imation (5.8) is still reasonable because the peak power of a pulse reduces when it

disperses thus reducing the nonlinear interactions. This approximation has proven

to yield an accurate calculation of collision-induced timing jitter [12] and the pdf of

the time shift [23]. Using (5.8), we obtain the following propagation equation for the

target pulse, which we will denote as uT ,

∂uT

∂z
+ i

β′′

2

∂2uT

∂t2
− guT = iγ

(
|uT |2 + 2

∑

k,l

αkl|ukl|2
)

uT . (5.9)

We de�ne the central time and frequency of the target pulse as

Tc =
1

E

∫ ∞

−∞
t|uT |2dt, (5.10a)

Ωc =
1

E

∫ ∞

−∞
Im

(
∂u∗T
∂t

uT

)
dt, (5.10b)

where E =
∫∞
−∞ |uT |2dt. Using these de�nitions and (5.9), we obtain the following

dynamic equations for the central time and frequency,

dTc

dz
= β′′Ωc (5.11a)

dΩc

dz
= − γ

E

∫ ∞

−∞
t|uT |2 ∂

∂t

(
2
∑

k,l

αkl|ukl|2
)

dt. (5.11b)
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Then the collision-induced time shift Ttotal after a propagation distance L can be

represented as

Ttotal =
∑

k,l

αklτkl, (5.12)

where

τkl =

∫ L

0

Ωkl(z)β′′(z)dz (5.13a)

Ωkl(z) = −
∫ z

0

2γ

ET (x)

∫ ∞

−∞
|uT (x, t)|2 ∂|ukl(x, t)|2

∂t
dt dx. (5.13b)

When the higher-order dispersion is zero, the pulse shape in all the channels is

identical so that

ukl(z, t) = uT

(
z, t−

∫ z

0

2π∆fkβ
′′(x)dx + Tbitl

)
, (5.14)

where ∆fk is the frequency spacing between the k-th and the target channel, Tbit is

the bit period, and l = 0 corresponds to the bit slot of the target pulse. From a

practical standpoint, this approximation enables us to reduce the total computation

time by computing the pulse shape once for the target pulse and then using it for all

other channels.

The quantities Ωkl and τkl are the frequency and time shifts of the target pulse due

to its collision with a single pulse located in the l-th bit slot of the k-th channel. As

a result of using approximation (5.8), the time shift of a target pulse that occurs due

to its interaction with an arbitrary pulse pattern in all the neighboring channels can

be represented as a superposition of pairwise collisions. Thus the set of time shifts

due to individual pairwise collisions τkl can be used to determine the time shift of a

target pulse for an arbitrary sequence of pulses through Eq. 5.12.

This assumption vastly reduces the computer time that is required to calculate the

distribution of time shifts and the impairments induced in WDMRZ systems [12], [23].
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It also leads to important insights into the origin of timing jitter and to the develop-

ment of ways to reduce it [40], [44], [134], [135]. We call τkl the time shift function,

and in the next section, we will discuss its properties and asymptotic behavior.
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5.2 Time shift function

In this section, we calculate and analyze the time shift function for collisions between

pairs of pulses in di�erent channels in a prototypical WDM RZ system with dispersion

management and pre- and post-compensation. Once the time shift function is known,

the impairments due to collision-induced timing jitter can be rapidly determined. We

characterize the shape of this function and determine how it scales with the initial

pulse separation in time and channel separation in wavelength. At the end of the

section, we apply it to the calculation of the worst-case time shift. Determining these

worst-case time shifts is important because the time shift distribution is approximately

Gaussian up to about 1/2 of these times [23].

5.2.1 Shape of the time shift function

We write the time shift function (5.13a) as τ(∆f, l), where l is the initial o�set of a

bit slot in a pump channel that is separated by ∆f from the probe channel.

In Fig. 5.1, we plot the time shift function using (5.13a) for the two pump channels

with ∆f = ±100 GHz. We �rst note that τ(∆f, l) = −τ(−∆f,−l). This symmetry

is exact if there is no higher-order dispersion, as has been reported previously for

soliton systems [134]. We also observe that as l increases from −∞ in the pump

channel with ∆f = −100 GHz, the time shift starts from zero, becomes positive,

then changes sign in the neighborhood of l = −8, becoming negative, after which it

becomes positive again, and �nally decays to zero. We have observed this behavior

in a variety of systems, and it has been shown to be generic [41]. We now explain its

physical origin.

In long-haul systems with dispersion management, two pulses in di�erent WDM

channels move rapidly back and forth with respect to each other, resulting in multiple

collisions, each of which we refer to as a micro-collision. If, as is typically the case,
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the average map dispersion is non-zero, two pulses gradually pass through each other

while experiencing multiple micro-collisions. We refer to this process as a macro-

collision. Consider now the collision dynamics of the target pulse with pulses in the

pump channel with ∆f = −100 GHz. Figure 5.2(a) shows the central times for the

pulses with l = 1, 11, and −11. The evolution of the frequency and time shifts of

the target pulses due to collisions with these three pulses is shown in Figs. 5.2(b) and

5.2(c). The pulse with l = 1 undergoes a complete macro-collision, while the pulses

with l = −11 and 11 undergo incomplete macro-collisions that occur at the beginning

and the end of the system respectively.

First, we consider a complete macro-collision, as in the case l = 1. In its ini-

tial phase, the two interacting pulses undergo incomplete micro-collisions. Since the

central time of the pump pulse relative to the target pulse is positive, by Eq. 5.13b

the frequency shift after each incomplete micro-collision decreases. In the second

phase of the macro-collision, the pulses undergo complete micro-collisions with no

signi�cant change in the frequency shift. Finally, the pulses undergo incomplete

micro-collisions again, but now the frequency shift increases, and is nearly zero when

the macro-collision is over. Since the frequency shift is negative during most of the

macro-collision and since the dispersion accumulated during the macro-collision is

negative, the resulting time shift is negative by Eq. 5.13a. We note that the pre-
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Fig. 5.1: Time shift function for two pump channels.
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Fig. 5.2: Collision dynamics for three di�erent pulses.

and post-compensation �bers have almost no e�ect on the time shift in a complete

macro-collision.

We next consider an incomplete macro-collision at the end of the system, as in

the case l = 11. The frequency shift is negative because the pulses only interact

during the initial phase of a macro-collision. The dispersion accumulated during the

macro-collision, including the post-compensation, is positive. Hence, the time shift

is positive. Finally, for an incomplete macro-collision at the start of the system, as

in the case l = −11, the frequency shift is positive because the pulses only interact

during the �nal phase of a complete macro-collision. After pulses have separated, the

frequency shift is constant and positive. Since the dispersion accumulated from the
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Fig. 5.3: The scaled time shift function.

end of the collision to the end of the system is negative, the resulting timing shift is

positive.

We found that the details of the dispersion map and transmission distance do not

qualitatively a�ect the shape of τ(∆f, l) as long as the average map dispersion is

large enough so that the length of a macro-collision is shorter than the system length,

which is usually the case in realistic RZ systems. When the system length is larger

then the collision length, we still can observe a similar behavior. However, in this

case, the details of the map can signi�cantly a�ect the shape of τ(∆f, l) [39]. We

emphasize that a large average dispersion reduces the impact of nonlinearity, so that

the parameter regime considered here is more important in practice.

5.2.2 Scaling of the time shift function

We now discuss how the time shift function scales. An asymptotic analysis [39], [113]

predicts τ(∆f, l) = a2τ(a∆f, al), where a is a scaling parameter. In Fig. 5.3, we show

τ(∆f, l) for channel spacings in the range ∆f = 50 GHz � 400 GHz. We have scaled

τ by (∆f)2 and l by (∆f)−1. The scaling relation holds approximately, but there are

signi�cant deviations. From a physical standpoint, the scaling with the o�set l occurs

because the velocity di�erence between a pulse in a pump channel and the target pulse
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is proportional to ∆f . In the scaling for τ , the time shift is mainly determined by

the accumulation of residual frequency shifts due to incomplete micro-collisions, as

seen in Fig. 5.2, while the residual time shift is small. The frequency shift due to

each micro-collision is determined by the maximum overlap of pulses (5.13b), which

is independent of ∆f , and the interaction length, which is proportional to (∆f)−1.

Hence the frequency shift due to each micro-collision scales as (∆f)−1. Since the

number of incomplete micro-collisions is proportional to (∆f)−1, the total time shift

scales as (∆f)−2. For this scaling to hold, the number of incomplete micro-collisions

in each macro-collision should be large, and the maximum separation of the two pulses

in each micro-collision should be large compared to the pulse durations. When ∆f

is large, the �rst condition is violated, and oscillations are visible when ∆f = 400

GHz. When ∆f is small, the second condition is violated, blurring the distinction

between complete and incomplete macro-collisions, so that the transition between the

two occurs more gradually, as seen when ∆f = 50 GHz.

Given τ(∆f, l), we determine the worst-case time shift from Eq. 5.12 by setting

αkl = 1 when τ(∆fk, l) ≡ τkl > 0 and αkl = 0 when τ(∆fk, l) < 0 or vice versa.

From the relation τ(∆f, l) = −τ(−∆f,−l), we �nd that the worst case corresponds

to an opposite choice of 1's and 0's in channels with ±∆f , just as Xu, et al. [134],

discovered in the case of solitons. From the scaling relation τ(∆f, l) = a2τ(a∆f, al),

we would also conclude with Xu, et al. [134] that the maximum time shift increases

logarithmically with the number of channels, as seen in Fig. 5.4, where we have �t a

logarithmic function of the form a+b log N . This scaling relation breaks down when all

micro-collisions are complete, which corresponds to N > 16 for the system we studied.

However, the residual time shift due to micro-collisions still scales as (∆f)−2, since

the frequency excursion is proportional to (∆f)−1 and so is the length of the micro-

collision. Hence, as seen in Fig. 5.4, the maximum time shift continues to increase

logarithmically beyond N = 16. However, the scaling of the time shift function only
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holds approximately, and in practice it is better and still computationally rapid to

use the exact time shift function when calculating the distribution function for the

timing jitter and its cuto�.
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5.3 Probability density function of the time shift

In this section, we calculate the probability density function of the collision-induced

time shift using both a Gaussian approximation and the exact theory. Di�erent

frequency channels can be synchronized, meaning that the bit slots of all the channels

are aligned at the input so that the delay between the signals in di�erent channels is

�xed. We will refer to this situation as the synchronous channels case. Alternatively,

the clock in each channel can drift randomly with time so that the delay between the

signals of di�erent channels is random. We call this case the asynchronous channels

case. The treatment of the synchronous case depends on the exact relative position

of the clock in di�erent channels. We will consider the case in which the bit slots

in all the channels are aligned at t = 0. If they are aligned di�erently, it can be

taken into account by introducing a translation of the time shift function. In the

asynchronous case, we treat the drift of the channel clock position as an independent

random process.

5.3.1 Synchronous channels

We assume that the transmitted data is random so that the αkl are independent,

identically-distributed random variables, each having probability 1/2 of being 1 or 0.

Thus the total shift of the target pulse Ttotal is a random variable, which is a linear

combination of independent binary random variables. The number of terms in the

sum (5.12) is �nite due to the �nite number of pulses with which the target pulse

collides. On the other hand, the number of collisions is large so that based on the

central limit theorem, it is reasonable to assume that Ttotal is Gaussian-distributed. In

this case, it is su�cient to know its mean µT and variance σ2
T . In the absence of higher-

order dispersion, the collision process is antisymmetric with respect to frequency and

time inversion, as discussed in Ref. [136] and in Section 5.2, so that τkl = −τ−k−l and
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hence

µT =
∑

k,l

τkl = 0, (5.15a)

σ2
T =

〈
T 2

total

〉
=

1

4

∑

k,l

τ 2
kl. (5.15b)

The pdf of Ttotal in the Gaussian approximation is then given by

pT,Gauss(t) =
1√
2πσ2

T

exp

( −t2

2πσ2
T

)
. (5.16)

Alternatively, the pdf of Ttotal can be computed using the characteristic func-

tion [23] w(ξ), which is given by

w(ξ) = 〈exp (iξTtotal)〉 =

〈
exp

(
iξ

∑

k,l

αklτkl

)〉
,

where 〈·〉 denotes the statistical average so that for a set of discrete random variables

x1, ... , xn, with a joint probability mass function p(x1, ... , xn), and for an arbitrary

function F (x1, ... , xn),

〈 F (x1, ... , xn)〉 =
∑

k1,...,kn

p(xk1 , ... , xkn) F (xk1 , ... , xkn).

Since the random variables αkl are independent and the probability that αkl equals

either 1 or 0 is 1/2, we �nd

w (ξ) =
∏

k,l

{
1

2
[1 + exp (iξτkl)]

}
.

The pdf of the time shift is simply the inverse Fourier transform of the characteristic

function,

pT,Char(t) =
1

2π

∫ ∞

−∞
w (ξ) e−iξtdξ. (5.17)
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5.3.2 Asynchronous channels

In order to account for random drift of the clock position in each channel, we introduce

a variable time delay tk in Eq. (5.14):

ukl(z, t) = uT

(
z, t−

∫ z

0

2π∆fkβ
′′(x)dx + Tbitl + tk

)
.

Using the same formalism, we write the characteristic function

w(ξ) = 〈exp (iξTtotal)〉 =

〈
exp

(
iξ

∑

k,l

αklτkl(tk)

)〉
,

where τkl(tk) can be viewed as a random variable, which is independent of the αkl,

assuming independence of the channel clock drift and the data distribution. The

average is taken over over the ensemble of both αkl and tk. We then �nd

w (ξ) =
∏

k,l

〈
1

2
[1 + exp (iξτkl(tk))]

〉
,

where the average is taken over the sample space of tk. To calculate the characteristic

function, it is necessary to know the pdf of the time delays tk. For simplicity, we

assume that tk are uniformly distributed on [0, Tbit], so that

w (ξ) =
∏

k,l

1

Tbit

∫ Tbit

0

1

2
[1 + exp (iξτkl(tk))] dtk. (5.18)

The pdf of the time shift is obtained from the characteristic function (5.18) using the

inverse Fourier transform (5.17).
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5.4 Validation

We used the standard IS method to validate the deterministic method for calculating

the pdf of collision-induced time shift. We also used the MMC method to verify that

the results from IS simulations are correct.

In order to use IS, we have to choose the biasing distributions, as discussed earlier

in Chapter 4. In this case, we are interested in the pdf of the collision-induced time

shift, and we bias the distributions towards large values of the time shift, using our

knowledge of the time shift function (5.13a).

Suppose, we have a set of random variables xm with the distribution,

p(xm = σm) =
1 + pm

2
, p(xm = −σm) =

1− pm

2
. (5.19)

We want to bias the distributions of xm in such a way that the sum z =
∑

m xm has

a mean near a desired value z0. For the sake of simplicity, let us assume that z is

approximately Gaussian random variable with the mean z0 and standard deviation

S:

p(z) =
1√
2πS

exp

[
−(z − z0)

2

2S

]
, (5.20)

S =
∑
m

σ2
m.

We then use Bayes rule,

p(xm | x) =
p(xm)p(x− xm)

p(x)
, (5.21)

so that

p(xm = σm | z) =
g+

g+ + g−
, (5.22)
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where

g± =
1√

2π(S − σ2
m)

exp

[
− (z ∓ σm)2

2(S − σ2
m)

]
. (5.23)

Then the expected value of xm is given by

E(xm) = σm p(xm = σm | z)− σmp(xm = −σm | z) = σm tanh

(
σmz

S − σ2
m

)
. (5.24)

On the other hand, from Eq. (5.19) we have

E(xm) = σm
1 + pm

2
− σm

1− pm

2
= σm pm. (5.25)

From Eqs. (5.24) and (5.25) it follows that

pm = tanh

(
σmz

S − σ2
m

)
. (5.26)

Now we transform the set of variables xm to the set αklτkl using the mapping

βkl = 2αkl − 1,

xm =
1

2
βklτkl. (5.27)

The probability mass function for αkl becomes

p(αkl = 1) =
1 + pkl

2
,

p(αkl = 0) =
1− pkl

2
, (5.28)

where

pkl = tanh

(
1
2
τklTgoal

1
4

∑
k,l τ

2
kl − τ 2

kl

)
(5.29)

and Tgoal is the target value of the mean of the total time shift.

Despite the use of approximation (5.20) that the total time shift is Gaussian-
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distributed, our simulations show that the choice of biases (5.29) is e�cient for both

estimating the pdfs of both collision-induced time shift and the received current.
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Fig. 5.5: Probability density function of the collision-induced time shift.

Figure 5.5 shows the pdf of the time shift obtained using the characteristic function

method (5.17), the Gaussian approximation (5.16) and IS simulations. In the IS

simulations we used the values of Tgoal in (5.29) from �50 ps to 50 ps with a 5 ps

interval. We calculated the error of the pdf estimate from IS using (4.15) and it

did not exceed 10% for all values of the time shift. We have also veri�ed that the

results of IS simulations agree with those of MMC simulations. The results of the

reduced deterministic method that employs characteristic function formalism are in

excellent agreement with the full statistical model, in which we did not make any

simpli�cations to the propagation equations. This result suggests the validity of the

simplifying assumption that the pulse collisions are additive. By contrast, under the
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same assumptions, the Gaussian approximation to the pdf results in a poor �t of the

true pdf. The Gaussian function closely matches the Monte Carlo histogram only

near the top of the pdf, which is consistent with the central limit theorem. However,

since the number of pulse collisions during the propagation is �nite, there exists a

worst-case time shift so that time shifts that are larger than this maximum time shift

have zero probability. As a result, the Gaussian curve deviates signi�cantly from the

true distribution in the tails of the pdf.

We note that even if the number of pulse collisions were in�nite or signi�cantly

larger in the presence of the hundreds of channels, the results of the Gaussian ap-

proximation would still be inaccurate in the tails since one of the conditions of the

central limit theorem does not hold. In particular, for a normalized sum

Zn =
1

sn

n∑

k=1

Xk (5.30)

of independent random variables Xk with zero mean and and variance σ2
k and

s2
n =

n∑

k=1

σ2
n (5.31)

to converge to the standard normal pdf, it is required that for a given ε > 0 there

exists an n such that [137]

σk < εsn, k = 1, ..., n. (5.32)

In our case, the time shifts τkl given by (5.13a) are proportional to the square of

the wavelength separation, or, equivalently, to the channel index k if the channel

count starts from the target channel. Hence the variance for each individual random

variable αklτkl is proportional to k4. Since the number of bits in a given channel

that collide with the target pulse is proportional to k due to the dispersive walko�,

the total variance for n channels is proportional to
∑n

k=1 1/k3, which is limited by
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a constant for any number of channels n. Thus condition (5.32) of the central limit

theorem does not hold and the limiting distribution of the time shift is not necessarily

Gaussian.



6. CALCULATION OF THE PULSE

AMPLITUDE DISTORTION AND THE

BIT ERROR RATIO

In this chapter, we use the deterministic method for calculating the pdf of the collision-

induced time shift to obtain the pdf of the received current, and we validate the result

with a full statistical model based on IS simulations. When we have a single pulse

in the target channel, the agreement between the reduced deterministic method and

the full statistical method is excellent. With multiple pulses in the target channel, it

is also important to account for the amplitude jitter due to inter- and intra-channel

interactions. We introduce a method for calculating the pdf of the nonlinearly-induced

current variation that is not due to the timing jitter. Accounting for both timing and

amplitude jitter, we can achieve a very good agreement with the IS simulations. In

order to calculate the BER, we combine these deterministic techniques for calculating

the nonlinear penalty with a model for noise-induced signal distortion that assumes

that the noise is additive, white, and Gaussian. We calculate the pdfs of the current in

the marks and spaces and from that determine the BER using an approach described

88
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by Forestieri [138].
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6.1 Probabilistic characterization of the

nonlinearly-induced pulse distortion

6.1.1 Application of the reduced time shift method

In order to calculate the distortion of the received current signal that is due to timing

jitter, we use a simpli�ed method, in which we calculate the pulse shape i(t) at

the receiver using a full propagation model and a receiver model that includes an

optical �lter, an ideal square-law photodetector, and an electrical �lter as described

in Chapter 2. We then use this pulse shape to determine the value of the sampled

current I given a time shift ∆T by using the expression

I(∆T ) = i(T0 −∆T ), (6.1)

where T0 is the central time of the pulse, as illustrated in Fig. 6.1. We then obtain

Fig. 6.1: Conversion of time shift to the current distortion.

the pdf of the current using the cumulative distribution function of the time shift

F∆T (t) =
∫ t

−∞ p(τ)dτ , where p(τ) is the pdf of the time shift,

FI(x) = Pr[i(t) < x] = Pr(∆T < T1 ∪∆T > T2) = F∆T (T1) + 1− F∆T (T2), (6.2)

where T1 < T2 are the solutions of the equation

i(t− T0) = x. (6.3)
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The pdf of the received current pI(x) is then given by

pI(x) = dFI(x)/dx. (6.4)

We also ran a set of IS simulations, in which we numerically solved the NLS

equation with di�erent bit strings. We kept only one pulse in the center channel and

randomly varied the bit strings in the neighboring channels. To sample the tails of the

distribution e�ciently, we biased the distribution of the bit strings towards the large

time shifts using (5.29). We have veri�ed that MMC simulations are consistent the

IS results, which lends credence to both simulations. In particular, it indicates that

we have not left out a region in the sample space that would a�ect the distribution.

Biasing towards large time shifts has proven to be very e�cient in calculating the pdf

of the received current since the dominant nonlinear e�ect in our prototypical undersea

system is collision-induced timing jitter. An advantage of IS relative to MMC for our

problem is that di�erent biasing distributions can be used independently of each

other. By contrast, the MMC algorithm is iterative. Also, in contrast to MMC, we

use the same set of IS simulations to calculate the pdf of both the time shift and the

received current.

The results of the pdf calculation using (6.4) and IS are shown in Fig. 6.2. Sta-

tistically, we obtained the pdf of the current using the same IS simulations that we

used to obtain the pdf of the time shift as described in Sec. 5.4. We estimated the

statistical error of the pdf obtained with IS using (4.15) and it was less than 10%

for all values of the current shown in the plot. The agreement between the reduced

deterministic approach and the full statistical model is excellent near the low-current

tail of the pdf. The two methods disagree near the maximum of the pdf since we

did not take into account nonlinearly-induced amplitude jitter in our reduced model.

It is necessary to consider the amplitude jitter to obtain the agreement when the
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Fig. 6.2: Probability density function of the current in the marks due to the nonlin-
ear distortion with a single pulse in the target channel.

normalized current is close to 1.0, since with timing jitter can only decrease the pulse

amplitude, leading to a sharp cuto� at 1.0 as seen in Fig. 6.2. In practice, this dif-

ference is unimportant since transmission errors are caused by the low-current end of

the pdf.

By contrast to the case of a single pulse in the target channel, which we just

considered, the nonlinearly-induced amplitude jitter becomes important in the low-

current tail of the pdf when we consider multiple pulses in the target channel.

6.1.2 Multipulse interactions and the nonlinearly-induced

amplitude jitter

Up to this point, we treated pulses of the same frequency channel as if they do not

overlap. In reality, in the system under study, each pulse overlaps with a maximum of
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four of its neighbors due to dispersive spreading. This intra-channel pulse interaction

combined with inter-channel nonlinear crosstalk leads to an increase in the amplitude

jitter that must be accounted for in the target channel, in addition to the timing

jitter, in order to obtain accurate results. Hence we treat the electric �eld in the

target channel as a sum of the electric �elds of individual pulses rather than simply

adding powers as we did previously (5.8), so that

|u0|2 =

∣∣∣∣∣
∑

l

α0lu0l

∣∣∣∣∣

2

6=
∑

l

α0l|u0l|2. (6.5)

In the other channels, we continue to neglect pulse overlap. Since in our system only

�ve pulses in the same channel overlap due to dispersion, we consider a pseudo-random

bit sequence (PRBS) of length 25 = 32 bits in the target channel that contains all

patterns of �ve bits. We then treat this PRBS as a superpulse and consider a two-

body collision of this superpulse with a single pulse in a neighboring channel.

To determine the e�ect of the collision of the pulse in the l-th bit of the k-th

channel with the superpulse, we numerically solve the NLS equation, for which the

input is the superpulse in the target channel and a single pulse in the l-th bit of the

k-th channel. We then calculate the received current Ikl(t) in the target channel after

the electrical �lter. We repeat this numerical procedure for all k and l.

In the next step, we remove the time shift that we accounted for previously us-

ing (5.13a) as we are only calculating the amplitude distortion at this point. Since

pulses at the receiver are well-separated, and the time shifts τkl are small, we can

easily remove the time shifts by translating individual pulses by a corresponding time

determined by the pre-calculated time shift function τkl (5.13a).

Finally, we determine the received current distortion due to the two-body collisions

relative to the unperturbed solution. As an unperturbed solution, we calculate the

value of the current IT (t) of a single target channel with the same PRBS of length 32 in
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it, in the absence of the neighboring channels. We then obtain the current distortion

δIkl using the expression

δIkl(t) = Ikl(t)− IT (t). (6.6)

We assume that for an arbitrary bit pattern, the total distortion δI(t) can be

represented as a sum of the individual contributions δIkl from pairwise interactions,

so that

δI(t) =
∑

αklδIkl(t), (6.7)

where αkl = 1 or 0.

In order to obtain the pdf of the amplitude deviation δI(t), we apply the charac-

teristic function method, as we did for the timing jitter

v(ξ, t) = 〈exp [iξδI(t)]〉 =

〈
exp

(
iξ

∑

k,l

αklδIkl(t)

)〉
, (6.8)

where 〈·〉 denotes the statistical average taken over the ensemble of all bit patterns.

Using the independence of random variables αkl an assumption that the probability

of αkl being equal to either 1 or 0 is 1/2, we obtain

v (ξ, t) =
∏

k,l

1

2
{1 + exp [iξδIkl(t)]} . (6.9)

Then the pdf of current is simply the inverse Fourier transform of the characteristic

function,

pδI(I, t) =
1

2π

∫ ∞

−∞
v (ξ, t) e−iξIdξ. (6.10)

In order to obtain the distribution of the current due to nonlinear distortion, we

�rst average the pdf (6.4) of the current at the center of the pulse over all bits. Then

we convolve the distribution (6.4) due to collision-induced timing jitter and (6.10)

due to the amplitude distortion assuming that the two processes are independent.
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The resulting pdf is shown in Fig. 6.3 in comparison with the pdf obtained using

IS simulations and the pdf when there is a single pulse in the target channel, as we

assumed in Sec. 6.1.1.
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Fig. 6.3: Probability density function of the current in the marks at the detection
point in the receiver due to the nonlinear distortion with multiple pulses
(MP) in the target channel compared to a single pulse in the target channel
(SP).

First, we immediately notice the di�erence that multipulse interactions make in

the low-current tail of the pdf. A deterministic model of the pdf of the current at the

decision point of the receiver that only includes timing jitter alone agrees well with

IS simulations when there is only a single pulse in the target channel. However, the

agreement is no longer good when there are multiple pulses in the target channel.

It is necessary to include nonlinearly-induced amplitude jitter in the deterministic

model, and we then see a good agreement between our deterministic model and IS

simulation. The discrepancy in the pdf is less than an order of magnitude over the
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entire range of interest.
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6.2 Bit error ratio calculations

In this section, we show how to use the deterministic theory that we developed for the

evaluation of the nonlinear penalty to calculate the BER in the presence of ampli�ed

spontaneous emission (ASE) noise from optical ampli�ers. We will use the assumption

that the nonlinear penalty is statistically independent of the ASE noise since it greatly

simpli�es the analysis. In principle, these two processes are not independent, as one

may envision that the noise a�ects the signals, and that in turn a�ects the way the

signals interact with each other. However, as the noise is a zero-mean process, the

e�ect of noise will result in either reduction or increase of the optical power of a pulse

and, consequently, of the nonlinear interference that this pulse generates. Averaging

over a large statistical ensemble tends to extinguish the correlation between the noise

and the nonlinear penalty.

There is a number of di�erent ways to characterize the performance of a system

in the presence of the ASE noise that can be found in the literature [102], [103], [119],

[120], [131], [138]�[149]. The most common model is the additive white Gaussian noise

(AWGN) model, in which the noise is assumed to be completely independent of the

signal and one can simply add up the noise contributions from all the inline ampli�ers

at the end of transmission prior to the optical �lter. Since the optical receiver includes

a square-low photodetector, the distribution of the signal after the photodetector is

no longer Gaussian, which is well known in radio communications [150]. For optical

communications, it was shown by Marcuse [139] and Humblet and Azizo�glu [140] for

an idealized receiver model with a �at-top optical �lter and an integrate-and-dump

electrical �lter. Lee and Shim [141] extended their results to the case with arbi-

trary optical and electrical �lters. Forestieri [138] further generalized the results for

arbitrary signals and introduced a computationally-e�cient method for the BER cal-

culations. Despite the availability of an accurate model, the Gaussian approximation

of the pdf of the photodetected signal is still widely used due to its simplicity and
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straightforward relation to the experimentally measurable Q-factor.

In real systems, the noise experiences parametric gain while propagating with

the signal. Hence, one cannot simply add the noise to the signal prior to the re-

ceiver and the AGWN model is in general not accurate. For the cases, in which

the e�ect of parametric noise ampli�cation is important, there are a several meth-

ods available in the literature [102], [103], [119], [120], [131], [143], [144], [146]�[148].

Hui [143], [144] introduced a method based on the continuous wave approximation of

the signal, which allows to estimate the power spectral density of the noise due to its

interaction with the signal. Holzlöhner, et al. [148] introduced a covariance matrix

method, which is based on a calculation of the linearized evolution of noise around the

signal. After separation of timing and phase jitter, the optical noise is multivariate

Gaussian-distributed and hence completely described by its covariance matrix. This

method can be used for any intensity-modulated signal. Further, Secondini [102], [103]

showed how to calculate the pdf of the noise-corrupted signal in the presence of the

parametric noise ampli�cation without phase and timing jitter separation by using

a combined additive and multiplicative perturbation method. These methods enable

one to accurately calculate the pdf of the received current in the presence of noise.

To calculated the BER, we will use the noise pdf in combination with the pdf of the

nonlinearly-induced current distribution. Our method for combining the nonlinearly-

and noise-induced distortion does not depend on the noise pdf. Therefore, for the

sake of simplicity, we will use the AWGN assumption and calculate the noise pdf

using Forestieri's technique [138]. We note that this assumption is widely used and

often yields accurate results.

6.2.1 Additive white Gaussian noise model

We will expand the optical �eld that consists of the information signal and the noise

in a Fourier basis. We then pass the �eld through the optical �lter with a frequency
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response Ho(f), an ideal square-law photodetector, and an electrical �lter with a

response He(f). Finally, we will evaluate the pdf of the current and BER at the

sampling time tk.

We assume that each inline ampli�er generates white Gaussian noise and it does

not mix nonlinearly with the signal, so that at the end of the transmission the noise

w(t) is Gaussian-distributed and white with a power spectral density that we denote

as N0. Let x(t) be the complex �eld envelope of the optical noise-free signal, which

is periodic with a period of NT , where N is the number of bits in the sequence,

and T is the bit period. Note that in computer modeling, we always consider time-

limited signals, and due to the nature of the fast Fourier transform being used in the

numerical calculations, the signal is periodic with a period of NT . Then the signal

x(t) can be expanded in a Fourier series as

x(t) =
∞∑

l=−∞
xl exp(−i2πlt/NT ), (6.11)

where

xl =
1

NT

∫ NT

t=0

x(t) exp(i2πlt/NT ) dt. (6.12)

For the noise we also use the Fourier expansion in the interval tk − Tf < t < tk,

where Tf is the time constant related to the response time of the �lters:

Tf = µ

(
1

Bo

+
1

Be

)
, (6.13)

where Bo and Be are bandwidths of the optical and electrical �lters and µ is a numer-

ical parameter that is large enough so that the interval (0, Tf ) includes the signi�cant

details of the impulse response functions of both the optical and electrical �lters. In

practice, the value of µ is found by increasing it until the computed value of the BER
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stabilizes. The noise can then be represented by a Karhunen-Loève expansion as [104]

w(t) =
∞∑

m=−∞
wm exp[−i2πm(t− tk − Tf )/Tf ] tk − Tf < t < tk, (6.14)

where the wm are independent complex Gaussian random variables with zero mean

and whose real and imaginary parts have a variance σ2 = N0/2Tf .

We are interested in the value of the received current y(tk) at a sampling time

tk after passing the signal and noise x(t) + w(t) through the optical �lter, the ideal

square-law optical photodetector, and the electrical �lter. As shown in [138], using

expansions (6.11) and (6.14), one can obtain:

y(tk) = dk + rk, (6.15)

where

dk =
2L∑

l=−2L

clHe

(
l

NT

)
exp(−i2πltk/NT ) (6.16)

is the signal term. We also have L = ηNTBo, where η is a small number that is

chosen to keep all the important frequency components of the signal. The parameter

cl is the autocorrelation of the signal's Fourier coe�cients,

cl =

min(L, l+L)∑

k=max(−L, l−L)

xlHo

(
l

NT

)
x∗k−lH

∗
o

(
k − l

NT

)
. (6.17)

The noise term rk in (6.15) is given by

rk = nk + νk (6.18)
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where nk and νk are given by

nk =
2M+1∑
m=1

λm

∣∣∣∣zm +
bm

λm

∣∣∣∣
2

, (6.19a)

νk =
|bm|2
λm

, (6.19b)

with M = BoT0. The λm are the eigenvalues of the matrix A = HT∗QH. The matrix

H is de�ned as

H = diag
{∣∣∣∣Ho

(
m−M − 1

Tf

)∣∣∣∣
}

, (6.20)

and the elements qmn of Q are

qmn = He

(
n−m

Tf

)
. (6.21)

The quantities zm in (6.15) are independent complex Gaussian random variables with

zero mean and real and imaginary parts of variance σ2 = N0/2Tf . Finally, the bm are

the components of the signal vector b de�ned as

b = UT∗HT∗v, (6.22)

where U is a unitary matrix that diagonalizes the matrix A and the components of

the vector v are given by

vm =
L∑

l=−L

xlHo(l)He

(
l

NT
− m−M − 1

Tf

)
exp(−i2πltk/NT ). (6.23)

Now we evaluate the pdf of the received current y(tk). The only component of the

current y(tk) that is not deterministic is νk in (6.19b), which is a quadratic combina-

tion of independent Gaussian random variables, so that we can use the characteristic

function Φnk
(ξ) to e�ciently calculate its pdf. The characteristic function Φnk

(ξ) is
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de�ned as

Φnk
(ξ) = 〈exp (iξnk)〉 , (6.24)

where the average 〈·〉 is taken over the sample space of the noise. Using the indepen-

dence of the real and imaginary parts of the random variables zm, one obtains

Φnk
(ξ) =

2M+1∏
m=1

exp

(
iξαm

1− iξβm

)

1− iξβm

, (6.25)

where

αm =
|bm|2
λm

(6.26a)

βm = 2λmσ2. (6.26b)

The pdf pnk
(ζ) of nk can be obtained by taking the inverse Fourier transform of

Φnk
(ξ),

pnk
(ζ) =

1

2π

∫ ∞

−∞
Φnk

(ξ)e−iξζdξ. (6.27)

In numerical calculations, one can use the fast Fourier transform (FFT) algorithm

to evaluate (6.27), which works well in a large dynamic range limited by the round-

o� error of the FFT. The use of the FFT is su�cient for calculation of the error

probabilities as low as 10−14. If the desired BER range is smaller than 10−14, one

can calculate the pdf very e�ciently using the saddle point approximation, described

in detail in [138]. In this case, it is more convenient to use the moment generating

function that is given by

Mnk
(s) = 〈exp (snk)〉 (6.28)
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instead of the characteristic function. Similarly to (6.25), we obtain

Mnk
(s) =

2M+1∏
m=1

exp

(
sαm

1− sβm

)

1− sβm

. (6.29)

The pdf pnk
(ζ) of nk is then obtained by taking the inverse Laplace transform of

Mnk
(s),

pnk
(ζ) =

1

2πi

∫ u0+i∞

u0−i∞
Mnk

(s)e−sζds. (6.30)

Since a line integral of an analytical function does not depend on the integration path,

we can choose the integration contour C to closely approximate the path of steepest

descent passing through the saddle point us of the integrand on the real s-axis. Then

the main contribution to the integral (6.30) is near the us. The saddle point us is

determined from the equation

d

ds
Mnk

(s)e−sζ = 0, (6.31)

which yields
2M+1∑
m=1

αm + βm(1− βms)

(1− βms)2
− ζ = 0. (6.32)

The solution for (6.32) can be found numerically using the Newton's method. The

path of steepest descent near us can be approximated by a parabola,

s = us +
1

2
κv2 + iv, s = u + iv. (6.33)

The curvature κ of the parabola is given by [138]

κ =
Ψ′′′(us)

3Ψ′′(us)
, (6.34)



104

where

Ψ(s) = ln[Mnk
(s)]− sζ, (6.35)

and Ψ′′(s) and Ψ′′′(s) are the second and third derivatives of Ψ(s). The pdf can then

be evaluated as [138]

pnk
(ζ) =

1

π

∫ ∞

−∞
Re

{
exp

[
Ψ

(
us +

1

2
κv2 + iv

)]
(1− iκv)

}
dv. (6.36)

The pdf (6.36) can then be calculated numerically using the trapezoidal rule and

by dividing the integration interval into two intervals (−∞, 0] and [0,∞). The in-

tegration starts from v = 0 and stops when the contributions to the sum become

negligible.

6.2.2 Combining noise and nonlinear e�ects

As we discussed earlier, we assume that the nonlinearly-induced and noise-induced

signal distortions are statistically independent when computing the BER. In addition,

we treat the contributions of timing jitter and amplitude jitter to nonlinearly-induced

signal distortion as independent. These three impairments are characterized by the

pdfs that we obtained previously. The pdf of the collision-induced time shift pT (t)

is given by (5.17), the pdf of the nonlinearly-induced amplitude distortion pδI(I, t) is

given by (6.10) and the pdf of the noise-induced distortion is obtained from (6.27),

pnoise(I) = pnk
(I − dk − νk). (6.37)

In order to compute the pdf p(I, t) of the received current I at the sampling time

t due to both nonlinear signal distortion and noise, we convolve the pdf pT of the

time shift, using either (5.17) or the Gaussian pdf given by (5.16) with the noise pdf

pnoise(I, t) of the received current that is obtained by propagating a single-channel
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signal carrying a PRBS of length 32 through the system and with the amplitude

jitter distribution (6.10):

p(I, t) =

∫ ∞

ζ=−∞

[∫ ∞

τ=−∞
pnoise(ζ, t− τ) pT (τ)dτ

]
pδI(I − ζ, t)dζ. (6.38)
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Fig. 6.4: Probability density function of the current in the marks and spaces at
the decision time due to the nonlinear distortion and noise obtained us-
ing (6.38).

We show the results of our calculations in Figure 6.4. The dot-dashed curves show

the pdf of the current in the marks and spaces due only to noise. The collision-induced

timing jitter increases the BER by over three orders of magnitude. The corresponding

pdfs are shown with the dashed curves. Finally, the nonlinearly-induced amplitude

jitter degrades the BER by more than one order of magnitude and the total pdfs are

displayed with the solid curves. Since the nonlinear interactions can degrade the BER

by many orders of magnitude, it is important to model them accurately. Furthermore,

even though the collision-induced timing jitter is the dominant nonlinear e�ect in
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WDM RZ systems, it is necessary to consider the inter-channel, nonlinearly-induced

amplitude distortion as it leads to a further performance degradation.

Finally, we analyze the accuracy of the Gaussian assumption for the collision-

induced time shift pdf. In Fig. 6.5, we plot the BER and Q as a function of channel

separation, which was calculated with (6.38) using the time shift pdfs obtained from

the Gaussian approximation (5.15b), and the characteristic function method (5.17).

For each point in the plot, the total number of pump channels was chosen so that

they �lled a spectral range of 800 GHz around the center frequency of the target

channel. A further increase in the number of channels had a negligible e�ect on the

time shift pdf since the collision-induced time shift decreases quadratically with the

channel spacing [41], [136].
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Fig. 6.5: Bit error ratio and Q-factor as functions of channel spacing.

As seen in Fig. 6.5, the di�erence in BER computed with the two methods is less
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than an order of magnitude when ampli�ed spontaneous emission noise is present,

despite the di�erence in the time shift pdfs that are obtained with the Gaussian and

characteristic function methods. The reason for that is as follows: The pdf of the

electrical current p(I, t) in (6.38) is mainly a�ected by the part of the time shift

pdf pT that has values of 1 down to 10−10�10−12. Even though there is a signi�cant

di�erence between pT,Gauss and pT,Char in the tails, they agree near their centers. After

the convolution of the noise and nonlinear amplitude jitter contributions to the pdf,

the pdf of the current is changed by weighting with the values of the time shift pdf.

Since pT,Gauss and pT,Char are close near their centers, the di�erence between the two

on average is smaller than it is in the tail. As a result, the BER values obtained

with the two methods are much closer than the two time shift pdfs. However, in

the case of 25-GHz-spaced channels, the timing jitter leads to a very large error rate.

At this point, the relative di�erence in the BER estimates obtained with the two

methods becomes signi�cant. This di�erence can determine the success or failure of

error-correction techniques and cannot be neglected.

As the calculation of the exact pdf of collision-induced time shift using the char-

acteristic function method is not computationally expensive, we believe that it should

always be used instead of the Gaussian approximation.



7. CONCLUSIONS

The BER is the key �gure of merit in an optical �ber communications system and

must be accurately calculated when designing systems. For a system researcher, it

poses a real challenge as the transmission errors are caused by a large number of

phenomena, both deterministic and stochastic in nature. In this work, we have ad-

dressed one important aspect of the BER evaluation � the e�ect of �ber nonlinearity

on transmission of optical signals and its contribution to the BER along with the noise

from optical ampli�ers.

Fiber nonlinearity by itself is a deterministic, unchanging property of silica glass.

However, since the information carried by the optical light can be considered ran-

dom from a statistical standpoint, the optical power in the �ber varies randomly as

well. As a consequence, the nonlinear e�ects lead to non-deterministic signal distor-

tions. Hence, there is a need for a probabilistic description of nonlinear penalties.

Mathematically, the behavior of such systems is described by nonlinear partial di�er-

ential equations with random initial conditions. An exact solution of these equations

does not exist in general. A common approach to this problem is to estimate the

average distortion of the signal and use the average to calculate the degradation of

the Q-factor. This approach is, however, not usually su�cient to calculate the BER

accurately.

In this dissertation, we have presented a new approach, whose essence is to char-

acterize the nonlinearly-induced penalty with a complete pdf. One can use biased

Monte Carlo simulations to estimate the pdf with the required accuracy. In this

108
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full statistical approach, we use the full propagation equation that cannot be solved

analytically to model the system and we solve it numerically by randomly changing

the input conditions on each new simulation run. The Monte Carlo simulations are,

however, time consuming and with modern-day computers it is computationally ex-

pensive to obtain an estimate of the pdf over many orders of magnitude even with

biasing. The main contribution of this dissertation is a new deterministic method

for accurate evaluation of the nonlinear e�ects in BER calculation that is based on

�nding the pdf of nonlinearly-induced penalty. We have also calculated this pdf using

a full statistical method based on biased Monte Carlo simulations. The two methods

agree very well over �fteen orders of magnitude.

We focused our e�ort on WDM systems utilizing the RZ modulation format.

While the RZ modulation is the usual choice in undersea systems, no method has

appeared in the literature that allows one to accurately calculate the BER due to

inter-channel nonlinear crosstalk in such systems.

The method for BER evaluation proposed here is based on calculation of the pdf of

collision-induced time shift, which is the major nonlinear e�ect in WDM RZ systems,

and the nonlinearly-induced amplitude jitter. To start with, we have calculated the

time shift function for pairwise collisions using e�cient analytical and numerical pro-

cedures. In this analysis, we assume that all multipulse collisions can be represented

as a superposition of two-pulse collisions. The time shift function provides us with

an important knowledge of the nonlinear properties of the system. This function can

be used to identify the bit patterns that lead to large time shifts. It can be used to

design line codes to e�ectively suppress collision-induced timing jitter [135]. The time

shift function can also be used in probabilistic description of the nonlinear penalties

due to timing jitter. In particular, we have calculated the pdf of collision-induced

time shift using the time shift function and a characteristic function method. This

calculation is completely deterministic.
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To validate our deterministic theory, we have used biased Monte Carlo methods

� the standard importance sampling method and the multicanonical Monte Carlo

method. Despite the approximations and assumptions made in our reduced deter-

ministic approach, the pdf of the collision-induced time shift calculated with this

approach agrees with the biased Monte Carlo simulations over �fteen orders of mag-

nitude. We also showed that the Gaussian function, often used to approximate the

pdf of the collision-induced time shift, deviates signi�cantly in the tails from the true

pdf.

In the next step, we evaluated the pdf of the received current due to nonlinear

e�ects, neglecting noise. We converted the pdf of the time shift to pdf of the received

current at the detection point using a pulse shape at the receiver. With a single

pulse in the target channel, we obtained excellent agreement between the reduced

deterministic and full statistical approaches. This agreement demonstrates that the

collision-induced timing jitter is the dominant nonlinear e�ect in this type of system.

When considering multiple pulses in the target channel, we must also account for the

amplitude jitter, induced by the inter- and intra-channel nonlinear interactions, which

does not arise due to timing jitter. To calculate the pdf of the current due to this

additional amplitude jitter, we applied an approach based on pairwise interactions,

similar to what we did for the timing jitter. In this case, we considered the interaction

of a pseudo-random pulse sequence (a superpulse) in the target channel with single

pulses in the neighboring channel. Assuming additivity of the pulse distortions at

the receiver, one can calculate the pdf of the current using the characteristic function

approach. Then we combine the pdfs of the current that are due to collision-induced

timing jitter and nonlinearly-induced amplitude jitter, assuming the statistical inde-

pendence of the two. Despite the approximations, we have achieved agreement to

within an order of magnitude between this reduced deterministic approach and a full

statistical approach over the entire range of the pdfs that we calculated.
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Finally, we showed how to calculate the BER in the presence of both nonlinear

signal distortion and ampli�ed spontaneous emission noise. As we showed, the non-

linear e�ects can signi�cantly degrade the system performance, and in order to take

these e�ects into account, one must use a probabilistic approach.

In this dissertation, we presented and validated the tools that enable one to ac-

curately characterize the inter- and intra-channel nonlinear e�ects when calculating

the BER in WDM RZ systems.

As more advanced modulation formats emerge from the research laboratories, the

techniques that have been developed in this work can be used to accurately account

for the nonlinear penalties in these new systems.



BIBLIOGRAPHY

[1] L. Kazovsky, S. Benedetto, and A. Willner, Optical Fiber Comminication Sys-

tems, Boston: Artech House, 1996.

[2] G. P. Agrawal, Fiber-Optics Communication Systems, New York: Wiley, 2nd

edition, 1997.

[3] I. P. Kaminov and T. L. Koch (Eds.), Optical Fiber Telecommunications IIIA,

San Diego: Academic Press, 1997.

[4] I. P. Kaminov and T. Li (Eds.), Optical Fiber Telecommunications IVB, San

Diego: Academic Press, 2002.

[5] R.-M. Mu and C. R. Menyuk, �Convergence of the chirped return-to-zero and

dispersion managed soliton modulation formats in WDM systems,� J. Lightwave

Technol., vol. 20, pp. 608�617, 2002.

[6] S. Bigo, G. Bellotti, and M. Chbat, �Investigation of cross-phase modulation

limitation over various types of �ber infrastructures,� IEEE Photon. Technol.

Lett., vol. 11, pp. 605�607, 1999.

[7] E. A. Golovchenko, A. N. Pilipetskii, N. S. Bergano, C. R. Davidsen, F. I.

Khatri, R. M. Kimball, and V. J. Mazurczyk, �Modeling of transoceanic �ber-

optic WDM communications systems,� IEEE J. Sel. Topics Quant. Electron.,

vol. 6, pp. 337�347, 2000.

112



113

[8] D. I. Kovsh, L. Liu, B. Bakhshi, A. N. Pilipetskii, E. A. Golovchenko, and

N. S. Bergano, �Reducing interchannel crosstalk in long-haul DWDM systems,�

IEEE J. Sel. Topics Quant. Electron., vol. 8, pp. 597�602, 2002.

[9] T. Tsuritani, A. Agata, I. Morita, N. Edagawa, and A. Shigeyuki, �Ultra-long-

haul 40-Gbit/s-based DWDM transmission using optically pre�ltered CS-RZ

signals,� IEEE J. Sel. Topics Quant. Electron., vol. 10, pp. 403�411, 2004.

[10] F. Forghieri, R. W. Tkach, and A. R. Chraplyvy, �Fiber nonlinearities and thier

impact on transmission systems,� in Optical Fiber Telecommunications III A,

I. P. Kaminow and T. L. Koch, Eds. Academic Press, London, 1997.

[11] E. A. Golovchenko, A. N. Pilipetskii, and N. S. Bergano, �Transmission prop-

erties of chirped return-to-zero pulses and nonlinear intersymbol interference in

10 GBit/s WDM transmission,� in Proc. Optical Fiber Communication Con-

ference, FC3, 2000.

[12] V. S. Grigoryan and A. Richter, �E�cient approach for modeling collision-

induced timing jitter in WDM return-to-zero dispersion-managed systems,� J.

Lightwave Technol., vol. 18, pp. 1148�1154, 2000.

[13] E. Ciaramella, �Nonlinear impairments in extremely dense WDM systems,�

IEEE Photon. Technol. Lett., vol. 14, pp. 804�806, 2002.

[14] I. Lyubomirsky, T. Qui, J. Roman, M. Nayfeh, M. Frankel, and M. G. Taylor,

�Interplay of �ber nonlinearity and optical �ltering in ultradense WDM,� IEEE

Photon. Technol. Lett., vol. 15, pp. 147�149, 2003.

[15] L. E. Nelson, R. M. Jopson, A. H. Gnauk, and A. R. Chraplyvy, �Resonances

in cross-phase modulation impairment in wavelength-division-multiplexed light-

wave transmission,� IEEE Photon. Technol. Lett., vol. 11, pp. 907�909, 1999.



114

[16] R. Hui, K. R. Demarest, and C. T. Allen, �Cross-phase modulation in multispan

WDM optical �ber systems,� J. Lightwave Technol., vol. 17, pp. 1018�1026,

1999.

[17] H. J. Thiele, R. I. Killey, and P. Bayvel, �In�uence of transmission distance on

XPM-induced intensity distortion in dispersion-managed, ampli�ed �bre links,�

Electron. Lett., vol. 35, pp. 408�409, 1999.

[18] E. G. Shapiro, M. P. Fedoruk, and S. K. Turitsyn, �Numerical estimate of BER

in optical systems with strong patterning e�ects,� Electron. Lett., vol. 37, pp.

1179�1181, 2001.

[19] R. B. Jenkins, J. R. Sauer, S. Chakravarty, and M. J. Ablowitz, �Data-

dependent timing jitter in wavelength-division-multiplexing soliton systems,�

Opt. Lett., vol. 20, pp. 1964�1966, 1995.

[20] M. J. Ablowitz, G. Biondini, S. Chakravarty, and R. L. Horne, �On timing jitter

in wavelength-division multiplexed soliton systems,� Opt. Commun., vol. 150,

pp. 305�318, 1998.

[21] A. Richter and V. S. Grigoryan, �E�cient approach to estimate collision-induced

timing jitter in dispersion-managed WDM RZ systems,� in Proc. Optical Fiber

Communication Conference, WM33, 1999.

[22] O. V. Sinkin, J. Zweck, and C. R. Menyuk, �E�ects of the nonlinearly-induced

timing and amplitude jitter on the performance of di�erent modulation for-

mats in WDM optical �ber communications systems,� in Proc. Optical Fiber

Communication Conference, TuF5, 2003.

[23] O. V. Sinkin, V. S. Grigoryan, R. Holzlöhner, A. Kalra, J. Zweck, and C. R.

Menyuk, �Calculation of error probability in WDM RZ systems in presence



115

of bit-pattern-dependent nonlinearity and of noise,� in Proc. Optical Fiber

Communication Conference, TuN4, 2004.

[24] B. Bakhshi, M. Vaa, E. A. Golovchenko, W. W. Patterson, R. L. Maybach, and

N. S. Bergano, �Comparison of CRZ, RZ, and NRZ modulation formats in a

64× 12.3 Gb/s WDM transmission experiment over 9000 km,� in Proc. Optical

Fiber Communication Conference, WF4, 2001.

[25] R.-M. Mu, T. Yu, V. S. Grigoryan, and C. R. Menyuk, �Dynamics of the chirped

return-to-zero modulation format,� J. Lightwave Technol., vol. 20, pp. 47�57,

2002.

[26] J. X. Cai, M. Nissov, C. R. Davidson, A. N. Pilipetskii, G. Mohs, H. Li, Y. Cai,

E. A. Golovchenko, A. J. Lucero, D. Foursa, and N. S. Bergano, �Long-haul

40 Gb/s DWDM transmission with aggregate capacities exceeding 1 Tb/s,� J.

Lightwave Technol., vol. 20, pp. 2247�2258, 2002.

[27] I. T. Lima, A. O. Lima, Y. Sun, H. Jiao, J. Zweck, and Menyuk C. R., �A receiver

model for optical �ber communication systems with arbitrarily polarized noise,�

J. Lightwave Technol., vol. 23, pp. 1478�1490, 2005.

[28] T.-K. Chiang, N. Kagi, M. E. Marhic, and L. G. Kazovsky, �Cross-phase mod-

ulation in �ber links with multiple optical ampli�ers and dispersion compen-

sators,� J. Lightwave Technol., vol. 14, pp. 249�260, 1996.

[29] M. Shtaif and M. Eiselt, �Analysis of intensity interference caused by cross-

phase modulation in dispersive optical �bers,� IEEE Photon. Technol. Lett.,

vol. 10, pp. 979�981, 1998.

[30] G. Bellotti, M. Varani, C. Francia, and A. Bononi, �Intensity distortion induced

by cross-phase modulation and chromatic dispersion in optical-�ber transmis-



116

sions with dispersion compensation,� IEEE Photon. Technol. Lett., vol. 10, pp.

1745�1747, 1998.

[31] A. Cartaxo, �Impact of modulation frequency on cross-phase modulation ef-

fect in intensity modulation-direct detection WDM systems,� IEEE Photon.

Technol. Lett., vol. 10, pp. 1268�1270, 1998.

[32] A. Cartaxo, �Cross-phase modulation in intensity modulation direct detection

WDM systems with multiple optical ampli�ers and dispersion compensators,�

J. Lightwave Technol., vol. 17, pp. 178�190, 1999.

[33] H. J. Thiele, R. I. Killey, and P. Bayvel, �Simple technique to determine cross-

phase modulation induced penalties in WDM transmission,� in Proc. Optical

Fiber Communication Conference, ThM2, 2000.

[34] R. I. Killey, H. J. Thiele, V. Mikhailov, and P. Bayvel, �Prediction of transmis-

sion penalties due to cross-phase modulation in WDM systems using a simpli�ed

technique,� IEEE Photon. Technol. Lett., vol. 12, pp. 804�806, 2000.

[35] Z. Jiang and F. Chongcheng, �A comprehensive study on XPM- and SRS-

induced noise in cascaded IM-DD optical �ber transmission systems,� J. Light-

wave Technol., vol. 21, pp. 953�960, 2003.

[36] E. Ciaramella and E. Forestieri, �Analytical approximation of nonlinear distor-

tions,� IEEE Photon. Technol. Lett., vol. 17, pp. 91�93, 2005.

[37] R. S. Luís and A. V. T. Cartaxo, �Analytical characterization of SPM impact

on XPM-induced degradation in dispersion-compensated WDM systems,� J.

Lightwave Technol., vol. 23, pp. 1503�1513, 2005.

[38] M. J. Ablowitz, G. Biondini, A. Biswas, A. Docherty, and T. Hirooka, �Collision-



117

induced timing shifts in dispersion-managed transmission systems,� Opt. Lett.,

vol. 27, pp. 318�320, 2002.

[39] M. J. Ablowitz, A. Docherty, and T. Hirooka, �Incomplete collisions in strongly

dispersion-managed return-to-zero communication systems,� Opt. Lett., vol.

28, pp. 1191�1193, 2003.

[40] M. J. Ablowitz, C. Ahrens, G. Biondini, S. Chakravarty, and A. Docherty,

�Reduction of collision-induced timing shifts in dispersion-managed quasi-linear

systems with periodic-group-delay dispersion compensation,� Opt. Lett., vol.

29, pp. 2354�2356, 2004.

[41] C. Ahrens, M. J. Ablowitz, A. Docherty, O. V. Sinkin, J. Zweck, V. S. Grigo-

ryan, and C. R. Menyuk, �Asymptotic analysis of collision-induced timing shifts

in return-to-zero quasi-linear systems with pre- and post-dispersion compensa-

tion,� Opt. Lett., vol. 31, pp. 5�7, 2006.

[42] H. Sugahara, A. Maruta, and Y. Kodama, �Optimal allocation of ampli�ers in

a dispersion-managed line for a wavelength-division-multiplexed soliton trans-

mission system,� Opt. Lett., vol. 24, pp. 145�147, 1999.

[43] H. Sugahara, H. Kato, T. Inoue, A. Maruta, and Y. Kodama, �Optimal disper-

sion management for a wavelength division multiplexed optical soliton trans-

mission system,� J. Lightwave Technol., vol. 17, pp. 1547�1559, 1999.

[44] X. Liu, X. Wei, L. F. Mollenauer, C. J. McKinstrie, and C. Xie, �Collision-

induced time shift of a dispersion-managed soliton and its minimization in

wavelength-division-multiplexed transmission,� Opt. Lett., vol. 28, pp. 1148�

1150, 2003.

[45] N. S. Bergano, �Undersea communication systems,� in Optical Fiber Telecom-



118

munications, I. E. Kaminow and T. L. Koch, Eds., vol. IVB. Academic, San

Diego, CA, 2002.

[46] E. Desurvire, Erbium-doped �ber ampli�ers: principles and applications, New

York: Wiley, 1994.

[47] T.-S. Yang and W. L. Kath, �Optimal prechirping for dispersion-managed trans-

mission of return-to-zero pulses,� in Proc. Optical Fiber Communication Con-

ference, ThQ4, 1999.

[48] G. P. Agrawal, Nonlinear Fiber Optics, London: Academic Press, 2nd edition,

1995.

[49] J. P. Gordon and H. Kogelnik, �PMD fundamentals: Polarization mode dis-

persion in optical �bers,� Proc. Natl. Acad. Sci. USA, vol. 97, pp. 4541�4550,

2000.

[50] C .R. Menyuk, B. S. Marks, I. T. Lima, J. Zweck, Y. Sun, G. M. Carter, and

D. Wang, �Polarization e�ects in long-haul undersea systems,� in Undersea

Fiber Communication Systems, J. Chesnoy, Ed. Academic Press, San Diego,

CA, 2002.

[51] J. X. Cai, M. Nissov, A. N. Pilipetskii, C. R. Davidson, R. M. Mu, M. A. Mills,

L. Xu, D. Foursa, R. Megnes, P. C. Corbett, D. Sutton, and N. S. Bergano, �1.28

Tb/s (32x40 Gb/s) transmission over 4,500 km,� in Proc. European Conference

on Optical Communication, PD.M.1.2, 2001.

[52] P. R. Trischitta and E. L. Varma, Jitter in digital transmission systems, Nor-

wood, MA: Artech House, 1989.

[53] I. T. Lima, Jr., Investigation of the performance degradation due to polarization



119

e�ects in optical �ber communications systems, Ph.D. thesis, University of

Maryland Baltimore County, Baltimore, USA, 2003.

[54] M. Jeruchim, P. Balaban, and K. S. Shanmugan, Simulation of Communication

Systems, New York: Plenum, 1992.

[55] N. S Bergano, C. R. Davidson, N. A. Mills, P. Corbert, S. G. Evangelides,

B. Pedersen, R. Menges, J. L. Zyskind, J. W. Sulho�, A. K. Srivastava, C. Wolf,

and J. Judkins, �Long-haul WDM transmission using optimal channel modula-

tion,� in Proc. Optical Fiber Communication Conference, PD16, 1997.

[56] B. Bakhshi, M. Arend, M. Vaa, E. A. Golovchenko, D. J. Du�, H. Li, S. Jiang,

W. W. Patterson, R. L. Maybach, and D. Kovsh, �1 Tbit/s (101 × 10 Gbit/s)

transmission over transpaci�c distance using 28 nm C-band EDFAs,� in Proc.

Optical Fiber Communication Conference, PD21, 2001.

[57] A. Sano, Y Miyamoto, S. Kuwahara, and H. Toba, �A 40 Gb/s/ch WDM

transmission with SPM/XPM suppression through prechirping and dispersion

management,� J. Lightwave Technol., vol. 18, pp. 1519�1527, 2000.

[58] R.-M. Mu and C. R. Menyuk, �Symmetric slope compensation in a long-haul

WDM system using the CRZ format,� IEEE Photon. Technol. Lett., vol. 13,

pp. 797�799, 2001.

[59] L. Becouarn, G. Vareille, P. Pecci, and J. F. Marcerou, �3 Tbit/s transmission

(301 DPSK channels at 10.709 Gb/s) over 10270 km with a record e�ciency

of 0.65 (bit/s)/Hz,� in Proc. European Conference on Optical Communication,

Th4.3.2, 2003.

[60] P. V. Mamyshev and N. A. Mamysheva, �Pulse-overlapped dispersion-managed

data transmission and intrachannel four-wave mixing,� Opt. Lett., vol. 24, pp.

1454�1456, 1999.



120

[61] A. Mecozzi, C. B. Clausen, M. Shtaif, S. Park, and A. H. Gnauck, �Cancellation

of timing and amplitude jitter in symmetric links using highly dispersed pulses,�

IEEE Photon. Technol. Lett., vol. 13, pp. 445�447, 2001.

[62] A. S. Lenihan, O. V. Sinkin, B. S. Marks, G. E. Tudury, R. J. Runser, A. Gold-

man, C. R. Menyuk, and G. M. Carter, �Nonlinear timing jitter in an installed

�ber network with balanced dispersion compensation,� IEEE Photon. Technol.

Lett., vol. 17, pp. 1558�1560, 2005.

[63] S. N. Knudsen, M. Pedersen, and L. Gruner-Nielsen, �Optimization of dispersion

compensating �bers for cabled long-haul applications,� Electron. Lett., vol. 36,

pp. 2067�2068, 2000.

[64] S. N. Knudsen, D. W. Peckham, M. Pedersen, D. Philen, T. Veng, L. R. Pritch-

ett, and L. Gruner-Nielsen, �New dispersion-slope matched �ber pair for un-

dersea �ber optic transmission systems,� in Proc. SubOptic'01, T4.2.2, 2001.

[65] M. Fullenbaum, �Next generation of transoceanic submarine solutions,� in Proc.

Paci�c Telecommunications Council. M122, 2006.

[66] J.-X. Cai, D. G. Foursa, C. R. Davidson, Y. Cai, G. Domagala, H. Li, L. Liu,

W. W. Patterson, A. N. Pilipetskii, M. Nissov, and N. S. Bergano, �A DWDM

demonstration of 3.73 Tb/s over 11,000 km using 373 RZ-DPSK channels at

10 Gb/s,� in Proc. Optical Fiber Communication Conference, PD22, 2003.

[67] T. Tsuritani, K. Ishida, A. Agata, K. Shimomura, I. Morita, T. Tokura,

H. Taga, T. Mizuochi, N. Edagawa, and S. Akiba, �70-Ghz-spaced 40×42.7
Gb/s transpaci�c transmission over 9400 km using pre�ltered CSRZ-DPSK sig-

nals, all-Raman repeaters, and symmetrically dispersion-managed �ber spans,�

J. Lightwave Technol., vol. 22, pp. 215�224, 2004.



121

[68] S. A. Akhmanov and R. V. Khokhlov, Problemy Nelineinoi Optiki, Moscow,

Russia: VINITI, 1964, in Russian.

[69] S. Akhmanov, Problems of Nonlinear Optics: Gordon and Breach Science,

1972.

[70] Y. R. Shen, The Principles of Nonlinear Optics, New York: Wiley, 1984.

[71] N. Bloembergen, Nonlinear Optics: World Scienti�c, 4th edition, 1996.

[72] R. W. Boyd, Nonlinear Optics, San Diego, USA: Academic Press, 2nd edition,

2002.

[73] R. Shuker and R. W. Gammon, �Raman-scattering selection-rule breaking and

the density of states in amorphous materials,� Phys. Rev. Lett. , vol. 25, pp.

222�225, 1970.

[74] A. R. Chraplyvy, �Limitations on lightwave communications imposed by �ber

nonlinearities,� J. Lightwave Technol., vol. 8, pp. 1548�1557, 1990.

[75] O. V. Sinkin, V. S. Grigoryan, R. Holzlöhner, J. Zweck, and C. R. Menyuk,

�Probabilistic description of the nonlinear penalties in WDM RZ systems using

multicanonical Monte Carlo simulations,� in Proc. IEEE LEOS Annual Meeting,

ThI5, 2003.

[76] N. S. Bakhvalov, N. P. Zhidkov, and G. M. Kobelkov, Chislennye Metody,

Moscow, Russia: Binom, 2002, in Russian.

[77] V. M. Verzhbitsky, Foundations of Numerical Methods, Moscow, Russia:

V. Shkola, 2002.

[78] RSoft Design Group, Optical Communication Design Suite,

http://www.rsoftdesign.com/.



122

[79] VPIphotonics, VPItransmissionMaker, http://www.vpiphotonics.com/.

[80] O. V. Sinkin, R. Holzlöhner, J. Zweck, and C. R. Menyuk, �Optimization of the

split-step Fourier method in modeling optical-�ber communication systems,� J.

Lightwave Technol., vol. 21, pp. 61�68, 2003.

[81] P. V. Mamyshev and J. F. Mollenauer, �Pseudo-phase-matched four-wave mix-

ing in soliton wavelength-division multiplexing transmission,� Opt. Lett., vol.

21, pp. 396�398, 1996.

[82] G. Bosco, A. Carena, V. Curri, R. Gaudino, P. Poggiolini, and S. Benedetto,

�Suppression of spurious tones induced by the split-step method in �ber systems

simulation,� IEEE Photon. Technol. Lett., vol. 12, pp. 489�491, 2000.

[83] C. W. Gear, Numerical Initial Value Problems in Ordinary Di�erential Equa-

tions, New Jersey: Prentice-Hall, 1971.

[84] K. J. Blow and D. Wood, �Theoretical description of transient stimulated Ra-

man scattering in optical �bers,� IEEE J. Quantum Electron. , vol. 25, pp.

2665�2673, 1989.

[85] B. Fornberg and T. A. Driscoll, �A fast spectral algorithm for nonlinear wave

equations with linear dispersion,� J. Comp. Math., vol. 155, pp. 456�467, 1999.

[86] J. A. Fleck, J. R. Morris, and M. D. Feit, �Time dependent propagation of high

energy laser beams through the atmosphere,� Appl. Phys., vol. 10, pp. 129�160,

1976.

[87] F. Forghieri, �Modeling of wavelength multiplexed lightwave systems,� in Proc.

Optical Fiber Communication Conference. TuG1, 1997.



123

[88] V. E. Zakharov and A. B. Shabat, �Tochnaya teoriya dvumernoy samo-

fokusirovki i odnomernoy avtomodulyatsii voln v nelineinykh sredakh,� Zh.

Eksp. Teor. Fiz., vol. 61, pp. 118�134, 1971, in Russian.

[89] V. E. Zakharov and A. B. Shabat, �Exact theory of two-dimensional self-

focusing and one-dimensional self-modulation of waves in nonlinear media,�

Sov. Phys.-JETP, vol. 34, pp. 62�69, 1972.

[90] A. Hasegawa and F. Tappert, �Transmission of stationary nonlinear optical

pulses in dispersive dielectric �bers. I. Anomalous dispersion,� Appl. Phys.

Lett., vol. 23, pp. 142�144, 1973.

[91] S. Novikov, S. V. Manakov, L. P. Pitaevskii, and V. E. Zakharov, Theory of

Solitons : The Inverse Scattering Method, New York�London: Plenum Press,

1984.

[92] C. Desem and P. L. Chu, �Soliton-soliton interactions,� in Optical Solitions,

J. R. Taylor, Ed., chapter 5, pp. 107�151. Cambridge Univ. Press, Cambridge,

UK, 1992.

[93] A. Hasegawa, Solitons in Optical Communications, Oxford, UK: Clarendon,

1995.

[94] R.-M. Mu, V. S. Grigoryan, C. R. Menyuk, G. M. Carter, and J. M. Jacob,

�Comparison of theory and experiment for dispersion-managed solitons in a

recirculating �ber loop,� IEEE J. Sel. Topics Quant. Electron., vol. 6, pp.

248�257, 2000.

[95] R. M. Mu, T. Yu, V. S. Grigoryan, and C. R. Menyuk, �Convergence of CRZ

and DMS formats in WDM systems using dispersion management,� in Proc.

Optical Fiber Communication Conference, FC1, 2000.



124

[96] S. Pachnicke and E. Voges, �Fast analytical assessment of the signal quality

in transparent optical networks,� J. Lightwave Technol., vol. 24, pp. 815�824,

2006.

[97] K.-P. Ho, �Statistical properties of stimulated Raman crosstalk in WDM sys-

tems,� J. Lightwave Technol., vol. 18, pp. 915�921, 2000.

[98] C. J. McKinstrie, �Frequency shifts caused by collisions between pulses in

dispersion-managed systems,� Opt. Commun., vol. 205, pp. 123�137, 2002.

[99] A. Cartaxo, �Small-signal analysis for nonlinear and dispersive optical �bres,

and its application to design of dispersion supported transmission systems with

optical dispersion compensation,� IEE Proc.-Optoelectron., vol. 146, pp. 213�

222, 1999.

[100] J. Wang and K. Petermann, �Small signal analysis for dispersive optical �ber

communication systems,� J. Lightwave Technol., vol. 10, pp. 96�100, 1992.

[101] A. Vannucci, P. Serena, and A. Bononi, �The RP method: A new tool for the

iterative solution of the nonlinear Schrödinger equation,� J. Lightwave Technol.,

vol. 20, pp. 1102�1112, 2002.

[102] M. Secondini, Optical communication theory and techniques for high bit-rate

systems, Ph.D. thesis, Scuola Superiore Sant'Anna, Pisa, Italy, 2006.

[103] M. Secondini, E. Forestieri, and C. R. Menyuk, �A novel perturbation method

for signal-noise interaction in nonlinear dispersive �bers,� in Proc. Optical Fiber

Communication Conference. OThD3, 2006.

[104] J. G. Proakis, Digital Communications, New York: McGraw-Hill, 1995.

[105] L. F. Mollenauer, J. P. Gordon, and M. N. Islam, �Soliton propagation in long



125

�bers with periodically compensated loss,� IEEE J. Quantum Electron. , vol.

22, pp. 157�173, 1986.

[106] L. F. Mollenauer, S. G. Evangelides, and J. P. Gordon, �Wavelength division

multiplexing with solitons in ultra-long distance transmission using lumped am-

pli�ers,� J. Lightwave Technol., vol. 9, pp. 362�367, 1991.

[107] J. F. L. Devaney, W. Forysiak, A. M. Niculae, and N. J. Doran, �Soliton col-

lisions in dispersion-managed wavelength-division-multiplexed systems,� Opt.

Lett., vol. 22, pp. 1695�1697, 1997.

[108] P. V. Mamyshev and L. Mollenauer, �Soliton collisions in wavelength-division-

multiplexed dispersion-managed systems,� Opt. Lett., vol. 24, pp. 448�450,

1999.

[109] A. Mecozzi, �Timing jitter in wavelength-division-multiplexed �ltered soliton

transmission,� J. Opt. Soc. Am. B , vol. 15, pp. 152�161, 1998.

[110] Y. Cai, T. Adal�, C. R. Menyuk, and J. M. Morris, �Sliding window criterion

codes and concatenation scheme for mitigating timing-jitter-induced errors in

WDM �ber transmissions,� J. Lightwave Technol., vol. 20, pp. 201�212, 2002.

[111] T. Hirooka and A. Hasegawa, �Chirped soliton interaction in strongly

dispersion-managed wavelength-division-multiplexing systems,� Opt. Lett., vol.

23, pp. 768�770, 1998.

[112] M. J. Ablowitz and A. S. Fokas, Complex variables: Introduction and applica-

tions, Cambridge, UK: Cambridge University Press, second edition, 2003.

[113] A. Docherty, Collision induced timing shifts in wavelength-division-multiplexed

optical �ber communications systems, Ph.D. thesis, University of New South

Wales, Sydney, Australia, 2004.



126

[114] B. L. Bratley, B. L. Fox, and L. E. Schrage, A Guide to Simulation, New York:

Springer-Verlag, 1987.

[115] J.-C. Chen, D. Lu, J. S. Sadowsky, and K. Yao, �On importance sampling in

digital communications�Part I: Fundamentals,� IEEE J. Sel. Areas Commun.,

vol. 11, pp. 289�299, 1993.

[116] P. J. Smith, M. Sha�, and H. Gao, �A review of importance sampling techniques

in communications sytems,� IEEE J. Sel. Areas Commun., vol. 15, pp. 597�613,

1997.

[117] E. Veach, Robust Monte Carlo methods for light transport simulations, Ph.D.

thesis, Stanford University, Stanford, USA, 1997.

[118] D. Yevick, �Multicanonical communication system modeling-application to

PMD statistics,� IEEE Photon. Technol. Lett., vol. 14, pp. 1512�1514, 2002.

[119] R. Holzlöhner and C. R. Menyuk, �Accurate bit error rates from multicanonical

Monte Carlo simulations,� in Proc. Conference on Lasers and Electro-Optics,

CThJ3, 2003.

[120] R. Holzlöhner and C. R. Menyuk, �The use of multicanonical Monte Carlo sim-

ulations to obtain accurate bit error rates in optical communications systems,�

Opt. Lett., vol. 28, pp. 1894�1896, 2003.

[121] I. T. Lima, A. O. Lima, J. Zweck, and C. R. Menyuk, �E�cient computation

of outage probabilities due to polarization e�ects in a WDM system using a

reduced Stokes model and importance sampling,� IEEE Photon. Technol. Lett.,

vol. 15, pp. 45�47, 2003.

[122] A. O. Lima, I. T. Lima, C. R. Menyuk, G. Biondini, B. S. Marks, and W. L.

Kath, �Statistical analysis of the performance of PMD compensators using



127

multiple importance sampling,� IEEE Photon. Technol. Lett., vol. 13, pp. 1716�

1718, 2002.

[123] R. O. Moore, G. Biondini, and W. L. Kath, �Importance sampling for noise-

induced amplitude and timing jitter in soliton transmission systems,� Opt.

Lett., vol. 28, pp. 105�107, 2003.

[124] G. Biondini, W. L. Kath, and C. R. Menyuk, �Importance sampling for

polarization-mode dispersion: techniques and applications,� J. Lightwave Tech-

nol., vol. 22, pp. 1201�1215, 2004.

[125] A. O. Lima, I. T. Lima, and Menyuk C. R., �Error estimation in multicanoni-

cal Monte Carlo simulations with applications to polarization-mode-dispersion

emulators,� J. Lightwave Technol., vol. 23, pp. 3781�3789, 2005.

[126] A. Bilenca and G. Eisenstein, �Statistical noise properties of an optical pulse

propagating in a nonlinear semiconductor optical ampli�er,� IEEE J. Quantum

Electronics, vol. 41, pp. 36�44, 2005.

[127] T. Lu and D. Yevick, �E�cient multicanonical algorithms,� IEEE Photon.

Technol. Lett., vol. 17, pp. 861�863, 2005.

[128] I. Neokosmidis, T. Kamalakis, A. Chipouras, and T. Sphicopoulos, �Estimation

of the four-wave mixing noise probability-density function by the multicanonical

Monte Carlo method,� Opt. Lett., vol. 30, pp. 11�13, 2005.

[129] R. Holzlöhner, A. Mahadevan, C.R. Menyuk, J.M. Morris, and J. Zweck, �Eval-

uation of the very low BER of FEC codes using dual adaptive importance sam-

pling,� IEEE Commun. Letters, vol. 9, pp. 163�165, 2005.

[130] Y. Yadin, M. Shtaif, and M. Orenstein, �Bit-error rate of optical DPSK in �ber



128

systems by multicanonical Monte Carlo simulations,� IEEE Photon. Technol.

Lett., vol. 17, pp. 1355�1357, 2005.

[131] W. Pellegrini, J. Zweck, C. R. Menyuk, and R. Holzlöhner, �Computation of

bit error ratios for a dense WDM system using the noise covariance matrix and

multicanonical Monte Carlo methods,� IEEE Photon. Technol. Lett., vol. 17,

pp. 1644�1646, 2005.

[132] B. A. Berg and F. Neuhaus, �Multicanonical ensemble: a new approach to

simulate �rst-order phase transitions,� Phys. Rev. Lett. , vol. 68, pp. 9�11,

1992.

[133] N. Metropolis and S. Ulam, �The Monte Carlo method,� J. Am. Stat. Assoc.,

vol. 44, pp. 335�341, 1949.

[134] C. Xu, C. Xie, and L. Mollenauer, �Analysis of soliton collisions in a wavelength-

division-multiplexed dispersion-managed soliton transmission system,� Opt.

Lett., vol. 27, pp. 1303�1305, 2002.

[135] W. Wang, O. V. Sinkin, T. Adali, J. Zweck, and C. R. Menyuk, �Prior-based

line-coding for WDM RZ systems,� in Proc. Conference on Lasers and Electro-

Optics, CFN5, 2004.

[136] O. V. Sinkin, V. S. Grigoryan, J. Zweck, C. R. Menyuk, A. Docherty, and

M. Ablowitz, �Calculation, characterization, and application of the time shift

function in wavelength-division-multiplexed return-to-zero systems,� Opt.

Lett., vol. 30, pp. 2056�2058, 2005.

[137] A. Papoulis, Probability, Random Variables, and Stochastic Processes, New

York: McGraw-Hill, 3rd edition, 1991.



129

[138] E. Forestieri, �Evaluating the error probability in lightwave systems with chro-

matic dispersion, arbitrary pulse shape and pre- and postdetection �ltering,� J.

Lightwave Technol., vol. 18, pp. 1493�1503, 2000.

[139] D. Marcuse, �Derivation of analytical expressions for the bit-error probability

in lightwave systems with optical ampli�ers,� J. Lightwave Technol., vol. 8, pp.

1816�1823, 1990.

[140] P. A. Humblet and M. Azizo�glu, �On the bit error rate of lightwave systems

with optical ampli�ers,� J. Lightwave Technol., vol. 9, pp. 1576�1582, 1991.

[141] J. S. Lee and C. S. Shim, �Bit-error analysis of optically preampli�ed receivers

using eigenfunction expansion method in optical frequency domain,� J. Light-

wave Technol., vol. 12, pp. 1224�1229, 1994.

[142] A. Carena, V. Curri, R. Gaudino, P. Poggiolini, and S. Benedetto, �New an-

alytical results on �ber parametric gain and its e�ects on ASE noise,� IEEE

Photon. Technol. Lett., vol. 9, pp. 535�537, 1997.

[143] R. Hui, D. Chowdhury, M. Newhouse, M. O'Sullivan, and M. Poettcker, �Non-

linear ampli�cation of noise in �bers with dispersion and its impact in optically

ampli�ed systems,� IEEE Photon. Technol. Lett., vol. 9, pp. 392�394, March

1997.

[144] R. Hui, M. O'Sullivan, A. Robinson, and M. Taylor, �Modulation instabil-

ity and its impact in multispan optical ampli�ed IMDD systems: Theory and

experiments,� J. Lightwave Technol., vol. 15, pp. 1071�1081, July 1997.

[145] V. S. Grigoryan, C. R. Menyuk, and R.-M. Mu, �Calculation of timing and

amplitude jitter in dispersion-managed optical �ber communications using lin-

earization,� J. Lightwave Technol., vol. 17, pp. 1347�1356, 1999.



130

[146] G. Bosco, A. Carena, V. Curri, R. Gaudino, P. Poggiolini, and S. Benedetto,

�A novel analytical method for the BER evaluation in optical systems a�ected

by parametric gain,� IEEE Photon. Technol. Lett., vol. 12, pp. 152�154, 2000.

[147] R. Holzlöhner, V. S. Grigoryan, C. R. Menyuk, and W. L. Kath, �Accurate

calculation of eye diagrams and bit error rates in long-haul transmission systems

using linearization,� J. Lightwave Technol., vol. 20, pp. 389�400, 2002.

[148] R. Holzlöhner, C. R. Menyuk, W. L. Kath, and Grigoryan V. S., �A covariance

matrix method to compute bit error rates in a highly nonlinear dispersion-

managed soliton system,� IEEE Photon. Technol. Lett., vol. 15, pp. 688�690,

2003.

[149] R. Holzlöhner, A Covariance Matrix Method for the Computation of Bit Er-

rors in Optical Transmission Systems, Ph.D. thesis, University of Maryland

Baltimore County, Baltimore, Maryland, USA, 2003.

[150] M. Kac and A. J. F. Siegert, �On the noise in radio receivers with square law

detectors,� J. Appl. Phys., vol. 18, pp. 383�397, 1947.


