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ABSTRACT 
 

Polarization Effects in a Recirculating Loop System and 
Emulation of a Straight-line System Using a Recirculating 

Loop 
 

Yu Sun, Doctor of Philosophy, 2003 
 

Dissertation directed by: Gary M. Carter, Professor 
Department of Computer Science and Electrical Engineering 

 
Recirculating loops have proven to be an inexpensive and effective test bed in trans-

mission studies. However, without appropriate controls, recirculating loops cannot accu-

rately emulate polarization effects, such as polarization dependent loss/gain (PDL/PDG) 

and polarization mode dispersion (PMD), in straight-line systems. In this dissertation, I 

systematically investigated the polarization evolution and the system performance of a 

single channel dispersion-managed recirculating loop. I showed that due to the periodic 

optical path, the system performance in such a loop system was different from that of a 

straight-line system. I also adapted the reduced Stokes model to simulate the polarization 

behavior and the system performance. The excellent agreement of the experimental re-

sults and the numerical simulations provided the first experimental validation of the re-

duced Stokes model. In addition, I derived a Q-factor formula to take into account the 

effect of partially polarized noise and an analytical probability density function of the Q-

factor distribution. I validated the Q-factor formula and the probability density function 

of the Q-factor distribution by the excellent comparison of the experimental results, the 

numerical simulations, and the analytical results. I showed that partially polarized noise 



could cause large system variation. Finally, I overcame the limitation of the recirculating 

loop system by developing a loop-synchronous scrambling technique to break up the pe-

riodicity of the loop system. The system performance of a scrambled loop system closely 

resembles that of a straight-line system. Besides the loop-synchronous scrambling tech-

nique, I also addressed several other critical issues in loop experiments. I investigated the 

system performance of a scrambled loop system by measuring the Q-factor distribution 

with different PDL levels in the system, with and without the input scrambler. I showed 

that by carefully choosing the input-scrambling rate, one can improve the system perfor-

mance and reduce the variation and the Q-factor distribution is asymmetric with a signifi-

cant PDL in the system. 
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Chapter 1 

Introduction 

 

 

 

In order to increase the capacity of optical communication systems, scientists and en-

gineers are constantly seeking new approaches to put more channels in systems and to 

increase the data rate, as well as to extend the propagation distance. To directly evaluate 

the system performance from straight-line transmission experiments or field tests is ex-

tremely expensive, especially for long-haul systems consisting thousands of kilometers of 

fiber. Even in metro systems, which are less than a couple of hundred kilometers in 

length, field tests are limited by the already installed fiber and the inability to change the 

components. An inexpensive and flexible experimental model is very important in study-

ing optical communication systems. Optical recirculating loops have proven to be effi-

cient tools for experimental simulations of long distance communication systems at great-

ly reduced cost and with significant flexibility [1] – [3]. 

Since the early nineties, recirculating loop systems have been widely used in the 

study of long-haul time division multiplexing (TDM) systems [1] and [2], the WDM net-

1 
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work systems [3], [4] and [5], as well as applications of newly developed system compo-

nents [6] and [7]. In fact, transmission distances have been achieved in loops that are un-

imaginable in any other transmission medium. However, the difference between a recir-

culating loop system and a realistic straight-line system is not well studied until recently. 

With the increase of the data rate in telecommunication systems, the polarization effects, 

such as the polarization dependent loss (PDL), the polarization dependent gain (PDG) 

and the polarization mode dispersion (PMD) have drawn increasing attention. Studies 

have shown that these polarization effects impair the system performance. The combined 

PDL and PDG effects cause the variation of the system performance [8] – [11] and in 

general with propagation, PMD distorts the pulse, increasing the BER [12].  

It is known that recirculating loop systems are sensitive to the polarization states of 

the light in the system, so that for many systems, polarization controllers are used to 

achieve increased transmission distance [13], [14] and [15]. Studies of these polarization 

effects performed in recirculating loop systems have shown that without appropriate con-

trols, the recirculating loop systems can not correctly emulate the polarization effects of 

straight-line systems [16] and [17]. Therefore it is important to understand the polariza-

tion behaviors in recirculating loop systems and to overcome the limitation of recirculat-

ing loops in order to accurately emulate the system performance of a realistic system.  

Simulating the polarization effects in the system is as challenging as studying them 

experimentally. It is common to study fiber system impairment using the coupled nonlin-

ear Schrödinger equation that has been modified to include loss, amplification, spontane-

ous emission noise and other effects [18] – [20]. However, solving this equation is com-

putationally time consuming, especially in a WDM system involving large number of 
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channels. Furthermore, since the polarization effects are random in nature, one must sim-

ulate multiple fiber realizations, so that it is not realistic to study the impairments intro-

duced by polarization effects using complete numerical simulations. An effective reduced 

model that separates the impairments due to polarization effects from other effects, such 

as dispersion and nonlinearity is needed. Dr. Ding Wang and Dr. Curtis Menyuk [21], 

[22] have introduced a reduced Stokes model that follows the Stokes parameters of the 

signal and the noise, rather than simulating the detailed time domain evolution of indi-

vidual pulses. This model separates the polarization effects from the effects of dispersion 

and nonlinearity based on the consideration that the polarization effects evolve a much 

slower time scale than the other effects. In Chapter 2, I review the reduced Stokes model 

and discuss the application of this model to a loop system.  

An accurate receiver model is as important as the transmission model in the compari-

son of system performance. The system performance is often evaluated by the Q-factor, 

which is defined as ( ) ( )0101 σσ +−= IIQ , where I1 and I0 are the mean currents on the 

marks and the spaces respectively and 1σ  and 0σ are the corresponding standard devia-

tions. The commonly used Q-factor formula [23], [24] is based on several simplified as-

sumptions: (1) It assumes a rectangular optical filter; (2) it assumes an integrate-and-

dump electrical filter; (3) it only considers two extreme cases of the noise polarization: 

the noise is either unpolarized or completely copolarized in the direction of the signal. 

Under the third assumption, the Q-factor has a unique relationship with the SNR. How-

ever, the third assumption is not generally valid in today’s long-haul transmission sys-

tems, where the noise is often partially polarized due to PDL in the system, and the direc-

tion of the polarized part of the noise can be arbitrary. A generalized Q formula, which 
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can accurately take into account the partially polarized noise, is essential in the receiver 

model. 

In my study, I have derived a generalized Q-factor formula that accounts for the par-

tially polarized noise in the receiver, as well as the pulse shape in front of the receiver 

and the shape of both the electrical filter and the optical filter. I validate this formula by 

the comparison to back-to-back experimental results, numerical simulations and theoreti-

cal calculations. In addition, I derive the probability density function (pdf) of the Q-factor 

when the SNR is fixed. I validate the pdf of the Q-factor by numerical simulation and ex-

perimental measurement. In Chapter 3, I discuss in detail the derivation of the Q-factor 

formula, the derivation of the pdf of the Q-factor when SNR is fixed and the experimental 

and simulated results.  

Although the distribution of the PMD statistics has been studied in a short recirculat-

ing fiber loop [17], there have been relatively few published studies on the effects of PDL 

and PDG in such loops and on the differences between recirculating loops and straight-

line systems. In my study, I have focused on the investigation of the polarization evolu-

tion in a recirculating loop as well as the loop performance due to these polarization ef-

fects. In Chapter 4, I systematically investigate the polarization evolution and the system 

performance in a loop system through numerical simulations using the reduced Stokes 

model and experiments. I focus on the evolution of the degree of polarization (DOP) of 

the signal and the noise in the loop, which provides the first experimental validation of 

the reduced Stokes model and leads to an approach to determine the amount of PDL in 

the system, the Q-factor distribution, and the polarization state evolution yielding Q-

factors in the high Q, medium Q and low Q portions of the Q-factor distribution, respec-
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tively. In addition, I numerically compare the polarization behavior of a loop system to a 

straight-line system. 

 The ultimate goal of my study is to overcome the limitation of recirculating loop sys-

tems and to accurately emulate the system performance of a straight-line system. In this 

study, I suggest an experimental procedure — the loop-synchronous scrambling tech-

nique, to obtain a more realistic Q factor distribution, which I also implement experimen-

tally. With this approach, I introduce a random rotation each round trip, so that I am able 

to emulate the Q-factor distribution of a straight-line system and to investigate the PDL 

effect in such a system. I also employ an input scrambler to reduce the PDG effect in the 

single channel system used in experiments. Employing the Q formula in the reduced 

Stokes model, I obtain excellent agreement between experimental results and the numeri-

cal simulations after transmitting the signal over 10,000 km.  

In Chapter 5, I discuss in detail the system performance of a scrambled loop system 

with different PDL levels, with and without the input scrambling. In this chapter, I de-

scribe several important techniques that used to carry out experiments. Besides the loop-

synchronous scrambling technique, I discuss the control and monitoring of the magnitude 

of PDL in the system, as well as the EDFA dynamic response and its impact to the ampli-

tude modulation induced by input scrambling, where the residual PDL in the system con-

verts the polarization state modulation to the undesired amplitude modulation. I also dis-

cuss the technique to minimize the undesired amplitude modulation. 

In conclusion, I show that the PDL plays a major role in the system performance, and, 

along with the periodic optical path, leads to polarization behaviors that are far from 

those in a realistic straight-line system. My work suggests that to truly reproduce the 
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straight-line behavior in a loop system, one needs to scramble the polarization state in the 

loop randomly. Finally, I summarize my work in Chapter 6. 

 



 

Chapter 2 

Application of the Reduced 
Stokes Model in a Loop System 

 
 
 

2.1 Introduction 

It is now commonplace to study fiber system impairments using the coupled nonline-

ar Schrödinger equation that has been modified to include loss, amplification, spontane-

ous emission noise and other effects [20] and [25]. When polarization effects, including 

PMD, can be neglected and the signal is launched in a single state of polarization, it is 

possible to study optical fiber impairments using the scalar nonlinear Schrödinger equa-

tion and its modifications. In fact, this scalar approach is more commonly used than the 

complete vector equation. However, as the bit rate of the optical system increases, the 

polarization effects have become more important. Polarization effects can impair the sys-

tem performance severely. As a matter of fact, even using modern fibers, PMD is a sig-

nificant issue in systems with a 40 Gb/s and higher data rate [26].   

Furthermore, in order to reduce the effect of PDG, modern systems also employ po-

larization scrambling [27] or orthogonal polarization when launching the input signal 
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8 

[28]. In these cases, the scalar nonlinear Schrödinger, which deals with a single input po-

larization state, is no longer valid. In these systems, the Manakov-PMD equation is the 

correct formulation to study the nonlinearity and dispersion in the systems [18]. Solving 

either the scalar nonlinear Schrödinger equation or the Manakov-PMD equation can be 

very computationally time consuming, especially for the WDM system involving large 

number of channels. To appropriately study polarization effects, one must additionally 

simulate many different fiber realizations of the random varying polarization orientations 

in the system, so that it is not realistic to study the impairments introduced by polariza-

tion effects in modern DWDM systems that may have tens of channels using complete 

numerical simulations to solve the nonlinear Schrödinger equation or the Manakov-PMD 

equation. 

 In a system, if the fiber’s PMD is too small to distort a single pulse, PMD, PDL and 

PDG are treated as slow time effects that will raise and lower the signal and noise power 

levels and will change the polarization state of the entire channel in the same way. In 

contrast, nonlinearity and chromatic dispersion are fast effects that affect each bit sepa-

rately. Since the polarization effects and the effects of nonlinearity and dispersion exist 

on different time scales, an effective reduced model that separates the impairments due to 

polarization effects from other effects is highly desirable.  

The reduced model introduced by Dr. Ding Wang and Dr. Curtis Menyuk [21] is 

based on following the Stokes parameters for the signal and the noise for every channel, 

neglecting intersymbol interference due to the Kerr nonlinearity and chromatic disper-

sion. Although this model was developed to simulate the polarization effects in a WDM 

system, it is possible to apply it to a single-channel system. Before the loop experiments 
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that I accomplished, this model was only validated theoretically by comparing the results 

with a full simulation solving the Manakov-PMD equation [22]. The experiments, which 

will be discussed in Chapter 4, provide the first experimental validation of this model.  

The dispersion-managed soliton (DMS) recirculating system, in which I used to carry 

out experiments, is a well-studied system [20], which has a threefold benefit for valida-

tion of the reduced model. First, in this loop, we were able to propagate dispersion-

managed solitons over 18,000 km error-free, so that it is possible to study the accumulat-

ed polarization effects even though these effects are small in one round trip. Second, alt-

hough the local dispersion in the system is large, the average dispersion is low and bal-

ances the nonlinearity of the system, so the pulses maintain their shape after each one 

round trip. Thus, pulse distortion due to nonlinearity and dispersion is eliminated. Third, 

the limitation of the propagation in this system is the build-up of the ASE noise and the 

change of the polarization orientation only varies the optical signal-to-noise ratio, rather 

than introducing extra pulse distortion. Moreover, since the system employs new fibers, 

the PMD is not significant enough to induce pulse distortion in the system. Consequently, 

it is reasonable to expect that this reduced model will work well in the study. In the re-

duced model, besides the polarization effects—PDL, PDG and PMD—I also took into 

account gain saturation of the EDFAs and the fiber loss.  

The Jones vector of an electrical field, ( ),z tU , in the time domain is defined as 

( ) ( )0, expz t ikz i tω= −U U ,                                                     (2.1) 

where ω is the center frequency of the channel and k is corresponding wave-number. The 

variable 0U is the wave envelope, which contains two orthogonal components 1u and 2u . 

The drawback of the Jones notation is that it only describes completely polarized light. In 
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the reduced model, I use the Müller representation, which is more general and describes 

the unpolarized and partially polarized light. The polarization state of the light is de-

scribed by four Stokes parameters, defined as  

( )2 2
0 1 2

1lim d
2

T

TT
S u u t

T −→∞
= +∫ ,                                                (2.2)  

( )2 2
1 1 2

1lim d
2

T

TT
S u u t

T −→∞
= −∫ ,                                                (2.3) 

2 3 1 2
1lim d

T

TT
S iS u u t

T
∗

−→∞
+ = ∫ .                                                   (2.4) 

In order to make this definition meaningful, the time constant T is long compared to a 

single bit period, and I assume that the channel is statistically stationary.  

How polarized the light is is measured by DOP, which is defined as the power ratio of 

the polarized light and the total light. It can be written as  

2 2 2
1 2 3

0

DOP
S S S

S
+ +

= .                                                  (2.5) 

2.2 Effect of PMD 

Despite the name, there exist two mutually orthogonal polarization modes in a “sin-

gle-mode” fiber. In a perfectly isotropic, circularly symmetric fiber the two polarization 

modes travel with the same phase and group velocity [17]. However, due to the stress ap-

plied to the fiber and the geometric asymmetry, this polarization degeneracy is broken, 

leading to fiber birefringence. Because of birefringence in the fiber, the two polarization 

modes travel at different group velocities, and random change of the birefringence along 

the fiber causes random mode coupling between these two modes [29]. The resulting 
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PMD leads to pulse distortion and system impairment that can limit the transmission dis-

tance of practical optical transmission systems.  

In a system, where the PMD is too small to cause pulse distortion, such as the systems 

employed modern fiber, the polarization states in a single channel all evolve uniformly. 

This approximation is reasonable as long as the accumulated differential group delay 

(DGD) in the channel is not significant compared to the bit duration [25]. Therefore, the 

effect of the randomly varying birefringence in this system is to rotate the polarization 

state of the entire channel. This rotation occurs rapidly, typically on a scale of tens to 

hundreds of meters. Residual PMD can lead to a differential rotation of the polarization 

state of different channels in a WDM system that occurs over a much longer length scale. 

In the simulations, I apply the coarse step method in an optical fiber with randomly vary-

ing birefringence [18]. The simulation approach uses step sizes that are large compared to 

the fiber correlation length — typically several kilometers — and randomly rotate the 

polarization states on the Poincaré sphere after each step. In one step, the PMD is as-

sumed to be a constant, so that the rotation induced by PMD is the same for each step, but 

it depends on wavelength. Then, the polarization state is rotated randomly on the 

Poincaré sphere after each step. The random rotations are chosen in such a way that for a 

fixed input polarization state, the output polarization state after the rotations cover the 

Poincaré sphere uniformly. This approach unnaturally increases fiber correlation length, 

while it artificially reduces the strength of the birefringence so that one can still obtain 

the same magnitude of the linear PMD and reduce the computation time dramatically. 

Marcuse, et al. [18] showed that this approach leads to the same statistical behavior as a 
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fine-step method that follows all the details of the birefringence evolution in an optical 

fiber. 

The fiber loss is always compensated by the EDFAs along the transmission, so that 

one may ignore the spatially varying gain and loss when we consider the rotation due to 

PMD effect [22]. Since the PMD does not affect the total power of the channel, we can 

write the evolution of the total power, indicated as one of the Stokes parameters S0, as a 

function of the propagation distance z as ( ) ( )zSzS 00 =+ζ , where the parameter ζ is the 

step size used in the simulation. In the model, I follow the evolution due to PMD of the 

other three Stokes parameters. These three Stokes parameters form a Stokes vector 

( )1 2 3, , tS S S=S . The j-th step of the Stokes vector is 

( ) ( ) ( ) ( )j jz z z zζ+ =S R M S ,                                                (2.6) 

where the subscript j indicates the j-th step in the algorithm. The matrix,  

( ) ( )
( ) ( )

1 0 0
0 cos sin
0 sin cos

j β ωζ β ωζ
β ωζ β ωζ

 
 ′ ′= ∆ − ∆ 
 ′ ′∆ ∆ 

M ,                                          (2.7) 

accounts for the wavelength-dependent rotation due to the fiber birefringence. The angu-

lar frequency ω  is for the center wavelength of the channel. For the single channel that I 

studied, it is the same on each step. The quantity of β ′∆  in (2.7) is related to the meas-

ured PMD or average differential group delay (DGD) as: 

( ) ( )1 23 8 2 PMDβ π ζ′∆ = .                                             (2.8) 

The matrix 
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















+−+−
−−−−

−
=

jjjjjjjjjjjj

jjjjjjjjjjjj

jjjjj

j

ψφψφθψφψφθφθ
ψφψφθψφψφθφθ

ψθψθθ

coscossinsincossincoscossincossinsin
cossinsincoscossinsincoscoscoscossin

sinsincossincos
R

     (2.9) 

induces the random rotation at the end of each step that is required by the coarse step 

method. It is the same for each wavelength but differs on each step. On each step, jθcos  

has a uniform distribution between –1 and 1, while jφ and jψ are uniform distributed 

from 0 to 2π. Therefore, this rotation has a uniform probability distribution on the 

Poincaré sphere. 

 

2.3 Effect of PDL 

The PDL effect is due to the polarization dependence of the transmission of some de-

vices. Physical effects, such as polarization-dependent absorption, fiber bending, and an-

gled optical interfaces can cause PDL. In optical systems, polarization-sensitive elements 

such as isolators and WDM couplers in amplifiers are the main source of polarization-

dependent loss. The effect of PDL is to cause excess loss in one of the two orthogonal 

polarizations. There are several methods to determine the PDL in a device. The most 

straightforward method is called the maximum-minimum power method. Using this ap-

proach, one needs to scan all the possible polarization states at the input of the device and 

trace the power variation at the output. From the ratio of the maximum power maxP  and 

minimum power minP , one can obtain the PDL value in dB as 

max
10

min

PDL 10log P
P

 
=  

 
.                                                       (2.10) 
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Typically, for a single device the PDL level can vary from a few tenths of a dB to less 

than a tenth of dB. In long-haul transmission systems, the PDL will accumulate along the 

transmission distance. In transoceanic systems, the requirement for the PDL in each 

EDFA is very strigent. It must be below 0.1 dB. However, in terrestrial systems, the PDL 

for each EDFA is higher and can be a few tenths of a dB. Although, the PDL in the sys-

tem does not significantly degrade the average signal-to-noise ratio (SNR), it may cause 

large variation of the SNR. In addition, in modern systems, polarization scrambling tech-

niques are employed to improve the average SNR by eliminating the effect of PDG [27]. 

However, significant PDL in the system will repolarize the initially depolarized signal, so 

that the system performance can be degraded again by the effects of PDG and PMD [30]. 

Since PMD in the DMS system that I performed experiments is very low and I need 

only consider the polarization rotation due to the random varying birefringence, the entire 

channel has the same evolution. In addition, the effect of PDG can be eliminated if the 

signal is scrambled faster than the response time of EDFAs at the input. Thus, PDL plays 

a larger role than PMD or PDG in the system performance. Although the PDL can in 

principle be compensated with commercial devices, it is very expensive to compensate 

each EDFA in a realistic long-haul system. For system modeling and performance predic-

tion, it is essential to understand the effect of the PDL in long-haul systems.  

In the notation, I used “in” and “out” to indicate the light that inputs to the element 

having PDL and the light that passes the PDL element. Using the Jones vector notation, 

one can write 

1 1

2 2out in

1 0
0

u u
u uα
    

=    
    

,                                                     (2.11) 
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where the second component of the matrix is in the direction of maximum loss, and α is 

the PDL of the element in the linear scale and one can obtain the PDL in dB through the 

relationship 
10

PDL 20log α= − . The vector ( )1 2, tu u=U is the wave envelope of the 

channel. Converting to the Stokes representation using (2.2), (2.3) and (2.4), we obtain 

2 2

0,out 0,in 1,in
1 1 ,

2 2
S S Sα α+ −

= +                                               (2.12) 

2 2

1,out 0,in 1,in
1 1 ,

2 2
S S Sα α− +

= +                                              (2.13) 

2,out 2,inS Sα= ,                                                            (2.14) 

3,out 3,inS Sα= .                                                            (2.15) 

From (2.12) – (2.15), I observe that the PDL in the system not only causes power fluctua-

tions, which is indicated by the parameter 0,outS , but also causes a rotation of the polariza-

tion state of the signal towards the low-loss axis of the PDL device. 

 

2.4 Effect of PDG 

The polarization-dependent gain will cause excess gain in the direction orthogonal to 

the signal [8], [9]. This effect will cause significant degradation of the SNR in a long-

haul transmission system. There are two sources of polarization dependent gain [31]. One 

is polarization hole burning (PHB) and the other is the pump contribution of polarization. 

PHB arises when randomly orientated erbium ions in the glass media are selectively de-

excitated by a polarized incoming signal. The pump dependence comes from the selective 

excitation of erbium ions by absorption of the polarized pump. The effects of the pump-

induced PDG, like those of conventional PDL, accumulate stochastically because the as-
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sociated axes in different components are independent from each other. By contrast, the 

effect of PHB, which tracks the polarization state of the signal, accumulates deterministi-

cally. The amount of PDG induced by the PHB effect is closely related to the gain com-

pression of an EDFA. For a single EDFA, the PDG level in dB can be estimated by an 

empirical relation [32] 

2PDG 0.027 0.001C C≈ − ,                                               (2.16) 

where C is the gain compression in dB, defined relative to an input signal of –30 dBm. 

This approximation is accurate when the gain compression is less than 8 dB. In the model 

I only take into account the PDG induced by PHB.  

The PDG is the largest for linearly polarized light. Although the local PDG depends 

on the axis of the ellipse, due to the EDFA’s birefringence, the SOP of the light rotates 

randomly alone the erbium fiber in the EDFA, so that the dependence of PDG on the lo-

cal ellipticity is averaged out. Therefore, the total PDG of an EDFA is independent of the 

ellipse. The net gain of the power for the orthogonal noise mode due to PDG is given by 

pol

10
net 10

d PDG

g = ,                                                        (2.17) 

where PDG is the maximum differential gain in decibels and the parameter pold  is the de-

gree of polarization of the entire channel [31]. 

The effect of PDG is modeled in a manner similar to that used to model PDL; howev-

er the direction of maximum gain must be chosen self-consistently with the existing sig-

nal in a given system. In Jones space, assuming a normalized unity gain for the electrical 

field along the major axis of the polarization ellipse, the gain for the electrical field along 

the minor axis is 1 2
netg g= . Thus, we write 
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1 11

2 2
out in

1 0
0

u u
u ug

−    
=    

    
R R .                                        (2.18) 

The rotation matrix R is determined by the overall polarization state of the incoming light 

since it is the polarization state that determines the orientation of the PDG, while R-1 is 

the inverse of R. The rotation matrix R is written as 

( ) ( )
( ) ( )

cos 2 exp[ ( ) 2] sin 2 exp[ ( ) 2]
sin 2 exp[ ( ) 2] cos 2 exp[ ( ) 2]

i i
i i

ϕ φ ψ ϕ φ ψ
ϕ φ ψ ϕ φ ψ

− + − − 
=  − − + 

R .                   (2.19) 

I use Stokes vectors ( )in 1,in 2,in 3,in, ,
t

S S S=S and ( )out 1,out 2,out 3,out, ,
t

S S S=S to indicate the 

SOP of the input light and the output light of an EDFA, respectively. I introduce a unitary 

vector ( )1 2 3, , ts s s=s  to denote the direction of the input light in Stokes space. The three 

components of this vector is related to the input SOP as 

 

2 2 2
1 1,in 1,in 2,in 3,ins S S S S= + + ,                                                    (2.20) 

2 2 2
2 2,in 1,in 2,in 3,ins S S S S= + + ,                                                   (2.21) 

2 2 2
3 3,in 1,in 2,in 3,ins S S S S= + + .                                                  (2.22) 

The elements of R are related to the Stokes vector of incoming signal, s, through the rela-

tionship 2
12

2
111 rrs −=  and ∗=+ 121132 2 rriss . Transforming from the Jones representa-

tion to the Stokes representation, I obtain 

( ) ( )
22 2

out 0,in in in

11 1
2 2 2

gg gS
−− +

= − + + × ×S s S s s S ,                         (2.23) 

2 2

0,out 0,in in
1 1

2 2
g gS S+ −

= − ⋅s S .                                       (2.24) 
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Studies have shown that in modern terrestrial WDM systems, the PDG is effectively 

reduced by a large number of channels [10], [32]. Since PMD leads to a random walk-off 

of the channels with different center frequencies, the total degree of the polarization of all 

the channels is reduced dramatically. In a single-channel system, an effective way to re-

duce the PDG is to scramble the polarization state of the input signal faster than the re-

sponse time of the EDFA. However, the polarization scrambling may cause undesired 

amplitude modulation if the system has residual PDL. The undesired amplitude modula-

tion will cancel out the improvement due to reduction of the PDG. In Chapter 5, I will 

discuss in detail how to choose a scrambling rate to eliminate the undesired amplitude 

modulation.  

 

2.5 EDFA model and gain saturation 

In addition to compensating the fiber loss in the model, the EDFA is modeled as a 

PDG device followed by an ASE noise generator. In communication systems, EDFAs 

usually operate in the saturation regime in order to keep the output power nearly constant, 

so that in the model the output power of each EDFA is kept constant. 

In the simulations, I follow the Stokes parameters of the signal ( )0 1 2 3, , ,S S S S and that 

of the noise ( )0,noise 1,noise 2,noise 3,noise, , ,S S S S separately. The Stokes parameters of the signal 

and those of the noise are initialized as ( )in in, ,0,0P P and (0, 0, 0, 0) at the input of the 

system, respectively. When the signal and the noise propagate in the fiber and pass a PDL 

element, they experience the identical evolutions that are described as (2.6) and (2.12) – 

(2.15), respectively. The evolutions in the fiber include the rotation induced by the PMD 
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effect, which is described by (2.7), and the random rotations required by the coarse step 

method, described by (2.9). 

In order to determine the direction of the PDG effect and the magnitude of the PHB, 

the knowledge of overall polarization state and the DOP of the entire system are required. 

In a WDM system [22], these two pieces of information are obtained by accumulating the 

Stokes parameters of the signal and the noise for all channels. For a single channel sys-

tem, the overall Stokes parameters of the system are given by the sum of the Stokes pa-

rameters of the signal and the noise, which are written as 

0,total 0 0,noiseS S S= + ,                                                      (2.25) 

noisetotal SSS += .                                                       (2.26) 

Therefore the degree of polarization is given by pol total 0,totald S= S . The evolution of SOP 

due to the PDG effect for both the signal and the noise is determined by (2.23) and (2.24), 

where the direction of the overall Stokes Vector, the vector s, is calculated from totalS  by 

using (2.20), (2.21) and (2.22). 

As an ASE noise generator, each EDFA adds the noise that is equally distributed in 

the directions parallel and orthogonal to the signal. These two noise modes are uncorre-

lated to each other. The noise is treated as a depolarized signal, so that the noise added by 

the EDFA changes the total power of the noise rather than the SOP of the noise. Account-

ing the two polarization modes of the noise, the noise power is given by 

 ( )n sp2 1P n h G fν= − ∆ ,                                                          (2.27) 

where spn  is the spontaneous emission coefficient, G is the linear gain of the EDFA and 

f∆  is the optical bandwidth. The Stokes parameters of the noise are 
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0,noise,out 0,noise,in nS S P= + ,                                               (2.28) 

noise,out noise,in=S S .                                                      (2.29) 

In order to take into account the saturation of EDFA, the gain of the EDFA, G, is ad-

justed so that the total output power of the EDFA is constant and equal to Pin, denoted as 

0,total
n in

fiber

S
G P P

α
+ = .                                                              (2.30)  

Then using (2.27), the gain of the EDFA can be written as 

sp in

0,total
sp

fiber

2

2

n h f P
G S

n h f

ν

ν
α

∆ +
=

∆ +
,                                                         (2.31) 

where the parameter fiberα is the linear loss of the fiber span. The optical signal to noise 

ratio (OSNR) at the distance we are interested is calculated by 0 0,noiseOSNR S S= . 

 

2.6 Simulation of a recirculating loop 
 

The fundamental difference between a recirculating loop system in a laboratory and a 

realistic straight-line system is that the fiber realization in a recirculating loop changes 

slowly. The optical path of the loop may remain the same polarization configuration for 

hours, so that the light circulating in the system experiences a periodic birefringence. 

However, in a realistic straight-line system, the fiber realization changes randomly along 

the entire length of the fiber.  

In the simulation, I use the coarse step method discussed previously. The step size of 

the simulation is 1 km. In order to simulate the periodicity of the optical path in a recircu-

lating loop system, I first generate a set of rotations, which are chosen in such a way that 
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the output SOPs cover the Poincaré sphere uniformly, for the first round trip. For the fol-

lowing round trips, this set of rotations is repeated. Therefore, as the signal propagates in 

the system, it experiences the same rotation at the same point of the system. In order to 

study polarization effects, multiple fiber realizations are necessary. This is realized by 

choosing different sets of random rotations independently, so that each set of the rotations 

corresponds to one fiber realization. 

In a straight-line system, the PDL elements are considered distributed and the accu-

mulated PDL in the system has a Maxwellian distribution [34]. However, in a recirculat-

ing loop system, due to the steady nature of the system, the relative axes of PDL elements 

are fixed. Consequently, it is possible to lump all the PDL elements in one round trip to-

gether to obtain one effective PDL element. Taking into account the periodicity of the 

optical path, every following round trip has the same effective PDL element. 



 
 
Chapter 3 
 

The receiver model 
 
 
 
 
 
 
 
 
 
3.1 Introduction 

An accurate receiver model is as critical as an accurate and efficient model of the 

transmission line in the design and performance evaluation of optical fiber communica-

tion systems. Two commonly used parameters to evaluate the system performance are the 

bit-error rate (BER) and the Q-factor. By assuming that the probability density functions 

of the currents on the logical ones (the marks) and on the logical zeroes (the spaces) are 

Gaussian distributed, the Q-factor gives a reasonable estimation of the BER in certain 

range ( 610−> ) [35] and [36]. The BER and the Q-factor also depend on the characteris-

tics of the receiver, the polarization state of the noise, and on the shape of the optical 

pulses after the transmission.  

Another commonly used performance indicator is the optical signal-to-noise ratio 

(OSNR), which is easier to measure in experiments. Unlike the BER or the Q-factor, this 

parameter does not rely on the detailed characteristics of the receiver. However, the rela-
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tionship between the Q-factor and OSNR is not straightforward. Lightwave systems with 

optical amplifiers are especially vulnerable to the degradation due to PDL and PDG, 

which can cause a polarized signal to be attenuated or amplified differently from 

unpolarized noise [37]. Therefore OSNR changes accordingly. These effects make it 

complicated to evaluate the system performance, especially since the polarization effects 

are random in nature. In addition to assuming an integrate-and-dump receiver, the com-

monly used Q formula [23], [24] only considers two extreme cases, in which the noise is 

unpolarized or copolarized with the signal. Partially polarized noise occurs in many opti-

cal systems with significant PDL [37], [38]. How the partially polarized noise affects the 

system performance remains unclear. 

 When a system has pattern-dependent effects, the relationship of the Q-factor and the 

OSNR becomes more complicated, but this issue is not the focus of my study. In my 

study, I concentrate on the systematic investigation of effects of partially polarized noise 

in a receiver and compute the Q-factor using an accurate formula that takes into account 

the effect of partially polarized noise. This formula provides an analytical approach to 

calculate the Q-factor, so that it is not necessary to carry out Monte Carlo simulations in 

the time domain, if the optical pulse formats immediately prior to the receiver, as well as 

the shapes of the optical and electrical filters are known. The cost of computing the Q-

factor is significant reduced by using this formula. Furthermore, this formula does not 

need the information about each bit during the propagation, so that it can be associated 

with the reduced Stokes model to study polarization effects [38].  

I validate this formula by comparison of the experimental and simulated results. I 

show that, even with a fixed SNR, the performance of the system can vary widely, de-
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pending on the relation between the polarization states of the signal and of the polarized 

part of the noise as well as on the DOP of the noise. I also derive an analytical formula 

for the Q-factor distribution when the SNR and DOP of the noise are fixed.  

 

3.2 Q-factor definition and measurements 

3.2.1 Q-factor definition 

A fundamental problem in the design of optical fiber systems is to achieve the desired 

BER after the signal propagates through the system. Typically, the acceptable BER limit, 

which one considers error free is 10-9 or even lower. This limit can be extended up to 10-4 

by using forward-error correcting codes [39], [40]. However, the BER may be difficult to 

measure due to the long measurement time required to accumulate enough errors to de-

termine the error rate correctly. For instance, if a BER of 10-15 is measured in a 10 Gbit/s 

system, at least 1016 bits must be collected during the measurement, which will take more 

than ten days to finish. So system designers often use the Q-factor to evaluate the system 

performance. While the exact probability density function for the optical noise is not 

Gaussian, the Gaussian approximation is close to the actual BER in a certain BER range 

[35], [36]. Under this assumption the probability density function of the marks and spaces 

are described as 

( )
( )21

2
12

1
1

1
2

i I

f i e σ

πσ

−
−

= ,                                             (3.1) 

( )
( )20

2
02

0
0

1
2

i I

f i e σ

πσ

−
−

= ,                                            (3.2) 
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where 1I  and 0I are the mean values of electrical current in the marks and spaces at the 

sampling time, and 1σ and 0σ are the corresponding standard deviations, respectively. For 

a given threshold di , the error probability for mistaking a mark for a space is given by the 

expression 

( ) ( )d

1 d 1 d
i

P i f i i
−∞

= ∫ .                                             (3.3) 

Similarly, the error probability for mistaking a space for a mark is given by 

( ) ( )
d

0 d 0 d
i

P i f i i
∞

= ∫ .                                             (3.4) 

If marks and spaces are sent with equal probability, the total probability of an error in de-

tecting either a space or a mark is defined as the BER: 

( ) ( )1 d 0 d
1BER
2

P i P i= +   .                                    (3.5) 

The BER at the decision level di  is given by  

( ) 1 d d 0
d

1 0

1BER erfc erfc
2

I i i Ii
σ σ

   − −
= +   

    
.                   (3.6) 

The complementary error function erfc(x) is defined as 

2 22 21 1erfc( )
2 2

x

x
x e d e

x
β β

π π

∞ − −= ≈∫ .                        (3.7).  

The minimum BER is obtained with an optimized decision level di . Setting the deriv-

ative of (3.5) with respect to di  equal to zero, and considering (3.3) and (3.4), we have  

( ) ( )1 d 0 df i f i= .                                                    (3.8) 

The exponents of ( )1 df i and ( )0 df i yield the definition of the Q-factor,  
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d 0 1 d 1 0

0 1 1 0

i I I i I IQ
σ σ σ σ
− − −

= = =
+

.                                      (3.9) 

Then the Q-factor is directly related to the BER by 

BER erfc( )Q= ,                                              (3.10) 

For 1Q , the expression for BER becomes 

2

21BER e
2

Q

Qπ
−

≈ .                                        (3.11) 

 

    3.2.2   Q-factor measurements 

In general, there are two methods that are commonly used in the Q-factor measure-

ment. One is to use the eye diagram displayed on an oscilloscope to obtain the statistics 

of the marks and the spaces; the other is to extract the value of Q-factor from the BER 

margin measurements. 

 

Fig. 3.1. Histogram window at logic ones for RZ pulses. 

 

The first method is straightforward. During the measurement, as the eye diagram is 

been displaying on the oscilloscope, one needs to define the sampling window by using a 

narrow histogram window. As an example, Fig. 3.1 shows a histogram window at logic 

ones for return-to-zero (RZ) pulses. After collecting enough waveform trails on the oscil-
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loscope, one is able to obtain the statistics in the histogram window of the waveforms, i.e. 

the mean and the standard deviation. The Q-factor is calculated by (3.9).  In order to ob-

tain a good measurement one must keep the histogram window narrow enough so that the 

effect of the phase jitter is eliminated. In the meantime, one also needs to collect enough 

samples in the histogram window to obtain good statistics. As a consequence, this proce-

dure is time-consuming.  

In a loop system, this procedure is even slower, because to measure any parameter 

corresponding to certain distance, the instrument is gated, which only measures the in-

coming signal in certain data window, usually a time period less than one round trip time 

(about 0.4 ms in the DMS loop). Additionally, the duty cycle of the gate signal depends 

on the maximum propagation distance in the loop system. The time period of the cycle 

can be more than a hundred milliseconds. Practically, it is almost impossible to collect 

enough sampling point when the system has very good performance. So, in these cases, 

the tails of the probability distribution of the marks and the spaces are missing. 

The second method is to extract the Q-factor from the BER margin measurements 

[36]. The measured BER via the decision level di  is separated into two sections at the 

point that yields the minimum BER or any point that yields error-free performance during 

the specified time-period. When the decision level is close to the marks, the errors are 

dominated by the logical ones that are sent by the transmitter and are detected as logical 

zeros at the decision circuit. Then BER( di ) is dominated by the first erfc(x) function and 

the contribution from the second erfc(x) function is negligible. Similarly, if the decision 

level is set close to the spaces, BER( di ) is dominated by the second erfc(x) function. 

Therefore, for each section, the BER is given by a single erfc( ) 2x function written as 
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( )1BER( ) erfc ,
2

x x=                                            (3.12) 

1,0 d

1,0

I i
x

σ
−

= .                                                 (3.13) 

 In order to simplify the calculation, I first take the logarithm of both sides of (3.12). 

Since log[erfc( ) / 2]x  is a smooth, monotonic function that can be inverted by many nu-

merical methods. To ease the computation, I use a polynomial fit to obtain  

  4 3 20.0009 0.0265 0.3032 1.9674 0.9002,x y y y y= − × − × − × − × −       (3.14) 

log(BER)y = .                                            (3.15) 

Compared to the polynomial fit used in [36], which is accurate to 0.2%±  over the 

range of BER’s from 10-5 to 10-10, this approximation gives an accuracy of ±0.1% over 

the range of BER’s from 10-1 to 10-12. Given the decision level di , one can obtain the pa-

rameter x from the measured BER by using (3.14) and (3.15). Using (3.13), one can find 

that the parameter x is a linear function of the decision level di . When x via the decision 

level di  is plotted for each rail, the equivalent 1I , 0I , 1σ and 0σ are the corresponding in-

tercepts and slops, respectively. In all the experiments described in the following sec-

tions, the Q-factor is obtained from the BER margin measurements, unless otherwise in-

dicated. 

 

3.3 Enhancement factor 

In practice, the Q-factor is often computed from the signal-to-noise ratio of the elec-

trical current at the sampling time, which is defined as SNR = (I1 – I0)/ I0 [23]. The elec-
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trical SNR depends on the pulse shape and the receiver characteristics. In contrast, in the 

reduced model, one can directly compute the OSNR, which is independent of the pulse 

shape and the receiver characteristics. The OSNR is defined as the ratio of the average 

optical power of the signal to that of the noise. In order to correlate the electrical SNR to 

the OSNR, I introduce an enhancement factor ξ , which is defined as the ratio of the SNR 

to the OSNR,  

( )1 0 n

0 s

SNR
OSNR

I I P
I P

ξ
−

= = ,                                  (3.16) 

where the parameters sP and nP are the average optical power of the signal and the noise, 

respectively. These two parameters can be measured by an optical spectrum analyzer. In 

the reduced Stokes model these two quantities are expressed as the Stokes parameters 

0S and 0,noiseS . 

The enhancement factor quantifies how efficiently the combination of the pulse shape 

and receiver translates the OSNR into the SNR of the electric current of the marks and 

the spaces at the sampling time of the receiver. When the pulse shape and the receiver  

are known, the enhancement factor is a deterministic parameter. With the enhancement 

factor, it is appropriate to express the Q-factor using the OSNR. Thus, to obtain an accu-

rate Q-factor from the numerical simulations using the reduced Stokes model becomes 

feasible. In the simulation, based on the pulse shape and the receiver in experiments, the 

enhancement factor is set to be 3.4 and SNR OSNRξ= . The detailed experimental setup 

will be discussed in Section 3.6. 
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3.4 Effect of partially polarized noise in a receiver 

In this study, I compute the Q-factor using an accurate receiver model that takes into 

account the effect of partially polarized noise, the optical pulse shape immediately prior 

to the receiver as well as the shapes of the optical and electrical filters. I also derive an 

analytical formula for the Q-factor distribution when the SNR and DOP of the noise are 

fixed.  

In [23] and [24], by assuming that the noise is unpolarized or copolarized with the 

signal, a given SNR corresponds to a specific Q-factor. However, in real systems, the re-

lationship between the SNR and the Q-factor is not unique, especially when the noise is 

partially polarized or totally polarized but not copolarized with the signal. In a system 

that has an infinite extinction ratio, the variances 2
0σ and 2

1σ are related to the variances 

due to the noise-noise beating, denoted as 2
ASE-ASEσ , and the variance due to the signal-

noise beating, denoted as 2
S-ASEσ . The relationships can be written as 

2 2
0 ASE-ASEσ σ= ,                                                      (3.17) 

and 

2 2 2
1 ASE-ASE S-ASEσ σ σ= + .                                                (3.18) 

Although the mean value of the currents 0I and 1I are polarization-independent, the vari-

ances 2
ASE-ASEσ and 2

S-ASEσ depend on the SOP of both the signal and the noise, and so do 

0σ and 1σ . The variance due to the noise-noise beating, 2
ASE-ASEσ , depends on the DOP of 

the noise. The variance due to the signal noise beating, 2
S-ASEσ , depends both on the DOP 

of the noise and on the angle between the Stokes vectors of the signal and the polarized 
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part of the noise. When the noise is unpolarized, half of the noise beats with the signal. 

When the noise is completely co-polarized with the signal, all of the noise beats with the 

signal and the signal-to-noise beating is the strongest. On the other hand, if the complete-

ly polarized noise is antiparallel to the signal in Stokes space, then no noise beats with 

signal so that the signal-noise beating is the weakest. 

Born and Wolf [41] show that any partially polarized light may be regarded as the 

sum of completely unpolarized light and completely polarized light. The Stokes vector S 

gives the direction of the polarization state and the length of this vector, 

2 2 2
1 2 3S S S= + +S , gives the power of the polarized part of the light. If the light is 

unpolarized, these elements of the vector are equal to zero.  

In the following derivations, the signal is assumed to be polarized, and it is denoted 

by the Stokes vector ( )1 2 3, , tS S S=S . The normalized Stokes vector, =s S S , gives the 

direction of the SOP of the signal on the Poincaré sphere. The noise is arbitrary polarized 

and is represented by ( )0,noise 1,noise 2,noise 3,noise, , ,S S S S , where 0,noiseS is the total noise power. 

The polarized part of the noise is given by ( )P
noise 1,noise 2,noise 3,noise, , ,S S SS , where P

noiseS is 

the power of the polarized noise, given by P 2 2 2
noise 1,noise 2,noise 3,noiseS S S= + +S . Then the 

power of the unpolarized part of the noise is given by P
0,noise noiseS − S  and the Stokes vec-

tor of the unpolarized part of the noise is ( )unP
noise 0,0,0 t=S . One notes that the unpolarized 

noise influences the total power of the noise rather than the direction of the Stokes vector 

of the noise. The direction of the SOP of the noise, denoted as a unit vector 
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P P
noise noisep = S S , is determined by the polarized part of the noise. The DOP of the noise, 

denoted by nDOP , is given by 

P
noise

n
0,noise

DOP
S

=
S

.                                                        (3.19) 

For unpolarized noise, the choice of coordinates is not critical to calculate the noise-

noise beating, since for any orthogonal directions in Jones space, the noise in these two 

directions are uncorrelated to each other. Then the total variance of the noise-noise beat-

ing is simply the sum of the variances of the noise-noise beating in these directions. Also 

only the noise in the direction parallel to the signal contributes to the signal-noise beat-

ing. Therefore, in Jones space, it is common to choose the direction parallel to the signal 

and the direction orthogonal to the signal as the coordinates. The signal-noise beating is 

calculated in Jones space by projecting the noise power to the direction parallel to the 

signal [42] and the total noise-noise beating is the sum of the noise-noise beating in the 

directions that are either parallel or orthogonal to that of the signal in Jones space.  

However, when part of the noise is polarized, the noise powers in the direction of the 

signal and the direction orthogonal to the signal can be correlated with each other [43]. 

To calculate the noise-noise beating, one must consider the covariance of the variances 

due to the noise-noise beating in each direction. In order to carry out the derivation, I 

choose a coordinates based on a direction parallel to the polarized part of the noise and a 

direction orthogonal to the polarized noise. The noise powers projected on these two di-

rections are statistically independent of each other.  Converting the coordinates to Stokes 

space, the noise power is divided to the direction of p  and the direction antiparallel to p . 
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The two projected noise powers are denoted as Np and N−p , respectively. As a conse-

quence, in Stokes space, the variance due to the noise-noise beating is written as 

( )2 2 2
ASE-ASE B N Nσ −= +p p  

2 2 2
0,noise p p

2
0,noise

2( )
2

BS N N
S

−+
= .                             (3.20) 

the variance due to the signal-noise beating is written as 

( ) ( )2
S-ASE 0 0

1 11 1
2 2

AS N AS Nσ −
   = + ⋅ + − ⋅      

p ps p s p  

0 0,noise p p

0,noise

1
2

AS S N N
S

− −
= + ⋅ 

  
s p  ,                                        (3.21) 

where the parameter 0S is the total power of the signal. The constant A depends on the 

pulse shape, the detailed characteristics of the optical filer and the electrical filer. The 

constant B depends on the detailed characteristics of the optical filter and the electrical 

filter. The total noise power 0,noiseS is the sum of Np and N−p . 

If the noise is unpolarized, the unit vector p is in arbitrary direction in the Stokes 

space and 0, noise 2N N S−= =p p , so that the variance due to noise-noise beating is 

2 unp 2
ASE-ASE 0, noise 2BSσ = and the variance due to the signal to noise besting is 

2 unp
S-ASE 0, noise 0 2AS Sσ = . I introduce two parameters ASE-ASEΓ  and S-ASEΓ to account the ef-

fect of partially polarized noise in the receiver. These two parameters are defined by 

( )
2
0, noise

ASE-ASE 2 22
S

N N−

Γ =
+p p

;                                          (3.22) 
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( ) ( )

S-ASE
0,noise

1 1
2

N N
S

−+ ⋅ + − ⋅
Γ = p ps p s p

.                              (3.23) 

Then the parameter ASE-ASEΓ , which has the range from 0.5 to 1, is the ratio of the vari-

ance due to the noise-noise beating, assumed that the noise is unpolarized to the noise-

noise beating variance of an arbitrary polarized noise.  The parameter S-ASEΓ , which has a 

range from 0 to 1, gives the proportion of the noise that contributes to the signal-noise 

beating. In the special cases discussed in [23], with unpolarized noise, ASE-ASE 1Γ = and 

S-ASE 0.5Γ = . While when the noise is copolarized with the signal, ASE-ASE 0.5Γ = and 

S-ASE 1Γ = . 

 If the noise is partially polarized, the power in the direction parallel to the polarized 

part of the noise Np contains all the polarized part of the noise P
noiseS and half of the 

unpolarized part of the noise ( )P
0,noise noise 2S − S and the noise power N−p contents half of 

the unpolarized part of the noise ( )P
0,noise noise 2S − S , so that I have that 

P
0,noise noise

2
S

N
+

=p

S
;                                          (3.24) 

P
0,noise noise

2
S

N−

−
=p

S
.                                         (3.25) 

The DOP of the noise can be written as 

P
noise

n
0,noise

DOP
N N

S N N
−

−

−
= =

+
p p

p p

S
.                                        (3.26) 

Using (3.26), I also can write these two parameters ASE-ASEΓ a n d  S-ASEΓ  as a function of 

the DOP of the noise as 
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ASE-ASE 2
n

1
1 DOP

Γ =
+

’                                      (3.27) 

( )S-ASE n
1 1 DOP
2

Γ = + ⋅s p .                                   (3.28) 

These two parameters, which are coordinate-independent, depend on the DOP of the 

noise as well as the angle of the signal and polarized part of the noise in Stokes space.  

The formula for the Q-factor is given by  

ASE-ASE
S-ASE ASE-ASE

SNR
1 1 2 SNR

Q µ
κ

= Γ
+ + Γ Γ

.                      (3.29) 

The parameters κ and µ in (3.29), which are independent of the polarization states of the 

signal and noise, depend on the pulse format and the shapes of the optical and electrical 

filters. The detailed derivation of κ and µ are discussed in [44]. In the special case of an 

integrate-and-dump receiver, where the noise is unpolarized or co-polarized with the sig-

nal, (3.29) agrees with the formula for the Q-factor given in [23]. For the receiver used in 

the experiments, 1.7κ = and 38.6µ = . 

 

3.5 Q-factor distribution with a fixed SNR 

From (3.27), (3.28), and (3.29), one observes that, for a fixed SNR, the Q-factor is a 

function of the DOP of the noise and the angle of the Stokes vectors of the signal and the 

noise, which is represented by the inner product of the unit vectors ⋅s p .  If the polariza-

tion state of the signal is fixed and the polarization states of the polarized part of the noise 

uniformly cover the Poincaré sphere, ⋅s p is uniformly distributed between –1 and +1 

[45]. If a random variable Y is a monotonic function of a random variable X, written as 
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( )Y g X= , where g is a monotonic function and is invertible, then the random variable X 

can be calculated from the random variable Y using ( )1X g Y−= , where ( )1x g y−=  is the 

value of x for which ( )g x y=  [46]. If the function g is also differentiable and the proba-

bility density function (pdf) of X is known, which is represented by ( )Xf x , the pdf of Y 

can be calculated by the pdf of X . If the function g is a monotonically increasing func-

tion, the pdf of Y is 

( ) ( ) ( )1
1

Y X

d
d

g y
f y f g y

y

−
− =   .                                         (3.30) 

Similarly, if the function g is a monotonic decreasing function, the pdf of Y is 

( ) ( ) ( )1
1

Y X

d
d

g y
f y f g y

y

−
− = −   .                                       (3.31) 

The Q-factor is monotonically decreasing as ⋅s p  increases from –1 to +1 and I find 

after substituting (3.27) and (3.28) into (3.29), that (3.29) is differentiable with respect to 

⋅s p . Therefore, the pdf of the Q-factor is given by 

( ) [ ]ASE-ASE
min max3 2

n ASE-ASE

SNR1 1 , ,
DOPQf q q Q Q

q q
µµ

κ

 Γ
= − ∈  Γ  

,            (3.32) 

where Qmax and Qmin are given by substituting ⋅s p = –1 and ⋅s p = +1 respectively in 

(3.28) and calculating the Q-factor using (3.29). 
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3.6 Experimental setup 

 

Fig. 3.2. Schematic diagram of the experimental setup. 

In Fig. 3.2, I show a schematic diagram of the experimental setup. The transmitter in-

cluded a CW light source centered at 1551.7 nm, an electro absorption modulator (EAM) 

and electro optical modulator (EOM). The EAM was driven by a 10 GHz sinusoidal sig-

nal to generate RZ pulses with the full-width-half-maximum (FWHM) of 23 ps. The 

EOM was modulated by a 215 –1 pseudo random bit string (PRBS) pattern. Two EDFAs 

were placed after each modulator to compensate the loss. Each EDFA was followed by a 

37.5 GHz optical filter to eliminate the optical noise from the EDFA, so that the optical 

noise from the transmitter was neglegible. The receiver included a 187.5 GHz optical fil-

ter, a PIN detector, and an electrical amplifier. In order to avoid the saturation of the re-

ceiver, I kept the total input optical power to the PIN detector at –2 dBm. The electrical 

bandwidth of the receiver was 10 GHz.  

The optical noise in this setup was dominated by the amplified spontaneous emission 

(ASE) noise from the noise source, which combined outputs of two EDFAs without any 

input power. One EDFA generated unpolarized noise and the other one, followed by a 

polarizer and a polarization controller (PC), provided polarized noise.  I used the PC after 
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the transmitter and the PC after the polarizer to vary the polarization state of the signal 

and the polarized noise, respectively. The SOP was monitored by a commercial polariza-

tion analyzer, HP8905B (HP). I varied the DOP of the noise by adjusting the relative 

power of the two noise sources. The signal-to-noise ratio (SNR) of the electrical current 

was held fixed at SNR = 10.9 dB by using a variable attenuator (ATT) to adjust the total 

noise power. I monitored the corresponding OSNR using an optical spectrum analyzer.  

In order to concentrate on the system variations due to partially polarized optical 

noise, I subtracted the electrical noise background, which was measured when the noise 

source was off. The pdf of the electrical noise was assumed to be Gaussian distributed 

with zero mean and the variations due to the electrical noise at marks and spaces were 

represented by 2
e1σ and 2

e0σ , respectively. Since the electrical noise was independent from 

the optical noise, the variation due to the optical noise at the marks and the spaces, 

2
1σ and 2

0σ  could be obtained by subtracting the variances due to electrical noise from the 

actual measured variances, 2
m1σ and 2

m0σ , as 2 2 2
1 m1 e1σ σ σ= − and 2 2 2

0 m0 e0σ σ σ= − . 

 

3.7 Results and validation of the model 

To validate the analytical formula of the Q-factor and the Q-factor distribution of the 

partially polarized noise, given by (3.29) and (3.32), respectively, I measured the Q-

factor as a function of the angle between the Stokes vectors of the signal and the noise for 

the completely polarized noise and the partially polarized noise, as well as the Q-factor 

distribution of the partially polarized noise. In addition, I compared the experimental Q-

factor distributions with Monte Carlo simulations. The comparisons yielded excellent 
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agreement. The results show that partially polarized noise causes performance variation 

even when the SNR is fixed. 

 

3.7.1 Validation of Q-factor formula (3.29) 

 In the first experiment, I measured the Q-factor as a function of ⋅s p . The relative 

SOP of the signal and the noise was monitored using a commercial polarization control-

ler, HP8509B (HP). Without turning on the noise source, the SOP of the signal was 

measured. In order to simplify the measurement, I adjusted the polarization controller af-

ter the transmitter to obtain a SOP of the signal as (1, 0, 0) on the Poincaré sphere, which 

was kept fixed and was checked regularly to avoid any drift during the measurement. 

Similarly, the SOP of the noise was measured when the signal was off. The SOP of the 

noise was adjusted by the setting of the polarization controller after the polarizer. Since 

the signal and the noise shared the same optical path after the coupler, which was fixed 

during the measurement, and the optical path only provided a global rotation of the SOPs, 

the inner product of the Stokes vector of the signal and the noise measured from HP was 

equivalent to that before the detector, which was denoted as ⋅s p in (3.28).  

By changing the setting of the PC after the polarizer I increased ⋅s p from –1 to +1, 

thereby increasing the signal-noise beating and decreasing Q. In Fig. 3.3, I plot the Q-

factor versus ⋅s p when the noise was highly polarized and when it was partially polar-

ized. When the DOP of the noise was set to 0.95, I show the experimental result and ana-

lytical result with filled circles and a solid curve respectively. I show the corresponding 

results when the DOP of the noise was 0.5 with filled diamond and a dashed curve. The 

agreement between analytical result and experiment is excellent.  In both cases, the larg-
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est Q value occurs when the signal is antipodal on the Poincaré sphere to the polarized 

part of the noise and the signal-noise beating is weakest. Similarly, the smallest Q value 

occurs when the signal is co-polarized with the polarized part of the noise and the signal-

noise beating is strongest. Furthermore, as ⋅s p varied from –1 to +1, the variation in Q is 

less when the noise is partially polarized than when it is highly polarized.  

5

25

-1 1

measured DOP = 0.95
measured DOP = 0.5
simulated DOP = 0.95
simulated DOP = 0.5

Q

 

Fig. 3.3. Comparison of Q-factor as a function of ⋅s p . The experimental and analytical results 

when the DOP of the noise was set to 0.95 are shown with filled circles and a solid curve respec-

tively. The corresponding results when the DOP of the noise was 0.5 are shown with diamonds 

and a dashed curve. 

 

 

3.7.2 Validation of Q-factor distribution (3.32) 

In the second experiment, I measured the distribution of the Q-factor when the DOP 

of the noise was DOPn  = 0.05, 0.25, 0.5, 0.75 and 0.95. The SNR was fixed at 10.9 dB. 

The SOP of the signal was kept fixed as described in the first experiment. The SOP of the 

⋅s p
 

Q 
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noise was varied randomly by adjusting the setting of the PC after the polarizer, so that 

the polarized noise covered the Poincaré sphere uniformly. The Q-factor was measured 

for each setting of the PC after the polarizer. For every DOP of the noise, I collected 200 

samples of the Q-factors to obtain the distribution. In the simulation, I initiated the polar-

ization states of the signal and of the polarized noise prior to the PC to be  (1, 0, 0) in 

Stokes space and randomly rotated the polarized noise to uniformly cover the Poincaré 

sphere. The Q-factor was calculated by (3.27), (3.28), and (3.29). 
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Fig. 3.4. Distribution of Q-factor when DOPn = 0.5. I show the histogram of the measured Q-

factor distribution with bars, the corresponding analytical result obtained using (3.32) with a solid 

curve, and the results that we obtained using a Monte Carlo simulation with 10,000 samples as a 

dotted curve. 

 

In Fig. 3.4, I show the histogram of the measured Q-factor distribution with bars 

when DOPn  = 0.5. I also show the results that I obtained using a Monte Carlo simulation 
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with 10,000 samples as a dotted curve. The analytical result of the Q-factor distribution 

by using (3.32) is shown as a solid line in Fig. 3.4. The theoretical and simulation results 

both agree very well with the experimental result. The sharp cut-offs in the Q-distribution 

at Q  = 11.4 and Q = 17 correspond to the cases in which the signal is respectively paral-

lel and antipodal on the Poincaré sphere to the polarized part of the noise.  

In Fig. 3.5, I show the Qmax and Qmin as a function of the DOP of the noise, obtained 

both from measurements, as filled circles and empty circles, respectively, and analytical 

calculation by substituting ⋅s p = –1 and ⋅s p = +1 respectively in (3.28) and calculating 

the Q-factor using (3.29) as a solid curve and a dotted curve, respectively. In order to in-

vestigate the mean system performance, I obtained the average Q-factor corresponding to 

different DOP of the noise by averaging the 200 Q-factor samples of each case. I show 

the result as triangles in Fig. 3.5. The analytical average Q-factor, shown as a dashed 

curve in Fig. 3.5, is obtained by using (3.32) to calculate the mean.  Although the average 

Q is not sensitive to a change in the DOP of the noise, the maximum and minimum Q 

values change widely with the DOP of the noise, especially the maximum Q values. The 

result shows that highly polarized noise will cause a larger system variation than 

unpolarized noise.  
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Fig. 3.5. The maximum Q-factor, Qmax, the minimum Q-factor, Qmin, and the average Q-factor as a 

function of the DOP of the noise. The filled circles, the empty circles and the triangles represent 

the measured data and the solid curve, the dotted curve and the dashed curve represent the corre-

sponding analytical results. 

 

3. 8 Conclusions 

In this work, I systematically investigated effects of partially polarized noise in a re-

ceiver. I introduced an accurate Q-factor formula that accounts for partially polarized 

noise, derived an expression for the distribution of the Q-factor, and validated these re-

sults by comparison to back-to-back experiments as well as Monte Carlo simulations.  

The SNR alone would not give a complete picture of the system performance, since the 

relationship of the SNR and the Q-factor is not unique when the noise is partially polar-

ized. The system variation caused by partially polarized noise not only depends on the 

angle between the Stokes vectors of the signal and polarized part of the noise but also de-

pends on the DOP of the noise. Highly polarized noise will cause a larger variation in the 
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system performance compared to less polarized noise. My work suggests that in order to 

reduce the variation of the system performance, one should keep the noise unpolarized. 

One way to do so is to reduce the PDL in the system.  

 

 

 

 



 
 
Chapter 4 
 
Polarization evolution and Q-factor 
distribution in a recirculating loop 

 
 
 
 
 
4.1 Introduction 
 

Studies of polarization effects performed in recirculating loop systems have shown 

that as a matter of fact, the recirculating loop systems can not correctly emulate the polar-

ization effects of straight-line systems [16], [17] and [37]. In my studies, I experimentally 

and theoretically investigated the DOP evolution, the polarization state evolution with 

different PDL levels in the system as well as corresponding statistics of the system per-

formance, evaluated by the distribution of the Q-factor in a dispersion-managed recircu-

lating system. As discussed previously, the effect of PMD in this system is to rotate the 

polarization state of the signal and the noise, so that it is reasonable to expect that the re-

duced Stokes model will provide an accurate simulation of the system performance asso-

ciated with polarization effects. The excellent agreement between the experimental re-

sults and simulations validates the reduced Stokes model. The results show that the PDL 
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associated with the periodicity of the optical path can artificially improve the system per-

formance by reducing the noise in the direction orthogonal to that of the signal. The sys-

tem performance in a loop overestimates that of a straight-line system at the same dis-

tance. 

 

4.2 Set up of the dispersion-managed recirculating loop  

 

Fig. 4.1. Schematic diagram of the recirculation loop used in the study. D: dispersion-shifted fiber. 

S: single-mode fiber. 

 

Fig. 4.1 shows a schematic diagram of the recirculating loop used in experiments. 

This configuration has been used to study the performance of dispersion-managed 

solitons at 10 and 20 Gbits/s over distances of 20,000 km [47] and [48]. Therefore, it is 

possible to study the accumulated polarization effects in the system even though these 

effects are small in one round trip. I placed two polarization controllers in the loop to ad-

just the polarizatin state of the signal and the noise. 

The loop consists of a dispersion map with 100 km of dispersion shifted fiber with D 

= −1 ps/nm-km and two spans of 3.5 km of standard single mode fiber with D = 17 

ps/nm-km. Four EDFAs are equally spaced to compensate for the fiber loss and a fifth 

EDFA is used to overcome the loss of the loop switch and coupler. Although the local 
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dispersion in the system is high, the average dispersion is low and balances the nonlinear-

ity of the system, so the pulses maintain their shape after every round trip [20]. Thus, the 

increase of BER is mainly due to the build-up of the ASE noise generated by EDFAs.  

In practice, the isolators and WDM couplers in the EDFAs are the primary source of 

the PDL in our loop. Due to the steady nature of the loop, the axis of every PDL compo-

nent remains unchanged for a long time period, so it is reasonable to lump all the PDL 

effect together as an effective PDL element in the system. 

 

4.3 DOP evolution of loop systems 

4.3.1 DOP evolution of under different system performances 

The DOP is defined as the ratio of the power of polarized light to the total optical 

power. In a single channel system, there are two mechanisms will cause the decreasing of 

the DOP of the entire channel. One mechanism is the effect of PMD, which cause the dif-

ferent polarization modes of the signal to propagate at different velocity in the fiber, thus 

depolarizing the signal. The other mechanism is the buildup of the ASE noise added by 

the EDFAs, which is depolarized. Since the PMD in the recirculating loop system used in 

my study is too low to distort the pulses, its effect on the DOP can be neglected. The de-

creasing of the DOP is primarily due to the build up of the ASE noise, and it is consistent 

with the decrease of the corresponding OSNR.  

The performance of the recirculating loop, evaluated by the BER, varied greatly, de-

pending on the setting of the polarization controllers. By optimizing the three polarization 

controllers, one at the transmitter and two in the loop, we were able to propagate 10 

Gbit/s RZ pulses modulated by a 215 – 1 PRBS pattern over 20,000 km error free. In or-
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der to investigate this correlation between polarization behaviors in the loop and the sys-

tem performance, I measured the DOP evolution for several settings of the polarization 

controllers in the loop. The DOP of entire channel as a function of propagation distance 

was sampled using a commercial polarization analyzer, HP8509B. 

 

 

Fig. 4.2. Evolution of the degree of polarization as a function of the propagation distance for four 

different settings of the polarization controllers in the loop system. Circles, triangles, squares and 

diamonds represent the setting that yields a BER of 10-9, 10-6, 10-4 , 10-1  measured at 20,000 km, 

respectively. 

 

In the experiment, I first optimized the setting of polarization controllers in the sys-

tem to obtain a BER less than 10-9 at 20,000 km, which was considered error free, and 

then sampled the DOP of the signal plus the noise as a function of propagation distance. I 

show the result as circles in Fig. 4.2. When the settings of PCs in the system were 

changed, the BER at 20,000 km changed correspondingly. I show the DOP as a function 

of the propagation distance corresponding to a BER of 10-6, 10-4, 10-1 (measured at 

20,000 km) as triangles, squares and diamonds, respectively. The results show that when 

the setting of PCs in the system is optimized to obtain the lowest BER, the signal together 
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with the noise are highly polarized. The larger the BER is, the faster the DOP of the sig-

nal and noise decreases.  

 

4.3.2 DOP evolution with a high PDL 

4.3.2.1 DOP evolution of the signal and the noise with a high PDL 

Here, the goal is to determine the PDL in the loop, measure the DOP of the channel 

as a function of propagation distance and validate the reduced model. Due to the static 

nature of the loop, the relative orientations of PDL elements remain nearly unchanged 

during the measurement time, so that it is reasonable to lump all the PDL elements to-

gether and consider one round trip of the loop as one lumped PDL element. To estimate 

the PDL in the system, I first optimized the setting of the polarization controllers in the 

system to obtain error-free propagation at 20,000 km. I kept the same setting of the polar-

ization controllers and opened the loop to a 107 km straight-line system by bypassing the 

AO switch and the coupler. The combined PDL of the AO switch and the coupler was 

about 0.1 dB. Since the fiber pigtails did not contribute to the PDL, this 107 km straight-

line gave a reasonable approximation of the PDL level per round trip when the setting of 

polarization controllers was optimized. I monitored the output optical power of this 107 

km straight-line while varying the input polarization state, until it covered the Poincaré 

sphere evenly. The difference between the maximum power and the minimum power in 

dB, 0.35 dB, was the estimated PDL level per round trip. I also used the Jones matrix 

method [49] to determine the PDL in the 107 km link, which yielded the same result. In 

both measurements, I kept the input power low enough to avoid EDFA saturation. By 
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measuring the gain compression [32], I estimated that the PDG per amplifier to be 0.05 

dB using (2.15). 

 

Fig. 4.3. Schematic diagram of the simulation setup. 

 

 I also simulated the DOP evolution of the system using the reduced Stokes model 

discussed in [22]. The loop configuration used in the simulation is shown in Fig. 4.3. The 

system consists of four 25 km fiber spans. The fiber loss is compensated by four EDFAs 

and the fifth EDFA is used to compensated the loss of coupler and AO switch. Each 

EDFA generates the ASE noise, provides PDG and keeps the output optical power as a 

constant. A lumped PDL element is placed at the end of this loop to simulate the accumu-

lated PDL per round trip and the low loss axis of this PDL element is set to be (1, 0, 0) in 

Stokes space. In the simulation, I first generated a set of 100 random rotations required 

by the coarse step method with a step of 1 km for the first round trip. This set of rotations 

represented the fiber realization and was chosen in such a way that the SOPs after the ro-

tations covered the Poincaré sphere evenly. To account for the periodic nature of the op-

tical path, in the following round trips, the fiber realization was simulated by the same set 
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of rotations. One extra random rotation was placed in front of the PDL element to simu-

late the adjustment of the polarization controllers in the experimental loop. While in one 

Monte Carlo realization, this rotation was fixed for every round trip; for different Monte 

Carlo realizations this rotation varied randomly. I followed the Stokes parameters of the 

signal and the noise separately. The DOP was recorded after each round trip. The system 

performance was evaluated by the Q-factor using (3.29) at 20,000 km. 

In the Monte Carlo simulation, by adjusting the extra rotation in front of the PDL el-

ement, I varied the alignment of the SOP of the signal and the low-loss axis of the PDL 

element.  Therefore the OSNR, as well as the Q-factor, at 20,000 km varied accordingly. 

I used 10,000 random rotations in the Monte Carlo simulations. These rotations were 

chosen in such a way that for any input polarization states, the output of the rotations 

covered the Pincaré sphere evenly. The Q-factors corresponding to each rotation were 

recorded, as well as the related DOP evolution. The DOP evolution corresponding to the 

largest Q-factor represented the case where the polarization controllers were set to obtain 

the lowest BER experimentally. The comparison of the simulated and the experimental 

DOP evolution for the largest Q is shown in Fig. 4.4. as the solid line and the diamonds, 

respectively. With the PDL to be set as 0.45 dB, the simulated result and the experimental 

result yields excellent agreement. The 0.1 dB difference of the PDL level between the 

experiment and the simulation is reasonable, since the AO switch and the coupler were 

removed during the PDL measurement. The comparison provides the first experimental 

validation of the reduced Stokes model. 
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Fig. 4.4. Comparison of the DOP evolution of the signal together with the noise in a loop system 

as a function of the propagation distance with different PDL level per round trip, when setting of 

the polarization controller was optimized in the system to obtain the largest Q at 20,000 km. The 

diamonds and the unfilled circles are the measured results when PDL = 0.35 per round trip and 

PDL = 0.1 dB per round trip, respectively. The solid line and the dotted line are the corresponding 

simulation results. 

 

The simulation showed that in this case, the signal was well aligned to the low loss 

axis of the PDL device every round trip and suffered less attenuation. While the noise 

orthogonal to the signal in Jones space was aligned with the high-loss axis, it suffered 

more attenuation. In addition, since the EDFAs in the system were operated in saturation 

regime, keeping the total output a constant, the loss suffered by noise orthogonal to the 

signal could not be balanced by the gain of the EDFA. Therefore, the noise power de-

creased, improving the OSNR. In a recirculating loop with significant PDL, when the 

PC’s settings were optimized to obtain the largest Q-factor in a long distance, we ob-

served both an increased DOP and OSNR relative to other PC settings.  
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This result is consistent with the result shown in Fig. 4.2.. However, this behavior is 

different from what happened in a straight-line system. In a straight-line system, since the 

rotations between PDL elements are random, it is rare that the SOP of the signal always 

aligns to the low-loss axis of the PDL elements and thus the noise orthogonal to the sig-

nal will not be highly attenuated at long distance. Therefore, the noise remains 

unpolarized and accumulates along the propagation. As a consequence, the DOP will de-

crease as a function of distance. 

 

4.3.2.2 DOP evolution of the noise with a high PDL level 

The DOP evolution of the noise as a function of propagation distance is more compli-

cated than that of the signal, since the noise is added by each EDFA during the propaga-

tion and builds up gradually with the distance. Understanding the evolution of the noise is 

very important to completely understand the behavior of the loop system.  In order to do 

so, I first optimized the setting of polarization controllers in the system to obtain the low-

est BER, which was less than 10-9, at 20,000 km. As discussed in the previous section, 

this particular setting corresponded to the case that the signal was aligned with the low-

loss axes of the PDL elements in the system. Then I turned off the signal of transmitter 

while leaving the EDFA before the loading AO switch on to generate unpolarized ASE 

noise. By carefully adjusting the output power of the EDFA, I kept the input optical pow-

er loaded into the loop system the same. Therefore, the EDFAs in the loop system kept 

the same operation parameters as they had when the signal was present. In this way, I on-

ly allowed noise to propagate in the system. I sampled the DOP evolution as function of 

propagation time and show the measured results as diamonds in Fig. 4.5. The DOP in-
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creases linearly during the first few of thousands kilometers and the build-up reaches the 

level of the DOP for the signal plus the noise measured before.  
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Fig. 4.5. Comparison of the DOP evolution of the noise in a loop system as a function of the prop-

agation distance with different PDL level per round trip, when the setting of the polarization con-

troller is the same as that of in Fig. 4.4. The diamonds and the unfilled circles are the measured re-

sults when PDL = 0.35 per round trip and PDL = 0.1 dB per round trip, respectively. The solid line 

and the dotted line are the corresponding simulation results. The dashed line is the simulated result 

when the PDG is set to be zero artificially. 

 

In the Monte Carlo simulations, I first propagated both the signal and the noise in the 

system and randomly varied the extra rotation in front of the PDL element 10,000 times. 

The extra rotation in front of the PDL element and corresponding Q-factor at 20,000 km 

were recorded. Then I propagated the noise in the system using the extra rotation that 

yields the largest Q-factor and recorded the according DOP evolution of the noise. The 

simulated result, shown as the solid line in Fig. 4.5, agrees with the experimental result 

very well. The agreement provides further validation of the reduced Stokes model. 
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Since the noise aligned to the low-loss axis of the PDL elements suffers less attenua-

tion than noise aligned with the high-loss axis does, the noise starts to repolarize in the 

direction of the low-loss axis of the PDL elements. At the beginning of the propagation, 

the DOP is so low that the effect of PDG is effectively eliminated. The linear build-up of 

DOP is due to the effect of PDL. The slope of the linear build-up is a function of the PDL 

per round trip. As the DOP increases, the effect of PDG becomes stronger. Since the ef-

fect of the PDG is to give excess amplification to the direction orthogonal to the total po-

larization state in the channel, the attenuation of the noise aligned with the high-loss axis 

of the PDL elements slows down. Consequently, the DOP evolution does not increase 

linearly any more and when the effects of the PDL and PDG balance each other, the DOP 

is a constant along the propagation. 

 

4.3.3 DOP evolution with a smaller PDL  

The main sources of PDL in our system are the couplers and isolators in the EDFAs. 

To reduce the PDL level in the system, I rebuilt the EDFAs by using isolators with PDL 

< 0.1 dB, enabling the reduction of the PDL level for each EDFA, which reduced the ac-

cumulated PDL in the system to be less than 0.1 dB per round trip. I achieved error free 

transmission at 17,000 km using the newly constructed system. I repeated the experi-

ments and the simulations described before to obtain the DOP evolutions as a function of 

distance for the signal plus noise and the noise only. The simulated and measured DOP 

evolutions for the low PDL case are shown in Fig. 4.4 and Fig. 4.5 respectively.  

Since the PDL in this system is low, the reduction of the noise orthogonal to the sig-

nal is not significant. In addition, the PDG effect provides excess gain to the direction 
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orthogonal to the polarization state of the entire channel. When the system has a high 

OSNR to give low BER values, this direction is close to the direction orthogonal to the 

signal. Since the PDL per round trip is comparable with the PDG, the PDG effect balanc-

es the reduction of the noise orthogonal to the signal due to PDL. Hence, the noise builds 

up in both directions, parallel and orthogonal to the signal and remains unpolarized. 

Therefore, the OSNR of this system is lower compared to that of the system with high 

PDL and the DOP evolution decreases as a function of distance. The measured and simu-

lated results are shown as open circles and the dashed-line in Fig. 4.4.  

The measured and simulated results of the DOP evolution of the noise only indicate 

that the noise remains unpolarized along the propagation. The open circles show the ex-

perimental results and the dashed-line shows the simulated result in Fig. 4.5. The residual 

DOP shown in Fig. 4.5 is due to the polarization dependence of the AOs at the loop input, 

which has 0.6 dB PDL and repolarized the initial unpolarized ASE noise from the trans-

mitter. The measured result does not show any noticeable further repolarization of the 

noise along the propagation. In the simulation, I accounted for the DOP of the input ASE 

noise. The result does not show significant change of the DOP along the propagation dis-

tance. 

 In order to isolate the effect of PDL from the effect of PDG, in the simulation of the 

noise only case, I artificially turned off the PDG. I show the simulated result Fig. 4.5 as a 

long dashed line. Even with a low PDL per round trip, I found that without PDG, the 

noise started to repolarize as the propagation distance increaseed when the polarization 

controllers were optimized to obtain the highest OSNR in the system. If the PDG is not 

significant compared to the PDL effect, the slope of the DOP build-up of the noise of the 
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first few of thousand kilometers is a good estimator of the PDL level in the system with 

the polarization controllers optimized. 

I investigated the DOP evolution of the signal with noise and of the noise alone as a 

function of propagation distance with different PDL levels per round trip when the setting 

of the polarization controllers in the system was optimized. I compared the measured re-

sults to the simulated results from the reduced Stokes model. The excellent agreement 

between the experimental results and the simulated results validate the reduced Stokes 

model. The results provide evidence that the DOP evolution, which reflects the evolution 

of the OSNR, in a recirculating loop is different from what is expected for a straight-line 

system. In addition the results suggest that in recirculating loop systems, the PDL effect 

may help to improve system performance when the setting of the polarization controllers 

in the loops aligns the signal to the PDL low-loss axis every round trip. In this special 

case, the signal suffers less attenuation, and the noise orthogonal to the signal is reduced 

by the combined effect of the accumulated PDL and EDFA saturation, yielding a high 

OSNR. When the PDL level per round trip increases, the reduction of the noise orthogo-

nal to the signal is faster, resulting a higher OSNR at a long distance. This result is con-

sistent with my achievements of error-free propagation up to 20,000 km when PDL = 

0.35 dB per round trip, but only 17,000 km of error-free propagation when PDL = 0.1 dB 

per round trip. 
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4.4 Q-distribution of the recirculating loop 

4.4.1 Q-factor distribution of a loop with a low PDL 

To calculate the outage probability of a transmission system as well as the perfor-

mance budget, one must know the Q-factor distribution. With a low PDL level in the re-

circulating loop, the DOP of the signal and the noise in a recirculating loop system de-

creases as a function of the propagation distance. Although the DOP evolution in such a 

system is similar to that of a straight-line system, whether the Q-factor distribution emu-

lates that of a straight line system is still questionable. Since the loop remains static for a 

long period of time, the signal and noise experience the same polarization rotations for 

each round trip. When the settings of the PC in the loop system are optimized, the PDL 

increases linearly as a function of the distance. However, in a straight-line system, due to 

the randomly varying birefringence, the polarization states orientate randomly along the 

propagation distance, and the PDL will increase as a square-root of the distance. There-

fore, the accumulated PDL will be exaggerated in a loop system.  I investigated the sys-

tem performance by measuring the Q-factor distribution with different PC settings and 

simulated the system performance using the reduced Stokes model. The comparison of 

the measured result and the simulated result yielded good agreement. 

I measured the Q-factor, defined in (3.9) at a propagation distance of 5,000 km, when 

the net PDL in the system was less than 0.1 dB. The Q-factor at this propagation distance 

was obtained using a gated digital sampling scope. The method was described in section 

3.2.2. I mechanically varied the first polarization controller in the loop (shown in Fig. 

4.1) and then measured the corresponding Q value. To obtain a Q distribution, I repeated 

this process until the adjustment of the polarization controller gave an even coverage on 
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the Poncaré sphere. Except for the polarization controller, the rest of the loop remained in 

a quasi-static orientation. The measured pdf of the Q-factor distribution based on 200 Q-

factor samples is shown in Fig. 4.6 as histogram bars. Instead of a Gaussian-like distribu-

tion that expected in a straight-line system, the Q distribution of the loop has double 

humps.  
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Fig. 4.6. Comparison of the Q-factor distribution at 5,000 km when PDL = 0.1 dB per round trip. 

The histogram is the measured result. The gray solid line is the simulated result using the reduced 

Stokes model. The dashed-line is the simulated result of a corresponding 5,000 km straight-line 

system. 

 

To obtain physical insight into this behavior, I used the reduced Stokes model to ob-

tain the numerical pdf of the Q-factor distribution using Monte Carlo technique. In the 

simulation, I placed an extra rotation in front of the PDL element to emulate the adjust-

ment of the polarization controller in the experiment. The extra rotation was the same for 

every round trip in one Monte Carlo realization. In different Monte Carlo realization, I 
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chose this rotation randomly so that for any input polarization state, the polarization state 

would cover the Poncairé sphere evenly after rotations. In every Monte Carlo realization, 

I followed the Stokes parameters of the signal and the noise separately, and then calculat-

ed the OSNR at 5,000 km as 0 0,noiseOSNR S S= , where 0S and 0,noiseS were the average 

power of the signal and the noise, respectively. I used Eq. (3.29) to calculate the Q-factor. 

To convert the OSNR to the electrical SNR used in the Q-factor calculation, I used an 

enhancement factor of 3.4 as discussed in Section 3.3. I collected 10,000 Q-factor sam-

ples at 5,000 km. The simulated result is shown in Fig. 4.6 as a solid gray line. Both the 

pdf of the simulated result and that of the measured result are double humped.  

In order to compare the statistics of the loop performance to that of a straight-line sys-

tem, I also simulated a 5,000 km straight-line system, using the reduced Stokes model. 

Four EDFAs with the same characteristics as those in the loop simulation were equally 

spaced at 25 km to compensate the loss of the fiber. PDL elements with PDL = 0.1 dB 

were placed every 100 km and the low-loss axis of each PDL element was set to be (1, 0, 

0) in Stokes space. To simulate the random orientation of the fiber in the straight-line sys-

tem, I chose a random rotation for every simulation step, 1 km, along the propagation dis-

tance. Each set of rotations corresponds to one fiber realization. I chose 10,000 independ-

ent fiber realizations to obtain the Q-factor distribution. The Q-factor for every fiber real-

ization was calculated using the same formula as that in the loop simulation. I show the 

result in Fig. 4.6 as a dashed line. The pdf of the Q-distribution is Gaussian-like and it is 

aligned with the low-Q portion of the loop result. 

In the recirculating loop, due to the periodicity of the optical path, when the polariza-

tion controllers in the system are optimized, the signal is well aligned with the low-loss 
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axis of the PDL element and the noise orthogonal to the signal aligns constantly with 

high-loss axis of the PDL element. Therefore, the OSNR is artificially improved, so is the 

Q-factor. However, in a straight-line system, due to the random birefringence, the polari-

zation state of the signal orients randomly and rarely aligns with the low-loss axis and the 

noise orthogonal to the signal can not be attenuated more than the noise parallel to the 

signal, so that the OSNR is reduced. Consequently, the Q-factor is centered at the low-Q 

portion of the loop result. When the polarization controllers are optimized, the loop over-

estimates the system performance of an analogous straight-line system. 

 

4.4.2 Dependence of the Q-factor distribution on fiber realization 

My study of the DOP evolution and the Q-factor distribution have shown that the pe-

riodic nature of the recirculating loop, along with PDL may artificially attenuate the noise 

orthogonal to the signal, hence improving the OSNR and overestimating the system per-

formance. If the Q-factor distribution is well defined, by carefully calibrating the system 

performance, it is still possible to predict the system performance of a corresponding 

straight-line system accurately. However, from my study, I observed that one of the diffi-

culties of loop experiments was that the statistics of the Q-factor depended not only on 

the setting of PCs in the system but also on the fiber realizations.  

Although, in the laboratory environment the loop system can be static for one or two 

hours, the fiber realizations still change gradually as a function of time. Changes of the 

fiber realizations not only change the orientations of the signal and noise, but also lead to 

variations in the accumulated PDL for each round trip. Therefore, in the experiment the 
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dependence on the fiber realization is complicated. These effects make it extremely diffi-

cult to repeat statistical results that are obtained from the loop experiments. 
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Fig. 4.7. Simulated Q-factor distribution at 5,000 km in the loop system with different fiber reali-

zations. 

 

I show a set of simulated results of the Q-factor distribution corresponding to the dif-

ferent fiber realizations in Fig. 4.7. In the simulations, in order to simulate the static na-

(a) (b) 

(c) (d) 
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ture of the loop system, I generated a set of random rotations for the first round trip, and 

kept the same set of fiber rotations for subsequent round trips. This set of random rota-

tions corresponds to one fiber realization. Once the fiber realization was determined, I 

employed one extra rotation before the lumped PDL element to simulate the polarization 

controller adjusted in the experiment and recorded the corresponding Q-factor. I chose 

10,000 random rotations, so that for a fixed input SOP, the output SOP after the rotation 

covered the sphere evenly and obtained 10,000 Q samples. By choosing different seeds 

for the random generator, I was able to generate different fiber realizations. As I show in 

Fig. 4.7, the Q-factor distributions are different from one fiber realization to the other. 

Although the Q-factor distributions are not always double-humped, they always have a 

large Q tail. 

 

4.5 Evolution of the polarization states  

My study has shown that the periodicity of the optical path along with the PDL ele-

ment in a loop system can artificially improve the system performance. When the setting 

of the polarization controllers in the system is optimized, the Q-factor distribution of such 

a system has a large Q. The dependence of the Q-factor on the setting of polarization con-

trollers in the system indicates that the Q-factor is closely correlated with the polarization 

state evolution. In order to further explain what causes the observed double-humped dis-

tributions, I followed the polarization state evolution after each round trip of the loop up 

to 16,000 km experimentally for three cases— the evolution for the upper end of the Q 

distribution referred as the large Q case, the evolution for the lower end of the Q distribu-

tion referred as the small Q case and the evolution for the center of the Q distribution re-
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ferred as the medium Q case. In addition, I simulated the polarization state evolution by 

following the SOP of the entire channel after each round trip for these three cases. Fur-

thermore, my colleague Dr. Brian Marks and I theoretically explained the polarization 

state evolution in a loop system [50]. 

 

4.5.1 Experimental and simulated results 

The measured and simulated results are shown in Fig. 4.8. In order to easily observe 

the trace of the polarization state evolution, I displayed the trajectories of SOPs on the 

Poncairé sphere. I used a grey scale to color-code the propagation distance. The variation 

from black to light gray indicates an increase in the propagation distance. In the large Q 

case shown in Fig. 4.8 (a) and (d), the polarization state on the Poincaré sphere spirals 

inward to a point and converges quickly. In the small Q case, the evolution exhibits out-

ward spirals, as shown in Fig. 4.8(c) and (f). In this case, the measured result shows the 

SOP evolution up to 10,000 km, in order to maintain reasonable system performance and 

avoid the measurement error due to poor OSNR. In the simulation, the distance is extend-

ed to 10,000 km to make comparison. In the medium Q case, the polarization states 

evolve in a nearly circular trajectory on the sphere, as shown in Fig. 4.8(b) and (e), which 

converges slowly if at all.   
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Fig. 4.8. Experimental data and simulated data showing the polarization state evolution in the loop system 

on the surface of the Poincaré sphere. Fig. 4.8 (a), (b) and (c) are experimental results and Fig. 4.8 (d), (e) 

and (f) are corresponding simulated results. The unfilled circles indicate points on the far side of the sphere. 

Figs. 4.8 (a) and (d) correspond to a high Q value and show an inward spiral. Figs. 4.8 (b) and (e) corre-

spond to a medium Q value and show a circular trajectory around the sphere. Figs. 4.8 (c) and (f) corre-

spond to a low Q value and shows an outward spiral. The gray scale from black to light gray indicates in-

creasing propagation distance. 

 

(a) (d) 

(b) (e) 

(c) (f) 
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4.5.2 Mathematical analysis 

My colleague Dr. Brian Marks and I explained the correlation of the polarization state 

evolution on the Poincaré sphere to the Q value through a simple mathematical analysis. 

Please see the detailed derivations in Appendix.  The transfer matrix of one round trip can 

be written as  

loop PDL rot=M M M ,                                                           (4.1) 

where rotM  is a unitary matrix representing a fixed rotation on the Poincaré sphere giving 

the rotation due to the fiber and the loop’s polarization controller, and PDLM  represents 

the effect of PDL in one round trip of the loop. Note that in this formulation, we neglect-

ed the effects of noise, PDG, and amplifier saturation.  Our reduced Stokes model simula-

tions did consider these effects and showed that the predominant effects that altered the 

polarization state of a signal were the random fiber rotation and the PDL. An arbitrary 

rotation on the Poincaré sphere could be expressed as a rotation through an angle γ about 

an axis, which is given by a unit vector rots . In this notation, although I chose the low-

loss axis of the PDL to be PDL (1,0,0)t=s  in Stokes space, the results are general.  

The PDL in the system has the effect of causing 100% transmission on one side of the 

Poincaré sphere while causing loss on the other side. Since the recirculating loop system 

has a static nature, inherently it is periodic. We may write its transfer matrix after n round 

trips as loop
n=T M .  Then the output Stokes vector after n round trip can be written as 

[ ]2 2
out 2 sin( ) cos( )n n nA c A c B c c n nγ ψ γ ψ+ + + − − − + −= + + + ∆ − + ∆ +1 2s s s t t           

(4.2) 

where  
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21
rot PDL rot rot PDL2 2( ) cot ( )Oγε ε±  = ± + + × + s s s s s s ,                              (4.3) 

( )rot PDL rot PDL= × ×1t s s s s  ,                                                 (4.4) 

and 

 rot= ×2 1t s t .                                                                    (4.5) 

 In these expressions, 

 2
rot PDL1 (1 ) ( )A Oε ε± = − ⋅ +s s ,                                             (4.6) 

and 

 21 ( )B Oε ε= − + ,                                                 (4.7) 

where ε is a small number less than 1. From (4.2), one can see that the third term contains 

sinusoidal pieces that corresponds to the spiral or circular motion on the Poincaré sphere 

and the first two terms provide the spiral center. 

If rots  is on the same hemisphere as PDLs  as in Fig. 4.9 (a), we have rot PDL0 1≤ ⋅ ≤s s , 

then A B A+ −> > , and the first term in (4.2) dominates as n increases.  Consequently the 

eigenvector +s  is the attracting point, or the center of an inward spiral on the sphere.  As 

n increases, also, there is a rotation by the angle γ around the attractor each round trip, as 

seen in the third term in (4.2).  If the input polarization state is close to the attracting 

eigenstate +s , one observes an inward spiral similar to the high Q case in Fig. 4.8 (a) and 

(d).  In this case, the polarization state of the signal spends most of its time on the same 

hemisphere as the low-loss axis of the PDL, and the signal suffers less attenuation than 

the noise does, leading to a higher OSNR and the Q-factor. 
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Fig. 4.9. Pictorial description of the spiral behavior on the Poincaré sphere. Without PDL, the 

eigenstates are rot±s , but PDL causes the eigenstates s+ and s− to be no longer antiparallel. 

PDLs is the low-loss axis of the aggregate round-trip PDL, causing the polarization state to spiral 

toward s+ or s− . In Fig. 4.9 (a), rots is in the same hemisphere as PDLs , so that s+ is the attract-

ing eigenstate.  In Fig. 4.9 (b), rots is in the opposite hemisphere as PDLs , so that s− is the attract-

ing eigenstate. 

 
  Similarly, if the input polarization state is on the opposite side of the sphere from the 

attracting eigenstate, one observes an outward spiral away from the other eigenstate −s , 

which is a repeller.  I show the result in the low Q case in Figs. 4.8 (c) and (f). The exper-

imental result and the simulated result were obtained for the distance up to 10,000 km in 

order to remain reasonable OSNR. At distance beyond 10,000 km, we could not obtain a 

BER less than 10-9, and the DOP of the entire channel was much less than unitary. There-

fore it was difficult to accurately measure the polarization state at longer distance. In the 

simulation, since we traced the polarization state of the signal and the noise separately, 

we were able to extend the distance up to 20,000 km. The simulated result is shown is 

(a) (b) 
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Fig. 4.10, in which the distance is color-coded by the gray scale. The darker color indi-

cates shorter distance. As predicted in the theory, when the input polarization state is 

close to the high-loss axis of the PDL element, the polarization states are first repelled 

away from the eigen state of s- along the propagation, and one observes an outward spi-

ral. As the distance increases, the polarization states eventually converge to the opposite 

of the sphere, the same hemisphere as the low-loss axis of the PDL. In this case, the sig-

nal’s polarization state spends most of its time on the hemisphere of the high-loss axis of 

the PDL, and the siganl therefore suffers degradation, reducing the OSNR and the Q-

factor.   

 
Fig. 4.10. Simulated result of the polarization state evolution up to 20,000 km in the low Q case. 

The loop has an aggregate PDL = 0.1 dB per round trip. The gray scale from black to light gray 

indicates the increasing propagation distance. The unfilled circles are the points on the far side of 

the sphere.  

 
If rots  is on the hemisphere opposite to PDLs , so does +s , as shown in Fig. 4.9 (b), 

then A B A+ −< <  and the second term in (4.2) dominates as n increases. The spiral is at-

tracted to −s , which is at the same hemispheres as PDLs . Consequently, we have similar 

polarization evolution discussed in Fig 4.9 (a).  In the case where rots  is orthogonal to 
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PDLs , all three terms in (4.2) remain equally dominant regardless of the input polarization 

state.  One then obtains a circular trajectory on the Poincaré sphere that does not con-

verge to any particular point.  In this case, the signal is aligned with the high-loss axes 

and the low-loss axes of the PDL elements alternatively, resulting a moderate Q factor. In 

addition, the probability of this case is much lower than those of the other two. Due to the 

random birefringence of the fiber, the alignment of the signal and the axes of the PDL 

elements in a straight-line system would be random, as well as the SOP of the signal, so 

that the spiral behavior is different from what is expected in a straight-line system. 

 

4.5.3 Comparison to a straight-line system 

The analysis, as well as the experimental and simulated results, show that the perio-

dicity in the loop leads to interesting polarization evolutions in the system.  The perio-

dicity together with the PDL lead to spiral trajectories on the Poincaré sphere and the spi-

rals are always attracted to the eigenstate on the same hemisphere of the low-loss axis of 

PDL element. Thus for a particular setting of the polarization controllers that aligns the 

SOP of the signal to the low-loss axis of the PDL element, the recirculating loop can arti-

ficially enhance performance even when the PDL level per round trip is low. To compare 

the polarization state evolution of a loop system to that of a straight-line system, I per-

formed a simulation of a straight-line system in which I applied the same parameters as in 

the loop simulation including the characteristics of the EDFA, the EDFA spacing, the fi-

ber loss, the input power and the receiver characteristics. In the straight-line simulation, I 

placed a PDL element every 100 km and I set the low-loss axis of PDL elements to be (1, 

0, 0) in the Stokes space. Unlike the loop system, where the fiber realization is periodic, I 
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randomly chose rotations for every simulation step along the propagation. A set of these 

random rotations was considered as one fiber realization. For both loop simulation and 

the straight-line simulation, each PDL element had a level of 0.1 dB. The Q-factor was 

calculated at the end of transmission. Since the polarization state evolution depends on 

both the input polarization state of the signal and the fiber realization, I compared the 

loop system and the straight-line system by simulating two cases. In the first case, I fixed 

the input polarization state and varied the fiber rotations in the system. In the second 

case, I fixed the fiber realization and varied the input polarization state so that the input 

polarization states covered the Poincaré sphere evenly. This case was equivalent to a sys-

tem with input scrambling. 

In the first case, one set of fiber rotations was chosen for every round trip as one fiber 

realization and the fiber realizations for different Monte Carlo simulations were chosen 

randomly in the loop simulation. In contrast, in the straight-line simulation, the fiber rota-

tions were chosen randomly along the propagation distance as one fiber realization. In the 

comparison, I chose 1,000 fiber realizations independently with the input polarization 

fixed at (1, 0, 0) and the low-loss axis of the PDL element was fixed at (1, 0, 0) for both 

simulations. I recorded the polarization states after each round trip for every fiber realiza-

tion. The Q-factor was calculated for each fiber realization at 16,000 km. The polariza-

tion state for each fiber realization at 100 km, 8,000 km and 16,000 km are shown in Fig. 

4.11. I used gray scale to code different fiber realizations based on the Q-factor at 16,000 

km. The darker the color is, the smaller the Q-factor is at 16,000 km. In the loop system, 

although the polarization states for different fiber realizations at 100 km cover the 

Poincaré sphere uniformly, the uniformity is not maintained with propagation. After 
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16,000 km, the polarization states for the fiber realizations with lighter color, which gen-

erate larger Q-factors, are attracted to the low-loss axis of the PDL. This result is con-

sistent with our analysis. Since the input SOP is the close to the low-loss axis of the PDL 

element, if the rotation axis of the fiber rots  is close to the PDL low-loss axis as shown in 

Fig. 4.9 (a), the polariztion state evolution converges very quickly, yielding larger Q. On 

the other hand, the fiber rotations that make the polarization states converge slowly yield 

smaller Q. In contrast, in the straight-line system simulation, the polarization states for 

different fiber realizations cover the Poincaré sphere evenly regardless of the propagation 

distance. Furthermore, in the straight-line system, most polarization states are color-

coded by darker gray, which indicates a smaller Q-factor at 16,000 km. This simulation 

shows that in the straight-line system, the variation of the Q-factor distribution is smaller 

than in the loop system and is aligned to the low Q portion of the Q-factor distribution of 

a loop system.  
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Fig. 4.11. Comparison of simulated polarization state distribution of a loop system to a corre-

sponding straight-line system using the reduced Stokes model when the input polarization state is 

fixed but the fiber realization is varied. Sub-figures (a), (b) and (c) show the polarization state dis-

tribution of the loop system at 100 km, 8,000 km and 16,000 km, respectively. Sub-figures (d), (e) 

and (f) show the polarization state distribution of the straight-line system at 100 km, 8,000 km and 

16,000 km, respectively. The gray scale from black to light gray indicates the increasing of the Q-

factor calculated at 16, 000 km. 

(e) 

(a) (d) 

(b)  

(c) (f) 

100 km 

8,000 km 

 16,000 km 
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Figure 4.12. Comparison of simulated polarization state distribution of a loop system to a corre-

sponding straight-line system using the reduced Stokes model when the fiber realization is fixed 

but the input polarization state is varied. Figure (a), (b) and (c) show the polarization state distribu-

tion of the loop system at 100 km, 16,000 km and 30,000 km, respectively. Figure (d), (e) and (f) 

show the polarization state distribution of the straight-line system at 100 km, 16,000 km and 

30,000 km, respectively. The gray scale from black to light gray indicates the increasing of the Q-

factor calculated at 30, 000 km. 

 

(a) (d) 

(b) (e) 

(c)  (f) 

100 km 

 

16,000 km 
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In modern DWDM systems with a large channel-count, the PMD effect causes chan-

nels to walk-off from each other, reducing the PDG effect [33] and [53]. In a single chan-

nel system, input scrambling has proved to be an efficient way to reduce the effect of 

PDG. It is important to understand the behavior of a loop and a straight-line system with 

input scrambling. In the second case, I chose the fiber realization that yields the largest 

Q-factor in both systems when the input SOP is (1, 0, 0) and I randomly selected the in-

put SOP to cover the Poincaré sphere evenly to mimic the polarization scrambling at the 

input. Furthermore, since the noise can be treated as depolarized signal, this investigation 

helps one to understand the noise behavior in the system. In both simulations, I set the 

PDG to be 0. 

In both simulations, I chose 300 randomly selected input polarization states so that 

they covered the Poincaré sphere evenly. I followed the polarization evolution corre-

sponding to each input polarization state separately up to 30,000 km. I color-coded each 

polarization state evolution using a gray scale to indicate the Q-factor after the propaga-

tion. The lighter the color is, the larger Q-factor is. I show the results in Fig. 4.12. In a 

loop system, the input polarization state at the same hemisphere as the low-loss axis of 

the PDL tend to obtain better system performance, indicated by a Q-factor with lighter 

color. After propagation, all output polarization states center at the low-loss axis of the 

PDL element. This behavior indicates that even with low PDL per round trip, the initially 

depolarized signal and the noise in the loop system may repolarize quickly. On the other 

hand, the polarization state evolves randomly for all the input polarization states in the 

straight-line system. 

 



 

 

76 

4.6 The Q-factor distribution of a scrambled loop 

0

3

5 10

simulated straight line
simulated scrambled loop

pd
f

Q

 

Fig. 4.13. Comparison of the simulated Q-factor distribution of the loop-synchronous scrambled 

loop system ( the dashed line) to that of the corresponding straight-line system (the solid grey line) 

at 5,000 km.  

 

My study shows that the periodicity of the optical path and the PDL elements in a 

loop system may artificially improve the system performance by attenuating the noise 

that is constantly aligned with the high-loss axis of the PDL element. Therefore, if 

one is interested in using a recirculating loop to emulate a straight-line system, one 

must break this periodicity.  One way to do so is to use loop-synchronous scrambling 

to rotate the polarization state of the signal once each round trip.  Simulations have 

shown that the polarization state remains really random along the propagation when 

this scrambling was employed. A simulated comparison of the Q-factor distribution at 

5,000 km for a scrambled loop system with PDL = 0.1 dB per round trip and a corre-

sponding straight-ling system is shown in Fig. 4.13. The solid gray line is the result of 
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the straight-line system and the dashed-line is the result of the scrambled loop system. 

The Q-factor distribution of the scrambled loop resembles that of a straight-line sys-

tem.    

 

4.7 Conclusions 

I systematically investigated the DOP evolution of the signal and the noise, the Q-

factor distribution and the polarization state evolution in recirculating loop systems by 

comparison of the experimental results and the numerical simulations, as well as theoreti-

cal analysis. I show that the behavior of a loop system with PDL is different from that of 

a straight-line system due to the periodicity of the optical path and the presence of the 

PDL. The loop systems often overestimate the system performance of straight-line sys-

tems and the polarization states form spiral evolutions, which are closely related to the 

system performance. The excellent agreement of the experimental results and the numeri-

cal simulations provides the first experimental validation of the reduced Stokes model. 

My work also suggests that in order to accurately emulate the behavior of the straight-line 

system, one must break the periodicity of the optical path in the loop system. One way to 

achieve this is to introduce one random rotation every round trip. This technique is called 

loop-synchronous scrambling. 

 

 
  

 

 



 
 
Chapter 5 
 

Emulation of straight-line sys-
tems using recirculating loops 

 
 
 
5.1 Introduction 
 

Recirculating loops have proved to be an efficient experimental model in studying of 

long-haul transmission systems. However, due to the periodic optical path, recirculating 

loops do not reproduce the polarization evolutions in straight-line systems [50] and [54] and 

can overestimate the system performance [37].  

One straightforward way to overcome these limitations is to introduce random rotations 

in the loop system to break the periodicity of the system. The simulation result discussed in 

Section 4.6 shows that an extra random rotation in each round trip, which transforms any in-

put SOP to cover the sphere evenly, will achieve this goal. However, to apply this concept 

experimentally is not easy. In general, both BER and Q-factor measurements are time con-

suming. If the fiber realization changes constantly during the measurement, one samples dif-
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ferent fiber realizations in one Q or BER measurement. Therefore, we need an experimental 

approach to synchronize the change of fiber realizations to the BER/Q-factor measurements. 

To break the loop periodicity and to ensure that a measured Q-factor or BER corresponds 

to one fiber realization, I used a loop-synchronous scrambler to emulate a straight-line sys-

tem [38]. This loop-synchronous scrambler provides a set of random rotations for the loop 

system and randomly rotates once on each round trip. This set of random rotations is repeated 

during one sample of the BER or the Q-factor measurements. To build up the statistics of the 

system performance, multiple sets of rotations are chosen randomly. Therefore a recirculat-

ing loop system can reproduce the statistical characteristics of a straight-line system. Moreo-

ver, I am able to accurately measure the BER or the Q-factor for each fiber realization. Since 

the system that I studied is a single channel system, PDG significantly affects the perfor-

mance of the system. Modern WDM systems have a large channel count and effectively 

eliminate PDG. Thus, I employed a second scrambler at the transmitter to eliminate the effect 

of PDG. 

To assess the system performance and to develop system models require the accurate 

characterization of Q-factor distributions in transmission systems. Since lightwave sys-

tems with optical amplifiers are vulnerable to the degradation due to polarization-

dependent loss (PDL), it is very important to study the statistical behavior of the system 

performance due to PDL. However, the relationship of the OSNR and the Q-factor is not 

straightforward. As I showed in Chapter 3, when the noise is partially polarized, the cor-

relation of SNR and Q-factor is not unique and depends on the DOP of the noise and the 

SOP of both signal and noise. Therefore the statistics of OSNR does not give a complete 

picture of the statistics of the Q-factor. In my work, I investigated, both theoretically and 
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experimentally, the system performance of a recirculating loop system with the loop-

synchronous scrambler and without the loop-synchronous scrambler corresponding to 

different PDL levels. I obtain excellent agreement between measured results and numeri-

cal simulations, which correctly takes into account the polarized noise in a system with 

PDL. Both the loop-synchronous scrambling technique and the receiver model discussed 

in Chapter 3 should prove valuable in assessing realistic system performance.  

To obtain repeatable results in the loop system is very important when investigating 

the system performance and estimating the outage probability. Although the optical path 

of the loop system remains stable for hours, it changes gradually with time. The slow 

drift of the optical path not only changes the fiber realization but also varies the accumu-

lated PDL level in the system. Controlling the PDL level in the loop experiment is very 

critical to achieve the repeatability of the experiments. 

Furthermore, the residual PDL in the system converts the polarization modulation at 

the transmitter to the amplitude modulation. This undesired amplitude modulation cou-

pled with the dynamic response of the EDFA may degrade the system performance, not 

only canceling out the improvement due to the reduction of PDG effect but also to intro-

duce a larger variation of system performance. 

In this chapter, I address these issues in the loop experiments. I describe in detail the 

PDL control and monitor techniques used in my study, as well as the correlation of the 

dynamic gain of the EDFA to the scrambling rate of the input scrambler, when the PDL 

in the system is not negligible. The content of this chapter is organized as following. I 

first describe a LiNbO3 polarization controller and the experimental setup. I then discuss 

the approach that I used to monitor the PDL in the system and to obtain repeatable statis-
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tical results, followed by the discussion of the input scrambling technique and the effect 

of EDFA transients. Finally, I compare the experimental results to the simulated results 

of a scrambled loop system with different PDL values. I also compare the Q-factor distri-

bution with and without the input scrambling of a scrambled loop system. 

 

5.2 Setup of loop system 

Based on the loop system that I used to investigate the polarization behaviors and the 

system performance, discussed in Chapter 4, I added a LiNbO3 polarization controller at 

the end of the loop. This controller was controlled by a programmable waveform genera-

tor to provide rotations for each round trip. In this dispersion-managed soliton (DMS) 

system I propagated 10 Gb/s return-to-zero (RZ) pulses modulated by a 215 –1 PRBS pat-

tern over distances of 18,000 km. Fig. 5.1 shows a schematic diagram of the recirculating 

loop used in experiments [38]. Three mechanically adjustable polarization controllers are 

placed in the loop system to adjust the PDL level per round trip. In order to eliminate the 

PDG effect in the system, a polarization scrambler is placed after the transmitter. I will 

discuss in detail how to choose the scrambling rate of the input scrambler in Section 5.5. 

The PMD of the fiber is negligible. The PDL varies from 0.13 to 0.6 dB per round trip. 
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Fig. 5.1. Diagram of the recirculating loop with a loop-synchronous scrambler. 

  

 

5.3 Loop-synchronous scrambling technique 

5.3.1 Principle of loop-synchronous scrambler 

Fig. 5. 2 shows a schematic diagram of a compact integrated-optic polarization con-

troller [56]. A standard titanium-indiffused single-mode waveguide is fabricated on low 

birefringence x-cut, z-propagation LiNbO3. It includes three cascaded electrode sections, 

which are equivalent to three waveplates that rotate. The particular construction shown in 

Fig. 5.2 is a combination of a quarter waveplate (QWP), a half waveplate (HWP) and an-

other QWP. Three pairs of voltages are applied to each electrode section separately to 

control the phase retardation and the rotation.  
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Fig. 5.2. Schematic diagram of a compact integrated-optic polarization controller configured as a 

combination of QWP-HWP-QWP 

 

The electrical fields that are at the x direction and y direction, shown in Fig. 5.2 are 

TE and TM modes, respectively. The differential TE-TM phase shift is generated via the 

linear electro-optic effect by applying a voltage VS to induce an electric field Ey in the 

waveguide parallel to the crystal surface. The linear electrooptical effect is the change in 

index that is caused by and is proportional to the applied electrical field [57]. This field 

generates an anisotropic optical index change in the waveguide via the linear electro-

optic coefficients 12γ and 22γ , which have values of 12
12 22 3.4 10 m/Vγ γ −= − ≈ × . The op-

tical phases of TE- and TM-mode shift symmetrically at the same rate in opposite direc-

tions. The total TE-TM phase retardation in an electrode section of length L is given by 

( ) 3
y y 0 12

0

2π
yt n LEγ

λ
Φ = Γ ,                                                          (5.1) 

( )
y

s

y

V t
E

G
= ,                                                                      (5.2) 

where yΓ  is the spatial overlap of the induced electric field with the optical fields along y 

direction, Gy is the width across the two outer electrodes. The parameter n0, which is 
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equal to 2.21, is the ordinary index of refraction and 0λ  is the wavelength in free space. 

When ( ) ( )y Sπ π, t V t VΦ = = . 

Similarly, the common voltage on both sides of the waveguide VC, which induces an 

electric field Ex  in the waveguide perpendicular to the surface, generates a relative phase 

shift between the linearly polarized modes at 45° and – 45° via the 61γ  linear electro-

optic coefficient. The total 45° linear phase retardation generated in an electrode section 

of length L is given by 

( ) 3
x x 0 61 x

0

2πt n LEγ
λ

Φ = Γ                                                          (5.3) 

( )c
x =

V t
E

G
,                                                                   (5.4) 

where xΓ is the spatial overlap of the induced electric field with the optic fields, 

12
61 12 3.4 10γ γ −= ≈ × m/V and G is the width of the gap between the center electrode and 

one outer electrodes. When the applied voltage ( ) '
CπV t V= , ( ) πtΦ = . 

Without an applied electrical field, the index ellipsoid of a crystal can be written as  

2 2 2

o o e

1+ + =
x y z
n n n

,                                                 (5.5) 

where the directions x, y, z are the principal dielectric axes and the indices on and en  are 

for ordinary and extraordinary rays, respectively. With the presence of an electric field, 

the index ellipsoid can be written as  

2 2 2
2 2 2 2 2 2

1 2 3 4 5 6

1 1 1 1 1 12 2 2 1x y z yz xz xy
n n n n n n

           + + + + + =           
           

.            (5.6) 
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The change in the coefficients due to an arbitrary electric field can be calculated from the 

electrooptic tensor ijr as [57] 

3

2
1

1
ij j

ji

r E
n =

 ∆ = 
 

∑ ,                                                 (5.7) 

where Ej , j = 1, 2 and 3 are the electrical field in x, y and z directions, respectively. When 

electrical fields at x and y direction are applied to an x-cut and z-propagation LiNbO3 as 

in Fig. 5.2, the index ellipse at x-y plane is written as 

2 2
12 y 12 y 61 x2 2

o o

1 1 2 1r E x r E y r E xy
n n

   
+ + − + =   

   
.                         (5.8) 

By finding a new coordinate system — andx y′ ′ , the mixed term in (5.8) is eliminated. 

The new coordinates — andx y′ ′ satisfies  

cos sinx x yθ θ′ = +                                            (5.9) 

and [57] 

sin cosy x yθ θ′ = − + ,                                        (5.10) 

where                                 
( ) ( )

1 61 x
22

21 y 61 x 21 y

ctg r E

r E r E r E
θ −

 
 =  
 − + 

.                           (5.11) 

Hence the index ellipse can be written as 

( ) ( ) ( ) ( )2 22 22 2
61 x 12 y 61 x 12 y2 2

o o

1 1 1r E r E x r E r E y
n n

   
′ ′+ + + − + =   

   
.          (5.12) 

Since ( ) ( )22 2
61 x 12 y or E r E n−+  , I have  

( ) ( )223
o 61 x 12 y

x o 2

n r E r E
n n′

+
= + ;                                           (5.13) 
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( ) ( )223
o 61 x 12 y

y o 2

n r E r E
n n′

+
= −  ,                                         (5.14) 

( ) ( )' '

223
o 61 x 12 yx y

n n n n r E r E∆ = − = + .                                    (5.15) 

 

Thus, substituting (5.2) and (5.4) into (5.12) – (5.14), one finds that it is possible to 

keep a fixed relative phase between the electric fields in the direction of new coordinate 

— andx y′ ′ — and to rotate the new coordinates continuously [56]. For example, one in-

troduces a pair of voltage, C S 2V V±  and the voltages VS and VC are described as 

S sinV V tπ= Ω and '
C cosV V tπ= Ω , where Ω is the angular frequency. Then the relative 

phase between the electric fields in the direction andx y′ ′ is π  and the coordinates 

andx y′ ′ rotate continuously at a constant angular velocity 2Ω in Jones space. As a re-

sult, the device acts as a rotating HWP. Similarly, for voltage amplitudes π 2V  and '
π 2V , 

the device acts as a rotating QWP. One can achieve complete conversion between TE and 

TM mode if the propagation constants of the TE- and TM-modes are exactly equal. How-

ever, a small amount of static birefringence always exists in the material. An additional 

bias voltage VT is needed to compensate the residual waveguide birefringence by intro-

ducing an exactly opposite amount of birefringence 3
y 0 12 T y/n n V Gγ−∆ = Γ , where yΓ  is 

the spatial overlap of the induced electric field with the optic fields along y direction and 

Gy is the width across the two outer electrodes [57]. 

A combination of QWP-HWP-QWP, in which each section rotates at different angu-

lar frequency, forms a triple-stage polarization scrambler that is independent from the 
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input polarization states [56], [58]. The first QWP, rotating at a constant angular frequen-

cy 1Ω , is driven by the voltages 

( ) ( ) ( )'
1,2π 2 1 π 2 1 Tsin 2 2 cos 2 2V V t V t V= Ω ± Ω ±                                (5.16) 

where '
π 2V and π 2V is the voltage for inducing phase shift of π 2 at x direction and y di-

rection, respectively. The HWP, rotating at a constant angular velocity 2Ω , is driven by 

the voltages 

( ) ( ) ( )'
3,4π 2 π 2 Tsin 2 2 cos 2 2V V t V t V= Ω ± Ω ± .                                       (5.17) 

The second QWP, rotating at a constant angular velocity 3Ω , is driven by the voltages 

( ) ( ) ( )'
5,6π 2 3 π 2 3 Tsin 2 2 cos 2 2V V t V t V= Ω ± Ω ± .                                  (5.18) 

I used an polarization controller, which is made from JDS Uniphase Corp. and has a 

rise time of 100 ns. This controller consists with eight 1/8 waveplates. Two of the concat-

enated 1/8 waveplates form a QWP and four of concatenated 1/8 waveplates form a 

HWP, so that the controller forms a triple-stage QWP-HWP-QWP polarization scram-

bler. Six voltages are applied to the device to control the rotation. For the particular de-

vice that I used in the experiments, as specified in the data sheet, the triple-stage con-

struction is driven by six voltages as followings: 

( ) ( )1 12.0sin 13.4cos 2.6V α α= − + ;                                 (5.19) 

( ) ( )2 12.0sin 13.4cos 2.6V α α= + − ;                                 (5.20) 

( ) ( )3 11.1sin 13.1cos 5.6V β β= − + ;                                 (5.21) 

( ) ( )4 11.1sin 13.1cos 5.6V β β= + − ;                                 (5.22) 

( ) ( )5 11.7sin 13.4cos 0.7V γ γ= − + ;                                 (5.23) 
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( ) ( )6 11.7sin 13.4cos 0.7V γ γ= + − .                                 (5.24) 

The angles 2, 2α β and 2γ are the rotation angles of these three wave plates. By care-

fully generating a sequence of six voltages, I am able to generate a set of rotations to cov-

er the Poincaré sphere evenly. This set of rotations is repeatable by applying the same 

sequence of voltages. 

 

5.3.2 Loop-synchronous scrambling technique 

In practical devices, due to the lateral misalignment of the electrode pattern with re-

spect to the waveguide, the voltages VC and the voltages VS may introduce some unde-

sired TE-TM mode conversion. The cross modulation can be compensated by adjusting 

VC and VS [58]. 

               (a)                                                        (b)                                                         (c) 

 Fig. 5.3. Examples of output polarization states by rotating the HWP only with 100 equally 

spaced angles from 0 to 2π with three different input polarization states. 

 

Fig. 5.3 shows the output of SOP of the device corresponding to three different input 

polarization states by rotating only the second waveplate, the HWP. The non-circular 

output is mainly due to the uncompensated static birefringence between the 1/8 
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waveplates. However, when the rotation angles of the three waveplate ,α β andγ are uni-

formly distributed from 0 to 2π , for a fixed input polarization state, the output SOPs 

cover the Poincaré sphere reasonably well, as shown in Fig. 5.4, for which 1,000 output 

SOPs are sampled. The open circles indicate the output on the back side of the sphere. 

The corresponding normalized Stokes parameters — 1s , 2s and 3s , which are shown in 

Fig. 5.4 (b), (c) and (d) as histograms, are uniformly distributed from –1 to 1, respective-

ly. 

 

0

120

-1 1

co
un

t

s1

0

120

-1 1

co
un

t

s2

0

120

-1 1

co
un

t

s3

  

 

Fig. 5.4. Output polarization states when the waveplate angles are chosen randomly with 1,000 

samples. The dots are the polarization state on the front hemisphere and the open circles are the 

polarization state on the back of the hemisphere. Sub-figures (b), (c) and (d) show histograms of 

the corresponding normalized Stokes parameters — 1s , 2s and 3s , respectively. 
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To achieve the loop-synchronous scrambling, I first generate a set of random angles 

,α β and γ , which are uniformly distributed from 0 to 2π , and I then use (5.19) to (5.24) 

to generate a series of six voltages. This series of six voltages is triggered by the control 

signal of the AO switch. To guarantee that the polarization rotation is randomly changed 

for each round trip, the sampling period for these six voltages is set to be the round trip 

time of the loop system, which is 0.54 ms. As an example, in Fig. 5.5, I show a set of 

measured polarization states as a function of round trip number when the loop-

synchronous scrambler is on. Fig. 5.5 (a), (b) and (c) are measured results of the normal-

ized Stokes parameter — 1s , 2s and 3s — as a function of round trip numbers, respective-

ly. 
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Fig. 5.5. Measured results of the normalized Stokes parameter — 1s , 2s and 3s — as a function of 

round trip numbers, respectively. 

 

5.4 PDL level control and monitoring 

5.4.1 PDL level control 

One of the difficulties in the loop experiment is that the statistical behavior of the sys-

tem performance is difficult to repeat. It depends on the fiber realization and the accumu-

lated PDL. Practically, to maintain the fiber realization in the system is impossible. 

Moreover, after applying the loop-synchronous scrambling technique, the fiber realiza-

tion will change randomly, so that all possible fiber realizations will be covered. There-

fore, to control the PDL level in the system is very important to obtain a repeatable Q-

factor distribution of a scrambled loop system. 

 

(c) 

s3 
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Fig. 5.6. Schematic diagram of how to define a “black box” in the loop system with multiple PDL 

elements 

 

Because of the static nature of the recirculating loop system, it is possible to lump all 

the PDL elements together. Then each round trip can be treated as a black box to yield 

one PDL level. As shown in Fig. 5.6, in a system with multiple PDL elements, the rota-

tion, including the contribution of fibers and the polarization controllers can be described 

as a rotation matrix Ri, i = 1, 2, 3, 4. The accumulated PDL for one round trip is deter-

mined by the PDL elements and the rotations between the PDL elements, R2 and R3. The 

rotation matrices R2 and R3 adjust the relative orientation of the PDL elements, and 

hence control the accumulated PDL level in the system, so that the black box is defined 

as the dashed rectangular. The other rotations R1 and R4 change the alignment of the SOP 

of the signal to the axes of accumulated PDL rather than changing the accumulated PDL 

level. Therefore naturally, the random rotation provided by the loop-synchronous scram-

bler should be at location R1 or R4. 

The loop-synchronous scrambler, which is treated as a combination of a PDL element 

and a rotation generator, is placed at the end of the loop as shown in Fig. 5.1. It is natural 

to break the loop from the loop coupler and consider one round trip of the loop from the 
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first EDFA to the loop-synchronous scrambler to be a black box that generates PDL. 

When the signal is transmitted in the system, it passes multiple black boxes with a rota-

tion generated by the loop-synchronous scrambler in between, as shown in Fig. 5.7. By 

adjusting the polarization controllers between the PDL elements in the black box, which 

is equivalent to vary the alignment of the PDL elements, I was able to vary the PDL per 

round trip from 0.13 dB to 0.6 dB. Once the PDL level was chosen, I controlled the SOP 

of the light within the loop by adjusting the polarization controller outside the black box. 

I checked the black box regularly to avoid any drift in the round-trip PDL. 

 

Fig. 5.7. How to control the PDL level in the loop system 

 

For a traditional loop setup, in which the optical path is periodic, the rotations be-

tween the black boxes are identical for a given fiber realization. When one applies the 

loop-synchronous scrambling technique, the rotations are chosen randomly for one fiber 

realization and the system is called a scrambled loop system. In both cases, I collect the 

Q-factor distribution by randomly selecting multiple independent fiber realizations. 

 

5.4.2 PDL level monitoring 

As discussed in the previous section, the drift in the loop system may cause a change 

in the PDL level per round trip; hence the statistical behavior of the system is difficult to 
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repeat. In order to obtain a consistent result, one must constantly monitor the PDL level. 

The most commonly used methods to measure the PDL level are the Jones matrix eigen-

analysis and the maximum-minimum power method. However, both methods are time 

consuming. The Jones matrix eigen-analysis requires one to measure the output polariza-

tion states corresponding to three different input polarization states, while the maximum-

minimum power method requires one to scan all the possible input polarization state. Al-

so, when applying these methods to a loop system, one must gate the instrument used in 

the measurement, or one must break up the loop system so that it operates as a straight-

line system. Therefore, a more practical way to monitor the PDL in a loop system is nec-

essary.  

From our prior experiments discussed in Section 4.3.2.2 and 4.3.3, we observed that 

when the setting of PCs is optimized and the signal is off, the DOP evolution of the noise 

in the same polarization configuration is sensitive to the PDL level in the loop system. In 

practice, the DOP build-up of the noise is mainly due to the effect of PDL elements in the 

system during the first few round trips. So the DOP evolution of the noise may be a good 

candidate for monitoring the PDL level in the loop system without opening up the loop 

system. By using the reduced Stokes model, I can simulate the DOP evolution of the 

noise accurately, which then allows me to relate the DOP to the PDL in the loop system. 
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Fig. 5.8. Comparison of the measured and simulted DOP evolution of noise as a function of the 

propagation distance when the signal aligns with the low loss axis of the PDL element with differ-

ent PDL levels. The solid line, the dashed line, the long dashed line and the dotted line are simu-

lated results when the PDL per round trip is 0.6 dB, 0.35 dB, 0.25 dB and 0.1 dB. The squares, the 

triangles, the open circles and the diamonds are the corresponding measured result, respectively. 

 

I show a comparison of the DOP evolution with different PDL level per round trip in 

Fig. 5.8. I first broke the loop to a 107 km straightline and used the maximum-minimum 

power method to measure the PDL level for one round trip. Then I connected the loop 

together and propagated 10 Gb/s RZ pulse modulated by 215 – 1 PRBS pattern. After ad-

justing the polarization controller in front of the first EDFA to obtain the lowest BER at 

17,000 km, I turned off the signal and only allow noise to propagate in the system to ob-

tain the DOP evolution of noise only. The solid line, the dashed line, the long dashed line 

and the dotted line are simulated results when the PDL per round trip is 0.6 dB, 0.35 dB, 

0.25 dB and 0.1 dB. The squares, the triangles, the open circles and the diamonds are the 

corresponding measured result, respectively. In the simulation, I also took into account 

the effect of PDG. The PDG per EDFA was set to be 0.05 dB. The experimental results 
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agree with the simulated results very well. Note that when PDL is 0.1 dB, the noise is 

unpolarized during propagation. As discussed in Chapter 4, the PDG effect always adds 

noise to the direction orthogonal to the partially polarized noise. Hence, when PDL is not 

large enough, the noise keeps unpolarized as it propagates. The results show that if PDL 

is large enough, using the DOP build up of the noise, one is able to estimate the round 

trip PDL value without disconnecting the system.  

  

5.5 Dynamic gain of EDFA and its effect on the input- scram-

bling rate 

In a single channel system, people often employ an input scrambler, which modulates the 

input polarization states faster than the response time of the EDFA, to eliminate the effect of 

PDG  [27], [32]. However, input polarization scrambling interacts with PDL and PMD in the 

system and can cause performance impairments that offset the improvements resulting from 

reducing PDG in the system. In general, PDL in the system converts the modulation of polar-

ization states at the transmitter to undesired amplitude modulation. The potential impairment 

can be avoided by scrambling the polarization states of the signal above the data rate of the 

system so that the frequency of PDL induced amplitude modulation is beyond the bandwidth 

of the optical receiver [59]. However, this option is expensive at modern data rates. Further-

more, most of the commercially available high speed scrambler uses a z-cut LiNbO3, which 

produces a chirp to the pulse. 

Scrambling rates close to the response time of the EDFA have improved the system 

performance. This requires carefully choosing the scrambling rate range [59] so that the 

amplitude fluctuations are filtered out by the EDFA gain response. Otherwise, the transi-
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ent of the EDFAs in the system will magnify the power fluctuation in return to introduce 

system impairment. In my study, I concentrate on the low scrambling technique to reduce 

the PDG effect. 

 

5.5.1 Dynamic gain of EDFA 

The dynamics of the gain response in an EDFA can be described by an ordinary dif-

ferential equation (ODE) [60]. The amplifier dynamics are associated with the depletion 

and the refilling of the reservoir, the total number of excited ions in the amplifier. The 

refilling process is caused by the pump, where one pump photon can excite at most one 

ion. The depletion process is caused by the signal, where one signal input photon “burn” 

a very large number of ions in the reservoir through stimulated emission. Thus, the time 

scale connected to the depletion process is fast, while that connected to the refilling pro-

cess are slow and depend on the pump power and the total number of dopant ions.  

Under the assumptions of a two-level system, a homogeneously broadened gain spec-

trum, no excited state absorption, no background loss, and no self-saturation by ASE, the 

rate equation for the fraction of excited ions 2N , 20 1N≤ ≤ , as a function of distance z 

and time t can be described as [61] 

( ) ( ) ( )2 2

0

,, , 1 N
j

j
j

Q z tN z t N z t
u

t A zτ ρ =

∂∂
= − −

∂ ∂∑ .                               (5.25) 

In the equation, the parameter τ is the fluorescence time of the gain medium, ρ is the ion 

density in the doped fiber core of effective area A. The photon fluxes of channel 

j, ( ),jQ z t , j = 0, 1, …, N, along propagation distance z are described by  
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( ) ( ) ( )2

,
, ,j T a

j k j j j

Q z t
u N z t Q z t

z
ρ σ σ

∂
 = Γ − ∂

.                              (5.26) 

The parameters kΓ , e
jσ , and a

jσ  are the confinement factor and the emission and absorp-

tion cross sections of channel j, respectively and T e a
j j jσ σ σ+ . The factor ju  gives the 

propagation direction of the photon fluxes. When 1ju = , the light propagates from z = 0 

to z = L, in which L is the length of the erbium-doped fiber. When 1ju = − , the light 

propagates in the opposite direction. The channel 0 is the pump of the EDFA. The loga-

rithmic gain of channel j is defined as  

( ) ( )
( ) ( )

out

in0
ln

L j j j
j j j

j j

u Q Q t
G t B r t A

Q Q t
 ∂

= = − 
  

∫ ,                           (5.27) 

where ( ) ( )20
,

L
r t A N z t dzρ ∫  is the reservoir. The two parameters jA and jB are de-

fined as a
j k kA Lρ σΓ  and T

j k kB AσΓ , respectively. One obtains the time dynamic of 

the reservoir by multiplying both sides of (5.25) by dz and integrating from 0 to L,  

( ) ( ) ( ) ( )out in

0

N

j j
j

r t r t
Q t Q t

t τ =

∂
 = − − − ∂ ∑ .                                (5.28) 

Using (5.26) and (5.27), one obtains a first-order ODE describing the dynamic time be-

havior of the reservoir, 

( ) ( ) ( ) ( )in

0
1 j j

N
B r t A

j
j

r t r t
Q t e

t τ
−

=

∂  = − + − ∂ ∑ .                                  (5.29) 

By solving the ODE of (5.29), one is able to obtain the dB-gain of this EDFA, which is a 

linear function of r(t) for a given fiber. This dynamic behavior of gain makes the EDFA 

behaves like a high-pass filter as can be seen in Fig. 5. 11. 
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Fig. 5.9. Measured dynamic response of the fourth EDFA in the loop system shown in Fig. 5.1. 

The input power to the EDFA is – 6 dB and the pump currents of the 980 nm pump laser are 50 

mA, 100 mA and 180 mA, respectively. 

 

The dynamic gain of the EDFA depends on the pump power as well as the power of 

the input signal. In Fig. 5.9, I show the measured gain dynamic of the fourth EDFA in the 

system, whose position is shown in Fig. 5.1, with different pump powers. In the meas-

urement, I use an acoustic-optic switch, which had a 100 ns increasing time to generate a 

square wave with a duty-cycle of 50% and pulse width of 5.5 ms. The pump power of the 

EDFA was adjusted by controlling of the pump current to the 980 nm pump laser and the 

input optical power was fixed at –6 dBm, which was a typical operation power. To avoid 

saturation of the detector, I placed a 5 dB attenuator in front of the receiver.  
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5.5.2 Selecting the input scrambling rate 

In order to eliminate the effect of PDG and improve the signal to noise ratio of the 

system, one must scramble the polarization state faster than the EDFA response time. 

However, for a system having a single EDFA and a residual PDL, there is a dilemma. If 

the polarization state is scrambled faster than the EDFA response time, the PDL-induced 

amplitude modulation, which has the same frequency as the scrambling frequency, may 

be magnified by the EDFA transient. Fortunately, the transmission system involves a 

chain of EDFAs.  
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Fig. 5.10. Numerical comparison of the response time of a single EDFA and that of concatenated 

five identical EDFAs. The solid line is the simulated dynamic response of one EDFA and the dot-

ted line is the simulated dynamic response of concatenated five EDFAs. 

 

When multiple EDFAs are concatenated together, the total dynamic response is much 

faster than the dynamic response of a single EDFA. I demonstrated this effect by numeri-

cal comparison of the dynamic response of a single EDFA and that of five concatenated 
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EDFAs using a commercial simulation tool, VPI 4.0, Transmission makerTM and Compo-

nent makerTM. In the simulation, each EDFA featured an 8 m Er-doped fiber with a do-

pant density of 1025 31 m , which was close to that of a commercially available Er fiber 

— 402K5 manufactured by INO corp that we used in our EDFAs. A chain of five EDFAs 

is concatenated with 25 km fiber between every two of EDFAs. The fiber loss is 0.25 

dB/km. Every EDFA was operated in the saturation regime and the gain compensated the 

fiber loss exactly. The input to the EDFA chain was a pulse train consisted of eight rec-

tangular pulses with a 5 ms pulse width and a 50% duty circle. The peak power of the 

pulse is set to be –3 dBm. The output optical power was normalized by the output peak 

power. As shown in Fig. 5.10, the response time of a chain of five EDFAs is much faster 

than a single EDFA corresponding to a higher frequency response of the EDFA chain rel-

ative to the single amplifier.  

With the presence of PDL in the system, the input scrambling converts the polariza-

tion modulation to the amplitude modulation, which can be described by  

( )in 0 1 sin 2P P ftδ π= +   , where 0P  is the average power and f is the modulation frequen-

cy. I experimentally compared the response of the first EDFA and that of five concate-

nated EDFAs, which is one round trip. All EDFAs were operated in saturation. In the ex-

periment, I set 0P  to be –6 dBm and I varied f from 50 Hz to 300 kHz. I used the ratio of 

the maximum power to the minimum power, expressed in a logarithmic scale, to quantify 

the amplitude modulation. The input amplitude modulation was set to 0.6 dB to emulate 

the amplitude modulation induced by an element with 0.6 dB PDL and input scrambling. 

The amplitude modulation of the output of the first EDFA and the five concatenated 

EDFAs are shown in Fig. 5.11 as open diamonds and stars, respectively. In both cases, 
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the amplitude modulation decreases at low frequency due to the saturation of the EDFAs. 

However, the lowest frequency at which the amplitude modulation can pass without at-

tenuation shifts from 5 kHz for a single EDFA to 30 kHz for five concatenated EDFAs. 

Therefore, one can scramble the input at a frequency in the window between 5 and 30 

kHz to reduce both the PDG effect and the undesired amplitude modulation induced by 

PDL.  

My colleague, Zhihang Hu, used the average inversion level model to simulate the 

time dependent gain in a single EDFA and five cascaded EDFAs, respectively [61]. The 

simulated results are shown in Fig. 5.11 as solid lines. In the simulation, the pump pow-

ers for the five EDFAs are between 19 dBm and 22 dBm, the erbium doped fiber lengths 

are between 4 and 8 m, the signal absorption and emission cross-section parameters are 

2.43 dB/m and 2.88 dB/m, respectively, and the pump absorption cross-section parameter 

is 2.40 dB/m. The measured results and the simulated results agree very well with each 

other. 

 

 
 

Fig. 5. 11. Amplitude modulation as a function of input modulation frequency. The star and dia-

mond show the amplitude modulation after five EDFAs and one EDFA, respectively, for a sinus-

oidal input. Lines show the corresponding simulation results.  
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I showed this filtering effect by measuring the power fluctuation of a scrambled loop 

with different scrambling rate at the input. Fig. 5.12 shows the measured results when the 

scrambling frequency of the input scrambler is 300 kHz, 25 kHz and 12.6 kHz, respec-

tively. In this experiment, I propagated 10 Gb/s RZ pulses modulated by 215 – 1 PRBS 

pattern in the scrambled loop system and set the PDL level of the system to be 0.6 dB per 

round trip. The average power of the loop was monitored by a photodetector with an 800 

kHz bandwidth after the coupler. The output of the detector was display on a 300 MHz 

digital sampling scope triggered by the control signal of the AO switches.  
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Fig. 5.12. Measured average power fluctuation when the scrambling frequency of the input scram-

bler is 300 kHz, 25 kHz and 12.6 kHz, respectively 

 

As shown in Fig. 5.12, when the input-scrambling rate is 300 kHz, the average power 

of the loop system fluctuates significantly. As the input-scrambling rate is reduced, the 

fluctuation reduces greatly. When the scrambling rate is 12.6 kHz, the fluctuation due to 

the input scrambling is not noticeable. Since the response of single EDFA is about 5 kHz, 

choosing an input scrambling rate of 12.6 kHz is sufficent to reduce the PDG effect. 

      

300 kHz 

25 kHz 

12.6 kHz 
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5.6 Results and discussions 

I studied the system performance of a scrambled loop by measuring the Q-factor dis-

tributions. I extrapolated the Q-factor from the BER margin measurements. In order to 

concentrate on the behavior of the optical noise, I carefully measured the electrical noise 

floor by doing back-to-back measurement without transmission. I subtracted the effect of 

electrical noise from all the measured data, as discussed in Section 3.6. 

       I first investigated the Q-distribution of the loop system at 10,000 km for PDL = 0.2 

dB, 0.4 dB and 0.6 dB per round trip, respectively. For each Q-factor samples, the loop-

synchronous scrambler provided the same rotation for each round trip to emulate the pe-

riodic nature of the loop system. The Q-factor at 10,000 km was obtained from the BER 

margin measurement. Since this measurement took about 20 seconds, the rotation was 

repeated until the margin measurement was finished. Then I randomly chose another ro-

tation to obtain a different Q sample. I show the histogram of the Q-factor distribution 

when the PDL was 0.2 dB per round trip in Fig. 5.13. The pdf of the Q-factor distribution 

was calculated from 400 independent Q-samples. The loop system has a much broader Q-

factor distribution than one would expect for the corresponding straight-line system, and 

the high Q tail overestimates the system performance of a straight-line system. Because 

of the periodicity of the loop, the signal may align with the low loss axis of the PDL ele-

ment in the system every round trip; therefore, the noise orthogonal to the signal in Jones 

space is effectively reduced due to the larger attenuation from the high loss axis of the 

PDL element. The Q-factor is artificially improved. For larger PDL values, the orthogo-

nal noise is eliminated more rapidly, and the maximum Q-factor will be even larger.  
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Fig. 5.13. Measured Q-factor distribution of a loop system at 10,000 km when the PDL per round 

trip is 0.2 dB. 

 

To break the periodicity of the loop system and to more accurately emulate the PMD 

and PDL of a straight-line system, I generated a different random rotation for each round 

trip. This set of random rotations was repeated until the measurement was finished. Then 

I used another independent set of random rotations and repeated the same procedure to 

obtain another sample. I obtained 400 samples of the Q-factor for each of the three PDL 

values. In Fig. 5.14, I showed the measured Q-factor distribution when the PDL was 0.2 

dB per round trip as a histogram with bars and the simulated result as a solid line.  

In the simulation, I generated a random rotation for each round trip and the Q-factor 

is calculated using the Q-formula (3.29), which taked into account the polarization state 

of both the signal and the noise. Using the Monte Carlo simulation, I generated 10,000 

sets of random rotations, which were independent of each other to build the statistics of 

the Q-distribution. As show in Fig. 5.14, the simulated result agrees with the experi-

mental results very well. 
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With this loop-synchronous scrambling technique, the signal orientates randomly, so 

that it is rare that the signal aligns with the low loss axis constantly. As a consequence, 

the noise orthogonal to the signal cannot be reduced. Although the Q-distribution tends to 

be aligned with the low-Q portion of the Q-distribution, shown in Fig. 5.13, due to the 

reduction of OSNR, the Q-factor distribution is much narrower than that in the loop and 

closely resembles the Q-distribution for a straight-line system. Moreover, because the 

loop-synchronous scrambler changes the fiber orientation randomly, once the PDL level 

of the system is fixed, the results are repeatable. 

I also employed a polarization scrambler at the transmitter to reduce the effect of 

PDG. In the experiment, I carefully chose a slow scrambling rate, 12.6 kHz, so that I was 

able to reduce the PDG effect and simultaneously to suppress the amplitude modulation 

induced by the combination of the dynamic gain response and PDL [59]. In Fig. 5.14, I 

show the measured and simulated results for the system with both transmitter and loop-

synchronous scrambling. With the transmitter scrambler, in addition to improving the av-

erage performance of the system, the variation of the system performance is reduced. 
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Fig. 5.14. Distribution of Q-factor of a scrambled loop system when the PDL per round trip is 0.2 

dB with and without the input scrambling at 10,000 km. The histogram with bars shows the meas-

ured results and the solid curves show the simulated results. 

 

Since the scrambling rate at the transmitter is low, compared to the frequency re-

sponse of the receiver, the signal is always polarized for the receiver, and the signal-noise 

beating corresponding to each input polarization state contributes to the variation of the 

Q-factor. In order to simulate the input scrambling accurately, instead of turning off the 

PDG in the EDFA and calculating Q-factor for different fiber realizations, in the simula-

tion, for one fiber realization, I generated 100 input polarization states, which formed a 

big circle on the Poincaré sphere to simulate the input polarization scrambler. Then I fol-

lowed the polarization evolution of each input polarization state. Since the effective PDG 

effect is proportional to the total DOP before each EDFA, I combined all the polarization 

states corresponding to different input polarization to obtain the total DOP. The Q-factor 

was calculated separately corresponding to different input polarization. In the simulation, 

I randomly chose 100 fiber realizations; therefore in total 10,000 Q-factor samples were 
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collected. As shown in Fig. 5.14, the simulated result agrees with the experimental result 

very well. 

In the scrambled loop system, when I adjusted the PDL per round trip in the loop to a 

larger value I observed behavior similar to the low PDL case except that the Q-factor dis-

tribution was broader. When the PDG effect was reduced by the input scrambling tech-

nique, the system performance was improved and the variance of the system performance 

was reduced. However, when the input scrambler is on, the Q-factor distribution is 

asymmetric. In Fig. 5.15, I show the measured and simulated Q-factor distributions with 

the loop-synchronous scrambler, with and without the transmitter scrambler, when PDL 

is 0.6 dB per round trip. The simulation shows that it is the repolarization of the noise 

that causes the asymmetry of the Q-distribution. Since the transmitter scrambler elimi-

nates the effect of PDG, the noise tends to repolarize due to the PDL in the system. 

For those samples that the OSNR is larger than the average, the signal is often closely 

aligned with the low-loss axis of PDL elements and suffers less attenuation than the noise 

mode that is aligned to the high loss axis of the PDL does. In this case, the noise tends to 

become copolarized with the signal because the noise orthogonal to the signal is reduced 

by the high loss axis of PDL elements, so that the signal-noise beating is enhanced. 

Therefore, the Q-factor is lower than that of a system with the same OSNR but in which 

the noise is unpolarized.  Consequently, the large Q portion of the Q-distribution with 

unpolarized noise is missing for polarized noise and the Q-distribution is asymmetric. By 

contrast, if in the simulation I artificially assumed that the noise prior to the receiver was 

unpolarized by setting ASE-ASE 1Γ =  and S-ASE 0.5Γ = , in (3.29), and keeping all other pa-

rameters the same, then as I show with a dashed line in Fig. 5.15, the Q-distribution is 
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much more symmetric.  The results show that to truly predict the system performance and 

to estimate the outage probability, one must include effects of partially polarized noise in 

the receiver model. Otherwise, the simulation result may overestimate the average system 

performance as well as the variation of the system performance. 
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with the input scrambler
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Fig. 5.15. Distribution of Q-factor of a scrambled loop with and without the input scrambling 

when the PDL per round trip is 0.6 dB at 10,000 km. The histograms with bars are the measured 

results. The solid curves are the corresponding simulated results. The dashed line is the simulated 

result when the noise entering the receiver is artificially assumed to be unpolarized. 

 

In Fig. 5.16, I show the comparison of the simulated and measured means and the 

confidence interval of these Q distribution with different PDL levels, with and without 

the input scrambling. The simulated average Q and confidence interval without the input 

scrambling are shown as the solid line and the dashed lines, respectively. The confidence 

interval is the interval between the average Q plus one standard deviation and the average 

Q minus one standard deviation. The dots and the open circles are the corresponding ex-
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perimental result. The simulated results of the average Q-factor and the confidence inter-

val with the input scrambling are shown as the dotted line and the long dashed lines, re-

spectively. The filled squares and the open squares are corresponding experimental re-

sults. 
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Fig. 5.16. Comparison of the average system performance and the variation as a function of PDL 

per round trip with and without the input scrambling. The simulated average Q and the confidence 

interval without the input scrambling are shown as the solid line and the dashed lines, respectively. 

The dots and the open circles are corresponding experimental results. The simulated results of the 

average Q-factor and the confidence interval with the input scrambling are shown as the dotted 

line and the long dashed lines, respectively. The filled squares and the open squares are corre-

sponding experimental results. 

 

Without the input scrambler, the mean Q is not sensitive with the increasing of the 

PDL in the system; however, the variation of the system performance increases greatly. 

With the input scrambler, the mean Q of the system performance improved significantly 
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and the variation of the system performance reduces. However, in this case, the mean Q 

decreases as the PDL level in the system increase. The reason lies on the fact that when 

the OSNR is above average, the noise repolarizes in the direction close to the signal, so 

that the signal-noise beating is enhanced, decreasing Q. Since the PDG effect is effective-

ly reduced in my system with an appropriate input scrambling, my system can be used in 

the study of intra-channel effects of a WDM straight-line system with wide channel spac-

ing where the inter channel effects are negligible. 

 

5.7 Conclusions 

I demonstrated that with the loop-synchronous scrambler, which breaks up the perio-

dicity of the loop system, the performance of a loop system closely resembles that of a 

straight-line system. I compared the performance of the system with and without the 

loop-synchronous scrambler by measuring the Q-factor distributions. I also employed a 

second polarization scrambler in the transmitter with a scrambling rate of 12.6 kHz, 

which was faster than the response of single EDFA in the system, to eliminate the PDG 

effect and the system performance is proved. By carefully controlling the PDL level in 

the system, I was able to investigate the system performance with different PDL level and 

obtained repeatable results. I showed that repolarization of noise due to significant PDL 

in the system causes an asymmetric Q-factor distribution. I compared our experimental 

results with numerical simulations and obtain excellent agreement. 



 
 
Chapter 6  
 
Summary and future work 

 

 

6.1 Summary 

In my study, I systematically investigated the DOP evolution of the signal and the 

noise, the Q-factor distribution and the polarization state evolution in recirculating loop 

systems. The behavior of a loop system with PDL is very different from that of a straight-

line system due to the periodicity of the optical path and the present of the PDL. The loop 

systems often overestimate the system performance of straight-line systems due to the 

reduction of the noise constantly aligned with the high loss axis of the PDL element and 

the polarization state forms a spiral like evolution.  

The most important goal in my study is to seek an approach that one can emulate the 

Q-factor distribution of the straight-line system using the recirculating loop system. I ful-

filled this goal and overcame the limitation of the recirculating loop system by develop-
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ing a loop-synchronous scrambling technique to break up the periodicity of the loop sys-

tem. 

Besides the loop-synchronous scrambling technique, I addressed several other critical 

issues in loop experiments. I developed procedures to control the PDL level in the sys-

tem, which was necessary to obtain repeatable results and to monitor the PDL level with-

out physically taking apart the loop system. I also investigated the effect of EDFA transi-

ent on the input scrambling. By carefully selecting the input scrambling rate, I was able 

to effectively reduce the PDG effect and the undesired amplitude modulation.  

I investigated the system performance of a scrambled loop system by measuring the 

Q-factor distribution with different PDL levels in the system, with and without the input 

scrambler. I demonstrated that with the loop-synchronous scrambling technique, the Q-

factor distribution of a recirculating loop system closely resembled that of a straight-line 

system. By carefully controlling the PDL level in the system, I was able to obtain repeat-

able statistics results. By carefully choosing the scrambling rate, one can improve the sys-

tem performance and reduce the performance variation and I show that the Q-factor dis-

tribution is asymmetric with a significant PDL in the system. 

I also adapted the reduced Stokes model, which was used to study the penalty due to 

polarization effects in WDM system, to simulate the polarization evolution and the sys-

tem performance of a single channel DMS system. The excellent agreement of the exper-

imental results and the numerical simulations provided the first experimental validation 

of the reduced Stokes model. 

In addition, the results show that polarization effects such as PDL, not only result in a 

variation of the OSNR, but also in repolarization of the noise. However, the widely used 



 

 

115 

Q-factor formula only considers two extreme cases in terms of the polarization: 

unpolarized noise and the noise that is copolarized with the signal. In real systems, the 

repolarized noise complicates the relationship between the SNR and the Q-factor. It is 

very important to develop an accurate receiver model, which takes into account the effect 

of the partially polarization noise. I introduced two factors — (3.27) and (3.28) — to ac-

count for the repolarized noise in the receiver, and then I derived the Q-factor formula in 

(3.29). I also derived an analytical probability density function of the Q-factor distribu-

tion. I validated the Q-factor formula and the pdf of the Q-factor distribution by the ex-

cellent agreement of the experimental results, the numerical simulations, and the analyti-

cal results. I show that even for a fixed SNR, the Q-factor may vary depending on the 

DOP of the noise and the angle between the Stokes vectors of the signal and highly polar-

ized noise will cause a larger variation in the system performance compared to less polar-

ized noise. Since the Q-factor formula does not require one to determine the pulse evolu-

tion during the propagation, it works well with the reduced Stokes model.  

 

 

6.2 Future works  

The reduced polarization model relies on the assumption that the system penalty due 

to polarization effects is separable from other penalties in the system, such as dispersion 

and nonlinearities. In the work reported in this dissertation, the excellent agreement be-

tween the experimental results and the simulated results suggest that in our system, the 

polarization effects are not coupled to the nonlinearity and dispersion. However, in WDM 
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systems, polarization mode dispersion can result in a random walk off of different chan-

nels. If there is PDL in the system, these two effects along with the saturation of the 

EDFAs will result in an energy transfer between channels. That may cause the coupling 

of other effects. For instance, if the power in a channel changes due to PDL, the effect of 

nonlinearity will also change. Therefore, in the future work, it is very important to study 

in what parameter range that the penalties due to polarization effects can be separated 

from those of others and the reduced model holds in a WDM system.  

The dynamical behavior of the inter-channel, polarization-dependent process is com-

plicated. It is not only related to the magnitude of polarization effects, such as PMD and 

PDL, but also related to the number of the channels and the channel spacing. The inter-

channel polarization effects may affect the channel nonlinearity and the chromatic disper-

sion compensation. Future work will investigate the interaction between the polarization 

effects and the effects of fiber nonlinearity and chromatic dispersion, when all the chan-

nels are coploarized or orthogonally polarized at the input, respectively.  It is also very 

important to examine the combined effect when the channel spacing becomes small.  



 
Appendix  
 
 

Because a recirculating loop system has a static nature, inherently it is periodic. We 

may write its Jones transfer matrix after n round trips as loop
n=T M , where loopM  is the 

Jones matrix for one round trip of the loop an the mode of loopM .  This 2×2 Jones matrix 

has a pair of complex eigenvectors ±u  and corresponding eigenvalues λ±  and 1λ± ≤ .  If 

λ is an eigenvalue of loopM , then nλ  is an eigenvalue of T. A vector of an arbitrary field 

can always be written as the combination of these two eigenvectors.  It follows that the 

input field can be written as 

 in c c+ + − −= +u u u , (A.1) 

then the output field vector is  

 out in
n nc cλ λ+ + + − − −= = +u Tu u u . (A.2) 

If we let ( )exp iλ λ φ± ± ±=  and ( )expc c iψ± ± ±= , then the corresponding output Stokes 

vector is ( )† † †
out out 3 out out 1 out out 2 out, ,

T
σ σ σ= −s u u u u u u , yielding 

 ( )2 2 2 2 ( )
out 2 Re

nn n i n
cc c c c e φ ψλ λ λ λ − ∆ +∆

+ + + − − − + − + −  = + +  s s s s , (A.3) 

where ±s  are the Stokes vectors associated with the Jones eigenvectors ±u , 

( )† † †
3 1 2, ,

T

c σ σ σ+ − + − + −≡ −s u u u u u u , φ φ φ+ −∆ = − , and ψ ψ ψ+ −∆ = − .  In the above expres-

sions, the σk are the standard Pauli spin matrices.  In (A.3), the coefficients of ±s  are de-
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termined by the eigenvalues λ± . If the eigenvalues have different magnitudes, then one 

obtains spiral motion. The smaller eigenvalue decays faster as the parameter n, the num-

ber of round trip increases. The spiral centers are given by one of the polarization 

eigenstates ±s that has larger coefficient due to the eigenvalue with larger magnitude. The 

rotation is described by the third term, where the rotation angle of the spiral due to one 

round trip of the recirculating loop is given by the phase difference of the eigenvalues, 

φ∆ .  In addition, the ratio of the magnitudes of the eigenvalues gives the relative decay 

rates of the coefficients, thus yielding the rate of convergence to a spiral center. 

In order to understand the spiral behavior in a loop with PDL, we describe the trans-

formation of the PDL as a Jones matrix, which is written as 

 PDL

1 0
0 1 ε
 

=  − 
M ,                                                        (A.4) 

where the strength of the PDL is given by a small nonnegative parameter ε that is less 

than one and the direction of the second component is the high loss axis of the PDL. Due 

to the static nature of the loop, we are able to lump all the PDL elements in the system to 

on element at the end of each round trip. Hence the transfer matrix of one round trip can 

be written as 

loop PDL rot=M M M ,                                                           (A.5) 

where rotM  is a unitary matrix representing a fixed rotation on the Poincaré sphere giving 

the rotation due to the fiber and the loop’s polarization controller, and PDLM  represents 

the effect of PDL in one round trip of the loop.  Note that in this formulation, we have 

neglected the effects of noise, PDG, and amplifier saturation.  Our reduced model simula-

tions do consider these effects and show that the predominant effects that alter the polari-
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zation state of a signal are the random fiber rotation and the PDL.  In Jones space, the 

matrix rotM  can be expressed in the form 

 2 2 2
rot

2 2 2

cos sin ( )sin
( )sin cos sin

ix z iy
z iy ix

γ γ γ

γ γ γ

 + − −
=  + − 

M .                                  (A.6) 

Since an arbitrary rotation on the Poincaré sphere can be expressed as a rotation through 

an angle γ about an axis, which is given by a unit vector ( )rot , , tx y z=s , this rotation ma-

trix can be easily converted to Stokes space. In this notation, although the low-loss axis 

of the PDL is given by PDL (1,0,0)t=s  in Stokes space, the results are general. 

We exploit the fact that ε is small by using standard perturbation methods to expand 

our eigenvector in powers of ε [49].  We seek eigenvalues and eigenvectors that satisfy 

( )loop λ− =M I u 0  and expand λ and u in power series in ε as 2
0 1 ( )Oλ λ ελ ε± = + +  and 

2
0 1 ( )Oε ε± = + +u u u .  From these expressions, we can compute the Stokes eigenvector 

in powers of ε as well, obtaining (0) (1) 2( )Oε ε± ± ±= + +s s s .  Doing this type of expansion 

yields, to ( )O ε , the Stokes eigenvectors 

 21
rot PDL rot rot PDL2 2( ) cot ( )Oγε ε±  = ± + + × + s s s s s s .                           (A.7) 

Note that due to the ( )O ε  corrections, the eigenstates in Stokes space are not antiparallel 

in the presence of PDL, unlike the principal states for PMD [51].  This is illustrated in 

Fig. 4.9 (a).  We may use this expansion to compute the output Stokes vector for an arbi-

trary input state using (A.1), (A.2) and (A.3), as well, yielding 

 [ ]2 2
out 2 sin( ) cos( )n n nA c A c B c c n nγ ψ γ ψ+ + + − − − + −= + + + ∆ − + ∆ +1 2s s s t t           

(A.8)  
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where ( )rot PDL rot PDL= × ×1t s s s s  and rot= ×2 1t s t , and where we are neglecting higher-

order contributions.  In this expression, 

 2
rot PDL1 (1 ) ( )A Oε ε± = − ⋅ +s s ,                                             (A.9) 

and 

 21 ( )B Oε ε= − + .                                                 (A.10) 

From (A.8), one can see that the B term contains sinusoidal pieces that correspond to the 

spiral or circular motion on the Poincaré sphere and the ±A term provide the spiral center. 
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