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This paper discusses techniques for generating digital sequences 
of noise which simulate processes with certain known properties 
or describing equations. Part I of the paper presents a review 
of stochastic processes and spectral estimation (with some new 
results) and a tutorial on simulating continuous noise processes 
with a known autospectral density or autocorrelation function. In 
defining these techniques for computer generating sequences, it 
also defines the necessary accuracy criteria. These methods are 
compared to some of the common techniques for noise generation 
and the problems, or advantages, of each are discussed. Finally, 
Part I presents results on simulating stochastic differential equa- 
tions. A Runge-Kutta (RK) method is presented for numerically 
solving these equations. 

Part I1 of the paper discusses power law, or 1/ f a, noises. Such 
noise processes occur frequently in nature and, in many cases, with 
nonintegral values for a. A review of 1/ f noises in devices and 
systems is followed by a discussion of the most common continuous 
1/ f noise models. The paper then presents a new dim1 model for 
power law noises. This model allows for very accurate and efficient 
computer generation of l /f" noises for any a. Many of the 
statistical properties of this model are discussed and compared to 
the previous continuous models. Lastly, a number of approximate 
techniques for generating power law noises are presented for rapid 
or real time simulation. 

I. INTRODUCTION 

The need for accurate simulation of stochastic processes 
and stochastic differential equations arises across almost 
all disciplines of science and engineering. Mechanical and 
aerospace engineers often simulate complex, nonlinear 
models of dynamic systems acted upon by noise. In 
electrical engineering and physics it is common to simulate 
various types of colored noises as models for sensors 
and actuators. There are numerous nonlinear systems 
arising in all areas of physics that require techniques for 
simulating stochastic differential equations. And the timing 
community has a long history of simulation for modeling 
phase and frequency noise in oscillators [2], [4], [5], [8], 
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[lo], [121-[14], [271, 1341, P71, [391, [411, [441, 
[531, [541, [571, [581, [@I, 1681, [@I, [731-[751, [771, [791. 

This paper discusses the theory and mechanics of gen- 
erating digital, pseudorandom sequences on a computer 
as simulations of known stochastic processes. In other 
words, given the autospectral density or autocorrelation of 
a process or a differential equation describing a system, 
methods are presented for producing digital sequences with 
the "correct" discrete spectrum or correlations. The precise 
meaning of correct is discussed but can vary depending 
upon the specific application. Though many new results are 
reported, particularly in the area of nonlinear differential 
equation integration and power law noise simulation, this 
paper is also intended as a tutorial on colored noise analysis 
and generation. Thus the detailed proofs or derivations are 
omitted or referred to cited works. 

The paper is divided into two parts. The first discusses 
the general problem of simulating stochastic processes on 
a computer. Some time is spent defining what is meant by 
a stochastic simulation and criteria are presented for eval- 
uating the effectiveness of a generation method. Some past 
techniques, particularly those involving direct simulation 
in the frequency domain from given spectra, are reviewed 
with an eye toward pointing out some of their deficiencies. 
Part I presents two techniques for simulating noise with a 
given spectra or autocorrelation function-a time domain 
and frequency domain method. In addition, a RK algorithm 
for simulating general, nonlinear, inhomogeneous stochastic 
differential equations is reviewed. 

The second part focuses on the problem of generating 
sequences of power law or l / f "  noises (also often called 
fractal processes). This is a remarkably ubiquitous prob- 
lem spanning innumerable fields, from music and art to 
hydrology and low temperature physics. Countless devices 
and systems have been seen to produce noises with an 
autospectral density proportional to f-" with f the cyclic 
frequency and a a real number between 0 and 2. Many 
models and techniques have been proposed in the past 
to simulate these noises. Because the spectrum is not 
rational, it is impossible to use standard linear system 
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theory and differential equation models to simulate the 
noise via the techniques in Part I. Thus in Part 11, after 
a review of past generation techniques, a new model is 
proposed. This model, first proposed by Hosking [31] and 
later independently by the author, can be used to generate 
digital sequences of l/fa noise. The properties of this 
model are discussed in some detail as well as the advantages 
it has as a generating mechanism over previous methods. In 
particular, it can be used over a frequency band of arbitrary 
size and it is strictly scale invariant. 

Because noise simulation spreads over so many diverse 
disciplines, it is difficult to find a notation agreeable to all 
participants. This paper, therefore, uses common engineer- 
ing notation and methodology for the stochastic process 
and system theory discussions. This notation is consistent 
with that used in [9], [14], [33], [52], [62]. Discussions of 
discrete system theory and the a-transform can be found in 
[231, 1511, [521. 

PART I: STOCHASTIC PROCESS SIMULATION 

11. REVIEW AND DEFINITIONS 

Before embarking on the detailed discussion of noise 
simulation, it is useful to review some fundamentals of 
stochastic process theory and noise measurements. This 
section presents background information and definitions 
as well as some new, and important, results in stochastic 
process analysis and spectral measurement and estimation 
that will form the foundation for the simulation techniques 
discussed in Section 111. The review material in this section 
follows the presentation in [52]. Further reading can be 
found in [9], [26], [62], [70], [74]. Much of the information 
on spectral density measurements and estimation can also 
be found in [9]. 

A. Stochastic Processes 
It is assumed that the reader is familiar with the funda- 

mental axioms of probability and basic random variables. 
If we are given the probability space ( R , 7 ,  F), then the 
stochastic process z ( t )  is defined in [52] as follows: 

"z( t ,  C) is a stochastic process when the random variable 
z represents the value of the outcome < of an experiment 
7 for every time t," where R represents the sample space, 
7 the event space or sigma algebra, and F the probability 
measure [26]. 

Normally, the dependence upon the event space, C, is 
omitted and the stochastic process is written as z(t) .  If the 
probability distribution function for z is given by F ( z ) ,  
then we can define the general nth order, time-varying, 
joint distribution function, F(z1,. . . , z,; tl, . , tn) ,  for 
the random variables z ( t l ) ,  . . . , z(tn). The joint probability 
density function is then given by 

In most cases, and all those in this paper, only the first 
and second order properties of the process are desired rather 
than the complete joint distribution function. For Gaussian 
processes, these second order properties completely define 
the process distribution. These properties are defined via 
the following equations: 

J -00 

where q is the mean value of the process and the notation 
E{ } refers to the expected value operation taken over the 
ensemble of processes {z(t ,  C)}. 

The two-time autocorrelation of the process is given by 

The autocovariance is defined by 

(Note that all processes in this paper are real). 
Thus, the variance of the process, a2(t) ,  is given by 

C( t ,  t). For this paper, all processes will be assumed zero 
mean so that the autocorrelation and autocovariance are 
identical. 

In general, the moments of a stochastic process defined in 
(2) and (3) vary with time. However, a stationary process 
is defined as one whose density function is invariant to 
time shifts and thus independent of the times t l ,  t z ,  . . . , t,. 
Such a process is called strict-sense stationary. A wide- 
sense stationary process is one whose first and second order 
properties only are independent of time, that is, q(t)  = q, 

For stationary processes the autocorrelation function def- 
and R(t1,tz) = R(t1 - t z ) .  

inition is often written in the asymmetric form: 

The variance of the process is then given by R(0). 
Since we will be dealing with many nonstationary and 

transient processes, it is more convenient to use a symmetric 
definition of the autocorrelation function: 

For stationary processes, (6) and (5) give the same result. 
However, when we later compute spectra and other prop- 
erties of nonstationary processes, (6) will be necessary in 
order to achieve consistent and accurate results. 

This distinction is important as we consider noise gen- 
eration. In simulation, we must be concerned with the 
transients of processes, thus implying that all signals under 
consideration for simulation will be nonstationary. How- 
ever, we can define an asymptotically stationary process as 
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one whose autocorrelation function satisfies: 

lim R ( ~ , T )  = R(T).  
t+m 

(7) 

Many of the process models used for simulation will be 
asymptotically stationary. 

Lastly, it is useful to have a measure of the “memory” 
of a process. The correlation time, for a zero mean process, 
is defined in [52]: 

B. Example Processes 
Introduced here are three fundamental stochastic pro- 

cesses. These processes form the basis of all the analysis 
and simulation that follows. 

1) Markov Process: The first process of interest is the 
exponential correlation (or first-order Markov) process (of- 
ten called low pass white noise for reasons we will see 
later). This process is stationary and zero mean with auto- 
correlation function: 

This process has a correlation time, by (8), of a. 
2 )  Brownian Motion: The second, and immensely impor- 

tant, process is the Wiener process or Brownian motion. 
Brownian motion was first experimentally discovered in 
1827 by Robert Brown when he observed the erratic motion 
of particles trapped in the pollen of plants which resulted 
from the interaction of the particles with the molecules 
of the liquid. The first rigorous and quantitative analysis 
of Brownian motion was performed by Albert Einstein in 
1905, where he presented the first estimate of Avogadro’s 
number. Later, P. LRvy and N. Wiener developed a more 
mathematical treatment of the associated stochastic process 
[29]. Here, only a brief introduction to Brownian motion is 
presented. A good mathematical description of the process 
can be found in E291 and a more general discussion in [30], 

The Brownian motion process, B(t) ,  is defined as a zero 
mean stochastic process that satisfies the following three 
properties [30], [52]: 

[521. 

a) B(0) = 0. 
b) B( t )  - B(s)  is stationary and normal with mean 0 

and variance cx It - S I  for s 5 t. 

are independent for tl 5 tz 5 . . . t,. 
c) B(t2) - B(tl), B(t3) - B(t2),  “ .  7 B(t,) - B(tn-1) 

Properties b) and c) are often used to point out that the 
process has independent and stationary increments. These 
three properties can be used to derive the autocorrelation 
function for Brownian motion [30], [52]: 

(10) 
min(t, s) for t ,  s > 0 

for t , s  5 0 RB(t, s) = { 
where Q is a constant of proportionality in definition b. 

804 

It is straightforward to show from this that Brown- 
ian motion is a nonstationary process with symmetric 
autocorrelation: 

RB(t,r) = Q(1- 7) .  
Using (8) it can be seen that the correlation time of 

Brownian motion is undefined. Frequently, Brownian mo- 
tion is said to have infinite memory-that is, it retains 
correlation with values infinitely far back in time. 

Papoulis [52] has an alternative derivation of the Wiener 
process as the continuous time limit of a random walk. A 
random walk is defined as a discrete step .process where at 
each time step At the value of the process is increased or 
decreased (with probability 1/2) by a fixed amount. In the 
limit as At + 0 the Wiener process is formed and can be 
shown to satisfy the three properties above. For this paper, 
it is more convenient to use the conventional continuous 
definition above with the random walk being derived, in 
Section 111, as a discrete approximation of Brownian motion 
in order to simulate it. 

3)  White Noise: The last process of interest is the deriva- 
tive of the Brownian motion-white noise. The concept of 
white noise arose as Langevin tried to develop a dynamical 
description of Brownian motion [74]. The result was a first 
order linear differential equation driven by a white noise 
process (that is, a process with uniform spectral density) 
known as the Langevin equation. In order to produce pure 
Brownian motion (with no retarding term), white noise then 
becomes defined as the derivative of Brownian motion [26], 
[301, [521, W21, [701, W I :  

a d  w(t) = -B(t) d t  

or, alternatively, Brownian motion becomes modeled as the 
integral of white noise. 

Unfortunately, this definition raises some difficulties as 
the Wiener process is everywhere nondifferentiable. This 
implies that white noise does not exist as a stochastic 
process by itself, which will be evident when we examine 
its second order properties. Rather, white noise as defined 
in (12) is given meaning by its behavior as a functional in 
stochastic integrals of the form: 

lb f ( t ) w ( t )  dt = f ( t )  dB(t). (13) lb 
The stochastic integral in (13) can be defined in a number 
of ways. The most common definition is due to Ito and the 
resulting integral is known as the Ito integral. In essence, 
the Ito definition provides an interpretation of the integral 
in (13) that also results in the necessary Brownian motion 
properties when f ( t )  G 1. In addition, it allows certain 
stochastic processes to be modeled as linear systems that 
result in the measurable autocorrelation functions of Section 
11-D. The drawback is that the usual rules of calculus (such 

PROCEEDINGS OF THE IEEE, VOL. 83, NO. 5, MAY 1995 



as the chain rule) must be modified for stochastic processes’ 
[301, [701, [741. 

While the It0 equation will be discussed a bit further in 
Section IV when simulation of general nonlinear stochastic 
differential equations is discussed, it is beyond the scope of 
this work to discuss the details and subtleties surrounding 
white noise and the definitions of stochastic integration and 
differentiation. Excellent discussions can be found in [30], 
[70], [74], [75]. For the purposes here, white noise can be 
treated as a stochastic process with second order properties 
that result in solutions of integrals such as (13) consistent 
with the rules and properties of the It0 calculus and that, 
upon integration, result in a Brownian motion satisfying 
the previous definition. We must only remember that white 
noise does not exist as a bona fide physical process but only 
as an intermediate tool to the solution of stochastic integral 
and differential equations. This will prove very useful in 
Section I11 as we model and simulate stochastic processes. 

Following this procedure, it can be shown that white 
noise can be interpreted as a zero mean stochastic process 
with values w(ti )  and w ( t j )  that are uncorrelated for every 
ti and t j  # t; [52]. The autocorrelation of white noise can 
then be taken as 

where Q(t )  is an arbitrary scaling constant and 6 ( t )  is the 
Dirac delta function. Using the usual rules for the delta 
distribution, the correct properties of the Ito integral can 
be shown. This should come as no surprise-just as white 
noise is defined only by its behavior as a functional in 
integrals such as (13), so is the delta function defined [ 111. 
This also illustrates the difficulty in interpreting white noise 
as a process, since the delta function (and thus its variance) 
is undefined at zero. Note that stationary white noise has 
Q(t)  = Q. 

C. Spectra 
An additional measure of a stochastic process is the 

autospectral density. The autospectral density (or simply 
spectral density)2 of a wide sense stationary stochastic 
process is defined by the Fourier transform of the auto- 
correlation function: 

03 

(15) s ( w )  = R(7)e-jW7 dT. 

This holds as long as the autocorrelation is absolutely 
integrable: 

A L 
03 

(16) 

‘The other most common definition for the stochastic integral is the 
Stratonovich Integral. This definition has the property that the usual rules 
of calculus apply. Further properties of this definition will not be pursued 
in this paper. 

2This is also often called the mean square spectral density or power 
spectral density. 

Because R(r)  is real and even, this can be simplified to 
the Fourier Cosine transform: 

S(w) = 2 /U R(T) cos w r  d r .  (17) 

Thorough discussions of the spectral density and its prop- 
erties can be found in [9], [ l l ] ,  [12], [51], [521. 

Using (17), the spectral density of the exponential corre- 
lation process can be computed: 

The spectral density of stationary white noise is a con- 
stant, &. This lends apparent the name “white noise”-the 
process contains equal information at all frequencies. 

The use of the spectral density as a description of a 
nonstationary process’s second order properties is more 
difficult. Equation (16) is not normally satisfied and thus 
the spectral density does not formally exist. This problem 
is significant since, as discussed earlier, most simulated 
processes are nonstationary unless we allow for decay of 
transients ([37] mentions a way to avoid this problem by 
careful selection of initial conditions). In addition, in Part I1 
we will be generating power law noises (generalizations of 
Brownian motion) that are also always nonstationary. There 
has been some discussions [9], [46], [51] of the problem of 
defining the spectral density for nonstationary processes, 
but most fall short as a tool for developing simulation 
techniques. 

This dilemma is resolved by examining the spectral 
measurement and estimation process. The true usefulness 
of the spectral density is in computing the second order 
statistical properties of a measured stochastic process. In 
addition, noise generation is frequently based upon the 
desire to simulate a process with a spectral density modeled 
after a measured one. Therefore, in the remainder of this 
paper, we consider only spectra obtained via Fourier anal- 
ysis of measured signals (called the sampled spectrum or 
periodogram [9], [51], [52]). References [51] and [52] have 
discussions of other spectral estimation procedures, most 
based upon the use of an autocorrelation estimate (which 
is difficult to obtain in practice). 

To derive the sample spectrum, first, the finite Fourier 
transform is computed for a segment of the process from 
to to to + T [91, 

I have deviated from the standard here by allowing a time 
shift to such that the experimental data is an arbitrary 
segment from the given process (this, for example, allows 
us to wait for the decay of any transients). 

An initial estimate of the spectral density is made via [9]: 

A 1  S ( w )  = -\X(wIT)l2. T 
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This estimate of the spectrum is both biased and in- 
consistent. In fact, the error in the estimate can be as 
large as 100% for all T.  In practice, the variance in the 
estimate is reduced by averaging a large number, nd, of the 
estimated spectra from different segments of the process 
(see [9], [51], and [52] for more details on periodogram 
smoothing, spectral averaging, and windowing). Here, the 
estimate is made consistent by equivalently considering 
the expected value of (20). Using the definition of the 
symmetric autocorrelation function, a formula can then be 
found for the sampled spectrum of an arbitrary segment of 
a process: 

S ( w )  e E { S ( w ) }  

R(t ,r)  dt e-iwr d 7  1 
1 

0 t , + T + ~ / 2  

= L [ h L2 
+ 1’ [ R ( ~ , T )  dt e-jwT d7.  

(21) 
Again, this formula differs from most standard texts be- 
cause of the use of t, to allow arbitrary segments and the 
use of R(t, 7) to allow for nonstationary processes. 

For an asymptotically stationary process (and thus large 
to),  (21) reduces to [9]: 

t , + T - ~ / 2  

S ( W )  = E { S ( w ) }  

(22) 
Note that this estimate is biased. However, for large T ,  the 
sample spectrum converges to the correct spectral density 
resulting in an asymptotically unbiased estimate. This bias, 
due to the finite length of the process, is addressed in more 
detail below. 

Normally, the spectra of processes under consideration 
are presented based upon (15) or the linear systems tools 
presented in Section 11-D. However, the result in (21) c~ 
now be used to compute the expected sample spectrum, S, 
for any process, including nonstationary ones. For example, 
using the autocorrelation function given in (1  l), the spectral 
estimate for Brownian motion is computed to be 

cos wT 2 
- 2  - sin wT. (:) w2 Tw3  

(23) 
For the usual discrete frequency steps, w = 2alc/T, or 

for T much larger than to, this reduces to 
2 

W 2  
S B ( W )  = -. 

This spectral estimate was taken using the most conve- 
nient of windows-a rectangular one. However, it is known 
that such a time window can cause significant distortions 
to the spectrum, both at specific frequencies [9], [51], 

[52] and as a broad-band bias [ S I .  It is very common 
to use alternative time windows that improve the spectral 
estimate. For example, using a Hanning window [9] (with 
normalization 8/3) on the Brownian motion process, the 
new spectral estimate is (simplified for t, = 0): 

S B ( W ) = -  

80a4 - 24.rr2T2w2 + T4w4 
+ T 4 ( 4 a 2 / T 2  - w2)3 

}. (25) 
48.rr2Tw sin wT - 4T3w3 sin wT 

+ T 4 ( 4 a 2 / T 2  - w ’ ) ~  

For large T this converges to 1/w2. 
This difference is a surprising and very intriguing result 

and particularly remarkable in that the error is precisely a 
factor of The obvious question is which represents the 
“true” spectral density of the Brownian motion? Since the 
formal spectral density of Brownian motion doesn’t exist, 
the better question is which provides the most accurate 
information about the second order properties and possible 
linear models (see Section 11-D) for Brownian motion? 

No clear answer to these questions has been provided. 
However, consistency would suggest that the Hanning 
windowed result is closer to the “correct” estimate. One 
would expect that a nonnormalized Markov process should 
converge point-wise to the Brownian motion as the correla- 
tion time becomes very long (i.e., much longer than the time 
window of observation). This observation would suggest a 
1/w2 form for the Brownian spectral density (see 18). This 
1/w2 form also agrees with the transfer function model for 
Brownian motion when viewed as the integral of a white 
noise (see Section 11-D). It is this author’s belief that the 
factor of two in (24) is an error due to a broad-band bias 
introduced by the rectangular window. 

The formula in (21) and the results that follow will prove 
to be very useful in the next section when we discuss linear 
systems. 

D. Linear Systems 
For the majority of applications, including those in this 

paper, the desired processes can be modeled by Gaussian 
white noise into a linear system. The advantage of this 
modeling approach is that the resulting system can often be 
easily converted into a form that allows digital simulation. 
Section I11 describes that process in detail. In this section, 
a brief review of linear system theory is presented. 

The output process, z ( t ) ,  of a linear system driven by 
white noise is represented by the convolution integral: 

z ( t )  = h(P)w(t - P )  d P  (26) I’ 
where h(t) is the causal impulse response function 
of the system and w(t) is Gaussian white noise with 

31t turns out that for power law noises described in Part II this bias 
changes with the power of the autospectral density. 
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autocorrelation function Q ~ ( T )  and the integration is 
defined in the sense of Ito. 

Note that (26) differs slightly from the usual convolution 
integral that has limits of negative and positive infinity. 
While that definition makes computing the second order 
properties of stationary processes very convenient, it is of 
little value in noise simulation and modeling. A lower limit 
of minus infinity implies a noncausal system while an upper 
limit of infinity eliminates transient information necessary 
in any numerical implementation. Rather, the formula in 
(26) is a transient representation of a causal, realizable 
system [85]. 

Using (26) we can find an expression for the symmetric, 
nonstationary autocorrelation function for the linear system 
in terms of the impulse response h(t):  

t 2 7 - 2 0  

t 2 7 - 2 0  

Because of the transient nature of the linear systems 
being considered, it is most convenient to use the Laplace 
transform of the system in (26) for computing spectra. Thus 

X ( s )  = H ( s ) W ( s )  (29) 

where H ( s )  is the transfer function of the system (the 
Laplace transform of the impulse response). The Laplace 
version of the spectral density is then given (assuming a 
spectral density for the white noise of Q): 

S(s) = QH(s )H*(s ) .  (30) 

For stationary noises, the spectral density can be found by 
substituting j w  for s in (30) (see, e.g., [9]): 

S ( W )  = Q H ( j w ) H ( - j w ) .  (31) 

As an example, we examine the linear system description 
for the first-order Markov process. This system has impulse 
response and transfer function: 

Using (27) the autocorrelation function of this process is 

(33) 

For large t ,  this process is asymptotically stationary with 
an exponential autocorrelation equal to that given in (9). 
The spectral density via (31) is the same as that given 
for the exponential process in (18). If instead we use the 
nonstationary transient form of the autocorrelation in (21), 
we find the spectral estimate: 

e-' /"(a/T)(l  - a2w2) cos wT + 
- 2e-'/"(a/T) sin wT + ae-2t,/a 

( 1  + a2w2) 

(1  + a"2) T 
1 

COS WT - - 2 ( 1  + e-2r /a ) ]  } . (34) 

Observe that for large T,  where the process approaches 
stationarity, this spectrum converges to that in (18). This 
is true even when to = 0 and all the transient details are 
included in the sample spectrum computation. 

Note that, operationally, we can perform the substitution 
in (31) even for nonstationary noises, despite the fact that 
the Fourier transform of the original autocorrelation does 
not exist and thus the spectral density has no meaning. The 
obvious question is whether the resulting function agrees 
with the computed spectral estimate via (21). Or, asked 
the other way, can we use the computed spectral density 
estimate from (21) to postulate a linear system model for 
the process with impulse response h(t)  and transfer function 
H ( s )  even though that process is nonstationary (that is, h(t) 
represents an unstable or marginally stable system)? 

The answer to that question is often yes, as can be seen by 
examining Brownian motion. From (12) Brownian motion 
is given as the integral of white noise. Its impulse response 
function is thus the unit step function and its transfer 
function is 

(35) 

From (27) the autocorrelation can be computed and shown 
to be the same as presented in (1 1). The spectral density, 
using (35), is thus: 

1 
H B ( S )  = -. 

s 

Q 
W 2  

SB(W) = -. 

This spectral density is the same as the computed spectral 
estimate using the Hanning window in (25). As discussed 
earlier, the spectral estimate with a rectangular window 
results in the correct form but with a factor of two bias 
Again, it is this analysis in part that supported the conclu- 
sion that the rectangular window result is biased. Only the 
windowed result, 1/w2, can be used for a consistent linear 
system model to produce a process with the correct second 
order properties. In summary, the spectral estimate, even 
of a nonstationary process, is, in many cases, a legitimate 
basis for formulating linear system models for the stochastic 
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process. This point will take on great importance in Part I1 
of this paper when we develop models and generating 
techniques for power law noises. 

E. Discrete Linear Systems 
For discrete linear systems, the convolution integral in 

(26) is replaced by the discrete convolution sum: 

systems here provided the tools for computer genera- 
tion. The first few sections of Section I11 discuss first 
how to relate this discrete model to the continuous one 
and presents the proper criteria for evaluating accurate 
simulations. 

111. DISCRETE, LINEAR SIMULATION 

(37) 
e=o 

where we is an independent and identically distributed (IID) 
noise sequence with autocorrelation Ewmwl = QJml. 
Note that, unlike white noise, w here is a well defined 
discrete time process. 

Similarly to the continuous case, the discrete, symmetric 
autocorrelation function is given by 

I kfmI2-l  

or 

f k-ml2--1 

Here, for wide-sense stationary noises, the spectral den- 
sity function, s d ( W ) ,  is the Discrete Fourier Transform 
(DlT) of Rd(m). Using the discrete linear system model 
and z-transform theory, this discrete spectrum is given by 

where H ( z )  is the discrete transfer function or z-transform 
of the discrete pulse response hk. 

The frequency spectrum is found by substituting ejwAt 
for z. References [9], 1231, [51], [52] have more details 
on the discrete spectral density calculation. It short, this 
involves computing the periodogram rather than the sample 
spectrum by using a sampled version of (19). It is shown in 
these references that this process, using the DFT, produces 
an accurate estimate of the expected sample spectrum in 
(21) (for bandlimited spectra and with the proper cautions 
about aliasing). In order to obtain the correct scaling to 
convert &(U) into an estimate of the continuous spectral 
density (implying that Rd(m) resulted from samples of an 
observed process) it is necessary to multiply s d ( W )  by At 

The next section presents a detailed description of meth- 
ods for simulating stochastic processes of the type described 
in Section 11. Essentially, the brief discussion of discrete 

[91, [111. 

A. Criteria and Dejnitions 
Before discussing in detail the mechanics of generating 

digital sequences of colored noise, it is important to define 
the criteria for an accurate noise simulation. Since in this 
section only the linear system models described in Section 
I are considered, a mean square definition of a stochastic 
simulation is appropriate. This is done as Definition 1. 

Dejnition I :  A zero-mean, discrete, Gaussian stochastic 
process, X k l  is said to “simulate” the continuous, Gaussian 
stochastic process, x ( t ,  <), if the discrete, symmetric auto- 
correlation function, Rd(k, m ) ,  is equal to samples of the 
continuous autocorrelation, R(t, T ) .  That is, 

& ( k ,  m )  = R(kAt, m a t ) .  (41) 

Since we are limiting ourselves to zero mean, Gauss- 
ian processes, it is a fact that a simulation that satisfies 
Definition 1 also has the property that the probability 
mass distribution of X k  is equivalent to samples of the 
joint probability distribution of x ( t ) .  Such a simulation 
will be called strict-sense. For cases where x ( t )  is non- 
Gaussian distributed such that only Definition 1 is satisfied 
but the probability distributions do not correspond, then 
the simulation will be called wide-sense. Kloeden and 
Platen [74] also point out these two possible ways to 
simulate the solution to a random differential equation 
of which the linear systems in Section I1 are special 
cases. There, they refer to the scrict-sense simulation as 
a strong simulation where a single member of the en- 
semble of random processes, { x ( t ,  <)}, is simulated. That 
is, the discrete simulation process is a sampled sequence 
from one of the (bandlimited) members of the ensem- 
ble { x ( t ,  <)}. Wide sense simulations, where only the 
first and second order properties of the process are re- 
produced, are referred to as weak simulations. Again, it 
is a fact that for Gaussian random processes these two 
approaches are identical. More will be said on this subject 
as well as on nonlinear stochastic differential equations in 
Section IV. 

This distinction is more important than it may seem, 
as it is possible to generate many non-Gaussian processes 
that are quite different but have identical autocorrelation 
functions. An example in [12], [52] illustrates this, where 
the random telegraph signal (non-Gaussian) is shown to 
possess the same autocorrelation functions as a first order 
Gauss-Markov process. Also, many shot-noise processes 
have very similar statistics to the Gaussian counterparts 
with the same impulse response function but, for low arrival 
rates, can have very different probability densities [86]. This 
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paper only considers Gaussian processes or high rate shot 
noise processes that, by the central limit theorem, approach 
Gaussian distribution. 

It is very important to point out here that satisfaction of 
Definition 1 is not equivalent to generating noise with a 
discrete autospectral density that samples the continuous 
autospectral density function. Many authors [ 101, [19], 
[S3], [67] have attempted noise generation by creating 
discrete random spectra (modeled as samples of the con- 
tinuous one) and inverting the complex Fourier series to 
the time domain. This is a particularly attractive approach 
for processes with nonrational spectral density functions 
(such as l/f" noises). In fact, rarely is the autocorrela- 
tion available or even estimated in practice. Most often, 
the measured noise sequence is converted directly into a 
periodogram (via (20)), from which a continuous form is 
inferred. 

This approach also seems justified as it is fairly straight- 
forward to compute the moments of X ( f )  (the Fourier 
transform of x ( t ) ) .  These are then used to randomize the 
frequency shaped spectral components X R (  f )  and X I (  f )  
(see, for example, [lo], [19], [S31, [671). 

This method of generation, however, ignores the distor- 
tions to the autospectral density produced by sampling and 
windowing. Returning to Definition 1, suppose a contin- 
uous autocorrelation function of a wide-sense stationary 
process, R(T),  with corresponding spectral density, S(w), 
is sampled, resulting in &(mat). The resulting discrete 
autospectral density can then be found by taking the DFT 
of a length N segment of Rd(mAt). More commonly, 
the approach of Section 11-C is used to find the sampled 
spectrum. This discrete density function, Sd(w), only ap- 
proximates S(w) and approaches it exactly only as At ---f 0 
and N * oc. The effects of windowing have already been 
discussed and exist even for continuous processes. There 
are two remaining distortions due to sampling effects and 
causality. 

The sampling of R(T)  to produce Rd(m) results in 
aliasing of the high frequency content below the Nyquist 
frequency (1/2At). That is, the spectrum of &(m) is 
periodic. The original function R(T)  can be found from 
this sample only for perfectly bandlimited spectra, an 
impossibility in practice. 

As discussed in Section 11-D, it is essential when gen- 
erating noise that the system producing it be causal. This 
implies that the real and imaginary parts of the Fourier 
transform of the process (19) are a Hilbert transform pair. 

In theory, it is possible to generate noise in the frequency 
domain by considering these effects when shaping the ran- 
dom spectral density. However, this is extremely difficult in 
practice. If, instead, the discrete spectrum is shaped based 
solely on the assumed continuous function, ignoring these 
distortions (as is frequently done in the literature), then 
the autocorrelation function of the resulting sequence after 
inversion will be distorted and not satisfy Definition 1. 

The next sections describe more precise methods for 
generating noises that do not suffer from these problems. 
These techniques use the discrete linear system models 

described in Section 11-E to produce noise sequences that 
simulate continuous processes. To do so, there are two 
questions that must be answered: 1) How does one find 
hk when given h( t )  (and thus R ( ~ , T ) ) ,  or, equivalently, 
S(w),  of the continuous process, so that Definition 1 is 
satisfied? and 2) how can (37) be used to generate noise 
when hk is known? 

B. Batch Frequency Domain Simulation 
We answer question (2) first and defer until the next 

section a discussion of finding the proper hk. Here we 
assume that some hk is provided such that the autocor- 
relation in (38) is equivalent to samples of the continuous 
autocorrelation given by (27), as required by Definition 1. 

The first, and most straightforward, method to generate 
the time sequence in (37) is to simply perform the discrete 
convolution; that is, treat (37) as a moving average (FIR) 
filter with an infinite number of coefficients. (It is important 
to perform linear convolution rather than circular convolu- 
tion, that is, to assume that h k  and W k  are causal sequences 
with zero value for indices less than zero [Sl].) Though this 
technique benefits from being able to generate any number 
of points, it is extremely slow. Rather, it is more efficient 
to use the common practice of replacing convolution by 
multiplication in the frequency domain. 

The convohition in (37) is implemented much more 
rapidly by multiplying in the frequency domain. Causality is 
assured by generating a zero-padded, IID sequence, wk, and 
a zero padded sequence of pulse response values, hk (guar- 
anteeing linear rather than circular convolution). These are 
then transformed, multiplied, and inverse transformed using 
commonly available FFT routines to produce the simulated 
sequence. The variance of the IID noise, Q d ,  is chosen 
to match amplitudes with the continuous autocorrelation 
function or, equivalently, an unbiased autospectral density 
estimate. 

This technique's main drawback is its memory burden. 
Because it is a batch method, it can require large amounts 
of memory for long time sequences. In addition, only 
sequences whose lengths are powers of 2 can be generated 
in reasonable time. Section 111-D will describe the more 
efficient recursive algorithms for real time generation that 
can be applied to time-invariant linear systems. 

Note the difference between this batch, frequency do- 
main method and the direct one described earlier. In the 
references cited, the random spectrum was generated in the 
frequency domain directly. Here, the pulse response and 
white noise input are generated in the time domain first. 
Transformation to the frequency domain is only used to 
rapidly compute the convolution by replacing it with mul- 
tiplication, taking advantage of the rapid FFT algorithms. 

C. Selecting hk 
The second question asked above addresses how to select 

the proper hk given h( t ) ,  R(t,.r), or S(w), to ensure that 
R(lc,m) is equal to samples of R(t,.r). In general there 
is no definitive formula or technique for choosing hk. In 
Part 11, for example, when l / f"  noise is considered, an 
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H ( z )  is postulated, an hk computed, and later they are 
shown to possess the desired properties. 

It would be convenient if hk could be computed by sam- 
pling h(t) for the process being simulated; unfortunately, 
this is only true when H ( s )  is a rational function of s. This 
can be shown by discretizing the first half of (27) for T > 
0. Sampling R(t,T) in (27) results in: 

k-mI2-1 ( n + l p t  

R(kat,  mat) = Q / h(p )qp  + mat) dp. 
n=O nAt 

Let 17 equal p - nat: 

R(kAt, mat) 
= Qk-m/f-llAt 

n=O 
h(v + nAt)h(v + nAt + mat)  dv .  

(43) 

In general, this cannot be solved for an h k  to reproduce 
(39). For certain linear systems, however, with rational 
transfer functions (in particular, those with a single pole 
and no zero), it is true that h(t + T )  = h(t)h(.r). For this 
special case, 

k-m/2-1 

R(kat,mat)=Qd hnhn+m (4) 
n=O 

where 

hn = h(nAt) (45) 

and 
At 

Q d  = Q I  h2(v) dv. (46) 

Thus it is here possible to simulate the colored noise (as 
per Definition 1) using the discrete convolution in (39) by 
simply sampling the continuous impulse response function 
and choosing the discrete IID noise variance using (46). 
For systems with irrational transfer functions or multiple 
poles and zeros, the discrete pulse response must be found 
by some other method (for example, that of Section 111-D 
below). 

An alternative approach for many rational systems is 
to find hk by direct system identification 1371, [831, 1841. 
Here, R(k, m) is estimated from measured data (rather than 
assumed a priori) and the coefficients of an ARMA model 
are computed directly from the Yule-Walker equations (see 
Section 111-D). This avoids the need to assume a function 
for R(t, T )  or S(w)  but does require the process to be well 
fit by an ARMA model. 

D. Rational Spectra ana' Linear, Stochastic 
Differential Equations 

As mentioned above, when H ( s )  is a certain rational 
function of s, hk can be found exactly by sampling h(t). 
However, there is an easier method for generating the 

noise in this case. For linear systems with rational transfer 
functions, the output can be written as the solution of 
the following inhomogeneous, linear stochastic differential 
equation with constant coefficients: 

( ( t )  =F<(t )  + G w ( t )  
4t)  = C<(t) (47) 

where w( t )  is a vector of white noise processes with 
spectral density matrix Q , H ( s )  = C(s1 - F ) - l G ,  and 
the order n of the matrix F is the same as the number of 
poles in a minimal realization of H(s ) .  (There are many 
excellent books on linear systems that discuss this subject 
in much more detail. See, for example, 1121, [131,[221, [231, 
[33], [62]). Note that, as mentioned in Section 11-B, (47) 
is a special case of the nonlinear It0 stochastic differential 
equation that will be discussed in slightly more detail in 
Section IV. 

Reference [36] has a derivation of RK type integra- 
tion methods for simulating systems described by (47). 
However, while a numerical integration would produce a 
sequence with autocorrelation function only approximating 
the continuous one, in this linear case, the system can 
be solved exactly. The equations below show how to 
produce a sequence with autocorrelation exactly sampling 
the continuous one. Further discussion of R-K methods is 
deferred until Section IV. 

References [52] and [74] discuss in some detail the 
properties of the autocorrelation function and autospectral 
density for solutions to the system in (47). It is also proven 
that samples X k  of the process x ( t )  are guaranteed to 
have an autocorrelation that samples R(T). For brevity, 
these analyses will not be reproduced here. Instead, the 
equations below show how to solve (47) at the points 
2 ( t k ) .  'The resulting sequence is thus a sampling of z ( t )  
and therefore, by the proof in [52], satisfies Definition 1. 
Note that while these derivations can be performed in a 
very rigorous manner using the definition of the Ito integral 
(see, for example, [74]), here they will be solved using 
a more standard systems approach and the delta function 
description of white noise. 

The solution to (47) can be found in many texts on linear 
systems [13], [33], [62]. This solution is given by 

<(t) = @(t,  O)<(O) + it @(t, ~ ) G ( T ) ~ ( T )  d~ (48) 

where @(t,  T )  is the state transition matrix and equals, for 
linear, rational systems, @ ( t ) @ - l ( T ) .  @(t) is the solution 
of the matrix differential equation: 

(49) 
d 
dt  
-@(t) = F(t )@(t ) .  

Note that we have generalized (47) to include time 
varying systems where it is impossible to define a transfer 
function. For the time invariant case, @(t, T )  = @(t--7) and 

@(t) = L - l { ( s l -  F ) - l }  eFt.  (50) 
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To develop a simple, recursive formula for noise gener- 
ation, we solve (47) over an interval At to find: 

For time invariant linear systems (51) and (52) simplify to 

(53) t k + 1  = @(At )& f wk 

and 
At 

Q d  = @(T)GQGTaT(T) dT. (54) 

This equation for Q d  can be solved using an algorithm due 
to Van Loen 1651. (See Appendix I) Note that this is the 
matrix equivalent of an ARMA model for the process. The 
matrix equation (53) can be converted into an ARMA time 
series using simple z-transform theory 1231, 1331, [51]. 

Equation (51) or (53) can be used for very fast and 
efficient noise generation to simulate noises given by ra- 
tional transfer functions (and thus linear, time invariant 
differential equations) or by linear, time varying differential 
equations of the form (47). 

E. Example Simulations 
I now return to the three sample processes and show 

how the methods of the previous subsections can be used 
to simulate two of them: the Markov process and Brownian 
motion. Because white noise is undefined in practice (it has 
an infinite variance) it is not possible to simulate it. How- 
ever, the next section will discuss useful approximations 
for simulating uncorrelated measurement noise. 

The first order Markov process given in (32) can be 
represented by the stochastic differential equation: 

i + bx = bw(t) (55)  

where b = l /a.  This can be discretized, for a time step At, 
using (48)-(54) to the following difference equation: 

(56) - A t l a  
xk+l  = e  xk + W k  

where W k  is an IID process with variance: 

This difference equation is then very easily simulated 
on a computer using any standard pseudorandom number 
generator and normal distribution algorithm. 

We can also examine the discrete autocorrelation and 
spectral density of this discrete process. The autocorrelation 
can be found by substituting the pulse response for (56), 

Spectral Density of Continuous and Discrete uarkov Roccss 

IO' 100 10' 102 
1041 ' ' " ' " "  ' ' " " " '  ' ' " " " '  ' * , , , - .  

10 * 
Frequency (ridsec) 

Fig. 1. Spectral density of continuous (solid) and discrete 
(dashed) Markov process. 

h k  = e C k A t f a ,  into (39). The result is found using standard 
formulas for finite sums: 

Upon substituting for Q d  from (57), this becomes 

I .  (59) &(k,m) = -[[e Q -mAt /a  - e - 2 k A t / a  

2a 

Equation (59) is precisely equal to samples of the con- 
tinuous autocorrelation for the first order Markov process 
as given in (33). Thus the discrete process satisfies the 
fundamental requirement of Definition 1 for an accurate 
simulation. 

Finally, the discrete spectral density can be found most 
easily via (40) by squaring the transfer function of (56): 

The resulting spectral density is 

This spectral density is clearly not equal to samples of 
the spectral density for the continuous Markov process 
given in (34). Equation (61) provides a specific example 
of the distortions that occur in the spectral density due to 
aliasing and, thus, why the simulation definition specifies a 
time domain matching of the autocorrelation function. (61) 
is periodic about the Nyquist frequency, r /A t ,  and very 
accurately approaches the continuous spectral density only 
for low frequencies and small time steps (see Fig. 1). The 
calculations in Fig. 1 were made for a time step of 0.1 s (10 
Hz sampling). Note that the distortions beyond the Nyquist 
frequency of approximately 30 rads are actually the folding 
of negative frequencies. More will be said on the subject 
of aliasing in the next section. 
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Brownian motion can be discretely modeled in a similar 
way. Here, we will use a slightly different approach and 
take the direct integration of white noise and convert it into 
a sum: 

This can be written as a difference equation: 

x k + 1  = xk -k w k  

where W k  is an IID process with variance &At.  This is the 
standard random walk formula [52]. 

We can take the z-transform of (63) to find the discrete 
transfer function: 

(63) 

This results in the spectral density: 

Again, the spectral density for a random walk is peri- 
odic and does not sample the Brownian motion function. 
However, for low frequency, this approximately equals: 

This is the desired form of the spectral density given by 
(36). 

F. Sensor Noise, Aliasing, and Prejiltering 
Finally, a few words should be said about the aliasing 

phenomena seen in the last section. All of the approaches to 
simulation above have contained a hidden assumption-that 
the simulated discrete process includes the integrated effect 
of the noise acting upon the linear system during the 
simulation time step. This is significant and important when 
the simulation is modeling a dynamic system with random 
inputs described by a set of stochastic differential equations 
(that is, a driven linear system). In that case, an accurate 
representation of the state of the system at each time step is 
desired including the action of all inputs during the interval. 

This is not true when modeling sensor noise. Frequently, 
the goal is to simulate the sampling of a measured random 
process with a given spectral density or autocorrelation. In 
that case, the integrated effect of driving noise on the model 
described in Section 111 is equivalent to aliasing the sampled 
process. That is, if we directly sample the continuous 
autocorrelation function then the resulting discrete spectral 
density is given by [9], [23], [51], [52]: 

where w, is the sampling rate of 27tlAt. The discrete 
spectral density includes contributions from all the shifted 
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spectra due to aliasing. This accounts precisely for the 
distortions in the spectra seen in Section 111-E. In fact, 
numerical calculation of (67) using the continuous spectral 
density for the first order Markov process exactly repro- 
duces (61). 

Normally, aliasing is avoided during measurements by 
first prefiltering with a high order low pass filter. To 
correctly simulate the desired process including sampling, 
the prefilter must be added to the linear system model 
before applying the methods of this section. This would, 
for example, remove the increase in the spectral density of 
(61) near the Nyquist frequency. 

We can now approximately simulate a measured “white 
noise” process. If the process being measured has a very 
high frequency bandwidth compared to the sample rate, 
then the resulting sampled sequence can be well approxi- 
mated by an uncorrelated IID process. If we assume a very 
sharp cutoff analog prefilter, then the variance of the noise 
can be easily computed. For a perfectly rectangular filter 
(noncausal and impossible in practice) with cutoff at the 
Nyquist frequency, the autocorrelation function is 

Thus the variance of the approximate white noise process 
is given by R(0) or Qd = & / A t .  We can also compute the 
variance for a realizable filter. For example, an Mth order 
Butterworth filter has spectral density: 

where B is the filter cutoff frequency, or Nyquist frequency, 
of 1/2At. The discrete variance can then be computed via 
ParseVal’s Theorem [9] by integrating the spectral density 
in (69) to find: 

For high order filters (large M ) ,  this is well approximated 
by the same result as the perfect low pass filter, Qd = 
&I A t .  

Iv. NUMERICAL INTEGRATION OF STOCHASTIC 
DIFFERENTIAL EQUATIONS 

A. Introduction 
It was mentioned in Sections I1 and 111 that the linear 

systems described there were special cases of the more 
general, nonlinear Ito stochastic differential equation: 

d 
dt  - X ( t ,  C) = F ( X ( t ,  C), t )  + G ( X ( t ,  Cl, t ) w ( t ,  Cl. (71) 

In this section the problem of simulating the solution to 
(71) is addressed. Unlike in the previous section, where the 
simulation was intended to generate sequences with second 
order properties that reproduced those of the process being 
modeled, here, (71) is assumed a priori as a model of the 
dynamics of a system driven by noise. The objective is to 
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numerically “solve” the stochastic differential equation as 
a simulation of the modeled system. 

The stochastic differential equation (71) commonly oc- 
curs throughout science and engineering, most frequently 
as a dynamic model of a physical system driven by random 
forces or an electrical network with random voltage or 
current inputs. Again, one of the earliest forms was the 
Langevin equation used to describe Brownian motion [74], 
[75]. Before looking at simulation methods, it is worth 
briefly asking what is meant by (71) and how an a priori 
determination of such an equation may come about. There 
are two interpretations of the Ito equation given in (71). 
The first is simply as a stochastic differential equation 
driven by white noise as described in Section 11. There 
are two sources of this interpretation. The first is in using 
the linear form of (71) to model stochastic processes 
with known (or determined) autocorrelation functions (or 
spectral density). The Ito interpretation of white noise and 
corresponding solution can be used to create processes with 
the desired second order properties (autocorrelation and 
autospectral density). Secondly, equations of the form in 
(7 1) are often derived directly through dynamic descriptions 
of systems driven by random forcing functions. If these 
functions are considered to be independent processes, then 
in the continuous limit it is natural to assume a differential 
equation driven by white noise. Such equations arise in 
mechanics and electrical engineering extremely often and 
are the basis for much of modern control theory. 

There is an altemative interpretation of (71) due primarily 
to Wong [70]. In contrast to the above Ito description, the 
white noise driving term is considered as an approximation 
of a very wide band but smooth process. In this case, the 
differential equation can be solved exactly for each sample 
path of the smooth process using classical calculus. Unlike 
the solutions above, which are nowhere differentiable due 
to the white noise, here the resulting sample paths are 
smooth. The obvious question is whether the solution to 
such an equation converges to the It0 solution of (71) as the 
low-pass driving noise approaches white. The Wong-Zakai 
theorem shows that process does converge to the solution 
of a stochastic differential equation, but in the sense of 
Stratonovich rather than Ito [74]. That is, a correction term 
must be added to (71) for an It0 solution to be equal to the 
convergent sample paths of the approximation [74], [75]. In 
other words, the Stratonovich interpretation of (7 1) is more 
appropriate when the white noise is taken as an idealization 
of a smooth, wide band noise process [74]. Grigoriu [77] 
has some discussion of the Wong-Zakai theorem and uses 
it to simulate stochastic processes under this interpretation 
but with only a simple Euler integrator. 

It is interesting to point out that in the vector formulation 
of (71), the second interpretation can be converted to the 
first by the use of linear filtering. That is, rather than idealize 
the bandlimited process by white noise, it is reproduced by 
the methods of Section I1 using a linear It0 model driven 
by white noise. This is then added to the vector system in 
(71) to produce a larger It0 differential equation driven by 
white noise. Such an approach provides a link between the 

Stratonovich interpretation of Wong and the more common 
(and useful) Ito interpretation. Wong and Hajek [70] have 
some discussion of the vector solution, but it is an open 
question whether the It0 solution of this larger system is 
the same as the Stratonovich solution (It0 system with 
correction term) of the smaller system. 

As mentioned, the linear systems methods in Section 
I1 and the remainder of this paper examine only the 
It0 interpretation of (71). This is primarily due to the 
convenient treatment of white noise by a delta function and 
the many useful mathematical properties of the It0 equation. 
In addition, it is the Ito interpretation that is typically 
used in the control and dynamics work using stochastic 
differential equations. Should the interpretation of Wong 
and Zakai be more appropriate for a particular problem, 
the Stratonovich equation can be converted to an Ito one 
using the correction term described in [70] or [74] or the 
system can be augmented as described above. 

It is beyond the scope of this paper to delve into the 
subtleties and mathematical details of stochastic differential 
equations. There is a large body of work on the properties 
and solutions of It0 (and Stratonovich) differential equa- 
tions of the form in (71). The reader is directed to [61], 
[70], [73], [74] for examples of such treatments. Rather, 
this section expands upon the generation methods of the 
previous sections to examine techniques for simulating 
nonlinear stochastic differential equations. In particular, 
some recent work on a RK numerical solution approach 
is summarized. A detailed discussion and derivation of this 
technique is in [36]. 

There are many commercial packages available for sim- 
ulation of dynamic systems described by continuous differ- 
ential equations. Many now use graphical, block diagram 
interfaces for building the simulation. These packages must 
be used with care, however, on systems with random 
inputs such as that in (71). None of the available packages 
correctly accounts for the randomness in their solution 
methods. There are two main difficulties: 1) how to evaluate 
in real time the accuracy of the solution and, if possible, 
perform step-size control and 2) how to pick the mean 
and variance of the random input sequence to satisfy some 
appropriate criteria (see [58]) .  To avoid these difficulties, 
the problem is often simplified in two ways. Sometimes, a 
simple, first order Euler integration is performed, because 
the properties of this integrator are easily examined and 
the driving noise covariance matrix is easily computed to 
be QD = &/At (this is directly related to the result for 
bandlimited white noise in Section 111-F). More frequently, 
a higher order method is used but with only a single call 
to the input noise generator per step. That is, while there 
may be numerous function evaluations to compute a single 
integration step (F(X, t) and G ( X ,  t) above), the input 
noise is only computed once at the beginning of the step and 
given the Euler value, &/At. This is equivalent to a zero 
order hold on the input noise and is particularly convenient 
when using commercial simulation software that allows 
external inputs to be applied to a block diagram simulation. 
This second approach is referred to as the “classical” 
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method in [36]. It is shown there that, independent of the 
order of the integration method, accuracy is lost by using 
this approach for the input noise. 

It is not hard to see that most standard variable step 
and multistep methods are inappropriate for stochastic 
simulation. Multi-step methods rely upon assumptions re- 
garding the smoothness of the solution-assumptions that 
are incorrect for the random sample sequences (recall that 
sample processes of the solution set of (71) are nowhere 
differentiable). In addition, the local error criteria normally 
used for determining step size variation do not apply to 
a stochastic simulation as a very accurate solution can 
still have large changes between steps, even for small 
step size. 

References [73] and [74] have excellent discussions of 
both implicit and explicit solution methods for stochastic 
differential equations, both strict-sense and wide-sense. 
These methods, however, are exclusively low order Taylor 
series approaches. For more complicated systems it can 
be very unwieldy to find the Jacobian and higher order 
derivatives of the functions in (71). Reference [36] therefore 
presents an explicit, single-step, RK method for numerically 
solving (71). At present, the derivation has been performed 
only for the linear version of (71) where closed form 
solutions for the covariance exist. It is believed that under 
certain restrictions the same method can be generalized for 
nonlinear systems. 

Before presenting the method, however, it is necessary to 
slightly modify Definition 1. Recall that for linear, Gaussian 
systems strict and wide sense simulations are the same. 
However, for nonlinear systems described by (71), this is no 
longer true and it is difficult, if not impossible, to derive an 
autocorrelation function in general. It is possible, however, 
to describe the time-varying covariance of the solution, 
X ( t , < ) ,  of (71). (See [36], [61] for a clear description of 
the Fokker-Planck equation used to derive the covariance 
solution). While in [74], [75] both strict and wide sense 
solutions are discussed, this work only examines wide sense 
methods. Current research is directed at strict-sense RK 
simulations. 

Therefore, for general nonlinear or time varying systems 
we use the restricted Definition 2 for stochastic simulation. 

Dejnition 2: A zero-mean, discrete stochastic process, 
X k ,  is said to "simulate" the continuous stochastic process 
given by (71), X ( t ) ,  if the discrete covariance matrix, Pk, 
is equal to samples of the continuous covariance matrix, 
P( t ) ,  within the error of the integration routine. That is, 

The most general linear form of the stochastic differential 
equation is given by [74], [75]: 

d 
- X ( t )  dt  = ( F ( t ) X ( t )  + a@))  + G(t )w( t )  

The differential equations for the mean and covariance 
of (73) can be found using the It0 formula for the chain 
rule [74]: 

d 
dt  -m(t) = F(t)m(t)  + a ( t )  

m d 
dt  -P = F( t )P  + PF(t)T + Bl(t)PB"t)T 

1=1 

+ a(t)m(t)T m + m(t)a(t)T + G(t)QG(t )T 

+ (t)m(t)QIT G" t)T 
1=1 

+ Gl ( t )Q'm(t)TBl ( t )T ) .  (74) 

It is more common to examine linear equations without 
the driving term a ( t )  (zero mean) and without the bilinear 
matrix term B(t) .  It is this form that is worked in this 
paper and in [36]. For these linear stochastic differential 
equations, as given by (47), the covariance matrix solves 
the matrix differential equation [14], [36], [61], [62]: 

P ( t )  = F( t )P( t )  + P( t )F( t )  + G(t )Q( t )GT( t ) .  (75) 

Though it will not be studied in this paper, it is possible 
to develop a more general expression for the covariance 
using the Fokker-Plank equation for the nonlinear system 
in (71). This equation is [36], [61]: 

P ( t )  = E { F ( X ( t ) ,  t ) X T ( t ) }  + E { X ( t ) F T ( X ( t ) ,  t ) }  
+ E { G ( X ( t ) ,  t ) Q ( t ) G T ( X ( t ) ,  t ) ) .  (76) 

The next section presents a RK algorithm for solving (71) 
such that Definition 2 is satisfied. 

B. Runge-Kutta (RK) Solution Method 
The'RK method is a simple, and probably the most 

commonly used, single step numerical integration routine 
for solving differential equations. There are many different 
RK type routines of different orders available. The general 
RK integration algorithm is given as follows: 

If z(t) is the solution of the differential equation, 

4 t )  = f(z, t )  (77) 

then z(t)  is simulated at time t k + l  by the following set 
of equations: 

zk+l = z k  + aik i  + azkz + . . . + a&, 
kl = h f ( t k ,  z k )  

kj = hf t k  4- C j h , z k  + ajiki)  

j - 1  

(78) ( i= l  

where h is the step size. 
These equations are an order n RK integrator. The 

coefficients ai, c i ,  and aji are chosen to ensure that z k  

simulates the solution z(t)  to order hn+l. That is, 

z ( t k )  = zk + o(hn+'). (79) 

The coefficients in (78) are found by Taylor expanding 
both (77) and (78) to order h" and matching coefficients. 
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Table 1 Fourth Order, Time Varying Stochastic RK Coefficients 

f f l  0.25001 352 164789 
a2 

a 3  

ff4 

ff2l  

ff31 

0.32 

f fd l  
ff42 

a 4 3  

91 
92 
4 3  

0.67428574806272 
-0.OO831795169360 
0.08401 868 18 1222 
0.66667754298442 
0.63493935027993 
0.00342761715422 

2.69723745 129487 
0.29093673271592 
3.99956364361748 
1.64524970733585 
1.593303551 18722 
0.26330006501 868 

-2.32428921 184321 

It is easily shown that there are many possible choices 
of coefficients. Often, additional criteria are proposed for 
selecting solutions [32], [87]. The most common solutions 
are for n = 1 (Euler), n = 2 (trapezoidal), n = 3, and n = 
4 and can be found in [321, [561, [871. 

Reference [36] presents the details for deriving the proper 
set of coefficients in (78). In particular, the problem of 
determining the correct variance for the IID input noise 
at each function evaluation is solved. The coefficients 
are selected by modifying the normal RK derivation and 
Taylor expanding the covariance equation in (75) and 
the expectation of the square of (78). Two solutions are 
presented in [36], a fourth order method for time invariant 
equations and a fourth order method accurate to only third 
order for time-varying systems. 1 present here only the time- 
varying solution as it is more general and is believed correct 
for a larger class of nonlinear systems described by (71). 

The RK solution, xk, for the stochastic differential equa- 
tion in (71) is thus given by the random version of (78): 

2 ~ + 1  = x k  + ~ r l k l  + a2k2 + . . . + ank, 
k i  = hF(tk,  x k )  + hG(tk, xk)wi 

The IID noise, wi, has variance equal to qiQ/h, where Q 
is the spectral density of the input white noise in (71). The 
coefficients ai, aj;,  ci, and qi are found using the technique 
described above. The details can be found in [36]. For the 
time varying solution, the ci's are given by the standard 
conditions: 

c2 =a21 

c3 =a31 + a32 

c4 = a41 + a42 + a43- (81) 

The remaining coefficients are presented in Table 1 [36]. 
Fig. 1 shows the result of using this method on the first 

order Markov process described by (55). The covariance 

of this solution is given by the autocorrelation in (33) 
evaluated at zero lag: 

Q P ( t )  = - (1-  
2a 

Fig. 2 plots the true covariance from (82) with the 
covariance found from averaging 800 sample sequences 
from three different methods-the RK solution described 
here, the classical approach using a zero-order hold on the 
noise, and the RK approach of Eggs described in [58]. 
More examples of the RK solution technique can be found 
in [36]. 

Again, it is conjectured that this same set of coefficients 
can be used to simulate nonlinear stochastic differential 
equations as well. Since the derivation was made ignoring 
the bilinear term, it is believed this extension only works 
on nonlinear systems that, when linearized for small states, 
do not have a bilinear dependence on X ( t ) .  There is an 
example in [36] to show the performance on nonlinear 
systems and current research is examining further examples. 

PART 11: l/f" NOISE GENERATION 

v. INTRODUCTION TO POWER LAW NOISE MODELING 

A. Background 
In this part I address the specific problem of generating 

sequences of power law, or l/f",  noise^.^ The name 
derives from the functional form of the experimentally 
determined sample spectral density functions (21)-these 
noises have spectra which grow with low frequency as 
l/f", where f is the cyclic frequency and a is a real 
number, usually between 0 and 2. 

The l/f" property of some noises (i.e., long term corre- 
lation or "infinite memory") has been observed over the 
years in a myriad of devices and systems. In physics 
and engineering, it arises in resistance and thermal fluc- 
tuations, voltages across vacuum tubes and diodes, and 
almost every solid state device, frequency fluctuations in 
oscillators, and voltages in most superconducting devices. 
This noise has also been observed in such diverse fields 
as economics (e.g., the Dow Jones Average [79]), music, 
weather, traffic, and hydrology. The earliest work outside 
of electrical devices was in studying the rate of rainfall in 
various locations, which was seen to exhibit a l / f  type 
spectrum. This hydrological work later led to Mandelbrot's 
development of fractal geometry. Mandelbrot observed 
that variations, on any scale, in the geometry of natural 
phenomena (leaves, branches, coastlines, mountains, etc.) 
also exhibit this l / fa  variation in the frequency domain. 
A rich variety of information on l / f  noise studies can be 
found in [4], 171, 1171, [201, [211, 1381, [391, E421, [571, 
1661, 1671, [791. 

4These noises are sometimes also referred to as pink noise, flicker noise, 
burst noise, low frequency divergent noise, and fractional noise. 
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Fig. 2. Example 1 ,  fourth order stochastic RK solution, h = 0.8 s. 

One of the key features of these noises is the noninte- 
grability of the spectral density for certain values of a. 
In particular, the rapid increase at low frequency for a 2 
1 (often called the “infrared catastrophe” [79]) implies 
inherent nonstationarity of the underlying process. While 
some have argued that there must be a low frequency 
roll off, extremely long time series have been observed 
with consistent low frequency growth [39], [79]. Also, 
comparison to the Wiener process (with a = 2) leads to the 
believability of a nonstationary description. Unfortunately, 
as discussed earlier, there is some difficulty in applying 
traditional spectral analysis to nonstationary processes. This 
was pointed out by Barton and Poor [7] and Flandrin [20] in 
connection to the spectral density for l / fQ noise processes; 
they thus restricted their attention to values of a in the 
range O< a < l(where the process is stationary). However, 
in Section 11-C it was pointed out that the experimental 
spectral density given by (21) is well defined even for many 
nonstationary noises-thus enabling a broader range of a 
to be considered. 

There has been a broad range of research over the years 
on 1 / f  noises encompassing both microscopic physical 
models and macroscopic statistical properties. Much of the 
work on fractal geometry was made using the discovery 
that l/f-noises are scale invariant and thus are random 
fractals. [19], [42], 1441, [45], [53], [60], [67] Recently, 
there has been a very fruitful body of work on wavelet 
analysis of l/f noise applied to both synthesis, modeling, 
and estimation of the noise that builds upon this self-similar 
property [20], [46], [78]-[81]. This paper, however, focuses 
only on the problem of generating sample sequences of the 
noise with a brief background on the noise modeling in 

816 

Section V-B to support this development. The reader is 
directed to the references for more extensive treatment of 
the various modeling techniques. 

As described in Part I, in order to use the simulation 
methods of Section 111, a time domain, parametric model for 
the noise (such as an impulse response or transfer function) 
is needed, in contrast to the nonparametric description of the 
noise’s second order properties in terms of only the spectral 
density that have been described thus far. This model 
must produce a time-varying, symmetric autocorrelation 
that when substituted into (21), results in the observed 
l / fa  spectral density (This can be called the fundamental 
property of the power law noise model). This part of the 
paper presents such a model using standard linear system 
analysis. The remainder of this section describes continuous 
time approaches to modeling l / f”  noise to support the 
development of a digital model. The following section 
points out the issues raised regarding simulation using this 
model and presents the suggested approach for discrete time 
generation. 

B. Continuous Noise Modeling 
Past attempts at modeling power law noises can be 

loosely divided into two categories: physical and statistical. 
Physical models refer to methods directed at explanatory 
theories based on microscopic considerations of the un- 
derlying physical processes. A good review of physical 
noise models can be found in [17]. Dutta [17], and others 
studying physical l/f noise, concentrate on the many 
electrical devices that exhibit the noise. They study both 
bulk properties and microscopic details to understand the 
mechanisms producing these fluctuations. As a result, a 
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wide variety of equations have been put forth to describe the 
noise production process. As Dutta explains, however, “the 
most general models are poorly correlated with experience, 
whereas the most successful theories are the ones with 
the most specific applications” [ 171. In other words, each 
theory is specific to the device being considered, often 
under certain simplifying approximations. 

Statistical modeling refers to a more phenomenological 
approach. This method is best exemplified by the work of 
Barnes and Allan [4], Mandelbrot [42], [44], Voss [66], 
[67], Feder [19], Barton and Poor [7], Flandrin [20], [211, 
and Wornell [78]-[80]. The approach does not look at the 
detailed event space of each device or system, but views 
the phenomenon itself as universal, independent of the 
specific generating mechanisms. A simple, statistical model 
is then pursued that can produce the observed (or assumed) 
properties of the phenomena. Gray [26] calls the probability 
space associated with the statistical model a “canonical 
description of the random variable.” 

There have been a number of general approaches to 
modeling 1/ f -noises over the years. The most common 
fall into three categories-ARMA based models, fractional 
integration, and wavelet analysis. The earliest approaches to 
modeling assume an ARMA form for the system generating 
the noise that fits, in some sense, the 1 /  f a spectral form. In 
other words, they approximate a 1 / sa l2  transfer function 
by a finite number of time-invariant, linear systems. The 
most common approximation is to fit this transfer function 
by a sum of first order Gauss-Markov processes (also 
called a “superposition of Lorentzian spectra” [791) [4]-[61, 
[17], [38], [39], [54], [57], [59]. (An equivalent model is 
the truncated RC line with white noise at its input that 
uses alternating poles and zeros [271, [381, [391, [791.) 
By properly choosing the process pole locations and their 
number, the l / ~ ” / ~  transfer function can be fit to arbitrary 
accuracy. Mathematically, this approach can be expressed: 

There are three problems with this model. The first is its 
inherent coarseness in describing the spectrum. An infinite 
number of poles are necessary to exactly reproduce the 
l / f ”  form, and, since any digital mapping must consist of a 
finite number of poles, errors are incurred when developing 
a generation technique (though admittedly very small). 
Mandelbrot refers to this as the “distributed relaxation times 
panacea” [42]. 

The second problem with the Gauss-Markov method 
arises when trying to model the low frequency divergent 
behavior. As longer sequences are generated, additional 
poles must continually be added, quickly resulting in an 
unwieldy model. If the number of poles is truncated, 
the frequency spectrum will become constant below some 
limiting frequency, resulting in a stationary process and 
incorrect spectral density. 

Finally, the model is not scale-invariant. The pole loca- 
tions are inherently functions of time-scale. More is said 
about scale invariance below. 

As mentioned, there has been much work recently 
on wavelet based models of l/f-noise [78]. As in the 
Gauss-Markov approach, these models have the property 
that they can be made to fit the spectrum with arbitrary 
accuracy. In other words, by selecting the proper basis, the 
proper coefficients, and using a large enough set of terms in 
the wavelet expansion, the spectral density of the wavelet 
based process satisfies [781: 

k l  k2 - < S ( W )  5 -. 14” - IWI“ 
(84) 

This property is identical that of the ARMA based models 
above. In addition, the wavelet approach has the advantage 
of preserving the scale invariance of the modeled process 
(since wavelets are a time-frequency expansion they are 
naturally invariant to dilations and translations of the time 
axis). Unfortunately, for any finite number of terms, the 
resulting spectrum still has ripple about the l/f form 
[78]-[80]. It is also more challenging to relate the wavelet 
based model to a more physical systems approach for 
generation as in Part I. 

In the remainder of this paper I use the third statistical 
approach to modeling due to Mandelbrot and Van Ness 
[45]. As pointed out by Wornell [78], this can be viewed as 
further development of the work of Barnes and Allan [4]. 
This model is developed by observing the obvious simil-ty 
between 1 /  f“ noise and Brownian motion, where S 0; 
l / f ”  Mandelbrot generalized this concept by introducing 
his definition of fractional Brownian motion (FBM). In 
this case, the Wiener process is simply a special case of 
the FBM for a = 2. Fractional Brownian motion can 
thus be defined exactly as Brownian motion in Section 
11-B except with a slight modification to property b. The 
Fractional Brownian motion process, B(t) ,  is defined as 
a zero mean stochastic process that satisfies the following 

properties: 

B(0)  = 0. 

B(t2) - B(tl), B(t3) - B(t2), ’ .  . , B(tn) - B(L-1) 

B f  ( t )  - B f  (s) is stationary and normal with mean 0 
and variance C( It - sla-’ for s 5 t. 

are independent for tl 5 t 2  5 . . . 5 tn. 
In addition to this generalization, Mandelbrot 

added a fourth property of fractional Brownian 
motion. He used a variety of experimental and 
observational evidence to justify his claim that 
l / f a  noise is a fundamental property of nature. 
As mentioned, his study of power law ubiquity led 
directly to his development of fractal geometry for 
describing nature and thus classifying 1 /fa noise 
as a type of random fractal [191, [421, [441, [451, 
[53], [601, [67]. This description produces the fourth 
property of the FBM model: 
The FBM B f ( t )  is self-similar (or scale invariant and 
thus is a random fractal). 
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Scale invariance refers to the independence of the model 
from the scale of observation. The fact that l/f noises (and 
Brownian motion) are scale invariant is suggested by their 
autospectral densities. If the frequency scale is changed, 
the original amplitude scaling can be obtained by simply 
multiplying by an appropriate constant. It was Mandelbrot's 
observation of the universality of scale invariance that 
led to this elevation as a fundamental property. In fact, 
it can be argued that it is this property that is universal 
and accounts for the proliferation of power law noises 
throughout nature. 

To be more precise, the l/f" random process is self- 
affine. Feder [19] defines a self-affine random process by 
the scale-invariance of its time-varying probability density 
function: 

[19] where the new time scale, 5, has been scaled from the 
old one by the factor b. Note that a self-similar (rather than 
self-affine) process is one where the power, H, is unity. 

Here, this definition is referred to as strictly self-affine. 
As in the stationarity and simulation definitions, the self- 
affine property can be made more general by defining a 
wide-sense self-affine process as one where only the first 
and second order moments are scale-invariant. That is, the 
autocorrelation function has the property: 

R(bt, bT)  = b - H R ( t ,  T ) .  (86) 

In the sequel, we only require that the noise models 
satisfy (86). However, for Gaussian noise processes (such 
as those considered here), wide sense scale-invariance is 
equivalent to strict scale-invariance. 

C. Fractional Brownian Motion 
Unlike for standard Brownian motion (a = 2), it is 

difficult to derive from the above definition an unambiguous 
autocorrelation function that can lead to a generation model 
for l / f a  noises. Instead, Mandelbrot [40]-[45] used the 
approach of Barnes and Allan [4] and suggested extending 
this Wiener process generalization to the Laplace domain by 
assuming a transfer function of the form l/sa/', and then 
invoking the fractional calculus. Thus just as white noise is 
the derivative of Brownian motion, we define l/fa noise 
via the fractional derivative: 

where a is a real number, normally between 0 and 2. There 
a many texts on the fractional calculus [16], [49], [50] 
and it is beyond the scope of this paper to discuss the 
existence details of (87). It can be shown, however, that 
the anti-derivative corresponding to (87) is given by the 
Riemann-Liouville fractional integral [50] : 

z ( t )  = - f ( t  - T)"/"-'w(r) d r .  (88) 
r(Q/2) 0 

This is equivalent to a linear system driven by white noise 
with impulse response function: 

whose Laplace transform is l/s"/' as desired [18]. 
As we'll see, this definition of FBM has some problems. 

For Q < 1 it is difficult to define h(t) at t = 0 (this results 
in the lack of a well defined variance). The model also 
does not, in general, produce stationary and independent 
increments satisfying property 2) above. Mandelbrot, and 
later Barton and Poor and Flandrin, tried to correct this 
problem by modifying the fractional Brownian motion 
integral as follows: 

This definition, however, does not solve the problem for 
noise generation as it does not represent a causal, time- 
invariant linear system (there is no well defined impulse 
response function). Instead, I will use in this section the 
traditional definition proposed by Barnes and Allan [4] 
in (88). It will be shown that asymptotically the model 
possesses the desired properties. The problem at t = 0 
will be corrected in Section VI when a digital model for 
generation is introduced. 

Note that many of these problems have been recognized 
before. This is particularly true in the cases where the 
fractional integration model in (90) is used as a definition of 
l / f  noise. In fact, Wornell [79] avoids them by proposing a 
different, frequency based definition for the l/f process and 
shows that Fractional Brownian Motion satisfies that defi- 
nition as well as his wavelet based model to some desired 
accuracy. However, the value of a time based definition was 
explained in Part I, particularly regarding the development 
of correlation properties to be used in developing generation 
models. It is believed that the fractional Brownian motion 
definition given above is the most general and provides 
the most direct connection to the Wiener process. The 
fractional integration equations are shown to satisfy this 
definition in some limits. The fact that they do not satisfy 
the definition in all cases does point out problems with the 
model, but they provide a convenient avenue to developing 
the discrete model in Section VI that is used to generate 
l/f-noises and that does satisfy all the desired properties 
of a FBM. 

Given the convolution integral and impulse response 
function in (88) and (89), the autocorrelation function can 
be computed using (27). These integrals, however, must be 
solved separately for Q = 1 and cy not equal to 1. These 
cases can all be solved via integrals in [25]. For Q = 1, 
this becomes 
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and, for a # 1: 

where zFl(a, /3; y; z )  is the hypergeometric function. 
As mentioned, it is impossible in general to use (92) 

to show that the process has independent and stationary 
increments satisfying condition b. It is also impossible to 
use (92) in (21) to produce the desired l/f" form of S. 
We therefore examine the asymptotic autocorrelations for 
t >> r: 

(93) 
Q R(t,T) E -(log 4t - log 1.1) 
27r 

for a = 1, and 

R(t, r )  Z Q { r(l - a);in(7ra/2) Jrla-' 

(94) 

for a # 1. 
Thus for a < 1 ,  the process is stationary-the time 

dependence in (94) goes to zero for large t. However, the 
variance is undefined as T approaches zero (and as t gets 
small). This problem has been called the "high frequency 
(or ultraviolet) catastrophe" [39], [42], [79] and results from 
the nonintegrability of the spectral density at high frequency 
as well as low frequency for a < 1. The high frequency 
problem has manifested itself for Q: < 1 in two ways-the 
inability to determine h(t)  for t = 0 and the nonexistence 
of a well defined variance. 

For a > 1,  the autocorrelation in (94) shows that, like 
Brownian motion, the process is nonstationary. Though it 
has been claimed that eventually the power must flatten 
at low frequency (possibly due to a second process taking 
over), for many values of a the growth is so slow that, 
on the observation time scales of interest, nonstationary 
behavior cannot be ruled out (see also [38], [39]). In 
fact, such a low frequency cutoff has never been observed 
experimentally, despite extensive attempts at obtaining very 
long time sequences. 

This asymptotic expansion of the autocorrelation for 
large t can be substituted into (21) to show that the 
measured spectral density of a sample sequence for large 
time does result in the desired form (l/w"), proving that the 
model asymptotically satisfies the fundamental property. In 
addition, these autocorrelation functions are self-affine, sat- 
isfying property d. Finally these autocorrelation functions 
can be used to show that the model results, asymptotically, 
in stationary increments with the form required by property 
b. For a > 1 and large t ,  the variance of the increments is 

lAtl"-' (95) 
2r(2  - a) sin(7ra/2) 

7r(a - 1) 
ff; r 

where 0; is equal to E{IBf ( t )  - Bf(s ) l }  and At = t - s. 

Unfortunately, for a <  1, it is impossible to show that 
the increment property is satisfied because of the high fre- 
quency difficulties (that is, an undefined variance). There- 
fore, in the next section a new discrete model is proposed 
that, among other advantages, alleviates this high frequency 
problem. 

VI. DISCRETE GENERATION METHOD 
In this section methods are discussed for simulating 1 /fa 

power law noises. In Section VI-A the past techniques are 
reviewed with an arrow toward some of their difficulties. 
Then, in Section VI-B, a new method is presented to 
generate power law noise that satisfies the requirements 
of the fractional Brownian motion definition. This is done 
by postulating a pulse response function that can be used 
in (37) and can be shown to satisfy the definition of an ac- 
curate simulation-that is, of sampling the autocomlation 
function. Lastly, in Section VI-E, this approach is simplified 
with two approximate techniques for generating power law 
noise that result in the desired spectral density only over a 
finite frequency range. 

A. Past Methods 
A difficulty arises in trying to simulate 1 /fa noises using 

the methods of Section I11 because there is no well defined 
set of differential equations (or rational transfer functions) 
that can be used for time domain modeling. Most past 
work on simulation, therefore, has focused on methods that 
approximate the l/f" spectrum to some level of accuracy. 
In fact, Voss [67], Feder [19], and Peitgen [53] produce 
l/f" sequences by generating random spectra directly as 
described in Section 111-A (this technique is frequently 
used for generating fractal landscapes in two and three 
dimensions). The difficulties associated with this method 
have already been described. 

A number of researchers have attempted time domain 
simulation using the fractional integration model given by 
(88) or (90). In particular, they use the technique described 
in Section 111-B and replace the convolution integral in (88) 
with a convolution sum. They determine the pulse response 
by simply sampling the impulse response function given in 
(89). Examples of this approach can be found in [191, [531, 
[401, 1411. 

Section I11 has already described the errors in this gen- 
erating method when h(t) is not found from a rational 
transfer function. In addition to these errors, there is the 
high frequency problem-for a <  2, h(0) = CO. How, 
then, does one select h(O)? Most often, this ambiguity is 
avoided by using a value of either 0 or 1 [57]. Radeka [57] 
argues that physically there must be some high frequency 
cutoff and therefore a limit on h(t)  before some time S is 
reasonable. Unfortunately, this problem is deeper than the 
mere technical difficulty of sampling h(t). As described 
earlier, the autocorrelation function shows a fundamental 
error at high frequency inherent in the model of (88). 
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Most other time domain approaches use the approximate 
models described in Section V-B (Gauss-Markov (ARMA) 
fits) and then apply the methods of Section I11 for gener- 
ation. In fact, Barnes finds the coefficients of the discrete, 
linear filter directly by ARMA identification techniques on 
noise sequences. While the generation techniques for such 
models are well established, the problems with the models 
themselves have already been discussed. 

The next section presents an alternative approach first 
proposed by Hosking [31] to digital simulation that avoids 
these problems and produces a noise sequence with all 
the desired properties. Its attractiveness lies in its direct 
relationship to the Laplace transform model of Fractional 
Brownian Motion and its satisfaction of the FBM definition. 
It is hoped that by studying some of the limit properties of 
the model, more can be learned about the difficulties in the 
continuous FBM model of Section V-C. 

B. Digital Noise Model 
As shown in Section 111-E, it is straightforward to find a 

discrete simulation model for the Wiener process (a = 2). 
This was given in (64): 

1 
H(z)  = ~ 1 - z-l ' z > l .  

This corresponds to a pulse response equal to the unit step 
(in this special case, equivalent to samples of the continuous 
impulse response). Again, with this pulse response, the 
method of Section 111-B can be used to generate the noise. 

As mentioned in Section IT-B, this discrete model for the 
Wiener process is often used in an alternative derivation 
of Brownian motion that removes some of the theoretical 
difficulties in defining white noise. That is, Brownian 
motion is defined by the limit of the discrete random walk as 
At + 0. Papoulis [52] has an excellent derivation where he 
shows that all of the properties in Section 11-B follow from 
this limiting procedure. Since the random walk describes a 
process of independent random increments at each step, the 
limiting definition has the intuitive advantage that it follows 
from our physical understanding of the process. 

This leads to the conjecture for a discrete power law noise 
model. Just as the continuous fractional Brownian motion 
model described in Sections V-B and V-C was proposed 
as a generalization of the continuous Wiener process using 
fractional integration, a generalization of the random walk 
of (96) is proposed as the digital model: 

z > l .  (97) 

This model was independently put forth by Hosking [31] 
and called fractional differen~ing.~ The conjecture is that 

SHosking used a statistical, time series analysis approach in his def- 
inition. He therefore used the backward difference operator to define 
fractional differencing via: 

an improved continuous model for power law noise can be 
derived as the limit of (97) for small time. 

This model resolves all of the difficulties with other 
generation methods. The problems with discrete modeling 
of a pure 1 / ~ " / ~  filter are solved because the windowing 
and Nyquist frequency issues are implicitly part of the 
model in (97). As we'll see, the high frequency problems 
are solved because the transfer function in (97) results in 
a well defined pulse response for all times. The process 
defined by (97) is nonstationaxy (for a 2 1) and self- 
affine-there is no explicit time step in (97). The discrete 
transfer function in (97) is the same for all time steps-as 
At is varied, only the amplitude changes. This scale- 
invariance is made clear by examining the spectral density 
associated with (97). As described in Part I, the discrete 
spectral density is found via s d  = A@dH(z)H(z-l) with 

r91: = @At 

where Qd is the variance of the IID input noise process. 

well approximated by 
For frequencies below the Nyquist frequency, this can be 

(99) 

As described in Section 111-F, the distortion near the 
Nyquist frequency in (98) is due to sampling and alias- 
ing-that is, the model in (98) implicitly assumes a l/f" 
process that has been sampled without prefiltering. It is 
very difficult to build into the simulation process discussed 
below the effects of prefilters to reduce the distortion near 
Nyquist. However, as discussed in Section VI-E, normally 
this noise is summed with high frequency white noise 
(generated by the approximation described in Section 111-F) 
that dominates the portion of the spectra near Nyquist. Thus 
the small distortion in the spectral density due to aliasing 
is usually unimportant. 

This model produces an experimental spectral density 
proportional to l/f" as seen in (99). Equation (99) clearly 
points out the self-affine nature of the model. In fact, it also 
indicates the method for choosing Qd. Since a simulated 
process is desired with spectral density Q/(27rf)", (99) 
shows that Qd should be chosen via: 

The digital pulse response associated with the model in 
(97) is found by the power series expansion of the transfer 
function: 

This results in a pulse response, by the definition of the 
z-transform, as the coefficients of this series. That is 

k 

h k  = - 
n=l 

k! 
for real, noninteger d. 

820 PROCEEDINGS OF THE IEEE, VOL. 83, NO. 5, MAY 1995 



where (a/2)k is known as Pochhammer's symbol [l] and 
is a notation for the geometric series given by the kth 
numerator in (101) or, equivalently, the lcth derivative of 
1/(1 - x ) ~ / '  evaluated at x = 0. Using [ l ]  this is equal to 

These pulse response values can be easily computed 
using the following recursive algorithm: 

ho 1 

Again, the discrete model has solved the high frequency 
problem-hk is well defined and equal to one at zero for 
all values of a. 

An expression for the increment process of FBM can 
be found using this model and the pulse response given 
above. Expressing the first differences of the process as 
AXk = x k + l  - Xk: 

This is an asymptotically stationary process with variance 
(in the limit of large k): 

00 

1 + (; - 1)' A} (m + 1) (106) 
m=O 

where u2\ is the discrete variance of the increment equiv- 
alent to 0: in (95). 

Thus the increment process has the correct dependence 
upon time (Ata-l) as required by the definition. It also 
results in a defined variance for 0 < a < 1,  unlike the con- 
tinuous model. Note that the expression in (106) converges 
very fast. For a = 1, it reaches a relative accuracy of 5 
x lo6 in 25 steps. 

Finally, we can use (38) to find the discrete autocorre- 
lation function associated with the noise. In general, there 
is no closed form solution for Rd(k,m) as the noise is 
nonstationary. However, for (Y < 1, the process is stationary 
and the autocorrelation can be examined in the large t limit 
as in Section V for the continuous model.6 Hosking [31] 
shows this using the inverse Fourier transform on (98). An 
alternative approach in the time domain uses (38) to find: 

6Hosking [31] points out that for values of a > 1 the process can 
be considered as equivalent to the integration of the stationary process 
with power law behavior f'-". This argument must be used with care, 
however. A straightforward application to the steady state system would 
compute a linearly increasing variance-learly incorrect from (5.16). The 
error is in neglecting the transient in the variance for a < 1 that decreases 
as l/t". When multiplied by the random walk the transient does not decay 
but increases as t l p U .  

Or, upon solving the sum: 

Using [l], the definition of Pochhammer's symbol, and 
fundamental properties of the gamma function this can be 
simplified to 

where, as stated earlier, Qd = QatQ-', so the self- 
similar property holds. This can be further simplified, using 
fundamental properties of the gamma function, or found 
directly using the frequency domain approach [31], to be 

As mentioned earlier, (84) shows that the variance is 
undefined for the continuous, fractional integration form 
and (Y < 1-indicating an underlying difficulty with the 
model. The discrete model proposed here results in a well 
defined and computable variance for values of a < 1. 
Setting m = 0 in (108): 

Finally, it was claimed earlier that the discrete model in 
(97) produces an improved continuous llf" noise model in 
the limit as At -+ 0. One consistency check is to examine 
the autocorrelation function, for a < 1, in (109) in this 
limit and compare to the continuous model autocorrelation 
function for large T (94). This can be done by multiplying 
and dividing (109) by At"-', letting At -+ 0 while keeping 
Qd/At"-' = Q constant, letting mat -+ r, and using the 
formula: 

2b-a r (Z  + 
r ( z  + b)  

( a  - b) (a  + b - 1) 
22 -+ 1 +  

2'00 

1 + ; ( a  b ) ( 3 ( .  + b - 1)' - a + b - 1)- 22 + . . . 

from [I]. This results in the following formula for the 
continuous autocorrelation in the limit as At -+ 0 and for 
large lag (m or 7): 

Qr(1- a )  sin(m/2)  
7.r 

R L ( T )  = 
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Fig. 3. Example of generated l/f noise sequence. 

Thus for large T or At + 0, the autocorrelation of 
the digital model in the limit is identical to that for the 
continuous one in (94). Note that we have used the notation 
here RL(T) to distinguish this autocorrelation in the limit 
from that in (94). This is a very satisfying result, particularly 
when compared to the derivation of Brownian motion as 
the same limit of the discrete random walk (a = 2). 
It also confirms (97) as an adequate simulation model 
as it satisfies Definition 1-it samples the autocorrelation 
of the continuous process. Future work is directed at 
deriving a general expression for Rd(k,m) for all a and 
thus show that the complete nonstationary autocorrelation 
in (94) for all T can be derived via this limit of the 
discrete model. 

In addition to the autocorrelation and spectral density 
correspondences examined above, noise simulated by this 
method has been examined using the Allan variance [35], 
[68], [69]. It was confirmed that for time lags large com- 
pared to the sampling time the Allan variance converged to 
that expected for power law models. 

C. MA and AR Generation Methods 
Finally, I address the specific implementation question 

for generating sequences of noise from the discrete model 
discussed above. Just as continuous llf" noise models have 
no finite set of differential equations to describe them, 
the discrete model in (97) has no finite set of difference 
equations that can be used for generation (as in Section 
111-D). However, there are two equivalent methods that can 
be used to generate finite length noise sequences-FIR and 
IIR filtering. 

The finite impulse response (FIR) or moving average 
(MA) method for noise generation uses (104) directly for 
generating noise. That is, the method of Section 111-B is 
used with the pulse response values given by (104). Thus 
the noise can be generated either by direct convolution or by 
multiplication in the frequency domain. Appendix 11 lists a 

C computer program for this frequency domain generation 
of llf" noise. 

The main drawback of this technique is its memory 
burden. Because it is a batch method, it can require large 
amounts of memory for long time sequences. In addition, 
only sequences whose length are powers of 2 with standard 
Cooley-Tukey FFT routines can be generated in short times 
[5 11. Section VI-E describes two approximate methods for 
generating noise that requires less memory and time with 
minimal spectral distortion. 

A second technique is analogous to infinite impulse 
response (IIR) filtering or autoregressive (AR) time series. 
Here, only the denominator of the transfer function in (97) 
is expanded: 

. (114) 1 H ( z )  = 

2 

. (114) 1 H ( z )  = 

2 

This transfer function is equivalent to a recursive (AR) 
filter: 

The filter coefficients can be easily found from an itera- 
tive formula similar to that for the MA case: 

a0 = 1 

This AR formula can be used for time domain sequence 
generation as an alternative to the MA, frequency domain 
method. It requires significantly less memory and does not 
restrict sequence lengths to a power of two-only previous 
values of the sequence itself need be stored. It is also 
well suited to real time generation. Unfortunately, it is 
significantly slower than the frequency domain methods. 
At each new step, a new coefficient must be computed and 
included in the filter with the size of the filter growing with 
time. 

Though it was stated that there are no sets of difference 
equations that can reproduce the model in (97), the AR 
filter in (115) does not present a contradiction. This is 
indeed a difference equation, but it cannot be reproduced 
by a finite set of first order equations. For each new time 
there is a new a,. In other words, an infinite number of 
initial conditions are required (or, alternatively, the filter 
has an infinite number of poles). This is a reflection of the 
infinite memory or long correlation time property discussed 
in Section I1 [7], [17], [31], [38], [39], 1421, [43], [45]. The 
AR form in (1 15) provides an alternative interpretation of 
the infinite memory property than that represented by the 
slow decay of the autocorrelation. 

D. Example 
Fig. 3 presents a simulated llf" noise sequence with a = 

1 using the exact FIR generation method. An example com- 
puter program for the procedure is listed in Appendix 11. 
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Spectral Density of Simulated l/f Noise Sequences 

Frequency (Hz) 

Fig. 4. Autospectral density of generated l/f sequence. 

Fig. 3 is the computed spectral density of the sequence. 
The dashed line is the exact spectral density from (98). 

E. Approximate Generation Methods 
Lastly, it is useful to consider possible approximate 

methods for generation. In these techniques, certain of 
the required properties are violated in favor of faster or 
more efficient generating algorithms. In particular, the noise 
has a llf" spectral density only over a finite range of 
frequencies-much as in the Gauss-Markov or ARMA 
generating method. However, unlike previous methods, 
the processes produced here remain self-affine. It should 
be noted that the wavelet based approximate models in 
[78]-[80] also provide very efficient means for generating 
sequences of noise. In addition, a good deal of work has 
been done (and continues) on the analysis and synthesis of 
llf noise using the wavelet model, particularly regarding 
estimation of signals and noise and signal processing. While 
this is an important problem, it is beyond the scope of this 
paper to discuss in any detail. The reader is directed to [79] 
and [80] for summaries of this work. 

1) Truncation Method: The first technique involves trun- 
cation of the series of coefficients in (104) or (113). If 
a finite set of pulse response values is used, then the 
generating algorithm involves FIR filtering of the input 
noise. Alternatively, the series in (1 13) can be truncated 
to produce a finite length difference equation or IIR filter. 
In both cases, the spectrum has a l lf" form down to a 

limiting frequency related to llNAt, where N is the length 
of the truncated coefficient series. Below this frequency the 
spectral density is flat-the noise is stationary for all a. This 
approximation is useful when only the high frequency llf" 
behavior is important. The FIR implementation is faster 
but with more distortions to the spectrum within the band 
of interest (due to windowing errors) than the IIR filter. 
In general, an IIR implementation is recommended. Fig. 5 
shows the spectral density for a llf (a  = 1) IIR filter 
(dashed), FIR filter with rectangular window (solid), and 
FIR filter with Kaiser window, /3 = 4 (dotted). Also shown 
is the exact l/f line (dot-dashed). Note that each of these 
approaches is self-affine-time enters only as an amplitude 
scaling. 

2) Filtering Method: The main drawback to the trunca- 
tion method is that the resulting sequence is stationary. In 
many applications, however, it is of great interest to observe 
the effects of the growing noise variance with time. Of 
less interest is the very high frequency (behavior above 
some limiting frequency). Normally, the apparatus being 
modeled has a white noise component which, when added 
to the power law noise, dominates the spectrum above this 
frequency. Thus the l lf" noise can be simulated using the 
techniques of Section VI-C at a slower rate determined 
by the high frequency limit of interest (At,). These noise 
values are held constant over the total interval covered by 
the faster simulation step (At = At,/n). The resulting 
sequence is processed with a high order low pass filter 
whose cutoff is at llAt,. The result is a noise process with 
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Fig. 5. Autospectral densities for truncation filters. 

1/ f O1 behavior from zero to llAt, Hz and negligible power 
at higher frequencies. White noise can then be added at the 
appropriate magnitude to complete the simulation. 

VII. CONCLUSIONS 
This paper was intended to serve two purposes. First, it 

was meant as a tutorial and broad review on noise gen- 
eration. Thus Part I presented a review of basic stochastic 
processes and linear systems applied to noise simulation. At 
the same time, this part presented a number of new results 
in spectral density computation, Brownian motion, and 
discrete stochastic processes. It critiqued some past methods 
for noise generation (particularly frequency domain tech- 
niques based on spectral density fitting) and presented a new 
definition for noise simulation. It presented a systematic 
approach to digital noise modeling and generation based 
on standard continuous and discrete linear system theory. 
It also presented a summary [36] of a new RK simulation 
technique for stochastic differential equations. 

The second goal of this paper was to present an overview 
of past work on modeling of llf" power law noises and 
to use the methods of Part I for simulating these noises. 
Past llf noise generation techniques were reviewed and 
critiqued. The model first proposed by Hosking 1311, and 
independently by the author, was proposed not only as 
an effective means of generating the noise but also as an 
approach for continuous modeling in the limit that corrects 
some of the theoretical difficulties with past approaches. 
Two generation algorithms were presented based upon this 
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model and the techniques of Part I with sample code 
listed in the appendix. Some approximate techniques that 
require less memory and are more efficient were also 
discussed. The result is an efficient and accurate algorithm 
that can be easily implemented for simulating power law 
noises. 

APPENDIX I 
VAN LOEN ALGORITHM 

The Van Loen algorithm is a numerical technique de- 
veloped by C. F. Van Loen [65] for solving the quadratic 
integral in (54). The solution is found by forming the matrix 
exponential: 

[: z] =exp(CAt)  

where C is a block upper triangular matrix: 

There are numerous techniques for computing the matrix 
exponential [48]. The most straightforward is to find the 
eigenvalue decomposition and take the exponential of each 
eigenvalue. 

The solution to the integral in (54), Q d ,  is then given by 
the matrix equation: 
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void f-alpha(int n-pts, float X[],float Q-d, 
float alpha, int *idum) 

int i,nn; 
float *hfa,*wfa; 
float ha,wr,wi; 
nn = n-pts+npts; 
ha= alpha/2.0 ; 
Q-d=sqrt (Q-d) ; / *  find the deviation of the 

hfa=vector(l,nn); 
wfa=vector(l,nn); 
hfa[ll=l.O; 
wfa [ 1 I =Q-d*gas-dev ( idum) ; 
for (i=2 ; i<=n-pts; i++) { 

{ 

noise * /  

/ *  generate the coefficients hk * /  
hfa [il =hfa [i-ll* (ha+ (float) 

(i-2) / ( (float) (i-1) ) ; 
/ *  fill the sequence wk with white noise * /  

wfa [i] =Q-d*gas-dev (idum) ; 
1 

/ *  pad the ends of the sequences with zeroes * /  
for(i=n-pts+I;i<=nn;i++) { 

hfa[i] =O. 0; 
wfa [i] = O  . 0; 

1 
/ *  perform the discrete Fourier transform * /  
realft (hfa,npts, 1) ; 
realft (wfa,n-pts, 1) ; 

wfa[ll=wfa[ll *hfa[ll ; 
wfa [2 I =wfa [2 I *hfa [ 2 3 ; 
for(i=3;i<=nn;i+=2){ 

wr=wfa[i]; 
wi=wfa [i+l] ; 
wfa[il=wr*hfa[il-wi*hfa[i+ll ; 
wfa[i+l]=wr*hfa[i+ll+wi*hfa[i] ; 

/ *  multiply the two complex vectors * /  

1 
/ *  inverse Fourier transform the result * /  
realft (wfa,n-pts, -1) ; 
for (i=l; i<=n-pts; i++) 

/ *  add the final result to X[]*/ 
X[il+=wfa[i]/( (f1oat)n-pts); 

free-vector (hfa, 1,nn) ; 
free-vector(wfa, 1,nn) ; 

1 

APPENDIX I1 
l/f" NOISE GENERATION CODE 
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The is a program for generating a sequence this manuscript and for providing the C Code version of 
of llf" noise using the frequency domain, multiplication 
method (FIR technique) [35]. The routine is coded in C 
and makes use of algorithms from Numerical Recipes in 
C [56] (namely gas-dev( ) for Gaussian random number 
generation and ( for the discrete Fourier 
See the algorithm shown at the top of this page. 

REFERENCES 
[ 11 M. Abramowitz and I. A. Stegun, Handbook of Mathematical 

Functions. New York Dover. 1972. 

KASDIN: DISCRETE SIMULATION OF COLORED NOISE AND STOCHASTIC PROCESSES 825 



[2] A. Ambrcjzy and L. B. Kiss, “llf noise generator,” in Proc. 8th 
Int. Con$ on Noise in Phys. Syst. and the 4th Int. Con$ on ‘1/ f 
Noise’, A. Diamico and P. Mazzetti, Eds., Rome, Sept. 1985. 
Amsterdam: North Holland, 1986, p. 445. 

[3] F. T. Arecchi, R. Badii, and A. Politi, “l/ f spectra in nonlinear 
systems with many attractors,” Noise in Physical Systems and l/f 
Noise, M. Savelli, G. Lecoy, and J.-P. Nougier, Eds., Proc. 7th 
Int. Con$ on Noise in Phys. Syst. and the 3rd Int. Con$ on ‘ 1 8  
Noise’, Montpellier, May 1983. Amsterdam: North Holland, 
1983. 

[4] J. A. Barnes and D. W. Allan, “A statistical model of flicker 
noise,” Proc. IEEE, vol. PROC-54, p. 176, Feb. 1966. 

[5] J. A. Barnes and S. Jarvis, “Efficient numerical and analog 
modeling of flicker noise processes,” Tech. Note 604, Nat. Bur. 
Stands., 1971. 

[6] J. A. Barnes, “Simulation of oscillator noise,” Austron, Inc., 
Austin, TX. 

[7] R. J. Barton and H. V. Poor, “Signal detection in fractional 
Gaussian noise,” IEEE Trans. In$ Theory, vol. 34, Sept. 1988. 

[8] T. H. Bell, Jr., “Representation of random noise by random 
pulses,” J. Appl. Phys., vol. 45, no. 4, 1974, p. 1902. 

[9] J. S. Bendat and A. G. Piersol, Random Data: Analysis and 
Measurement Procedures. 

[lo] K. Y. R. Billah and M. Shinozuka, “Numerical method for 
colored-noise generation and its application to a bistable sys- 
tem,” Phys. Rev. A, vol. 42, no. 12, pp. 7492-7495, Dec. 
1990. 

[ 111 R. N. Bracewell, The Fourier Transform and Its Applications. 
New York McGraw-Hill, 1986. 

[12] R. G. Brown and P. Y. C. Hwang, Introduction to Random 
Signals and Applied Kalman Filtering. New York: Wiley, 
1992. 

[13] A. E. Bryson and D. E. Johansen, “Linear filtering for time- 
varying systems using measurements containing colored noise,” 
IEEE Trans. Auto& Contr., vol. AC-IO, p. 4, 1965. 

[14] A. E. Bryson and Y. C. Ho, Applied Optimal Control. New 
York Hemisphere, 1975. 

[15] S. D. Conte and C. de Boor, Elementary Numerical Analysis, 
An Algorithmic Approach. 

[16] A. Dold, A. and B. Eckmann, Fractional Calculus and Its 
Applications. New York Springer-Verlag, 1975. 

[17] P. Dutta, “Low frequency fluctuations in solids: l/f noise,” 
Revs. Modem Phys., vol. 53, no. 3, p. 497, 1981. 

[ 181 A. Erdklyi, Tables of Integral Transforms, vol. 1. New York 
McGraw-Hill, 1954. 

[19] J. Feder, Fractals. New York Plenum, 1988. 
[20] P. Flandrin, “On the spectrum of fractional Brownian motions,” 

IEEE Trans. In$ Theory, vol. 35, Jan. 1989. 
[21] -, “Wavelet analysis and synthesis of fractional Brownian 

motion,” IEEE Trans. In$ Theory, vol. 38, Mar. 1992. 
[22] G. F. Franklin, J. D. Powell, and A. Emami-Naeini, Feedback 

Control of Dynamic Systems. Reading, MA: Addison-Wesley, 
1986. 

[23] G. F. Franklin, J. D. Powell, and M. L. Workman, Digital 
Control of Dynamic Systems. Reading, MA: Addison-Wesley, 
1990. 

[24] J. J. Gagnepain, J. Groslambert, and R. Brendel, “The fractal 
dimension of phase and frequency noises: Another approach 
to oscillator characterization,” in Proc. 39th Annu. Freq. Contr. 
Symp. 1985, 1985, p. 113. 

[25] 1. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, 
and Products. New York Academic, 1965. 

[26] R. M. Gray and L. D. Davisson, Random Processes: A 
Mathematical Approach for  Engineers. Englewood Cliffs, 
NJ: Prentice-Hall, 1986. 

[27] P. Gruber, “1/ f -noise generator,” Noise in Physical Systems 
and 1/ f Noise-1985. A. Diamico and P. Mazzetti, Eds., Proc. 
8th Int. Con$ on ‘Noise in Phys. Syst. ’ and the 4th Int. Conf on 
‘18 Noise’, Rome, Sept. 1985. Amsterdam: North Holland, 
1986, p. 357. 

[28] D. Halford, “A general mechanical model for I f ] “  spectral 
density random noise with special reference to flicker noise 

[29] T. Hida, Brownian Motion. New York Springer-Verlag, 1980. 
[30] P. G. Hoel, S. C. Port, and C. J. Stone, Introduction to Stochastic 

[31] J. R. M. Hosking, “Fractional differencing,” Biometrika, vol. 

New York Wiley, 1984. 

New York McGraw-Hill, 1980. 

1/1 f 1,” P ~ o c .  IEEE, vol. PROC-56, p. 251, Mar. 1968. 

Processes. Boston: Houghton Mifflin, 1972. 

68, no. 1, pp. 165-176, 1981. 

[32] M. K. Jain, Numerical Methods for Scientific & Engineering 
Computation. New York: Wiley, 1985. 

[33] T. Kailath, Linear Systems. Englewood Cliffs, NJ: Prentice 
Hall, 1980. 

[34] P. Kartaschoff, “Computer simulation of the conventional clock 
model,” IEEE Trans. Instrum. Meas., vol. IM-28, pp. 193-197, 
1979. 

[35] N. J. Kasdin and T. Walter, “Discrete simulation of power law 
noise,” in Proc. 1992 IEEE Frequency Contr. Symp., Hershey, 
PA, May 1992, pp. 274-283. 

[36] N. J. Kasdin, “A Runga-Kutta algorithm for the numerical 
integration of stochastic differential equations,” to be published 
in A I M  J. Guidance, Control, and Dynamics. 

[37] S. M. Kay, “Efficient generation of colored noise,” Proc. IEEE, 
vol. PROC-69, pp. 480481, 1981. 

[38] M. S. Keshner, “Renewal process and diffusion models of l /f  
noise,” Sc.D. dissertation, Dept. EECS, MIT, 1979. 

[39] -, “l/f noise,” Proc. IEEE, vol. PROC-70, p. 211, Mar. 
1982. 

[40] B. B. Mandelbrot, “A fast fractional Gaussian noise generator,” 
Water Resources Res., vol. 7, no. 3, June 1971. 

[41] B. B. Mandelbrot and J. R. Wallis, “Computer experiments 
with fractional Gaussian noises. Part 1, averages and variances,” 
Water Resources Res., vol. 5 ,  no. 1, Feb. 1969. 

[42] B. B. Mandelbrot and R. F. Voss, “Why is nature fractal and 
when should noises be. scaling?” Noise in Physical Systems 
and l /f  Noise, M. Savelli, G. Lecoy, and J.-P. Nougier, Eds., 
in Proc. 7th Int. Con$ on ‘Noise in Phys. Syst.’ and the 3rd 
Int. Con$ on ‘I/fNoise’, Montpellier, May 1983. Amsterdam: 
North Holland, 1983. 

[43] B. B. Mandelbrot, “Some noises with l /f  spectrum and a 
bridge between direct current and white noise,” IEEE Trans. 
In$ Theory, vol. IT-13, p. 289, Feb. 1967. 

[44] -, The Fractal Geometry of Nature. San Francisco: Free- 
man, 1977. 

1451 B. B. Mandelbrot and J. W. Van Ness, “Fractional Brownian 
motions, fractional noises and applications,” SIAM Rev., vol. 
10, no. 4, p. 422, 1968. 

[46] W. Martin and P. Flandrin, “Wigner-Ville spectral analysis 
of nonstationary processes,” IEEE Trans. Acoust., Speech and 
Signal Process., vol. ASSP-33, Dec. 1985. 

[47] N. C. Matalis and J. R. Wallis, “Statistical properties of multi- 
variate fractional noise processes,” Water Resources Res., vol. 
7, no. 6, Dec. 1971. 

[48] Matlabm, The Mathworks, Inc., S. Natick, MA, 1992. 
[49] A. C. McBride and G. F. Roach, Ed., Fractional Calculus. 

Boston: Pitman, 1985. 
[50] K. B. Oldham and J. Spanier, The Fractional Calculus, Theory 

and Applications of Differentiation and Integration to Arbitrary 
Order. New York: Academic, 1974. 

[51] A. V. Oppenheim and R. W. Schafer, Discrete-ZIme Signal 
Processing. 

[52] A. Papoulis, Probability, Random Variables, and Stochastic 
Processes. New York McGraw-Hill, 1984. 

[53] H. 0. Peitgen and D. Saupe, Eds., The Science of Fractal 
Images. New York Springer-Verlag, 1988. 

[54] B. Pellegrini, R. Saletti, B. Ner, and P. Terreni, “l/f7 noise 
generators,” Noise in Physical Systems and 1/ f Noise-1985. A. 
Diamico and P. Mazzetti, Eds., in Proc. 8th Int. Con$ on ’Noise 
in Phys. Syst. ’ and the 4th Int. Con$ on ‘IJNoise’, Rome, Sept. 
1985. Amsterdam: North Holland, 1986, p. 425. 

[55] D. B. Percival, “Characterization of frequency stability: 
Frequency-domain estimation of stability measures,” Proc. 
IEEE, vol. 79, June 1991. 

[56] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. 
Vertterling, Numerical Recipes. Cambridge, UK Cambridge 
Univ. Press, 1986. 

[57] V. Radeka, “l/lfl noise in physical measurements,” IEEE 
Trans. Nuclear Sci., vol. NS-16, p. 17, 1969. 

[58] T. L. Riggs, Jr. and C. L. Phillips, “Modeling continuous noise 
sources in digital simulations,” Simulation, vol. 48, no. 1, Jan. 
1987. 

[59] R. Saletti, “A comparison between two methods to generate 
l/  f7 noise,” Proc. lEEE, vol. PROC-74, p. 1595, Nov. 1986. 

[60] M. Schroeder, Fractals, Chaos, Power Laws, Minutes from an 
Infinite Paradise. 

[61] T. T. Soong, Random Differential Equations in Science and 
Engineering. New York Academic, 1973. 

Englewood Cliffs, NJ: Prentice Hall, 1989. 

New York Freeman, 1991. 

826 PROCEEDINGS OF THE IEEE, VOL. 83, NO. 5 ,  MAY 1995 



1621 R. F. Stengel, Stochastic Optimal Control. New York: Wiley, 
1986. 

[63] V. J. Strasilla and M. J. 0. Strott, “Narrow-band variance 
noise,” J. Appl. Phys., vol. 45, no. 3, p. 1423, 1974. 

[64] C. D. Tesche, “DC SQUIDS with low l/f noise,” Res. Rep., 
IBM T. J. Watson Res. Center, Yorktown Heights, NY, July 
1985. 

1651 C. F. Van Loen, “Computing integrals involving the matrix 
exponential,” IEEE Trans. Autom. Contr., vol. AC-23, Aug. 
1978. 

[66] R. F. Voss, “Linearity of l/f noise mechanisms,” Phys. Rev. 
Lett., vol. 40, no. 14, p. 913, 1978. 

[67] -, “Random fractals: Characterization and measurement,” 
Scaling Phenomena in Disordered Systems, R. Pynn and A. 
Skjeltorp, Eds. 

1681 T. Walter, “A multi-variance analysis in the time domain,” in 
Proc. 24th PTTI Appl. and Planning Meet., McLean, VA, Dec. 
1992, pp. 413426. 

[69] -, “Characterizing frequency stability: A continuous power 
law model with discrete sampling,” to be published. 

[70] E. Wong and B. Hajek, Stochastic Processes in Engineering 
Systems. New York Springer-Verlag, 1985. 

[71] C. K. Chui, An Introduction to Wavelets. San Diego: Aca- 
demic, 1992. 

1721 A. Laine, Ed., Wavelet Theory and Application. Boston: 
Kluwer, 1993. 

1731 S. K. Srinivasan and R. Vasudevan, Introduction to Random 
Differential Equations and their Applications. New York: El- 
sevier, 1971. 

[74] P. E. Kloeden and E. Platen, Numerical Solution of Stochastic 
Differential Equations. Berlin: Springer-Verlag, 1992. 

[75] P. E. Kloeden, E. Platen, and H. Schurz, Numerical Solution 
of SDE Through Computer Experiments. Berlin: Springer- 
Verlag, 1994. 

[76] S. B. Lowen and M. C. Teich, “Power-law shot noise,” IEEE 
Trans. In$ Theory, vol. 36, Nov. 1990. 

[77] M. Grigoriu, “Simulation of diffusion processes,” J. Eng. Me- 
chanics, vol. 116, no. 7, July 1990. 

[78] G. W. Womell, “A Karhunen-Loeve-like expansion for l/f 
processes via wavelets,” IEEE Trans. Inj Theory, vol. 36, July 
1990. 

1791 -, “Wavelet-based representations for the l/f family of 
fractal processes,” Proc. IEEE, vol. 81, Oct. 1993. 

New York: Plenum, 1985. 

[80] G. W. Womell and A. V. Oppenheim, “Estimation of fractal 
signals from noisy measurements using wavelets,” IEEE Trans. 
Signal Process., vol. 40, Mar. 1993. 

[81] A. H. Tewfik, “Correlation structure. of the discrete wavelet 
coefficients of fractional Brownian motion,” IEEE Trans. In$ 
Theory, vol. 38, pt. 2, Mar. 1992. 

[82] L. Lapidus and J. H. Seinfeld, Numerical Solution of Ordinary 
Differential Equations. New York: Academic, 197 1. 

[83] L. Ljung, System Identification, Theory for the User. Engle- 
wood Cliffs, NJ: Prentice-Hall, 1987. 

[84] T. W. Anderson, The Statistical Analysis of Time Series. New 
York Wiley, 1971. 

[85] R. H. Cannon, Dynamics of Physical Systems. New York 
McGraw-Hill, 1967. 

[86] S. B. Lowen and M. C. Teich, “Power law shot noise,” IEEE 
Trans. In$ Theory, vol. 36, Nov. 1990. 

[87] L. Lapidus and J. H. Seinfeld, Numerical Solution of Ordinary 
Differential Equations. New York Academic, 197 1. 

N. Jeremy Kasdin (Member, IEEE) was born in 
Rochester, NY, on July 1, 1963. He received the 
B.S.E. degree in mechanical and aerospace engi- 
neering and engineering physics from Princeton 
University in 1985 and the M.S. and Ph.D. 
degrees in aeronautical and astronautical sci- 
ences, with a minor in electrical engineering, 
from Stanford University in 1987 and 1991, 
respectively. 

He is currently the Chief Systems Engineer 
for the NASA Relativity Mission Satellite (also 

known as Gravity Probe B) at Stanford University. From 1991 to 1993, 
he managed the Phase B studies for the Gravity Probe B spacecraft. His 
principal research interests are in stochastic process modeling, simulation, 
optimal estimation, digital control, and satellite attitude control. He is the 
author or coauthor of over 14 papers in the areas of satellite control, 
stochastic processes, simulation, and estimation theory. 

Dr. Kasdin is a member of Sigma Xi, Tau Beta Pi, and Phi Beta Kappa. 

KASDIN. DISCRETE SIMULATION OF COLORED NOISE AND STOCHASTIC PROCESSES 

~ ~~ - 
827 


