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Preface

In this book we have attempted to bring together much of the work that has
been accomplished in the field which we loosely term: Solitons and the Inverse
Scattering Transform. Usually, our procedure has been to explain the basic mathe-
matical ideas by means of examples rather than by considering the most general
situation. Attempts have been made to incorporate many of the important research
papers into our bibliography. Unfortunately we are almost certain to have missed
some relevant research articles. For this we apologize. Similarly, due to time con-
siderations, we have not been able to include some of the very recent advances in
this field. It should be remarked that this area of study is continuing to develop
in a vigorous manner.

We are indebted to a number of people who have helped to make this book
possible. Naturally, this includes all of the people whose research in this subject
has influenced our own. Special thanks go to Martin Kruskal, who has profoundly
influenced our point of view; to David Kaup and Alan Newell, who made up the
other half of “AKNS”; to Junkichi Satsuma and Guido Sandri, who made a num-
ber of useful comments and suggestions while we were preparing the manuscript;
and to David Benney, who introduced the subject of nonlinear waves to one of us
(MIJA). Our own research in this area was partially funded by the Air Force Office
of Scientific Research, the Army Research Office, the National Science Founda-
tion and the Office of Naval Research (Mathematics and Fluid Dynamics programs).
We are grateful to our technical monitors at all of these agencies for their support
and encouragement. Our secretaries, Rita Gruda, Barbara Hawk, Ninon Huich-
inson, Marilyn Kreizman, Cindy Martin and Celia Woodson, were given the
unpleasant task of transforming many pages of unreadable scrawl into a legible man-
uscript. Finally we are grateful to our wives, Enid Ablowitz and Carol Segur, who
put up with many late hours and working weekends.

MARK J. ABLOWITZ
Clarkson University

HARVEY SEGUR
ARAP, Princeton, NJ
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Prologue

The basic theme of this book can be stated quite simply: Certain nonlinear
problems have a surprisingly simple underlying structure, and can be solved by
essentially linear methods. Typically, these problems are in the form of evolu-
tion equations, which describe how some variable (or set of variables) evolves in
time from a given initial state. The equations may take a variety of forms,
including partial differential equations, differential-difference (discrete space,
continuous time), partial difference (discrete time and space), integro-
differential, as well as coupled ordinary differential equations (of finite order).
What is surprising is that even though these problems are nonlinear, one may
obtain the general solution that evolves from arbitrary initial data (within an
appropriate class) without approximation. It is perhaps equally surprising that
some of these exactly solvable problems arise naturally as models of physical
phenomena. These applications have helped to generate interest in the subject.

Several viewpoints about these exactly solvable problems are common. One
of them identifies the general solution of an appropriate initial value problem
as the objective of the analysis. This solution is obtained by the Inverse
Scattering Transform (IST), which is described in detail in Chapters 1 and 2. It
can be viewed as a generalization of the Fourier transform, by which linear
problems may be solved.

The problems in question have such a rich structure that they may be
considered from several other viewpoints, which may be rather unrelated to
IST. Some of these other perspectives are examined in Chapter 3. Many of
these are more useful if one is primarily interested in special solutions, such as
solitons, rather than in the general solution of an initial value problem. A
number of physical applications are discussed in detail in Chapter 4.

The value of IST is that one treats nonlinear problems by essentially linear
methods. This value is marginal, of course, unless one is already familiar with
the methods and results of linear theory. Because of the fundamental role
played by linear theory, we have included an extensive appendix which deals

ix



X PROLOGUE

with linear problems and their solutions. These serve as useful guides against
which to compare the corresponding solutions of the nonlinear problems that
are the subject of this book.

Before we plunge in, here is our opinion regarding the order in which the
book should be read. The Appendix contains material that is preliminary,
although not necessarily trivial. It will be most useful to those unfamiliar with
Fourier transform methods if it is read first. Because it is introductory, a
substantial set of fairly straightforward exercises is included at the end of the
Appendix.

Chapter 1 is fundamental. Later chapters often build on the material in this
chapter, and refer back to it. We recommend that all of Chapter 1 be read.

Many avenues are available after Chapter 1. Chapters 2, 3 and 4 depend on
Chapter 1, but not particularly on each other. They may be read in any order
desired. To a lesser extent, the sections within each chapter may be considered
independent of each other as well. This permits the reader with a specialized
interest to gain access to his/her material relatively quickly.

Finally, a word about the exercises. These cover a range of difficulty, from
merely filling in some missing steps, to research problems whose answers, to
our knowledge, are open. Usually the wording of the problems identifies to the
reader the ones that are open.



Chapter 1

The Inverse Scattering Transform
on the Infinite Interval

1.1. Introduction. In 1965 Zabusky and Kruskal discovered that the
pulselike solitary wave solution to the Korteweg—deVries {(KdV) equation had
a property which was previously unknown: namely, that this solution inter-
acted “elastically” with another such solution. They termed these solutions
solitons. Shortly after this discovery, Gardner, Greene, Kruskal and Miura
(1967), (1974) pioneered a new method of mathematical physics. Specifically,
they gave a method of solution for the KdV equation by making use of the ideas
of direct and inverse scattering. Lax (1968) considerably generalized these
ideas, and Zakharov and Shabat (1972) showed that the method indeed
worked for another physically significant nonlinear evolution equation,
namely, the nonlinear Schrddinger equation. Using these ideas Ablowitz,
Kaup, Newell and Segur (19735h) and (1974) developed a method to find a
rather wide class of nonlinear evolution equations solvable by these tech-
niques. They termed the procedure the Inverse Scattering Transform (IST).

This monograph is devoted to this subject: i.e., to solitons and IST. There
have been numerous developments in this area, which has aroused consider-
able interest among mathematicians, physicists and engineers. We hope that
by capturing many of the main ideas and putting them into one location, we
will be helpful to both beginners and the “pros” in the field. The main difficulty
in doing this comes from the vigor with which the field has and is (at this time)
continuing to develop.

Some review articles' and some collected works® on the subject are avail-
able. At the time of writing, there are not any other monographs extant on this
topic, but we expect that this state of affairs will undoubtedly change quickly.?

! See, for example, Scott, Chu and McLaughlin (1973), Miura (1976), Ablowitz (1978) and
Makhankov (1979).

% See, for example, Newell (1974a), Miura (1974), Moser {197556), Calogero (19784} and
Lonngren and Scott (1978).

3 In fact, by the time galley proofs for this monograph were received, both Zakharov, Manakov,
Novikov and Pitayevsky (1980) and Lamb (1980) had appeared.

1



2 CHAPTER 1

The study of solitary waves began with the observations by J. Scott Russell
(1838), (1844) over a century ago. Russell, an experimentalist, first observed
asolitary wave while riding on horseback beside a narrow barge channel. When
the boat he was observing stopped, Russell noted that it set forth

a large solitary elevation, a rounded, smooth and well defined heap of water, which continued
its course along the channel apparently without change of form or diminution of speed - - - .
Its height gradually diminished, and after a chase of one or two miles I lost it in the windings
of the channel. Such, in the month of August 1834, was my first chance interview with that
singular and beautiful phenomenon. (Russell (1838)).

This observation inspired Russell to initiate an extensive experimental
investigation of water waves, He divided all of water waves into two classes,
the “‘great primary wave of translation’ (which would eventually be called a
solitary wave), and all other waves, which ‘‘belong to the second or oscillatory
order of waves;” the latter waves ‘‘are not of the first order” (Russell (1838)).
Clearly he regarded the solitary waves as being of primary importance and
concentrated most of his attention on them. Among his many results, we should
note particularly the following.

1. Solitary waves, which are long (shallow water) waves of permanent form,
exist. This is undoubtedly his most important result.

2. The speed of propagation of a solitary wave in a channel of uniform depth
is given by

v=vglh+mn),

7 ‘‘being the height of the crest of the wave above the plane of repose of the
fluid, & the depth throughout the fluid in repose, and g the measure of gravity”
(Russell (1844)). Considering the accuracy of the experimental equipment
available to him, this result is somewhat remarkable.

Russell found that no mathematical theory available at the time predicted
a solitary wave, but noted that

it was not to be supposed that after its existence had been discovered and its phenomena
determined, endeavors would not be made to reconcile it with previously existing theory,
or in other words, to show how it ought to have been predicted from the known general
equations of fluid motion. In other words, it now remained to the mathematician to predict
the discovery after it had happened; i.e., to give an a priori demonstration a pos-
teriori. (Russell (1844)).

Russell seems to have been particularly contemptuous of Airy, who pub-
lished a theory of long waves of small but finite amplitude in his Tides and
Waves (1845). This theory is summarized in Lamb (1932, §§ 175 and 187),
who states ‘‘when the elevation 7 is not small compared with the mean depth,
h, waves, even in an uniform-canal of rectangular section, are no longer
propagated without change of type.” Thus, Airy concluded that solitary waves
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of permanent form do not exist! He also found an approximate formula for
the wave speed,

17
v=vgh gh (1 + 5 h)
which agrees with Russell’s result to first order in (n/h). From this, Airy
decided that “we think ourselves fully entitled to conclude from these experi-
ments [i.e., Russell’s] that the theory [Airy’s] is entirely supported.” Russell
described Airy’s conclusion as ‘“‘completely the opposite of that to which we
should be led on the same grounds.”

This controversy raged on for another 50 years before it was finally resolved
by Korteweg and de Vries (1895). They derived an equation (now known as
the Korteweg-deVries, or KAV equation), which governs moderately smail,
shallow-water waves. Their equation had permanent wave solutions, including
solitary waves.

Boussinesq (1871), (1872), also derived a nonlinear evolution equation
governing such long waves. Both Boussinesq (1871), (1872) and Rayleigh
(1876) obtained solitary wave solutions.

As Miura (1976) points out, despite this early work, apparently no new
applications of the equation derived by Korteweg and deVries were discovered
until 1960. Then, while studying collision-free hydromagnetic waves, Gardner
and Morikawa {1960) also derived the Korteweg-deVries equation.

The physical problem which motivated the recent discoveries related to the
KdV equation was the Fermi-Pasta-Ulam (FPU) problem (1955). In 1914
Debye suggested that the finiteness of the thermal conductivity of an anhar-
monic lattice is due to its nonlinearity. This led Fermi, Pasta and Ulam to
undertake a numerical study of a one-dimensional anharmonic lattice. They
felt that, due to the nonlinear coupling, any smooth initial state would
eventually relax to an equipartition of energy among the various degrees of
freedom of the system.

The model they considered consisted of identical masses connected to their
nearest neighbors by nonlinear sprmgs with the force law F(A) = —K (A +aA?).
The equations of motion are

m
& Vo= Oty =2y +al(yia - i =y = yi-1)’L
(1.1.1)
i=1,2,---,N=-1, yy=yn=0,

with a typical initial condition of y;(0) =sin im/N, y;:(0) =0 (typically N was
taken to be 64). Here y; measures the displacement of the ith mass from
equilibrium.
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According to Fermi, Pasta and Ulam (1955),

the results of our computations show features which were, from the beginning, surprising to
us. Instead of a gradual, continuous flow of energy from the first mode to the higher
modes, - - + the energy is exchanged, essentially, among only a certain few. - « - There seems
to be little if any, tendency towards equipartition of energy among all degrees of freedom
at a given time. In other words, the systems certainly do not show mixing.

In order to understand this phenomenon, Kruskal and Zabusky (1963)
considered a continuum model. Calling the length between springs h, t' = wt
(w=vK/m),x'= x/h with x = ih, and expanding y;., in Taylor series, reduces
(1.1.1) to (dropping the primes)

2

h
(112) Yoo = Yux + EYxYsx +Ey:cxxx+o(5h21 hA)x

where £ =2ah. A further reduction is possible if we look for an asymptotic
solution of the form (unidirectional waves)

y~¢(X1T), sz'_t, T=%£,

whereupon (1.1.2) gives
2 , b
(1.1.3) bxr+Pxbxx +6 ¢xxxx+0(h ,‘6")=0,

where §° = h?/12¢. By setting u = ¢, (1.1.3) is reduced to an equation directly
related to that originally discovered by Korteweg and deVries (1895):

(1.1.4) ur +utix +8uxxx = 0.

Kruskal and Zabusky computed (1.1.4) typically with sinusoidal initial condi-
tions. With 8 taken small, the slope of the initial function steepens until the
third derivative terms become important. At this stage the solution develops
an oscillatory structure of a definite form. The oscillations interact in a very
definite and surprising way, which we will discuss presently. The process of
trying to understand this phenomenon is what led to our present understand-
ing of the properties and solutions of the KdV equation. (Interestingly Lax
and Levermore (1979) have reinvestigated (1.1.4) with 52 small.)
Hereafter we shall work with the KdV equation in the following form:

(1.1.5) Kwy=u,+6uu, +u,, =0.
Equation (1.1.5) is equivalent to (1.1.4) upon a scale change (note that any

constant coeflicient may be put in front of each of the three terms by suitably
scaling the independent and dependent variables).
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It was clear to Kruskal and Zabusky (and was well known) that KdV had a
special permanent wave solution, the solitary wave,

(1.1.6) u=2k*sech’ k(x — 4kt —xo),

where k and x, are constant. Note that the velocity of this wave, 4k>, is
proportional (by a factor of 2 here) to the amplitude, 2k”. What was not clear
to previous researchers, and what is so surprising, is the way these waves
interact with each other elastically, Indeed, in trying to understand the nature
of the oscillations discussed above, Zabusky and Kruskal discovered the
following. Suppose that at time ¢ = 0, two such waves as (1.1.6) are given, well
separated and with the smaller to the right. Then after a sufficient time the
waves overlap and interact (the bigger one catches up). Following the process
still longer, the bigger one separates from the smalier, and eventually (asymp-
totically) regains its initial shape and hence velocity. The only effect of the
interaction is a phase shift; i.e., the center of each wave is at a different position
than where it would have been if it had been traveling alone (see Fig. 1.1).

Phase shift

F1G. 1.1. A typical interaction of two solitons at succeeding times.
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Because of the analogy with particles, Zabusky and Kruskal referred to these
special waves as solitons. We shall follow their lead and refer to any localized
nonlinear wave which interacts with another (arbitrary) local disturbance and
always regains asymptotically its exact initial shape and velocity (allowing for a
possible phase shift) as a soliton.

We refer to waves which interact inelastically as solitary waves. We also note
that there are many different working definitions in the literature of what is,
and what is not, a soliton. For our purpose the above definition is adequate.

In attempts to understand the initial onset of the oscillations in the numerical
calculation of (1.1.4), the question of a “‘reversible’ shock arose. A shock
requires jump conditions; hence the question of jump conditions and conserva-
tion laws arose naturally. (A conservation law is an equation of the form
aT/ot+d8F/ax =0, where T is called the density and F the flux, by analogy
with fluid flow.) Early on, four conservation laws were obtained, Miura
subsequently discovered a few more (Miura (1976)), and it was conjectured
that there were an infinite number.

After studying these conservation laws, and those associated with a com-
pletely new evolution equation (which is commonly called the modified KdV
equation or mKdV)

(1.1.7) M(0)=0,—60°0, + Ve, =0,

Miura (1968) discovered the following transformation. If v is a solution of
(1.1.7), then

(1.1.8) u=—(2+uv,)

is a solution of (1.1.5). Specifically,
(1.1.9) K(u)=—(20+%)M(v).

Because of the operator in the right-hand side of (1.1.9), the transformation
is single-valued in one direction only.

It was the transformation (1.1.9) that led to the other important results
related to the KdV equation. Originally, (1.1.9) was the basis of a proof that
the KdV equation indeed had an infinite number of conserved quantities,
(Miura, Gardner and Kruskal (1968)). The basic idea is as follows. Since the
KdV equation is Galilean invariant, the transformation

x'=x+?t, t'=t,
(1.1.10a) 1
u(x, )=u'(x', t')—?
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leaves the KdV equation invariant, whereas setting
I 1] 1
(1.1.10b) vix, ) =—ew(x', t)+—
&
transforms the mKdV equation into

(1.1.10¢) w,‘+%(3w2+252w3+wx'x,)=O.
X

Clearly j':o w dx’is a conserved quantity of (1.1.10¢). Similarly, from the Miura
transformation (1.1.8), (1.1.10a, b) yield

(1.1.10d) u'=2w+ew,—e-w

Thinking of £ « 1, we may solve (1.1,10d) recursively for w as a function of
u',ie.,

2 '
u £ €

(1.1.10e) w= w0+sw1+52w2+- = — = u’x'+—1(%+ u’z) Ho
Hence, (1.1.10e) allows us to obtain an infinite number of conserved quantities.
Later, in § 1.6, we shall give alternative proofs of the fact that KdV, mKdV,
etc., have an infinite number of conserved quantities (or densities). Moreover,
it can be shown that the even ones are nontrivial (i.e., not perfect derivatives).

The most significant result of all, however, was the development of a new
method in mathematical physics, the Inverse Scattering Transform (IST). It
too was motivated by (1.1.8). Note that (1.1.8) may be viewed as a Riccati
equation for v in terms of u; the well-known transformation v=¥,/¥
linearizes (1.1.8), yielding

v, +u¥=0.

Since the KdV equation is Galilean-invariant, and to be as general as possible,
Miura, Gardner and Kruskal (1968) considered

(1.1.11) Vo +A+u)¥=0.

It turns out that this equation provides an implicit linearization of the KdV
equation. Indeed, (1.1.11) is not an insignificant equation itself. It is the
time-independent Schrédinger equation of quantum mechanics.

Gardner, Greene, Kruskal and Miura (1967), (1974) first discovered the
method of solution of KAV by employing (1.1.11). Although we deviate from
their original procedure, the ideas are of course similar. We postulate an
associated time evolution equation,

(1.1.12) ¥, =AV+ BV,

where A, B are scalar functions independent of ¥ (note that this is the most
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general local, linear form of time dependence). We find that, if the KdV
equation (1.1.5) is satisfied and if we choose

(1.1.13) A=u,, B =4\ -2u,

then the eigenvalues are invariant in time, i.e., A, = 0. In fact, the reader can
verify that forcing the compatibility condition ¥, =¥,,, yields

(1.1.14) [K(u)+A,J¥=0.

Hence if K(u) =0, then A, =0. In § 1.2 we shall give a deductive procedure for
finding A, B. We will show that there are infinitely many equations associated
with (1.1.11) in this way, with different A, B.

In subsequent sections we shall discuss in detail how the results (1.1.11)-
(1.1.14) can be used to reconstruct potentials u(x, #), given u(x, ¢ =0). The
method is somewhat sophisticated, and applies to a number of physically
interesting evolution equations. The results in this field apply to a variety of
physical problems, as discussed in Chapter 4. Moreover the mathematics used
is also quite broad, ranging from classical analysis to differential geometry to
algebra and to algebraic geometry (see aiso Chapter 3).

1.2. Second order eigenvalue problems and related solvable partial
differential equations. As mentioned briefly in § 1.1, the inverse scattering
transform (IST) was first developed and applied to the Korteweg—deVries
{KdV) equation and its higher order analogues by Gardner, Greene, Kruskal
and Miura (1967), (1974). At that time and shortly thereafter it was by no
means clear if the method would apply to other physically significant nonlinear
evolution equations. However, Zakharov and Shabat (1972) showed that the
method was not a fluke. Using a technique first introduced by Lax (1968) they
showed that the nonlinear Schrodinger equation

(1.2.1) iq:=qu+xq°q%, k>0

is related to a certain linear scattering problem. Applying direct and inverse
scattering ideas, they were able to solve (1.2.1) given initial values g(x, 0) that
decayed sufficiently rapidly as |x| - co. Shortly thereafter, Wadati (1972), using
these ideas, gave a method of solution for the modified Korteweg-deVries
(mKdV) equation

(1.2.2) G +64°qx + Qe =0,

and Ablowitz, Kaup, Newell and Segur (1973a) did the same for the “‘sine-
Gordon” equation

(1.2.3) Uy = SIN U.

These results already showed the power and versatility of IST to solve certain
physically interesting nonlinear PDE’s.
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Then Ablowitz, Kaup, Newell and Segur (19735), (1974) developed pro-
cedures which, given a suitable scattering problem, allow one to derive the
nonlinear evolution equations solvable by IST with that scattering problem.
For example, it turns out that the KdV, modified KdV, nonlinear Schrodinger,
and sine-Gordon equations can all be shown to be related to one master
eigenvalue problem.

We begin by briefly considering the essential ideas behind Lax’s (1968)
approach. Consider two operators L, M, where L is the operator of the spectral
problem and M is the operator of an associated time evolution equation

(1.2.4a) Lv=Av,
(1.2.4b) v, = Mu.

Associated with KdV is the Schrodinger scattering problem (1.1.11). Hence,
in this case L = 3>+ u(x, t).

Taking the time derivative of (1.2.4a) and assuming A, =0, we have L +
Luv, = Av,. Substitution of (1.2.4b) yields a condition which is necessary for
(1.2.4a,b) to be compatible:

(1.2.4¢) L, +[L,M]=0,

where [L, M]= LM — ML (the commutator of L and M). Equation (1.2.4¢)
contains a nonlinear evolution equation if L and M are correctly chosen. Given
L, Lax (1968) indicates how to construct an associated M so as to make (1.2.4¢)
nontrivial.

The difficulties with this method are that (a) one must “guess” a suitabie L
and then find an M in order to satisfy (1.2.4a, b) and (b) it is often awkward
to work with differential operators (e.g., sine-Gordon (1.2.3)). As an alterna-
tive Ablowitz, Kaup, Newell and Segur (1974) proposed a technique which,
very generally, can be formulated as follows. Consider two linear equations

(1.2.5a) v,=Xv,
(1.2.5b) v, =Ty,

where v is an n-dimensional vector and X, T are n X n matrices. Then cross
differentiation (i.e., taking 9/0¢ (1.2.5a), 8/dx (1.2.5b) and setting them equal)
yields

(1.2.6) X, —-T.+[X, T]=0.

This is, in essence, the equivalent of (1.2.4c). It turns out that, given X, there
is a simple deductive procedure to find a T such that (1.2.6) contains a
nonlinear evolution equation. In order for (1.2.6) to be effective, the associated
operator X should have a parameter which plays the role of an eigenvalue,
say ¢, and obeys {,=0. Moreover, a complete solution to the associated
nonlinear evolution equation on the infinite interval can be found when the
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associated scattering problem is such that analytic inverse scattering can be
effectively carried out. (Even though there are numerous nonlinear evolution
equations which satisfy (1.2.6), a complete scattering theory of many of the
associated equations (1.2.5a) has, at this time, not yet been successfully
developed.)

As an example let us first consider the case of a 2 X2 eigenvalue problem.
A modification of the scattering problem of Zakharov and Shabat (1972) is
given by

V1 = ~i{vy+ quy,
(1.2.7a) ' 2
Uax = v+ rvy,

and the most general linear time dependence which is local is

U]r = AUI +BL72,
(1.2.7b)
v2, = Cv1 + Duv,,

where A, B, C, D are scalar functions, independent of v. (1.2.7a, b) play the
role of (1.2.5a,b) and X, T are given by the right-hand sides of (1.2.7a, b)
respectively. Note that if there were x-derivatives on the right-hand sides of
(1.2.7b) they could be eliminated by use of (1.2.7a). Furthermore, when
r=-1 (1.2.7a) may be reduced to the Schrodinger scattering problem

Uaxx +({2+q)v2 =0

(in this case ¢ plays the role of the parameter A in (1.2.4a)).

It is interesting to note that when r = ~1 or r = £4* (or r = £4 if g is real),
physically significant nonlinear evolution equations are ‘consequences of the
formalism. Moreover when r=-1, i.e,, when we have the Schrodinger
equation, the question of inverse scattering has been considered by numerous
authors. On the infinite line a review of this work can be found in Faddeev
(1963), and more recently in Deift and Trubowitz (1979). Similarly, the system
(1.2.7a) is sometimes referred to as a Dirac system of differential equations
{note: the inverse scattering problem of a special case of (1.2,7a) was con-
sidered by Gasymav and Levitan (1966)).

In what follows in this section we shall describe a simple technique which
allows us to find nonlinear evolution equations in the form (1.2.6) for the
special case of 2x2 systems. In subsequent sections we shall consider the
question of carrying out the direct and inverse scattering, as well as treating
higher order systems.

Compatibility of (1.2.7a) and (1.2.7b) is that a certain set of conditions on
A, +, D must be satisfied. Requiring that (v;.), = (vs)s i=1,2 (i.e., cross
differentiation of (1.2.7a) and (1.2.7b) and assuming the eigenvalues are
invariant in time (8{/9f = 0)), we readily find that the equations for A, -+, D
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satisfy
A, =qC —rB,
B, +2i{B=q,—(A—-D)gq,
Ce—2ilC=r+(A—D)r,
(-D), =qC—1rB.

Without loss of generality we can take D = —A in what follows. Thus we have
(1.2.8a) A,=qC~rB,
(1.2.8b) B, +2i{B=gq,~2Aq,
(1.2.8¢) C,—2i{C=r+2Ar

At this point we wish to solve the set of equations (1.2.8) for A, B, C. Doing
this ensures that (1.2.7a, b) are compatible. In general we find that this can be
done if still another condition is satisfied; this latter condition is the evolution
equation. The evolution equation results from solving (1.2.8). There are
various methods that are feasible; here we will describe an expansion pro-
cedure. In § 1.5 a general evolution equation (via an operator method) is
derived. Alternatively, Zakharov and Shabat (1974) have developed a tech-
nique starting from a postulated linear integral equation. We shall discuss this
latter technique in § 3.6.

Since ¢, the eigenvalue, is a free parameter (it might be small), we try for an
exact truncated power series solution to (1.2.8) in powers of {. A simple
expansion which yields an interesting nonlinear evolution equation is

A =A2£2+A1£+A0,
(1.2.9) B =Byt*+B{+Bo,
C=Cl*+Cit+Co.

Substitute (1.2.9) into (1.2.8) and equate coefficients of powers of {. The
coeflicients of 7> [(1.2.8b) and (1.2.8¢)] immediately yield B, = C; = 0. For {2,
(1.2.8a) gives A> = a, = const.; (1.2.8b) gives B, = ia,q; (1.2.8c) gives C; = iaar.
Next, the coefficients of ¢ yield the following. Via (1.2.8a), A, =a; =const.
For simplicity we take a; =0 (if a; # 0 a more general evolution equation is
obtained). Then (1.2.8b) gives Bp=—aq./2; (1.2.8¢c) gives Co=a,r./2.
Finally, for the coefficients of £°, (1.2.8a) gives Ao = a,qr/2 + ao; again, ag=
const, and we take ao = 0. Then (1.2.8b) and (1.2.8¢) respectively yield, at { °

(1.2.10a) —3axqu =q,~axq’r,
(1.2.10b) a3t =1, +axqr’.

This is a coupled pair of nonlinear evolution equations, which are reminiscent
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of the nonlinear Schrédinger equation (1.2.1). Indeed the nonlinear Schrédin-
ger equation results if we let r=Fq* Then (1.2.10a) and (1.2.10b) are
compatible if and only if a; = ia, a real. Furthermore, if we take a =2 we find
the equation

(1.2.11) iq: = qex £2q°q*.

If we take the + sign special soliton solutions can be found, whereas with the
- sign no solitons exist for potentials decaying sufficiently rapidly at o (since
the spectral operator in (1.2.7a) is Hermitian).

In summary, if we postulate the eigenvalue problem (1.2.7a) and the
associated time dependence (1.2.7b), then a compatibility condition is (1.2.8).
In this example, taking the expansion (1.2.9) and inserting it into (1.2.8), we
deductively and systematically find, with 7 = Fq*,

A =+2if" £iqq*,
{1.2.12) B =2q{ +iq,,
C=F2q* +iq¥,

which satisfies (1.2.8) so long as the nonlinear Schrédinger equation (1.2.11)
holds for g(x, ¢).

This procedure can be carried out for any polynomial expansion in {. We
shall simply quote the results for the most significant cases. The interested
reader can verify these results using the above ideas. In the case of polynomials
in ¢ to the third power we find

as

1 1 1
A= a3{3+a2{2+5(a3qr+a1){+§azqr— ]

4 (qrx "er)+ao,

, . 1 . i 1 i
(1.2.13) B= zagq{2+ (zazq ~3 a;qx){ + (zalq +5 aaqzr 3 aaqx — 2 aqux)a

1 . 1 .
C= ia3r{2+(z‘a2r+—2— a3rx){+ (ialr +é a3qr2+5 asrry — i a3rxx),

and the evolution equations

i 1 ,
(1.2.14a) gq, +Z a3(Grxx —6qrqx)+5 a(qx —-2q2r) —iaiq, —2a0q =0,

j 1
(1.2.14b) r, +i a3(reex —6qrr,) ) as(re — 2qr2) —iair.+2aor=0.

Evolution equations of physical interest are obtained as special cases. Taking
do=a1=a:=0, as=—4i and r = -1, we have

(1.2.15) q:+64q9, + quxx =0 (KdV).
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If r="Fgq,
(1.2.16) q:£69°qc+q =0  (mKdV).

Note that if we take ag=a; = a3 =0, a, = —2i and r = ¥q*, we obtain (1.2.11).

In the same way that we found the evolution equations corresponding to the
expansion of A, B, C in positive powers of {, we may also find equations
corresponding to expansion in inverse powers of { (or both). For example,
taking

Aza(x, t)’ sz(x, t)’ =c(x, t)
{ ¢ {
yields
(1.2.17) a, =—2l-(qr),, g = —4iagq, re = —4iar.

Special cases are

a—(i)cos b= —(i)si ——r——%
=\z u, =c 2 nu, q 5
(1.2.18)

Uy =Sin u {(sine-Gordon)
and

i AN Uy

a—(4) cosh u, b«—c—(z)smhu, g=r= >

(1.2.19)

U, =sinh u (sinh-Gordon).

The above are only a few of the evolution equations obtainable by this
expansion procedure,

When r = —1, an alternative formulation is to use the Schrddinger scattering
problem and appropriate associated time dependence, namely,

(1.2.20a) v+ (A+q)v =0,
(1.2.20b) v, = Av + Buo,.

The above-described procedure amounts to taking the time derivative of
(1.2.20a) and setting it equal to the second space derivative of (1.2.20b).
Equating coefficients of v, v, yields the compatibility conditions -

(1.2.21a) A, —2B,(A +q)~Bgq, = —q,
(1.2.21b) B..+2A,=0,

which are the analogues of (1.2.8). Expanding A, B in various powers of A
(when r=—~1 in (1.2.7a), A =¢?) yields nonlinear evolution equations. For
example, expanding A, B as

A=A A +A,, B=BA+By
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and equating coefficients of A gives

B, =by=const., A =a;=const.,
b b
Bg= --2—1 q, Ap =~41 g+ ago (ao = const.),

an additional restriction being the nonlinear evolution equation. Taking b, =4,
ay =0 =qa,, we have the KdV equation

(1.2.22) qc+64q; + Grex = 0,
with the time dependence of the eigenfunctions given by
(1.2.23) v, =q,0 +(4A —2g)v,.

By solving for Av from (1.2.20a), we may see that (1.2.23) has the alternative
forms

(1.2.24a) U+ 40, +6qu, +3q,0 =0
or
(1.2.24b) U+ U +3(@— A, =0.

This is the typical form of the time dependence of the eigenfunctions generated
by Lax’s (1968) approach.

Other nonlinear evolution equations are obtained by taking different
expansions from that above. This procedure gives the same result as does Lax
(1.2.4), but of course it is essentially algebraic in nature.

Interesting variations of this approach were given recently by Kaup and
Newell (1978a) and by Wadati, Konno, and Ichikawa (1979). If we replace
(1.2.7) with

vix = —ifv1+{qs,

(1.2.25a)

Va2, = i{va+ {rvy
and
(1 2 25b) vi:=Av;+ By,

vz = Cv1— Av,,

then their compatibility requires that
A,={(@C-rB),

(1.2.26) B, +2i{B ={(q. —2qA),
C,—2ilC=¢(r+2rA)

instead of (1.2.8). As before, finite expansions of A, B, C in powers of { yield
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a variety of nonlinear evolution equations compatible with (1.2.25). As an
example, if we take r=-1,g=u -1,

A=—~4in V2 -y 00
B=4u VY (u-1+2iu 30— ()L,
C=-4u?p,

we obtain Dym’s equation (Kruskal (1975))

(1.2.27) U =21 .

1.3. Derivation of a linear integral equation and inverse scattering on the
infinite interval. In this section we will study the direct and inverse scattering
problem associated with the system (1.2.7a). We shall attempt to illustrate the
basic ideas without a preponderance of mathematical formulae and theorems.
Indeed, even for the classical Schrodinger scattering problem the rigorous
theory is very substantial (see, for example, Agranovich and Marchenko
(1963), Faddeev (1963), Newton (1966), Deift and Trubowitz (1979)), and the
scattering problem (1.2.7a) presents new difficulties.

In what follows we shall assume that g and r vanish rapidly as |x|= 0. We
note that this is a very important assumption, since a scattering theory with
different boundary conditions gives markedly different results. With this in
mind, define the eigenfunctions ¢, &, ¢, & with the following boundary
conditions on ¢ = £ (note that ¢ = £+ in is the eigenvalue):

)| e

(1.3.1) ) o\ as x - —00, )
¢~(—1) ¢ ‘Z~(0> e«

(Note that ¢ is not the complex conjugate of ¢. We use ¢* for complex
conjugate.) These solutions of (1.2.7a) are defined at a fixed time (say t=0),
and all of the scattering theory (direct and inverse) developed in this section
is at the same fixed time. We will see in the next section how to obtain the
time-dependent eigenfunctions that satisfy both (1.2.7a, b) from these time-
independent ones. Hereafter in this section we omit the time dependence in
our notation. Now if u(x, £) (u(x, £) is a 2 X 1 column vector with components
ui(x, £),i=1,2) and v(x, £) are two solutions of (1.2.7a), we have

as x > +00,

(1.3.23) 2 W, v)=0,
dx

where W (u, v), the Wronskian of u, v, is

(132b) W(u, U)=u1l)2"uzv1.
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From (1.3.1) we see that W(¢, ) =—1 and W(y, ¢) =—1. The solutions ¢,
J are linearly independent, so we may write

(1.3.3a) ¢ =alE)y+b(E)W,

(1.3.3b) é =—a(e) +b(&).

(The minus sign is for convenience.) We also note that the scattering matrix is
usually defined as

a b
(1.3.30) s=(5 _J)
Using (1.3.3) and W(e, ¢) = —1, we obtain
(1.3.4) a(£)a)+b(£)bE)=1.

Furthermore, we will establish the following analytic properties of the scatter-
ing data (as functions of the complex variable ¢{). So long as g, re L, (i.e.,
absolutely integrable) then e“*¢, e “*y are analytic in the upper half plane
(n >0) and e “*$, e are analytic in the lower half plane (1 <0). These facts
immediately imply that

a=W(¢,¥)=d1¢2— 102
is analytic in the upper half plane, and

a=w(,¢)

is analytic in the lower half plane. In general, b = —-W(¢, &), b = W(é, ¢) need
not be analytic anywhere.

To establish these properties one usually converts the scattering problem
into an integral equation. For example, (1.2.7a) for ¢ obeys

(1.3.52)  ¢y(x, ) e"‘"=1+r dy Iy dzq(y)r(z) €29 9¢,(z,{) "

or

(13'5b) ¢1(x) {)ei(x=1+‘|‘ M(Xs Ys {)(151()’» K) ei(y dY,
1359 eals e =] iy, 0 e dy,
where

(1.3.5d) Mx,y, &) =r(y) J’ e***q(z) dz.

Since g, r vanish rapidly enough as |x|- o, so that q, 7€ L, and

Row=[ Fldy,  Qo)=] lawldy
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exist, the Neumann series of the Volterra integral equations can be shown
to converge absolutely in the upper half plane (n>0). Specifically, from
(1.3.5a),

dx ez | j a0 el
(1.3.6) +f j z lgy)l|r(2)]
pZ ¥,
X - dy, J dz, |CI(Y1)‘ l"(zl)l"" T

k¢ —o0

so that one simple estimate gives

[b1(x, &) el{xi =1+ Qo(x)Ro(x)+ 7= (2')2 Oo(x)Ro(x)

(1.3.7) — Qo(x)Ra(x) + -

(3')
= Ip(2v Qo(x)Ro(x))

and we see that the Neumann series for the integral equation (1.3.5) is
absolutely convergent for n > 0. This fact immediately implies that ¢,e“" is
bounded for 7 > 0. Analyticity of the corresponding functions e “*¢;(x, ¢), for
1n >0, is established by repeating this procedure on the integral equations
obtained by differentiating (1.3.5) with respect to .

Simply requiring g, r € L, does not yield analyticity on the real axis (n = 0);
more stringent conditions must be placed upon r and g to do better. Using the
basic ideas above, one can show that if

Ir(x)| = Ce 2KM, lg(x)|= Ce K™,

where C, K (K >0) are constants, then e “é(x, ¢), ¢ “¢(x, ) and a(¢) are
analytic for all n>-K, and e “*¢(x, {), e““¥(x, ¢) and a@(¢) are analytic for
all n < K. Moreover, b({) and 5({) are analytic in the strip K > 7 > —K.

Having r, q vanishing faster than any exponential as |x| > c© implies that the
respective functions discussed above are entire functions of {. The very special
case of compact support is particularly easy to understand, since in this case
(1.3.5) are Volterra integral equations on a finite interval. Such equations
always have absolutely convergent Neumann series solutions (see, for example
Pogorzelski (1966)).

Returning to either (1.3.5) or (1.2.7a), we may compute the asymptotic
expansions for large {. From (1.3.5) we simply integrate by parts to find for ¢
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in the upper half plane:

: 1 x 1

(1.3.82) bre=1-5 | gty o(2).
i __ 1 1
(1.3.8b) bs e = 2i(r(x)+0({2).

(Alternatively, from (1.2.7a) we may find (1.3.8) via WKB analysis.) Similarly,
the other eigenfunctions have the expansions for ¢(¢) (¢ in the upper half
plane)

—iex . 1 1
b =5raw+0( 7).
(1.3.9)

Yae =1 —2—1.2 fo r(y)q(y) dy + 0(%),

while for (¢ in the lower half plane) &, ¥,

§ie7 =g +0( )

2iL '4
(1.3.10) L 1
s —-i{x__ e =
dre " =-1 o Lo q(y)r(y)d)*+0(£2),
- 1 1
Fre=1em [ a0 dy+0(),
(1.3.11) . .
T ifx _ o il
5z e = —52r)+0( 7).
Thus in each respective half plane we have, as |{ | » 0,
1 (® 1
(1.3.12a) alf)=1-72 Lﬁ q(y)r(y) dy + O(P),
cn=1+-L [ 1
(1.3.12b) a@)=1+5 qu(y)r(y)dy+0({2).

So long as g, r are not too “‘small” (conditions which we shall discuss later
in this section), the scattering problem (1.2.7a) can possess discrete eigenvalues
(bound states). These occur whenever a({) has a zero in the upper (n > 0) half
plane or whenever @({) has a zero in the lower half plane (n <0). We shall
designate the zeros of a({) by {x, k=1,2,-- -, N, where N is the number of
bound states. Then at { = {i, ¢ is proportional to ¢ (recall a = W{¢, ¢)) or,

(1.3.13a) ¢ =Cu.
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Similarly, whenever d is zeroin the lower half plane,i.e.,at{ = Ek, k=1,---,N,
we have bound states and
(1.3.13b) & =Cui.

_ As discussed earlier, if r, g decay sufficiently rapidly as |x|> oo then a, b, G,
b are entire functions. In this case we can extend b, b to find C, = b({1), Cr =
b({:). So, for convenience, here we shall assume that r, g decay fast enough

such that:
J ]

for all n. In this case a{{), a({) are analytic on the real axis as well as in the
upper and lower half planes respectively. This assures us that a({) has only
finitely many zeros for Im (/) 20 (i.e., a({) is analyticfor Im ({} 2 0,a({) > 1 as
|¢| > o0; hence all zeros of a({) are isolated and lie in a bounded region).

As an eigenvalue problem, (1.2.7a) with (1.3.1) differs from the Schrodinger
problem in several respects: (i) the zeros of a({) (i.e., the eigenvalues) are not
necessarily restricted to the imaginary axis; (ii) a{{) may have multiple zeros;
(iit) a (¢) may vanish on Im(¢) = 0. The last are not proper eigenvalues as they
have no square-integrable eigenfunction (see also Ablowitz, Kaup, Newell and
Segur (1974)).

The important (physicaily significant) cases occur when r is proportional
either to ¢* or g. In the case where r = +q*, from (1.2.7a) we have symmetry
relations

) e

() >
e lle)

_ X,

S0 =Tt )
which imply (from a = W(¢, ¢}, etc.) that
(1.3.14b) a)=a*®), b)) =FbY),
and consequently
(1.3.14¢) N=N, L=( Ci=7Ci.

Similarly, when r = +q we have

lI]Z(x9 _5) :F¢2(xa _{))

3158 dwo=(1207)  ewo=(T30 T

which imply

(1.3.15b) a=a(=¢), b()=Fb(={)
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and consequently
(13150) N=N, Ek="‘£k, Ck=:FCk.

Hence if r = £q and q is real then all of the above symmetry conditions hold.
This implies that when {; is an eigenvalue then so is —/%¥. This means
eigenvalues either are on the imaginary axis or are paired. The above relation-
ships have important implications for the mKdV, nonlinear Schrodinger and
sine-Gordon evolution equations.

We also note in passing: (i) When r = +q* the eigenvalue problem (1.2.7a)
is Hermitian. In this case, for g - 0 sufficiently rapidly as |x| - o, there are no
eigenvalues with Im ¢ > 0. (ii) Estimates can be given to assure that there will
be no bound states when r = —g*, For example, since a = W{(¢, ¢) we have

(1.3.16a) a(¢)=lim ¢1(x, {) e,

X -»00

and from (1.3.5a)
© y

(1.3.16b) |a(g)-1|g1+j dyj_ dz lg)lir2)|é1(z, O) €| - 1.

Using (1.3.7) we have

(1.3.16c¢) la ()~ 1] = Io(2v'Qo(e0) Ry(a0)) — 1
(Io(x)Z 1 if x 20). Thus if

(1.3.16d) I6(2VQo(o0)Ro(x0)) =2

or

(1.3.16¢) Qo(00)Ro(c0) < 0.817

there are no bound states to (1.2.7a) (note that if r = —q*, Qo= Ry).

The above discussion is related to what is commonly referred to as the direct
scattering problem. Next we shall investigate the inverse scattering problem.

We shall derive our inverse scattering formulae by making the assumption
that the scattering data (a, 4, b, b) are entire functions. For this to hold, it is
sufficient to assume g, r decay faster than any exponential as |x|- co. This very
restrictive assumption can be relaxed, but the simple derivation we give here
must then be modified.

First we assume the following integral representations for the eigenfunctions
¢ and ¢:

(1.3.17a) ¢=(§))ei;’+J K(x,5)e™ ds,

(1.3.17b) = (é)e_it’ + Jw K(x,s)e “ds,

x
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where { = £ +in has n 20and K, K are two component vectors, e.g., K (x, s) =
($1555)). The integral terms involving K, K represent the difference between the
boundary values at x = 0 and the true eigenfunctions. To build in the appropri-
ate boundary condition it is natural to assume that the integral terms run from
x to 0. The crucial new step is, however, that the kernels K, K are independent
of the eigenvalue {. This was noted by Gel'fand and Levitan (1955) in their
original work.

To prove this we need only to substitute (1.3.17) into the eigenvalue problem
(1.2.7a). For example, doing this with (1.3.17a) yields

o

e“[(8, —9,)K 1(x, 5)— q(x)K,(x, 5)] ds

{1.3.18a) , .
—[q(x)+2K;(x, x)]e™ +lim [Ki(x, 5) e “]=0,
e[, +85)Ka(x, s)— r(x)K1(x, 5)] ds
(1.3.18b)

—lim [Ka(x, 5) ei“j=0.

§>0

It is necessary and sufficient to have
(9x = 3:)K1(x, 5)— q(x)K2(x, ) =0,
(8x +85)K>(x, s) ~r(x)Ki(x, 5) =0,

(1.3.19)

subject to the boundary conditions
Ki(x, x)=—1q(x),
lim K,(x, s)=0.

§—0

(1.3.20)

To see that a solution of (1.3.19) exists subject to the boundary conditions
(1.3.20), introduce the coordinates

u=3(x +5), =3(x —s).

Upon transforming to these coordinates, (1.3.19-20) become
3K (1, v) —q(p +v)Ko(u, v) =0,
3uKa(p, v)—r(u +v)Ki(p, v) =0,

Ki(u, 0) = ~2q(u),
ligc K{u, v)=0.

v—o0

(Note from the above we have K(u, 0) =3 f: r(n)g(u'y du'.) From the theory
of characteristics (these equations are what is commonly referred to as a
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Goursat problem), the solution exists and is unique. Similarly, one can show
that K exists and is unique.

Next we derive the linear integral equations (Gel’'fand-Levitan-Marchenko
integral equation) of inverse scattering. Consider ¢ on a contour C in the
complex ¢ plane starting at { =—00+i0", passing over all zeros of a({) and
ending at { =+0+i0", Since we have strong decay on g, r, (1.3.3a) may be
extended into the upper half plane so that

606 0) ()
) Vw0

Substitute (1.3.17) into (1.3.21) to find

¢, (1) e""‘+J. K(x,s) e % ds
a 0 x

(1.3.21) —¢(x, {).

(1.3.22) b 0 o
+—({)(( )e“"+j K(x,s)eigsds).
Operate on this equation with (1/27)f dfe* for y>x, use 8(x)=

(1/2m) |, e d¢ (8(x) is the Dirac delta function), interchange integrals and
obtain

(1.3.232) I=K(x,y) +<(1))F(x +y)+J K(x,s)F(s+y)ds,

where
(1.3.23b) F(x)E—l—J E’-(f)e’“ d,
27 ). a
=__1__ ¢(x,{) iLy
(1.3.23c) 1_2ch—-——a(§) e dg.

Since ¢e™" is analytic in the upper half plane, y > x, and the contour C passes
over all the zeros of a, we have that I = 0. Hence we have

(1.3.24) K(x,y)+( )F(x+y) J' K(x,s)F(s+y)ds =0.

x

Performing the equivalent operations on the analytic extension of (1.3.3b) in
the lower half plane yields

(1.3.252) K(x,y)— <(1)) F(x+y) —ro K(x,s)F(s+y)ds=0,
where

(1.3.25b) F(x) =2 J' g ~itx gy
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and C is a contour like C but passing below all zeros of @(¢). A special case
of these formulae is obtained by assuming that @ ({) does not vanish on the real
axis ({ =¢ n=0) and a({) has isolated simple zeros (multiple roots are
obtained as a limiting case of coalescing simple zeros). Contour integration in
(1.3.23b) and (1.3.25b) gives

1 (s . N )
(13.268) F(x):——j _'_(é')etfxdg_i Z Cvjel{,vx’
2l ca &
(1.3.26b) ﬁ(x)=ij S et e i & G e,
2T —od i=1
where
b((;) ~ b
i =3 s C,~= VN
a'((;) a'w;)

In the case of slower decay, where a, @, b, b cannot be extended, (1.3.26a, b)
still hold, but here the normalization constants C,, C; are found from the
proportionality of the eigenfunctions ¢; = ¢ (x, {;), ¢;. For example, ¢; = C",-c//,-
and C;= C/a), etc. (Note the slight change in notation from (1.3.13).) The
integral equations (1.3.24,25) can be put into a convenient single matrix
equation by defining

K, K 0 -F
(1.3.27a) 7{:( o1 ‘), 9::( )
K; K, F o/

whereby we have
(1.3.27b) H(x, y)+9(x+y)+J Hx,s)F(s+y)ds=0.

As pointed out earlier, in the special (but physically significant) case r = £g*
there are numerous symmetry relationships. Using (1.3.14, 15) we have

(1.3.28a) F(x)=FF*(x),
%
(1.3.28b) K(x,y)= (flé,;f;yy)))-

The integral equations (1.3.27b) with the above symmetry conditions reduce
to

(1.3.29a) K;(x, y)iF*(x+y)$J j Ki(x,2)F(z+5)F*(s+y)dsdz =0.

(When r = Fq, q real, then F(x) and K (x, z) are real.)
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Finally using (1.3.20), we obtain the potential

(1.3.29b) q{x)=-2K;{x, x).

In the more general case of (1.3.24) the potential r(x) satisfies
r(x) = —2K;(x, x)

and is obtained in the same way as (1.3.29b} (see (1.3.18), etc.).

The question of existence and uniqueness of the linear integral equations
(1.3.24) is usually examined by use of the Fredholm alternatives (see, for
example, Pogorzelski (1966)). For example, the restriction r=—g*(x) is
sufficient to guarantee that the solutions of (1.3.24) exist and are unique.

To show this, consider the homogeneous equations corresponding to
(1.3.24) (y>x):

(1.3.30a) hl(y)+J‘ ha(s)F(s+y)ds =0,

(1.3.30b) ha(y)— I hi(s)F(s+y)ds=0.

Suppose h(y)=(;’1;) is a solution of (1.3.30) which vanishes identically for
y <x. By the Fredholm alternatives, it is sufficient to show that A(y)=0.
Multiply (1.3.30) by [#¥, k¥ ], integrate in y and use

[ o ay={ i a.

One obtains
(1.3.30¢)
[+l + [ thatomnt 0IF (s + )~ (oI (1)F s + )] ds} dy =o0.

If r = —g™ then the symmetry condition (1.3.28) allows this latter equation to
be written

j {lh1|2+lh2]2+2ilmj h’l"(y)hz(s)F(s+y)ds}dy=O.

The real and imaginary parts must both vanish, from which it follows that
h(y)=0,

and the solution of (1.3.24) exists and is unique.
Second, if

r(x)=+gq*(x),
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the problem is formally self-adjoint, the spectrum lies on the real axis and
F(s+y)=—F*s+y).

In this case, {1.3.30c) becomes

(1.3.30d) j {|h1|2+|h2|2+ReJ hT(y)hﬂs)F(s%—y)ds]dy=0.

Since we have r=+g* then |a]>’~|b°=1 on the real axis, so |a({)|>0.
Moreover, the problem is self-adjoint, hence

la(O1>0, n=0.

This implies that there are no discrete eigenvalues and therefore F (z)=
(1/2#)[20 (.b/a)(f)e'fz d¢é. The Fourier transform of hi(y) is hi(é)=
(%, 1 (y) e dy, which satisfies Parseval’s relation

s o] 1 [+ 0] R
J |h/[2dy=‘2‘;J'_ A, dé.

Substituting these results into (1.3.30d) and reversing the order of integration
yields

K

R " b ” N
[ {i-areiz@rare [ Z@m-ahs @)} a0
Since |(b/a)(£)| <1, we have
b ~ N “ R n
|2Re [;(E)hx(—é)hi"(é)] ] <2h(=oIAF (@) = ki (-O)P + ha(E)

Hence we must have
h=0,

and the solution of the original integral equation (1.3.24) exists and is unique.

It should also be pointed out that complete and rigorous study of the inverse
problem associated with (1.2.7a) has not yet been undertaken. Hence the
characterization of precisely which class of scattering data leads to “‘nice”
potentials has not yet been resolved. (The formulae and analysis in this section,
however, show that if r =+4™ and ¢ obeys j':ox"lql dx <o for all n, then
inverse formulae can be derived which will yield a potential; moreover, the
potential is associated with nice analytic behavior in the appropriate half
plane.)

At this point we note that the inverse scattering results ((1.3.24) and
following) may be derived using the concepts used to solve standard Riemann-
Hilbert problems. Specifically, once we have derived the facts that ¢ e™,
we ¥, a(¢) are analytic in the upper half plane, and ¢ e, ¢ ¢ %, a(¢) are
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analytic in the lower half plane, then the statements (1.3.3) may be transformed
into what is essentially a Riemann-Hilbert problem. For example (1.3.3a)
implies

(b ex‘(x

a

T ilx b ifx

(1.3.31) =g we
Thus if a({) had no zeros in the upper half plane, (1.3.31) would be a statement
about the jump (b/a )y e** between two functions, each of which is analytic in
a half plane i.e., a Riemann-Hilbert problem. With or without zeros of a({ }
in the upper half plane, the usual ideas necessary to solve such problems yield
a linear integral equation between the eigenfunctions. Specifically, we operate
on (1.3.31) with the projection operators
1 j‘°° da¢

P,=—1Iim = H,

1 1
e e e _+_.
2mier0) & —(&x ie) 2 2i
H(u) being the Hilbert transform of u. Note that
1 1 1
P( ) 0, P_( )=— if Im £, >0.
\e- 4 -0/ £ ¢

The results are:

2052w )

Ckl// etk
E—l

(1.3.32) is a linear singular integral equation relating the eigenfunctions &, ¥
A second such equation could be derived from (1.3.3b), thus giving a ‘‘com-
plete” linear description of ¢, & from which one could, in principle, obtain the
potential via the scattering problem. Since global results are often difficult to
obtain from such equations, we usually go to a Gel’fand-Levitan-Marchenko
representation. By multiplying (1.3.32) by e (y > x), and taking the Fourier
transform (i.e., operate with (1/27) [*, d¢e™) it is a straightforward calcula-
tion to show that (1.3.32) reduces to (1.3.24a), thus providing us with an
alternative derivation. However, it is very important to note in all of this that
once knowledge of the analytic properties of the eigenfunctions is obtained,
the inverse equations may then be readily derived.

We complete this section by giving the results of inverse scattering for the
Schrédinger eigenvalue problem,

1332 50 e =-p.(Lopin g ew )+ ([ )+ B

(1.3.33) Ve t(A+q)v=0.

The methods to derive the inverse scattering formulae are similar to those
presented earlier, hence we omit the derivation. Details of the rigorous theory
may be found in Faddeev (1963) and Deift and Trubowitz (1979). For A = k*
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we define the eigenfunctions ¢, ¥, &,
(1.3.34a) o ~e ™, X = —00,
(1.3.34b) b~e™, g~e ™™, x-+o0,

The Wronskian of ¢ and ¢ shows that for k # 0 they are linearly indepen-
dent; hence we may write

(1.3.35a) & =alk)d+b(k)y.

The reflection coefficient is defined by p(k)=b(k)/a(k), and the trans-
mission coefficient by 7(k)=1/a(k). Equation (1.3.35a) and its derivative
yield equations for g, b and hence p. The name “‘reflection coefficient” is used
because of the wave analogy to the equation (obtained by dividing (1.3.35a)
by a)

(1.3.35b) 6 = + py.
Here ¢ denotes the incoming wave ~e ** as x » 00, etc. The eigenvalues
An = —x2 are those numbers for which ¢, = ¢ (x, ,.) and ¢, vanish as |x|> o

and are related by

(1.3.36a) &n = Coth,.
The normalizing coefficients we will use are defined by
Ca
(1.3.36b) C,=——
a'(ix,)

{a (k) may be analytically extended into the upper half plane). The eigenvalues
can be found by solving a (ik,)=0.

With this information, the theory of inverse scattering allows us to recon-
struct the potential u. The essential results are as follows. First we compute

1 oo . N
(1.3.37a) F(x)=—J' plk) e dk—iYy C,e "™
27 ) 1

(in § 1.4 we shall show that —iC, may be replaced by positive quantities, cﬁ).
Then solve the integral equation (y > x)
(1.3.37b) K(x, y)+F(x+y)+j K(x,2)F(z+y)dz =0

for K (x, y). The potential is reconstructed (hence the inversion) by the relation

(1.3.37¢) q(x)=2i
dx

Equations (1.3.37) are the Schrodinger analogues of the 2x2 matrix
equations (1.3.27) for the eigenvalue problem (1.2.7a).

K(x, x).
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In the next section we will show that the scattering data S(k) (o(k) the
reflection coefficient, {A;}7-; the discrete eigenvalues, {C;}{- the normalization
coeflicients) have simple time dependence under the nonlinear evolution
equations discussed in § 1.1. Moreover, the bound states give rise to the
solitons. Indeed, when p(k) = 0, the integral equation has a degenerate kernel
and K(x, y) has a solution expressible in closed form (see, for example, Kay
and Moses (1956), also § 1.4).

Finally, from a pedagogical standpoint it is worth mentioning that for certain
potential$ the scattering data (reflection coefficient, etc.) can be calculated in
closed form. For example, if we have the initial condition

(1.3.38) q(x)=0Q38(x),

solving (1.3.33) yields the following resuits:

2ik+Q _Q
alk)=—n—  blO=—5p

(1.3.392) o "

!
==sn+o " ®=io

If Q>0, a =0 somewhere in the upper half plane. Hence, there is an
eigenvalue A, = —« 1, and a normalization constant given by

(1339b) K1=g, C1=£29=RCS p(ikl).

If Q <0 there are no discrete eigenvalues.

Another particularly easy potential which leads to simple results for the
scattering data is a “‘square well.”

In addition to the equations and inverse scattering results presented here,
there are numerous alternative questions that have been pursued by research-
ers. For example, Zakharov and Shabat (1973) investigated the nonlinear
Schrodinger equation with nonzero boundary values at infinity (the boundary
conditions give rise to so-called envelope hole solitons, i.e., dark pulses; see
also Hasegawa and Tappert (1973)). The question of finding solutions to
problems with periodic boundary values has been investigated by numerous
authors (see § 2.3); semi-infinite problems have been explored by Ablowitz
and Segur {1975), and Moses (1976). Similarly, many other second order
scattering problems have been investigated in the literature, e.g., Jaulent
(1976) and Kaup and Newell (1978a).

1.4, Time dependence and special solutions. In the previous section we
developed the inverse scattering equations associated with the generalized
Zakharov-Shabat scattering problem and the Schrddinger scattering problem.
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This means that, given the scattering data
b
s ={wity a2 o)

(i.e., discrete eigenvalues, normalization constants, and reflection coefficient),
we can then, in principle, solve the associated integral equation. The solution
of the integral equation then gives the potentials (e.g., (1.3.29b) or (1.3.37¢)).
This may be done at any time ¢, so that  is a parameter in the process.
Since we are interested in solving an evolution equation, we proceed as
follows. At r=0 we are given initial values of a function satisfying some
nonlinear evolution equation such as that discussed in § 1.2. We then use the
direct scattering problem (e.g., (1.2.7a)) to map this initial potential into the
scattering data S(¢; r=0) (i.e., at t =0 we solve for the eigenfunctions and
from this information we obtain the scattering data). In this section we shall
show how one may obtain the scattering data for all times >0, §(¢, #). With
this information we may obtain the potential and have the solution of the
nonlinear evolution equation for all times ¢.

We begin by constructing solutions to both (1.2.7a) and (1.2.7b). From § 1.2
we have seen that requiring that g, 7> 0 as |x| > 00 gives us a large class of
equations with the property that A> A _({), D> —-A_({), B, C>0as |x| >,
The time-dependent eigenfunctions are defined as

¢(1)=¢€AJ dl(i‘)zwe—AJ

t;(t): (ﬁ-e‘AAJ llj(r)zd‘,‘eA_l’
where ¢, &, ¥, JJ satisfy (1.2.7a) with the fixed boundary conditions (1.3.1). It
should be noted that the time evolution equation (1.2.7b) does not allow for
fixed boundary conditions. Hence ¢ ~ (¢) ¢ ", etc., cannot satisfy (1.2.7b). For
example, the time evolution of ¢

>

‘ @ﬁf_ A B\,
(14.2) ot —(C D)d’ ’

(1.4.1)

shows that ¢ satisfies

(1.4.3) ‘7—@=(A“A‘(§) B

at C D —A_(g))¢'

If we use the relation

(144 s=aieny ~ 1) e rsf0) o

then (1.4.3), as x - o0, yields

(1.4.5) (‘;‘i‘:) = (_2 A_(O;)b e“"‘)'
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Thus
(1.4.6a) b, 1) =b(L, 0) e 7244,
(1.4.6b) a(¢, 1) =a({,0).

From (1.4.6b) the eigenvalues, ¢, are fixed in time.
In a similar way, using the definition of the normalizing constant
Gi(1): (£ = G (L)), C;=C/aj, we find

(1.4.7) C()=Coe 29, j=1,2,--- N,

where Cjo=C;(t=0). It should be noted that in those cases where the
scattering data can be extended in the upper half plane, the result C; = b;/a;
immediately yields

bi({,t)  b(L,0) _sa oy —2A_(¢)t
n =7 e =it = —ei
aj(&,1) aj(Z,0) w0

Similarly, the time dependence of the scattering data S(¢; t) is obtained using
¢ = —ay + by. We find

G0 =

b(¢, 0)=5(L 0) 24-9,
(1.4.8) aw, t=a(o),
é(t) = é,'_() €2A_(2")!.

These results give us the time dependence of F(x; t) and F(x; ) in the inverse
scattering equations (1.3.24) relative to the evolution equations derived in
§1.2:

!

1 ® i&Ex— t
(1.4.92) F(x;t)=—2;j —g(z,O)e"‘ 2A-Or gg i

X i x—2A_({)t
ix— .
q’oe 5 =
=1

[+ 9]

(1.4.9b) F(x; t)=2iﬂj'

-0

- N B .
_?(g’ 0) e—i6x+2A_(£)t d§+l Z (tﬂj,o e—i(,x+2A_(§j)t-
a j=1

The formulae (1.4.9) play the role of Fourier integral solutions of a correspond-
ing linear problem (specifically, the linearized version of any nonlinear
equation derived in § 1.2). The solution of the nonlinear evolution equation is
obtained via solving (1.3.24). Moreover, it should be noted that the integral
equations simplify for x -» 0. For example, from (1.3.24), assuming for con-
venience that r = Fq*, we have Ki(x, y)c£F*(x +y).

Hence, from (1.3.29b),

1 (% (6\* 2igx—2A7 (&)
q(x;t)xg_[ (;) (£, 0) e 224 ge.

Note that the ¢; are in the upper half plane and hence the bound state
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contribution is exponentially small as x - 00. Thus, as x - o, the problem tends
to a linear problem whose solutions g can be expressed in the form
(1/2m) [ a(k) ™% dk. Here

w(€) = —ZIAf(:;-).

When r = Fq*, A_(£) is pure imaginary, we have

w()=2ia ()
2
So, for example, in the case of the nonlinear Schrédinger equation (1.2.11) we
have from (1.2.12) that A_(¢)=1lim .o A({)=2i¢* and hence w(&)=—-¢
(which is the dispersion relation of the linearized equation).

We now have worked out the conceptual steps in order to obtain a solution
to those evolution equations associated with the scattering problem (1.2.7a)
(and indeed these are the same steps one uses for the more general scattering
problems associated with IST).

Before turning our attention to special solutions, we shall simply state how
the scattering data for the KdV equation (1.2.23) evolves in time. Using an
analysis similar to that previously discussed, but for the Schrodinger scattering
problem, we find that a(k, t), b(k, t) are defined by (1.3.35),

a(k, t)=al(k,0),
(1.4.10) bk, t)=b(k, 0) ¥,
Co()=Choe®™, n=1,---,N.

The discrete eigenvalues are the zeros of a(k, ¢) in the upper half plane, and
it is clear that the eigenvalues are constant in time and the reflection coefficient
p(k, t)=b(k,t)/a(k, t) evolves in time in a simple way. Specifically, we note
that the time dependence associated with the KdV equation (1.2.23) is such
that dp/dt = —8iw(k)p. Moreover, w (k) = —k” is the dispersion relation of the
linearized problem associated with KdV (i.e., g + q.x = 0).

In the Schrodinger problem it can be shown that the discrete eigenvalues,
i.e., the zeros of a, occur only on the imaginary axis and must be simple (see,
for example, Deift and Trubowitz (1979)). Moreover, it can also be easily
shown that the normalizing coeflicients appearing in (1.3.37) must be positive.
Henceforth we shall write

(1.4.11) —iC, =c?.

The positivity of the normalizing coefficients can be established as follows. We
assume all functions can be extended into the upper half plane. Then, at an
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eigenvalue k, = ik,, we have as x » +o
(1.412) ¢ (k)= =Cothu ~Coe ™",

L b0~ (ki ~ () €,
where C, is necessarily real. But for all x

d
(1.4.13) E(¢k¢x—¢¢xk)=2ixn¢2-

We use the asymptotics (1.4.12) in the left-hand side of (1.4.13) at «, to find

oo e dldxy
(1.4.14) a (K")__I(T)’
thus

o -5
“lCn C,, 2

(1.4.15) G = T T gt =

(usually ff,o &2 dx is normalized to unity). Hence for the discrete portion of
the kernel in the Gel'fand-Levitan equation (1.3.37) we have

(1.4.16) Fp(x)= _j,";l calt) e,

where from (1.4.10) ¢, () = ¢, (0) e***,

Having obtained the time dependence of the scattering data, we are in a
position to discuss solutions and properties of the evolution equations. In this
section we shall discuss the special soliton solutions, and in § 1.7 we shall
investigate the asymptotic solution corresponding to the continuous spectrum
(i.e., no discrete eigenvalues).

First we return to the generalized Zakharov-Shabat eigenvalue problem
(1.2.7a). When r=gq* there are no discrete eigenvalues. In this case the
eigenvalue problem is formally “self-adjoint;"” i.e., the scattering problem is
such that for LV =¢V, L = (L#)* =L, where L" is the Hermitian conjugate
of L and L* is the adjoint of L. If ¢, r decay rapidly then the self-adjointness
implies that the eigenvalues can only be real. Since discrete eigenvalues must
be nonreal complex, they cannot appear. Hence we consider only r = —g*. We
shall use the equation (1.3.29a). For F(x) we take (b/a)(t=0)=0 (no con-
tinuous spectrum) and N = 1, one discrete eigenvalue. Hence (for convenience
in notation we will suppress the time dependence)

(1.4.17) F(x)=—ice™, (=¢+in, n>0.
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Substituting (1.4.17) into (1.3.29) yields
Ki(x, y)=ic* e
(1.4.18)

oc o0 ‘
—J J Ki(x, 2)le> e e e 7Y ds dy.
X X

Define K, (x)={, K,(x, z) ¢* dz, multiply (1.4.18) by ¢ and operate with
e dy. Thns yields an equation for K1(x) whose solution is given by

C*el({ 26%)x

(=9 =lcf ™ -]
From (1.4.18) we now can find K (x, y):

(1.4.19) Kix)=—

. —il*(x ‘Clz i(L=E%)% -1
(1.4.20a)  Ky(x,y)=ic*e ™ *”[1—me2 =y

Thus, the potential g(x) is given by

, —2i
2ic* ¢ T2H*

(1.4.20b) q(x)=-2K(x, x)=— ‘Clr .
e2nx +(—2) e-lnx
4n

Defining |c[*/4n° = ¢** gives this as

(1.4.20c¢) q(x)--—zﬂ2ne 7 sech 2(nx — ).

This in turn is a soliton solution to all the evolution equations with r = —g*,
subject to the conditions A > A_({), etc., discussed previously. Noting that
¢ =c(t) obeys

(1.4.21) c=coe A"
we find that g (x, ¢) is given by
(1.4.22) q(x, 1) =2ne 2 2MA-ON 1" ™D g0k [2nx +2 Re A_() — xo),

where co=|cq| ¢, xo=1In|col/27. Thus, in the case of the nonlinear Schrédin-
ger equation (1.2.11), A_(¢) = 2i¢” and (1.4.21) is given by

(1.4.23)  g(x, t)=2me 2 M &1/ o ch (2nx — 8&nt — xo)

(see Fig. 4.16, p. 325). Note that the velocity of the solution is given by 4¢,
and its amplitude by 27.

It should be noted that the general case for g, r (when g, r are not related)
allows singularities to develop in finite time. Here we have one eigenvalue ¢
in the upper half plane, and one { in the lower half plane. The analogue to
(1.4.17) is

. ilz r .« —‘{_
F(z,t)=—ice™, F(z,t)=ice ',
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cisgivenby (1.4.21)and ¢ = ¢, ‘eu‘(f)'

equations and find

. Again we solve the degenerate integral

2ics eZA_(Z_)I—Zin
, )=+,
q(x, t) )
2icoe~2A_({)t+2i(x
&, ,t = )
(1.4.24) rix, t) DG

Cofo 7y _ i(r—F
D(x, t)=1— 9 e2(A_(C) A_(EN+2i l)x‘

=&

It may be verified that even if D(x, 0) # 0, we may have D(x, T) =0 for some
time T > 0. We refer to these as exploding solitons. This result motivates our
emphasis on r = +q*,

The procedure applies, in principle, in the more general case where we have
N distinct eigenvalues (a double eigenvalue can be analyzed by taking the limit
of two nearby ones). The integral equation is again degenerate and may be
solved in closed form (in terms of determinants); see, for example, Zakharov
and Shabat (1972) or Wadati (1973). It should also be noted that Hirota has
an alternative procedure which also produces N-soliton solutions. However
Hirota’s method may be applied directly upon the nonlinear evolution
equation and does not employ the notation of inverse scattering. We shall
discuss Hirota’s method later in § 3.3. Moreover, in that section we shall discuss
the N -soliton case for the KdV equation.

In some applications two or more eigenvalues are such that the values of
Re A_({)/n are equal (formally, the solitons in (1.4.22) have the same
velocity). In this case a new type of soliton is found: a multiple bound state
which is periodic in time. In the case of nonlinear Schrédinger we can see that
Re {A_(¢)}/ n & Hence discrete eigenvalues with the same real part form a
multiple bound state. (A further discussion of this appears in the paper of
Zakharov and Shabat (1972).) Another example where periodic multiple
bound states occur is that of the sine-Gordon equation. From § 1.2 we see that
for the sine-Gordon equation A_({) = i/4{. Hence Re A_({) = n/(4(£*+17%),
and the condition for two eigenvalues to form a bound state is for them to lie
on a circle §2+ n’ = constant. Indeed, in the case of sine-Gordon, when we
have only one eigenvalue it must lie on the imaginary axis £ =0 (when g = ~r
and q is real the eigenvalues either lie on the imaginary axis or they are in pairs
& —¢*;see § 1.3). Hence

ReA_({)=Z1-T-’-, ImA_(£)=0 (also%:-z’i).
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We have, from (1.4.22),

SE

1
=—q(x, 1)=2n sech (2nx +—t+x0),
2n
and the single kink solution for sine-Gordon is given by

_ 1
u=4tan ' exp (2mx +—1 + xp).
2n

In terms of *‘laboratory’’ coordinates x = (X +7T)/2, t =(X — T)/2 where the
sine-Gordon equation becomes

(1425) Urtr — Uxx +sin u =O,

the single kink solution has the form

(14.26) w(X, T)=4tan"" exp ((n +ﬁ)(X~X0)+( "Ilﬁ) T).

27 27+
j"/_ j’&
o 4 .5‘—‘-‘ ;5—'—‘ -+ T; g
- -+
(a] 2T 4 {b} -2T 4
FIG

F1G. 1.2. (a) typical kink (1= +3), (b) typical anti-kink (n = —3).

Similarly, the calculation for two discrete eigenvalues can be worked out in
complete detail. We shall only list pertinent results here. Given two paired
eigenvalues { = £+in and —¢*, the solution is given by

u(X, T) =4tan"‘[§sech (gy(x—xo)—m— V)T)
(1.427)
X cosg(u(T— To)-(4*u)X)] s
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where »=2+1/21LP). If €+7n°=|¢)°=} then »=4 and we have the
“breather” solution

l-w

(14.28) w(X,T)=4tan™" ( sin ((T — To)) sech VI — @ (X —Xo)),

w
where w =2¢ ¢ +n°=1 (see Fig. 1.3). Similarly a typical kink, anti-kink
solution with n; =3((1-)/(1+v))""%, n =3(1 + 0)/ (1= o) (= im;, =1, 2)
is found to be

=t (S sinh () seeh (7=5)
(1.4.29) u(X, T)=4tan (v smh( 0 sech T

(we may obtain (1.4.29) from (1.4.28) by setting v = i\/w§/1 —w° and To=
7). A double pole solution may be obtained by taking v - 0, i.e.,

(1.4.30) u(X, T)=4tan"' (—T sech (X — X))

(see Fig. 1.4). Spectrally speaking (1.4.29) is a solution which corresponds to
two eigenvalues 71, 1, located on either side of n = 3. They coalesce to a double
zero (1.4.30) at n; = n, = 3 and then split into negative complex conjugate pairs
¢, —{* as in (1.4.28). In terms of the energy functional

(1.4.31a) E=_[ (%(u%+u§()+1—cos u) dx,

the energy of a kink traveling in laboratory coordinates with velocity v (1.4.29)
is given by

_ 2E,
\/l—vﬁ’

(1.4.31b) E

and that of a breather (1.4.28) oscillating in laboratory coordinates with
frequency w is given by

(1.4.31¢) E=2EV1-w0,

where E| is the energy of a stationary kink (1.4.26) with v = 0.

At this point it probably is wise to reemphasize that the class of problems
giving rise to such soliton solutions is indeed quite special. Often a working
test of whether an equation is solvable by IST is to examine the interaction of
two solitary waves. If they do not interact elastically, then it is generally
believed that the governing equation is not solvable by inverse scattering
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FIG. 1.3. A typical breather solution of (1.4.28). (a) w(T = To)= /2, (b) (T - Ty) = . (¢) (T = Tyl =3m/2.

u u T

2w+ 2w 4+ 2w +

T -4 ™4 T 4
+—+—{—a—n—u=;¢;n-|-|—}—|—+-x

-5 5 5 & &
_r-— - -
-2wl 2w L (c) _
ta) (b) R

FIG. 1.4. A typical double pole solution of (1.4.30).(a) T=0.1, (b) T=1.0, (c) T = 10.0.
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techniques. As examples of this situation, Ablowitz, Kruskal and Ladik (1979)
studied the equations

Uy — U +F(u)=0
for various functions F(u), namely,

Fi(u)=sinu+A sin 2u,

1—’, 2nm<u<(2n+1)m
FZ(u)= O!

u = nm,

—’Z’, Qn+1)mr<u<2n+1)m

3
Fs(u)=—u +u—2.
3

Each of these equations has special solitary wave solutions expressible in closed
form. Only in the case of F;(u) with A =0 (i.e., sine-Gordon) did the solitary
waves interact elastically. Although at large relative velocities it appeared that
the interactions (A # 0) were elastic, nevertheless for low relative velocities the
interactions were very significant. At low enough relative velocities the solitary
waves even ‘‘destroyed” each other’s identity, i.e., formed quasi-breather
states.

A number of authors have investigated such questions numerically (early
work was done by Zabusky and Kruskal (1965), Hardin and Tappert (1973)).
A review of some of this work can be found in Eilbeck (1978). Other work in
this direction has been carried out by Kudryavasev (1975) and Makhankov
(1978).

The multisoliton solutions associated with the Schrddinger eigenvalue (e.g.,
KdV) problem are less varied than those associated with the generalized
Zakharov-Shabat scattering problem. In this case the possibility of multiple
bound states are eliminated due to the self-adjointness of the eigenvalue
problem.

In what follows next, we shall derive the N-soliton solution associated with
the KdV equation. Our derivation follows that of Gardner, Greene, Kruskal
and Miura (1974). For this purpose we consider (1.3.37b) with the reflection
coefficient p(k) taken to be zero (i.e., reflectionless potentials). Given (1.4.16)
we have that K(x, y) satisfies

m= m=1

N N @
(14.32) K@ y)+ L cle =t v cf,.e_"'"yJ‘ e K (x,z)dz =0.
1 x
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We assume a natural form for K (x, y),

(1.4.33) K(x,y)=- Z Crntim(x) €7,
Substituting (1.4.33) into (1.4.32), carrying out an integration, and equating
coefficients of e~ yields

'(K +x,)x

(1.4.34a) U () + 2 cmcnz,bn(x)( ) =¢ne ",

Let E, ¢ be column vectors with mth entries ¢,, ¢ " and ¢,, respectively, and
C an N X N matrix with its m, n entry

PO L e ;
Kn,t Ky
then (1.4.34a), in matrix form, is given by
(1.4.34b) {I+Cy=E.

(I is the N x N identity matrix). We can be sure that (1.4.34b) has a solution
¢ since C is positive definite; i.e.,

T N N (K, +K )X cc N 2
P CP= Z Z Pmcmcn—Pn=J- (Z Pmcme—sz) dzg()

n=lm=1 (km T K,) m=1

The solution of (1.4.34b), by Cramer’s rule and standard expansions of
determinants, is given by

N
(1.4.35a) Uu(X)=A"" Y Cpe " Qpuns
m=1

where A =det (] +C). We have expanded along the nth column, with Q...

denoting the cofactors of the matrix (I +C). Similarly, A is given by the

expansion

eXp (—(Km + K4)x)
Km + Ky

N
(1.4.35b) A= ¥ (5mn F ey )om,,.
m=1

Hence, from (1.4.33), evaluating K (x, y) at y = x yields

N
(1.4.36) Kx,x)==A" YT cucne Q...

mn=1

From the fact that the derivative of a determinant is the sum of N determinants
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with one column of each determinant differentiated, (once for each column)
we have, after factoring and expanding, that
dA N

—{r,,+x,)
=- ZZ CmCn € o xomn-
dx mn=1

Thus we have the final result that

1.4.37

( : K(x,x)=A“—‘1A,
dx

and that the potential from (1.3.37c) obeys

2
(1.4.38) q(x)=2£—210g A.
dx

This form of the potential has been found by numerous researchers (e.g., Kay
and Moses (1956), Zakharov (1971), Hirota (1971), Wadati and Toda (1972)),
and it holds in even wider generality for problems with continuous spectrum
contributions included (e.g., Rosales (1978)}. Similarly, the form (1.4.38) holds
also for certain associated similarity equations (see Ablowitz, Ramani and
Segur (1978)). Moreover, under appropriate assumptions an analogous state-
ment for the nonlinear Schrodinger equation can be made (see, for example,
Zakharov and Shabat (1972)).

The simplicity of this N-soliton solution is at the root of why there exist
other, more direct approaches to the question of finding these special soliton
solutions. In Chapter 3 we shall discuss these alternatives in more detail (e.g.,
see Hirota’s method in § 3.3). However it should be noted that these alternative
approaches do not relate the solutions to arbitrary initial data.

We now discuss phase shifts of KdV solitons. For the case of N =2 (i.e., two
solitons) the situation is quite straightforward. As we have seen, the time
dependence of the normalizing constants for the KdV evolution equation is
given by

(1.4.39) e =cloe®™™

(recall A, = —k2 <0 is the discrete eigenvalue). From the above solution we
have by direct calculation (note that the definition of n is different than earlier
in this section)

(1.4.40) A=det(I+C)=1+eM+eMh4eMm M 402

where
N = — 2k (X —4K2,1) + Nmos
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Let us move along the trajectory %, =const., and assume «, < x; <0. Then as
t-> —00, 1, = — and we have

(1.4.41) A~T14+e™,

whereas for t » +0, =+

(1.4.42) A~e™(1+e™ M),

Thus from (1.4.38) q(x, t) (n, fixed) v is given, in either limit, t » +00, by

g(x, 1)~ 2«3 sech’ ( + dA),

A
¢ = 5
(1.4.43a) is a pure soliton solution, and there is no amplitude (or velocity)
change upon interaction. The only effect of the interaction is a phase shift.
From these formulae we see that the soliton trajectory is shifted by an amount
A12 or

(1.4.43a)
¢_=0, mn,fixed, t-xo0,

(1.4.43b) Ap=d,—¢_=log (-%:5)

In the general case for KdV (see, for example, Gardner, Greene, Kruskal and
Miura (1974)) each eigenvalue A, = —-Kf,, Ki>kKy> "+ >k, >0, has associated
with it a soliton which approaches a solitary wave of the form

q ~ 2« sech? <22‘3+ ¢i)

with velocity 4K,2, and amplitude 2K,2,. The phase shift is given by

N Kp K — Kp
(1.4.44) Ab=¢—d = ¥ log(——) 2 log ( )
m=p+1 Kpt Km Km T Kp
As is evident from (1.4.44), the total phase shift is the sum of the shifts that
would be undergone if the pth soliton had pairwise interactions with every
other soliton. (See also Zakharov (1971), Wadati and Toda (1972) and Tanaka
(1972a)). The general question of interaction of N-solitons and continuous
spectra has been examined by Ablowitz and Kodama (1980).)
In the latter reference the general phase shift of the pth soliton due to the
other solitons and continuous spectra is given by
4

(1.4.45) ¢+—¢A=log{(ﬂ:—£ﬂ>2 T (M) }

2Kp m=1 \Km + Kp

In (1.4.45), ¢, is the normalizing coefficient when we are using the “right”
scattering data (above) and ¢, is the normalizing coefficient when we are
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using the “left” scattering data; i.e., the eigenfunctions are defined by

d’xx +(u(x, 0)—K3)¢=0’

:ﬁ~{c; e ", x> +00,
(1.4.46) cp e, X = —00,
f vrdx=1.

(1.4.45) reduces to the above N-soliton formula when no continuous spectrum
is present, since for pure N-soliton solutions we have

2
(1.4.47) €Y =) TI (""“L—""‘) .

m#p \Kp ™ Ky

Moreover, when there is only one soliton plus continuous spectra we have

+ -2
Clcl)
b

(1.4.48) ¢+—¢_=log( 2

which was found in Ablowitz and Segur (1977a).

1.5. General evolution operator. In this section we find a general class of
nonlinear evolution equations associated with the generalized Zakharov-
Shabat scattering problem. It turns out that, subject to certain conditions, a
general relation can be found which gives directly a class of solvable nonlinear
equations. This relationship depends on the dispersion relation of the linear-
ized form of the nonlinear equation and a certain integrodifferential operatot.
The derivation here is based on the work of Ablowitz, Kaup, Newell and Segur
(1974).

1.5a. Deriving the general evolution equations. We shall work with
(1.2.7), (1.2.8) and specific eigenfunctions ¢, é having boundary conditions
(1.3.1). By multiplying the first and second equations of (1.2.7a) (replacing v
by ¢) by &1, ¢z respectively we find that the squared eigenfunctions satisfy

(1), +2itdT =2qd162,
(1.5.1) (63)x —2ilds =2rd1¢2,
(b162): = q3 +rd3.

By inspection we see that the squared eigenfunctions obey the homogeneous
form of (1.2.8); i.e.,

(1.5.2)  A,=qC~rB, B,+2itB=-2Aq, C.—2i{C=2Ar.
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Thus one solution of the homogeneous system of (1.2.8) is given by

[ b1
(1.5.3a) (—4;% :
b2 |
The other two are found similarly, and are given by
616 %(d’xd;z‘*‘(_;llbz)
(1.5.3b) -é1 1, ~¢1:
63 b2 |

With all three homogeneous solutions to (1.5.2) known, we can, (e.g. by
variation of parameters) find the general solution of the inhomogeneous A, B,
C equations (1.2.8) (where q, r, are the inhomogeneous terms). Motivated by
the results of § 1.2, we take for boundary conditions on A, B, C

(1.5.4) A->A_(), B,C-0 as|x|»>wx.

While we could have imposed more general boundary conditions, we have
chosen these since all of the evolution equations derived in § 1.2 (with the
proviso r, g >0 as |x| > o) obey (1.5.4). In any event, the main ideas will be
presented here, and this should form the basis of many generalizations.

Since we are requiring (1.5.4) at both x = £00, the solution to (1.2.8) will
not exist unless certain ‘‘orthogonality” conditions are satisfied. Here we only
state the results. Later in this section we shall outline the derivation. With
r, g - 0 as |x| > o the orthogonality conditions which must be satisfied are

(1.5.5) Ji [(_’q)t+2A_(g)(;)] LDdy=0, =12,

where
' ot
(1.5.6) ® =( ) ® =(_ )
' \e} P43
and u- O, =r¢} +q¢§, with u = (;) etc. The orthogonality conditions (1.5.5)

determine the evolution equation. To show this, let us first derive the equations
for &, (the analysis for ®, is similar). We have, from (1.5.1),

X

(1.5.7) ¢1¢z=j (g2 +ré?) dx,

whereby
(@1)c = —2i(p +2q1_(qd3 +rd?),

(1.5.8) X ! s
(63)x =2ild3 +2rT_(qb3 + 1),
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with the definition
(1.5.9) [= J' dy.

(1.5.8) can now be written as an operator relation

¢f)“l(—ax+2qf_r 2ql-q )(‘153)
(1.5.10) #3) "2\ -2l 8,-21-q/\3)"

or more simply,
(1.5.11) (D, =%, i=1,2,
((1.5.11) is also true for i = 2), where

(—ax +2ql.r 2ql_q )

1
(1.5.12) L=\ o s-21q

2i
Here £ is a differential-integral operator which operates on ®. If A_(¢{) is
analytic we have

(1.5.13) A_(DD:i=A_(F)D;

inside its radius of convergence. In this case the orthogonality conditions
(1.5.5) immediately give

(1.5.14) Eo [(_’q)t 0+2([) A o]dx=0, i=12.

The objective now is to exchange the operator A_(¥) which operates on &,
for its adjoint operator which acts on the vector (r, q)T (T is the transpose).
To do this we define the inner product in the usual way: (u, v)= [  u - v dx.
The (non-Hermitian) adjoint £* of an operator % is defined by the relation
(L%, v) = (u, &). The usual examples are: (i) the adjoint of 9, is —9, (with
decaying boundary conditions on u, v); (ii) the adjoint of a square matrix
M =[my]is M* =[m7}]. The only unusual case is finding the adjoint of the
scalar operator L = a(x)I_8(x). From the above definition and interchanging
integrals, we have
[+ o)

(4, oI _Bo) = j drule() | dyBI)

—00

a0

=[ ayBpw) | dratou.

From this we see that

[*=pla=pw [ dy ()
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Using these results (1.5.14) gives

(1.5.15a) J:;[(r)‘+2A.-($A)(;>]-<D,-dx=O, i=1,2,

where

1 (ax+2r1+q ~2rl.r )

5. L=

and A_(¥*) acts only on (}). Thus, sufficient conditions to solve (1.2.8)
A->A_({),B, C-»0as|x]>0 are

(1.5.16a) ( ’ ) +Am($A)(;) —0,

- '
or in matrix form

(1.5.16b) o, +2A_(£MHu=0,

T

To this point, we have only shown that (1.5.16) are sufficient to satisfy the
orthogonality conditions (1.5.5). They are also necessary, so that (1.5.16) is
the most general evolution equation solvable by (1.2.7, 8) with: (i) ¢ -0,
A->A_(), B-0, C-0 as |x]|>0; (ii) r==%q™; and (iii) A-({) entire. This
assertion follows from the fact that any evolution equation must hold for { |g| dx
arbitrarily small. But if [ |q| dx is small enough, there are no bound states by
(1.3.16). Kaup (1976a) showed that without bound states, ®,, &, are
complete. Therefore (1.5.15) implies (1.5.16), which is the general evolution
equation, as asserted. Similar arguments apply if A_(¢) is a ratio of entire
functions, but then the evolution equation is subject to additional constraints
(cf. Ablowitz, Kaup, Newell and Segur (1974)).

It is significant that we can relate A_({) to the dispersion relation of the
associated linearized problem, In the limit x » o0, I, - O (recall that /. = I:o day)

and
1/9 0
paod( 0)
2i\0 -3,

1
r+ 2A-<2— 6x)r =0,

/]

where

Hence in this limit we have

(1.5.17)
1
- + —_ —— —3 .
q; ZA( 2ia’°)q 0
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(1.5.17) are linear (decoupled) evolution equations and may be solved by
Fourier transforms. Moreover the wave solutions q = exp (i(kx —w,(k)t)),
r=exp (i(kx — w,(k)t)) results in the conditions

1
(15.18) AO=3-a(-20)= —%;w,(zz).

(a) This means that we have a relationship between A _(¢) and the disper-
sion relation of the associated /inearized problem (1.5.17). Hence, we have
that the general evolution equation (1.5.16) is expressible in terms of only the
linearized dispersion relation and the operator £ (see (1.5.15)).

(b) There is a necessary requirement on the linearized forms of the r, g
equation in order for us to solve these equations by IST.

With the above results the general evolution equation (1.5.16) takes the
form

(1.5.19) o3u—io(—2£*a=0,

where w(k) is derived from the linearized problem with g = exp (i(kx — wt))
(w(k) plays the role of w, (k) above). An example is the nonlinear Schrodinger
equation ig, = gxx £ 2q°q*, which has as its linearized form ig, = q,,. Setting
q =exp (i(kx —wt)), we find w(k) = —k?. From (1.5.19) we have

asa0 (1) =-sn()=-ae () 5.

When r = +q*, both of these equations are compatible with the nonlinear
Schrodinger equation (1.2.11).

The derivation of (1.5.19) requires r, g » 0 as [x| > . We cannot simply take
r=—1 to get the equivalent result for the Schridinger scattering problem
(1.2.20). However, in Ablowitz, Kaup, Newell and Segur (1974, App. 3) the
general evolution equation for this case is found to be

(1.5.213) q1+'y($5)qx =0,

where

(1.5.21b) &=~1ai—q+iq.l.,
2 _w(2k)

(1.5.21¢) vk )-——2k .

w(k) is the dispersion relation of the associated linearized problem where
q =exp (i(kx — w(k)1)). For example, the KdV equation, ¢.+69q, + g..x =0,
has as its linearized equation g, + g..x = 0. Wave-like solutions give the dis-
persion relation w = —k>. Hence y(k?)=-4k* and thus y(%)=-4%,



THE INVERSE SCATTERING TRANSFORM ON THE INFINITE INTERVAL 47

whereupon (1.5.21) yields
4 —4L:q. =0>q, — 4105~ q +2q,1.)q. =0
G+ Gox +499: +2qq. =0 (KdV).
From the above analysis it is clear that the squared eigenfunctions play an
important role. In this regard we note that these eigenfunctions evolve in a
particularly simple way. For example, in the case of KdV, from (1.2.24) and

(1.2.20a) (i.e., multiply (1.2.24b) by 2» and (1.2.20a) by 2¢,) we find that any
such eigenfunction evolves as (cf. Gardner, Greene, Kruskal and Miura (1974))

(1.5.22) (07 + (07) xx + 6ulv?), =0.

This is an associated linearized form to the KdV equation.

1.5b. Nonlinear Fourier analysis—the inverse scattering transform. What
is quite striking is the remarkable analogy to linear Fourier analysis (cf. § A.1).
In the linear theory the equations are also characterized by the dispersion
relation, i.e.,

(1.5.23a) G = —iw(—1i 3,)q.

Forexample, iq, = . > w (k)= ’-kz. A solution procedure on (—c0, ), assum-
ing u(x, 0)— 0 sufficiently rapidly as |x|- o0, is by Fourier transforms:

o0

(1523b) q(x’ t)_—___l_J' b(k, t)eikx dk,
27 )

with

(15.23C) b(k, O):J‘ q(x, 0) e*ikx dx

and

(1.5.23d) b(k, 1) = b(k, 0) e ™",

Thus at t =0 g(x, 0) is given. We find b(k, 0) by the direct Fourier transform.
b(k, t) satisfies a simple relation in time, and finally u(x, t) is obtained by the
inverse Fourier transform. Schematically, we have

FT
at 1=0:q(x, 0) e——— e bk, 0)

w(k): dispersion relation

q(x,t) e——————2 b(k, t)=b(k,0) """

Inverse FT
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The close analogy between the method of inverse scattering and the above
Fourier transform procedure led Ablowitz, Kaup, Newell and Segur (1974) to
call the solution procedure the Inverse Scattering Transform (IST). As in the
linear problem, the form of each evolution equation is characterized by a
dispersion relation (the dispersion relation of the associated linearized
equation, e.g., (1.5.19)). Moreover, the solution procedure is entirely
analogous. The IST procedure is as follows. We take, for convenience, r = £q*.
At t=0, q(x, 0) is given. The direct scattering problem must then be solved
for the required scattering data (§ 1.3). The scattering data evolve according
to relatively simple equations (§ 1.4) that depend on the linearized dispersion
relation. Finally the potential is reconstructed by inverse scattering (§ 1.3).
Schematically, we have

direct scattering

at1=0: q(x, 0) e L S(Z,0) ={ (b/a)s, 0)}

{fiQ Ci,O}jhil
w(k)

(b/a)(&, t)=(b/a)(, 0) e 729"
LR —— {cf<z>=q.oefwt—2cf)'}~

{; = constant i=1

The inverse scattering follows by the integral equation

K(x,y; ) xF*(x+y;t
(1.5.24a) Y y: 0

¢I J K(x,z; )F(z+s; )F*(s+y;t) dsdz =0,

x

where

co

1 b itx . N iL.x
(1.5.24b) F(x;t)=§;_-J- ;(f, e dé—i Yy Cit)e™
L ¢ j=1

is computed from the initial data and the solution g(x, ¢) is obtained via
(1.5.24¢) q{x, )==-2K(x, x; 1).

1.5¢c. Orthogonality conditions. Finally, let us return to outline the deriva-
tion of the integral conditions (1.5.5). We follow closely the derivation presen-

ted in Ablowitz, Kaup, Newell and Segur (1974, App. 1).
Consider the eigenvalue problem and time dependence in matrix form

(1.5.25a) v, =i{Dv+ Ny,
(1.5.25b) v, = Q,
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where

wsaso =) p=() O 0=(2 2 w0 )

Cross differentiation and setting {; = 0 yields
(1.5.26) N,=Q,+#[Q, D}+[Q, N],

where [A, B]= AB — BA. Next, we form the fundamental solution matrix

(1.5.27a) P= ["" "fl],
b2 b2
and the inverse P~ is computed to be
A[H &
(1.5.27b P ‘=[ ]
) ¢2 —¢1

It is convenient to define § such that Q = PSP™! (it is easier to work with S
than Q). Hence

Q.=PSP'+PS.P'-PSP'PP".
Substituting these relations into (1.5.26) and using (1.5.25) we find the simple
formula N, = PSP}, or

(1.5.28) §=8(~w0) +j P™'N,P dx.

The boundary conditions at x = —o0 imply
1 0
S(—c0)=A_ ( )
(—o)=A-0(, _,

From (1.5.28) we can (if we wish) compute the solutions for A, B, C (i.e., from
Q). However, here we shall only derive the integral conditions needed for a
solution to exist.

The scattering data (a, b, 4, b) are defined by

(1.5.29a) d=ap+by, b=-ay+hy,

where as x -

(1.5.29b) ¢~ (“ e%x), $~(§:;)

b ei;x
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From this and S = P"' QP we easily find

aa—bb 2ab

(1.5.30) S(+0) =( 2ab  —(ad —bb)

)a@.

Evaluating (1.5.28) at x = +cc and substituting (1.5.30) into (1.5.28), we find

(117, — P26b24q,) dx,

p OO

(1.5.31) A_(0)2ak = J (1r.— b3q.) dx,

A_(O)aa—bb-1)=

A(2ab=| (-¢irn+d3q)dx
But from the definitions of the scattering data and the scattering problem the
following can be established:

J (¢102), dx =J (qb3 +rol) dx = ab,

[ <]

(1.5.32) j (182 dx =j (g2 +rd?) dx = —ab,

oo

j (b1d2+ G2d1), dx =2 f (q202+rd1y) dx =—aa+bb+1.

Using (1.5.32) in (1.5.31) we have

j @r-ola) dr=-2A_) | (ao2+re?)dx,

a OO

(1.5.33) j Br—dq)dr=-24_0) [ @2+ré2)ax,

- -0

p OO

J (111 — bp2b2q,) dx =—-2A_(0) I (qb2d2+ ré1 1) dx.

Thus, defining the squared eigenfunctions

(1.5.34) @, = (:g) ;= (g) ‘1’3"'(3::;;)’

we have that (1.5.33) reduces to

(15.35) J_:[(_:I)'+2A_({)(;>]¢idx=0, i=1,2,3,
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i.e., (1.5.5). This was essentially the starting point of our analysis in deriving
the general evolution operator.

It should also be noted that instead of the squared combinations of the ¢,
&: in (1.5.35), we also could have found analogous expressions resolving ¢, ¢;
by integration to x = +0 in (1.5.28) and appropriately using results at x = +00
instead of x = —c0. We would have found

oo

(1.5.36a) J'_m (34 + 2A _(O)u)W, dx =0,
where

(1.5.36b) 0'3=((1) _(1)), u=(;>,
(1.5.36¢) \y1=(£), \p2=((‘i’:§), %=($i$)

This is an appropriate point in the analysis to discuss briefly the question of
completeness of the squared states. Kaup (1976a) has shown that ¥, ¥, given
in (1.5.36¢) are not complete. We must add to these two vectors ¥; evaluated
at the discrete eigenvalues Luti=1, Leli—1 in order to obtain completeness.

His results allow us to expand certain combinations of the original
potential and obtain some simple answers. Specifically, using the ¥, we have

(2)=-2]" frovmorlonee] e

(1.5.37) o -
N by N by

+2i Y S Wi(x, ()20 L= Valx, &)
1 Ak 1 Ax

In a similar manner the adjoint eigenfunctions may be used to show that

((;) -1 {;’-"@)(_df%)(x, §)+;b(§)(_‘%)(x, g)} de

(1.5.38) Wb 6 “h B
iy b #2 Y
2i 21: a;{ (_¢%)(x’ gk)+2l ; d;( (_(;%)(xa {k)'

We also note that an analogous theory may be constructed for the Schrodin-
ger scattering problem (see Kaup and Newell (19785 ) and Kodama and Taniuti
(1978)). In this case the expansion of the potential in terms of the squared
eigenfunctions is given by

0

(1.5.39)  qlx t)=;2;J ko (k)™ (x, k) dk ~4 g i (x, 4,
i=1

—oo
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where y; = bi/a} and k; is the ith discrete eigenvalue. Equations (1.5.37-39)
are the starting point of the work of Deift, Lund and Trubowitz (1980), who
view the equations of inverse scattering as being those of infinitely many
oscillators constrained to lie on an infinite dimensional sphere.

Finally we note that an alternative derivation of the general evolution
equations (1.5.16, 21) has been given by Calogero and Degasperis in a series
of papers (e.g., Calogero (19785b) and the references cited therein). As we saw
in § 1.3 for the generalized Zakharov-Shabat eigenvalue problem, one may
rewrite the Schrodinger scattering problem (1.2.20) as an integral equation,
and conclude

(=]

(1.5.40) 2ikp(k)=J q(x)(x, k) e ** dx,

which gives the reflection coefficient as an integral over the potential and its
eigenfunction. More generally, if g;(x) and g,(x) are two potentials, one may
show that

(1.5.41)  2ik[py(k) = p2(k)] =j v (%, K)[qa(x) ~ qa(6)luha(x, ) dix,

which reduces to (1.5.40) if g, =0. Further generalizations of (1.5.41) also
may be given, and are used by Calogero and Degasperis. The important point,
however, is that g,(x) and g,(x) are independent.

If g(x,t) satisfies some evolution equation, we may let g;(x) =q(x, 1),
g2(x) = g(x, t+ At) and let At > 0. Then (1.5.41) relates 8,p to0 8,9, and relations
like (1.5.41) are used to derive (1.5.21), the general evolution equation for
(1.2.20). To this point, there is no advantage to their approach over that
presented here. The generalizations that they exploit are: (i) to treat (1.2.20)
as an N X N matrix equation; and (ii) to allow g = g(x, ¢, y) and so to obtain
multidimensional evolution equations. Moreover, Chiu and Ladik (1977) used
this approach to obtain the general evolution equation for a discrete scattering
problem discussed in § 2.2.

1.6. Conservation laws and complete integrability. One of the important
events in the early development of IST was the discovery by Miura, Gardner
and Kruskal (1968) that the KdV equation has an infinite set of local conserva-
tion laws. This discovery, coupied with a similar result for mKdV, ied to
Miura’s transformation relating solutions of the two equations, and finally to
the Schrodinger scattering problem (1.2.20). In this section we show that the
existence of this infinite set of conserved quantities is a direct consequence of
the fact that a(k), the inverse of the transmission coefficient, is time indepen-
dent. The conserved quantities turn out to be the coefficients in a large
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k -expansion of log a(k). Moreover, they can be expressed simply in terms of
the scattering data (the trace formulae), which will be usefulin § 1.7 and § 4.5.
Finally, we show that the nonlinear evolution equations for which log a is time
independent are completely integrable Hamiltonian systems, and that IST is
a canonical transformation to action-angle variables, with log |a| as the action
variable. For convenience, we will concentrate on evolution equations of the
form (1.5.16), related to (1.2.7). The calculations are similar for those related
to (1.2.20), and we will simply state the results.

1.6.a. Conservation laws. We first derive the infinite set of conserved
quantities for the nonlinear Schrodinger equation, or any of the other
equations solvable by (1.2.7), using a method due to Zakharov and Shabat
(1972). Recall that if {(¢1, ¢>) is the solution of (1.2.7a) that satisfies the
boundary conditions (1.3.1) then, for Im{=0, $y e is analytic and
approaches 1 as ||~ 2. Moreover,

(1.6.1) al)=1lm ¢, e

x—c0

has these two properties and is also time independent. Eliminate ¢, from
(1.2.7a), and then substitute

(1.6.2) &1 =exp {—i{x + b}

into that equation. The result is a Riccati equation for u = qu:

(1.6.3) 2ilu =p,2—qr+q(§) .

X

Because ¢ vanishes as |¢] > 00 (Im ¢ > 0), we may expand:

< Halx, 1)

—_— ; ~1
(1.6.4) u=(2i) o @ity

Substituting this into (1.6.3) yields

Mo = —qr, = —qry
(1.6.5) oTTan mET

Un n—1
Mn+1=4(““) + Y Mkfn-k-1, nzl.
q/x k=0

From (1.6.1) and the fact that 03 vanishes as x - —o0 it follows that

. ot C.
1.6.6 I =d(x=+0)= § —1
( a) oga({)=¢(x ) ,Zfo Qi)
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where
(1.6.6b) C, = J Un dx.
-0

But log a({) is time independent (for all ¢ with Im { > 0) so C,, must be time
independent as well. Thus, the first few (global) constants of the motion are

CO = J {_qf} dx9 Cl = J {—qrx} dx,
(1.6.7)
Cy= J [~qre+(@tdx, Ci= J {=qree +4q%rr. +1r7qq,} dx.

If r is proportional to g, one shows by induction that C,,.;=0. Note that this
derivation does not use (1.2.7b), so these integrals are constants of the motion
for any of the equations solvable by (1.2.7), i.e., for the equations defined by
(1.5.16).

The local conservation laws (both densities and fluxes) can be derived by a
related method, due to Konno et al. (1974), that uses both (1.2.7a) and
(1.2.7b), but does not directly involve log a({). (See also Sanuki and Konno
(1974), Wadati et al. (1975) and Haberman (1977)}.) In this method, we
substitute (1.6.2) into both (1.2.7a, b), after eliminating ¢ appropriately. The
result is

A

1.6.8 b = B2~ -
( a) 2ildy = i qr+q(q)x,

(1.6.8b) b=A +§q§x.

With the definition, u = ¢,, (1.6.8a) is identical with (1.6.3), and we may use
(1.6.4) and (1.6.5) again. Substituting (1.6.4) into the x-derivative of (1.6.8b)
yields

(1.6.9) a,{%zz—i‘gﬁfka,{fxﬂn?i&—ig‘m}.

The particular evolution equation is specified by identifying A and B. Then its
conservation laws follow from (1.6.9) by equating coefficients of (2i¢)”", and
using (1.6.5).
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As an example, if
r=oq*, o==x1,

(1.6.10)
A=-2i~iolq?, B=2q+ig,

the evolution equation is
(1.6.11) iq+q.. ~20lql’g =0
and (1.6.9) becomes

o

(1.6.12) a{}:(z éf)m]wa {zg +alg+ (21{——)):@%:7}

The coeflicients of (2i£)™" are trivial for n = —1. For n 20, we find

n=0, adlgl}+id.deq¥ —q*q.)=0,

(1.6.13) . . 5 . .
n=1, 31{*61% J+i ax{IqXI —4qq xx +0'|CI| }=0,

etc. In general, the conserved densities are the same for all of the equations
defined by (1.5.16), but the corresponding fluxes differ for each equation.

Note that this derivation of an infinite set of conservation laws is appropriate
either for the infinite interval (in x) or for the periodic problem (cf. § 2.3). It
follows that the local conservation laws are valid for either set of boundary
conditions. Moreover, there is no need for inverse scattering by this approach.

The conservation laws associated with the Schrodinger scattering problem
(1.2.20) can be derived by similar means (Miura, Gardner and Kruskal (1968),
Zakharov and Faddeev (1971)). With the substitution v =exp {¢ +ikx},
(1.2.20a) becomes a Riccati equation for ¢,,

(1.6.14a) ()x + () +q +2ike, =0,
and (1.2.20b) becomes
(1.6.14b) ¢ =A+ (¢, +ik)B.

After expanding u = ¢, in inverse powers of (2ik),

1.6.15 -y M
( ) = e Qi)™

we find from (1.6.14a) that u,, is an exact derivative and that

M1 =4, /"'3=_(q2+qxx)""’

“Hp+1 T Z Mpkn— p-*_(9 (”‘n) nz2.

p=1

(1.6.16)
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These are the conserved densities. The local conservation laws for KdV come
from substituting

A=gq, B=4k’-2q
into the x-derivative of (1.6.14b), and using (1.6.15, 16):

(1.6.17a) a’{ﬁl(z“/:)} {q*+(4k _zq)( il(zl;/:)"'ik>}'

The nontrivial conservation laws are the coeflicients of
af{q} = _ax {342 + qxx}s
ar{qz + Qxx} = "3x{443 + Sqqx - SQZ - Qxxxx}, etc.

We have seen from (1.6.6) that the constants of the motion are known once
log a(¢) is known for Im ¢ > 0. We next derive the trace formulae, first given
by Zakharov and Faddeev (1971) for KdV. These give the constants of the
motion in terms of a(£) with £ real, and are useful both in this section and in
§ 1.7. The derivation which follows is based on the original work of Zakharov
and Manakov (1974); cf. Flaschka and Newell (1975), Kodama (1975).

Recall that a(¢) is analytic for Im ¢ >0 with a finite number of zeros there
(at¢{=¢mm=1,-++,N),anda~>1as|¢{|»> 00, Im {>0. We also assume that:
(i) these zeros are simple; (ii) none occur on the real axis; (iii) for real ¢,
¢ loga(¢)»0as|¢|»>oforall n=0. Let

_1'

(1.6.17b)

_3'

(1.6.18a) a(l)= a({)mf_[ = ?"

a(¢) shares these same properties but with no zeros for Im { Z0. Similarly,
a(¢) is analytic in the lower half plane, and

N ¢~ [F
-1 =4

is analytic with no zeros in Im £ =0, and @ - 1 as |- oo there. By Cauchy’s
integral theorem, for Im { >0,

(1.6.18b) @)

_ 1 log a(§)
ogal) =50 [ 28 g

=__1_J log a(¢)
2w ) €4

By adding these, we find that, for Im ¢ >0,

d¢.

_ L=l “ logad
(1.6.19) loga(f) Z IOg{( ;m}+2 ljm £-¢ dt.
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If we further assume that r = = ¢*, this simplifies to

N {=im) 1 [ logla(e)
loga()= Z |0g{§ {m}JrZJI_ —é:?—“

Now we may let |[{|-> o (keeping Im ¢ >0) and expand the right side of
(1.6.19) in inverse powers of {. The result is

d&.

toga@)= £ ¢ T 07 - ()

(1.6.20) —(2mi)” LO & [log ada(¢) +§ log i i’:
N €4
+; log = {l] d.f}
This expansion must coincide with that in (1.6.6), so that,for n =0,1,2,- - -,
_ _l * PRY] ~ N ‘f gm ‘f é’i
C=-| i {"’g““(g)*;“’gé cf?l £- a]df

(1.6.21a) N
+ ¥ (n+D)7QICE) - Qi)
m=1

If r = £q*, these simplify to

1 oo
Co=—~ f (2i€)" log la(é) de
T doc
(1.6.21b)

2

+ T (D) QI = Qi)
m=1
moreover, N =0 if r = +q* with g L,. These are the *‘trace formulae” for
(1.2.7), with r = £q*. They relate the infinite set of motion constants, C,, to
moments of log |a(£)} and powers of the discrete eigenvalues. We note again
that they are identical for every equation in (1.5.16) with r = x¢g*.

For the Schrodinger scattering problems (1.2.20), the scattering data consist
of {p(k), k real, x,,, C,, n=1,- -+, N}. The corresponding trace formulae
are as follows (Zakharov and Faddeev (1971)). Define C,, = —{" u, dx, where
W is defined in (1.6.15). Then

(1.6.22) +
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1.6.b. Complete integrability. Let us now consider one of the fundamental
descriptions of IST: the equations solvable by IST (i.e., (1.5.16)) are com-
pletely integrable Hamiltonian systems, and IST amounts to a canonical
transformation from physical variables to (an infinite set of) action-angle
variables. This description may be considered an alternative to the ‘‘nonlinear
Fourier analysis” description that was developed in earlier sections of this
book. The fundamental question in this section is not ““What new problems
can be solved with IST?” but rather “Why should IST work at all?”

The description of IST as a canonical transformation to action-angle vari-
ables was first developed for KdV by Zakharov and Faddeev (1971), following
preliminary work by Gardner (1971). It was applied to the nonlinear Schrédin-
ger equation by Takhtadzhyan (1972) and by Zakharov and Manakov (1974).
The results in the last paper were generalized by numerous authors (see, e.g.,
Flaschka and Newell (1975), Kodama (1975), McLaughlin (1975) and
Flaschka and McLaughlin (19765). The derivation given here draws upon all of
these works, despite some minor discrepancies among their results.

We begin with some of the basic concepts and notation of Hamiltonian
mechanics that will be required for the formal extension to the infinite
dimensional cases under consideration. (Readers with no prior knowledge of
Hamiltonian mechanics may wish to consult Goldstein (1950) or Arnold
(1978)). Let p(x, ¢, @), q(x, ¢, B) be analytic functions of x on —00 < x < oo which
decrease rapidly as |x|» oo for all values of (t, @, 8) in their appropriate
domains. Let

o0

H(p,q, z)=j Wp(x 1, @), q(x, 1, B), 1} dx

be a complex-valued functional of (p, q) and their x-derivatives. Its functional
(or Fréchet, or variational) derivative §H/8p is defined by

H_ (" H

(1.6.23) a ) tp 32 HF

8H/ 8q has a similar definition.
Example. From the identity

[ o]

p=[ sk=yp(x) dx
it follows that
op(y) o,
ap(x)—a(x Y),

where 8(x) is the Dirac delta function.
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For the cases we will consider, h in (1.6.23) is an infinitely differentiable
function of (p, q) and all of their x-derivatives. Then by direct computation
we have
8" ah a"p

— _1 n_Y_ \
,20( ) ax" ap, ax

(1.6.24) oH
op

For some applications it is convenient to define p = ¢,. Then the identity

(1.6.25) =22

follows from the fact that 4 depends only on derivatives of ¢, rather than on
¢ itself.

DEFINITION. A dynamical system is Hamiltonian if it is possible to identify
generalized coordinates [q] and momenta [ p], and a Hamiltonian [H (p, g, 1)],
such that the equations of motion of the system can be written in the form

8q S8H ap 8H
1.6.26a,b —=— —_—=——
(1.6.262, b) o ep’ ot oq
These are Hamilton’s ecjuations, and the variables {p, q) are called conjugare.
(There are generalizations of (1.6.27), but this is almost general enough for
our purposes; see also (1.6.31).)
Example. The system
i+ qex — 2q2r =0,
(1.6.27) )
ir,—re+2qr°=0,

is Hamiltonian, as may be seen from the identification:

coordinates {q): q(x,t)

momenta (p): r(x, t)

Hamiltonian (H): —i J {qere + (qr)?} dx.

If at =0, r(x, 0) = £4*(x, 0), then this relation holds for all ¢ according to
(1.6.27), which may be replaced by the nonlinear Schrddinger equation

(1.6.28) iq.+qu F2)q’q = 0.

Alternatively, we may assert that (1.6.28) is Hamiltonian, and identify coordin-
ates [q(x, )], momenta [g*(x, )] and a Hamiltonian [—i [*_{xlq.|* +]|q|*} dx].
This is correct provided we define independent variations of ¢ and ¢*. In the
presentation given in this section, we will regard (1.6.28) as a special case of
(1.6.27) in which the initial data satisfy an additional constraint (r = =q*).
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Many of the equations solvable by IST are first order in time. It is convenient
in these cases to use a variation of Hamilton’s equations.

LEMMA. Let H(p, q, t) be the Hamiltonian of a dynamical system such that
H does not involve q explicitly, although it may involve x-derivatives of q. Then
the relation

P = qx
is consistent with (1.6.26), both of which reduce to
0 ¢ SH|
(1.6.29) L=
at Ix Oplg =p

Proof. (1.6.29) is the x-derivative of (1.6.26a). Reduction of (1.6.26b)
follows from (1.6.25) and the fact that 0k/dq vanishes. 0O
Example.

H= —J {pq> +p*q: — Pgue} dx.

The dynamical equations are
qQ= —qi '2[’%: ~ Gxxxs
b= ‘(2qu)x - (pz)x ~ Dxxx-

If at t =0 p(x, 0) = g, (x, 0), then this relation holds for all ¢; i.e., the evolution
equations for p and g, are identical. Moreover, both are the KdV equation
(1.2.2) for p(x, 1).

Thus, a dynamical system is Hamiltonian either if its equations of motion
can be put in the form (1.6.26) for a Hamiltonian H (p, g, t), or if they can be
put in the form

(1.6.30)

dp 4 8H
1.6.31 —=—
(1.6.31) at  oax 6p

for a Hamiltonian, H(p,t). The reader should note that H(p,1)#
H(p, q)|4,-p although they are clearly related.
Example. The KdV equation has the form (1.6.31) with the Hamiltonian

(1.6.32) A= —j (p -7 )dx

Here H differs from H |a. = in the previous example by a factor of 2.
Next, in order to change variables from (p, g) to some other set of conjugate
variables, (P, Q), we define the Poisson brackets:

3A 8B 5A 5B
1.6. A, B EJ { ——— }d
(1.6.33) (A, B) 50 5 op 8q)
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If only the derivatives of g, rather than g itself, enter into the Hamiltonian, then
we may identify g, = p and use (1.6.25). Then (1.6.33) should be replaced by

1.6.34) <AB>—Jw{§éi@}d
(1.6. T o Lsp ax p x

A transformation from (p, q) to (P, Q) is defined to be canonical if

(Q(x), Qly» =0, (P(x), P(y))=0,
(Qx), Ply))=8(x—y).

It follows from (1.6.35) that the volume of the phase space has not changed
under the transformation. The question of whether a transformation to a new
set of variables is canonical is analogous to whether a new set of basis vectors is
complete in a linear vector space.

Example. The identity map

Px,ty=p(x,t), Qxt)=qx,¢)

is a canonical transformation.

This completes the presentation of the necessary background material. Now
we come to the main point, that IST is a canonical transformation of a
Hamiltonian system to a set of action-angle variables. In order to keep the
presentation as simple as possible, we discuss here only equations of the form
(1.5.16), and simply state the results for equations of the form (1.5.21). The
main points in this development are the following.

1. Evolution equations of the form (1.5.16) represent (infinite dimensional)
Hamiltonian dynamical systems, in which (g, r) play the roles of conjugate
variables.

2. There is a subset § of scattering data from which the rest of the scattering
data can be reconstructed.

3. The mapping: (g, r)—> § is a canonical transformation.

4. The conjugate variables in S(=P, Q) are of action-angle type, i.e.,
H = H(P), so that (1.6.26) becomes

(1.6.35)

F)
%’= 0, ?Q = —E= constant.

{1.6.36) 5 " 8P

The infinite set of conservation laws are a direct consequence of (1.6.36a), and
are equivalent to it when the initial data for (g, r) are sufficiently restricted.

Recall from § 1.5 that for every dispersion relation that is real for real k and
entire, there is a system of nonlinear evolution equations of the form

(1.5.16) (_’q)r+ 2A_($A)(;) =0
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that can be solved by IST; here £* is defined by (1.5.15), A_ is related to the
linearized dispersion relation by (1.5.18) and (1.2.7a) is the appropriate
scattering problem.

THEOREM. Let A_ be an entire function of { in the form

(1.637) A-0=3 T (20"

where every a, is real. Then the system defined by (1.5.16) is Hamiltonian ;
q(x, t) and r(x, t) are the conjugate variables and the appropriate Hamiltonian is

(1.6.38) Hgn=i % a()yCiig,r),
n=0

where C, is defined by (1.6.6).

Note that it is easy to demonstrate that any particular example, such as
(1.6.28), is Hamiltonian, simply by displaying the Hamiltonian and generalized
coordinates. The rather lengthy proof that follows is required to show that
every equation of the form (1.5.16) must be Hamiltonian.

Proof.

(i) From (1.2.7a), for real ¢

X

d1(x, L) e =1 +I a(y)@aly, {) e’ dy,

so that
8¢1(x, {)
8q(y)
where 6 is the Heaviside step-function.

(ii) For any function A(x) that is differentiable except at finitely many
points, we may define

=0(x —y)paly, £) eV,

8A(x)= im 8A(x)
8q(x) y+x8q(y)’

so that
6¢1(x9 g) -
6q (x) - ¢2(x’ {)‘
Similarly,
5¢2(x1 {) =
ar(x ) ¢ 1 (x9 é’)
and

061 8¢y S4nz2 s
or &8q &q or
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Therefore
28 8) 2 (= i} = al, Ol O,
Sq(x) &q
(1.6.39)
ba ({) = —¢1(x, ;)wl(x’ {)'
8r(x)

All of these quantities are defined in the upper half {-plane (cf. § 1.3), and
these relations may be extended there as well.
(iti) From (1.2.7a), for real ¢,

(p101)x +2ild 11 = q(Prda+ dat),
(D2y2)x — 2ilpathr = r{d1ha + b2p1),
(D12 + Pain)x = 2qdahn + 2rd1hs.

Using the boundary conditions as x - +00, we have

G2+ dapi=a—-2 [ {gd22+ ré 1y} dy,

so that
{( b22 ) =$A( b2t )__a_.(r)-
—¢1¢n -d/ 2i\q
These relations also may be extended to the upper half plane.
(iv) Let|Zl=»oc, Im ¢ >0, to obtain
(2)
q

(Z)--2(1-5)
-5 (5Y()

(1.6.40) o
(v) The gradient of log a follows from (1.6.39) and (1.6.40):

Sloga . 2 (&MN"

=2 %(5)"
dloga . L ,E’f_"
a3 ()

(vi) Finally, from (1.6.6), it follows that (1.5.19) in expanded form can be



64 CHAPTER 1

written in the form

where

Hg,r=i 20 a,C.(q, r)(i)".

This is the desired result. 0O

Thus we may consider evolution equations of the form (1.5.19) as Hamil-
tonian systems whenever the linearized dispersion relation has the form
(1.6.37). (Note that (1.6.27) is an example of this theorem, with @ = k) As
one might expect, there is a corresponding result for evolution equations of
the form (1.5.21), related to (1.2.20), (e.g., see Flaschka and Newell {1975)
for details). We may state it as follows. Let

ﬂﬁ=§mWV

be an entire function. The nonlinear evolution equation (1.5.21) is Hamil-
tonian, in the form (1.6.31). The Hamiltonian is

1 o0
(1.6.41) H= -3 Y a,Capis(—4)",
n=0

where C, is defined by (1.6.22). The Hamiltonian for the KdV equation is an
example.

Next, we restrict our attention to Hamiltonian systems of the form (1.5.19),
and define their Poisson brackets,

® (SA 5B 8A 5B
1.6.42 A, =J [_____}d
( ) AB)=] Voqgor o aq) &

DEfFINITION. Given a Hamiltonian system, two functionals A, B of the
conjugate variables are in involution if

(A, B)y=0.

For finite dimensional Hamiltonian systems (with N coordinates and N
momenta), a theorem of Liouville asserts that if there exist N functionals with
linearly independent gradients that are in involution, the equations of motion
can be integrated by quadrature (cf. Arnold and Avez (1968)).

LEMMA. The infinite set of constants of the motion, C,, defined by (1.6.6),
all are in involution for any motion defined by (1.5.19) with an appropriate w(k).
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Proof. By computation,

OZQZI {5_C~ 9q , 3Cx "_’} dx

dt 8q ot br ot
_J"" {SCn 8H 8C, QI}
—o U 8q or br éq
=(C,, H).

In particular, this is valid for H = C,,. 0

Thus, the existence of an infinite set of motion constants for any of the
infinite dimensional Hamiltonian systems defined by (1.5.19) suggests that
these systems may be completely integrable as well. This suggestion turns out
to be correct, but its validity relies on somewhat more than just this set of
motion constants. In infinite dimensional Hamiltonian systems, the question
of “how many” functionals in involution are required to assure complete
integrability is not obvious.

Let us now define a subset S of the scattering data, from which the remaining
scattering data can be constructed. Here we assume that a(¢), a({) have only
simple zeros in their respective half planes, and that none occur on the real
axis. Further, we assume that 5({), 5() can be extended off the real axis. Then,
for real &, define

(1643)  PO=logla®a®), Q)= ——logb(e)

There may be discrete eigenvalues for Im ¢ >0,

b
a({m)=0, Cm=; , m=1,- ,N,
and for Im (<0, b
d(({)=0’ a=_1 . 1:1’ ’N_T

&
Let
(1.6.43b) P, ={, Q.. = -2ilog ¢y,
(1.6.43¢) P=f,  Q=-2logé.

Denote by S the variables defined in (1.6.43).

It is easy to see that the remaining scattering data can be constructed from
S. For Im ¢ >0, log a({) may be found from § via (1.6.20). By similar means
we also obtain loga for Im ¢ =0, and log @(¢), Im ¢ =0. Then »(£) may be
obtained from Q(¢), and 5(¢) from the Wronskian relation, ad +bb = 1. If
r=xq*, so that a(&)=a*(¢) for real & then P(¢) is real, |b(£)| is determined
by P(¢), and Q(£) may be replaced by its imaginary part. Moreover, (1.6.43c)
is redundant.
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Thus the scattering data are determined by S. According to the results in
§ 1.3, the potentials (g, r) may be reconstructed from S as well. In this sense,
S is “‘complete”. In order to show that the mapping (g, r)=> S is a canonical
transformation, we must verify (1.6.35). This is a somewhat tedious calcula-
tion, which is outlined in Exercise 1. Its consequence, however, is essential:

The mapping (q,7)>S is a canonical transformation. Therefore, the
dynamics of any of the systems defined by (1.5.19) may be described either in
terms of (g, r) or in terms of §.

It remains to write the Hamiltonian in terms of S. This is easily done by
substituting (1.6.21a) into (1.6.38) and combining terms. The result is that, for
a linearized dispersion relation given by (1.6.37),

_ ¥k
§ {m+z 10g§ gl

H=2IwA (§)[lo ad(&)+ § lo
ml_ g gf tn 51 T €4

J«
(1.6.44a)

N

{m
+4i Z=1 J.* A_() d¢.

m

If r = g™, this simplifies to

2 (™ 2 N i
(1.6.44b) H=-—J A_(©)logla®)f de+4i T j A dL.
Tl m=1J¢k

Now it is apparent that H depends on the generalized momenta (P(¢), P, P,
in (1.6.43)), but not on the coordinates (Q(¢), Q.., Q;). This is the defining
property of action-angle variables. It is also apparent that Hamilton’s
equations take the form

(1.6.45) P _oy 2Q_2H
o ot 6P

Thus, every P is time independent, while the Q’s vary linearly in time, i.e.,
the motion is uniform in these variables.
Let us make (1.6.45) explicit, using (1.6.43). For real £,

] 0

llog az(@)}=0,  ~{log b(e)}=2A(6);
form=1,---,N,
(1.6.46) 2 =0, %{log cm}=—2A_(L);
for/=1,---,N,

2r=0, Ziogar=24.(&)
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{Calculation of 8H/8{, and 8H/ 8¢, which is not obvious from (1.6.44a), is
outlined in Exercise 2.) These are precisely the results obtained in § 1.4,

Finally, we may state the corresponding results for evolution equations of
the form (1.5.21), such as the KdV equation (Zakharov and Faddeev (1971),
Flaschka and Newell (1975)). For real k, define

P(k) =" tog la ()l = — X log {1~ lo (k)3
w w

(1.6.47a)
O(k)=arg p(k),

and for the discrete eigenvalues

(1.6.47b) P,=~2ki,  Qu=loge,

(see § 1.3 for notation). Then one can show that the mapping
q-{P(k), Q(k), P, Q,}

is canonical, i.e., the Poisson brackets satisfy (1.6.35) with (1.6.34). Moreover,
it is evident from (1.6.22) and (1.6.41) that the variables in (1.6.47) are of
action-angle type. For KdV, Hamilton’s equations are equivalent to (1.4.10)
in these variables.

In summary, we may view IST as a concrete method to effect a canonical
transformation into action-angle variables. The dynamics of the system are
very simple when described in terms of these variables. The relatively simple
picture that emerges in physical variables (solitons with pairwise interactions,
etc.) is a direct consequence of the exis.ence of the action-angle variables. In
particular, no stochastic motion is possible in a problem solvable by IST.

This is not to suggest that the entire problem has become trivial. Certainly
the problem of inverse scattering (i.e., unscrambling the canonical transforma-
tion) is not trivial, and this approach offers no help on this point. Moreover,
we are not even guaranteed that the solution is especially well behaved. For
example, if r # ¢* for some constant «, the exact 1-soliton solution of (1.6.27)
blows up in a finite time (cf. (1.4.24)). Thus singularities may develop even in
completely integrable systems, provided they do not violate any of the con-
servation laws. From this standpoint, the reason for our interest in the case
r=xq* is that Co = | rg dx becomes definite, and serves as a (time-indepen-
dent) norm.

1.7. Long-time behavior of the solutions. The objective of this section is
to provide methods to find the dominant behavior of the solutions of com-
pletely integrable problems in the limit > . Among other things, this
information is useful if these equations are to be used as models of physical
phenomena.

It is not difficult to show that if a solution of an initial value problem on
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—00 < x < 0 contains solitons, then as ¢ -+ o0 the solitons remain O(1), while
the rest of the solution (i.e., the “‘radiation” corresponding to the continuous
spectrum) slowly disperses away. In this sense, the dominant asymptotic
solution consists only of solitons (e.g., Tanaka (1975)). However, this descrip-
tion is not uniformly valid in space because there are large regions where the
solitons are negligibly small and the radiation dominates. Moreover, the
solitons may contain only a small fraction of such physically important con-
served quantities as the momentum of the waves.

N-soliton solutions were discussed in § 1.4. Here we concentrate primarily
on problems in which the initial data generate no solitons. These problems are
of interest in their own right:

(i) There are no solitons if r = +g¢* in (1.5.16) and |g| - 0 rapidly as |x| > c.
(i) Solitons are possible in (1.5.16) if r = —g™, but none arise if the initial
data are sufficiently small (cf. (1.3.16e)):

0

1.7.1) I lg(x, 0)] dx <0.904.

(iii) In (1.5.21), no solitons arise if g(x, 0)<0. Moreover, most of the
literature on the subject is restricted to these problems (Ablowitz and Newell
(1973), Shabat (1973), Manakov (1974a), Segur and Ablowitz (1976), Zak-
harov and Manakov (19765b), Ablowitz and Segur (1977a), Miles (1979),
Ablowitz, Kruskal and Segur (1979), Segur and Ablowitz (1981)). After we
know how the solitons and radiation behave separately, we will consider how
they interact.

Two warnings should be made before we begin the analysis. The first is that
almost none of the results to be described in this section are known rigorously.
These results are formal, and have great practical value, but proofs of asymp-
toticity are yet to be given. The second (related) warning is that some of the
existing literature on this question contains errors.

The evolution equations in question may be divided into three groups, on
the basis of the qualitative behavior of their asymptotic solutions:

(a) equations of the form (1.5.16) whose linearized dispersion relation is
even, such as the nonlinear Schrodinger equation;

(b) equations of the form (1.5.16) whose linearized dispersion relation is
odd, such as the modified Korteweg—de Vries equation;

(c) equations of the form (1.5.21) such as the Korteweg—deVries equation.

1.7.a. The nonlinear Schrédinger equation. We begin with
(1.7.2) iq.+ qux —20lqf’q =0,

where o+1 and g - 0 as |x| > 0. Because its (formally) asymptotic solution is
comparatively simple, some of the methods can be explained more easily here.
To preclude solitons, we require that the initial data satisfy (1.7.1) for o = -1,
We also assume that the initial data are smooth and vanish rapidly as |x|- co.
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There is a closed-form similarity solution to (1.7.2),

(1.7.3) q(x,:):f’”Aexp{it[%(’t‘) -2 A21°f’ ‘f]}

Guided by this solution, we seek a “‘slowly-varying” similarity solution where
the arbitrary constants A, ¢, are now slowly varying functions (cf. § A.1). As
t - 00, the expansion is given by

(1.7.42) qix,)~t""?Re™,

rR=r+ 3 § 10 (Y

n=1k=0

ey . log
_f<t>+ (IOgtf“( )+f1'0(t)>+0(< t ))
2 © n k
(1.7.4c) 0=%(§)2+"§1 kz=:o (lotg"t) enk(f)
A o] of(2):
where

X . . .
f=f (?‘) is real and nonnegative but otherwise arbitrary,
01,1 = —20'f2,

bro=g= g(';) is arbitrary and real,

fii=—4afG(fY + ),

Lo=1g"+2g'f —4of (Y + ), etc.
This expansion can be carried to any desired order in #. All of the subsequent
coeflicients in the expansion can be found explicitly in terms of two arbitrary
functions, f(x/t) and g(x/t), by substituting (1.7.4) into (1.7.2) and collecting
terms. The functions f and g are unrestricted by (1.7.2), and we will show that
they are determined by the initial data.

We now assume that, as - o0, the solution of (1.7.2) that evolves from
appropriate initial data tends to the form {(1.7.4). Then the asymptotic solution
of (1.7.2) is known once f(x/t), g(x/¢) are specified in terms of the initial data.
This can be done by several methods; we will present two.

First, we show that the conservation laws uniquely determine f but place no
restriction on g. This is consistent with the formulation given in § 1.6, in the
sense that the conserved quantities pin down the action part of the action-angle
variables, and provide ‘‘half” of the information required to describe the
dynamical systems.
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Recall from § 1.6 that the motion constants for (1.7.2) take the form

Cn = J Mon (xy t) dxs
where
wo=-olql’,  pi=-oqq*

and,forn>1,

n—1
(1.7.5) u,.+1=q(’—:f) + Y fidnsr.

k=0

Substituting (1.7.4) into (1.7.5) shows that

Co= —aJ'm £X) dX, (X = %)

o X 2
C= —a[ (EI) £(X) dX.
In fact, one proves (by induction on (1.7.5)) that

e, 0= =05 )f(x> +o( ),

so thatas t >
[s o] an
(1.7.6) C,,=-—0'J. (E)f(X)dX, n=01,2,

But the motion constants are given in terms of the scattering data by the trace
formulae (1.6.17),

1.7.7) cn=~—‘—j (2i€)" log la (&) dé.
wi-x

If all of these integrals converge, then the infinite set of moment equations
obtained by equating (1.7.6) and (1.7.7) has exactly one solution:

- ?___ —4¢,
(1.7.8)

£x)= = logla(e)f =TT 10g{1- "l (

}

The dominant behavior of the asymptotic solution of (1.7.2) is given by
(1.7.4) along with (1.7.8), even though g(x/f) is still unknown. In many
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applications the actual phase is much more difficult to measure than the wave
“intensity” (=|f|*). For these applications knowledge of g may be unnecessary
for practical purposes.

The result in (1.7.8) was obtained by Segur and Ablowitz (1976) using this
method, and by Manakov (1974) and by Zakharov and Manakov (1976) using
two other methods. As an alternative to the method of conservation laws, we
now outline (a slight variation of) the method of Zakharov and Manakov
(1976) because it determines both f and g in terms of the scattering data. For
real £ define

wilx, t; €) = ¢i(x, t; €) exp (ikx), wy=da(x, t; €) exp (—iéx),

so that the scattering problem (1.2.7a) becomes

—2iéx

’

(1.7.9) (W) =qwae™,  (wi),=—-0q*wie

with the boundary conditions

(2)-(g) msx=mm (U)=(ien) wsxse

If q satisfies (1.7.2), then
b(& 1)=b(£ 0) exp (4i’1)
=b(£) exp (4ig°1).

Again we assume that as ¢ = 20 the solution of (1.7.2) tends to the form (1.7.4),
and we substitute this into (1.7.9). Then we have, to leading order,

(1.7.10)

{wi)e ~ 1—1/2}9(;\) wy exp {ith +2iéx},
(1.7.11)

(Wa)e ~ at‘”zf(f) w exp {—ird — 2iéx},
with the same boundary conditions. Here we assume that x/r= O(1) as t > o0,
and we have neglected terms that are O{log #/t) in (1.7.11). For fixed large ¢,
(1.7.11) are coupled ordinary differential equations, with a rapid phase

(16 +2¢x) and a slow phase (x/t); we may use classical WKBJ methods. Thus
we look for a solution of (1.7.11} in the form

(1.7.12)  wilx, t5 O = wiole, X)+ 17 wiq (¢, X) + O(l%t, t‘l):

where

X=§, =18+2¢&, i=1,2, 6 givenby (1.7.4).
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Thus
By = U dy + Xy 0x ~ BX +28)3, +1t 'ox.
If X + 2£)#0, then (1.7.11) becomes to leading order,
dy(w1,0)~0, dy(w20)~0,
sothatfori=1,2
(1.7.13) wio = wio(X).
At order t™'/?
GX +28)34(wi1) ~ F(X)waolX) e”,
@X +26)3y(w2,1) ~ of (X)wro(X) ™.
Omitting homogeneous terms, we obtain
if(X) W2,0(X) iy
Gx+26) ©

of(X)w10lX) i
(X +2¢£)

w1y, X)~
(1.7.149)

wa,1 (¢, X)~

Secular terms arise at O(t™"), where (1.7.9) becomes
GX +28)0y(W12) ~fwai e —dx(wi0),
GX + 28)8y(wa2) ~ofwi e —ax(wao).

Substituting (1.7.14) into these relations shows that suppression of secular
terms at this order requires that, for (%X +26)#0,

ia'fzwl,o B (w )~_i0'f2W2,o
IX +2¢8 AT T Ix o

dx (wi,0) ~

These may be integrated, with the constants of integration determined from
the boundary conditions for wy, wa. Thus, for GX +2¢£)<0,

X 2

(1.7.15a) wl,o(X)=exp{icr£m%—§—_—£y2—)£dy}, Wwao~0
and, for GX +2¢£)>0,

o0 2.
(1.7.15b) w1 o(X) = a(f) exp{—icrL %ii—yz)gdy},

@ 2
(1.7.15¢) wao(X) = b(&, ) exp {io- J' %i -f-y2) ; dy}.

X



THE INVERSE SCATTERING TRANSFORM ON THE INFINITE INTERVAL 73

These results break down near (3X +2¢) = 0, where an expansion different
from (1.7.12) is required. From (1.7.15), as X } (—4¢),

—4¢

wyo(X)~1X +4§|2""fg exp {—21'0' j (fz)y log |y +4¢| dy},
(1.7.16)

W2,0(X)"‘0,
and as X | (—4¢)

wiolX) ~a ()X +46Bexp | ~2io [ (%), log y+48) ay),
(1.7.17) ¢

w2.o(X) ~ b€ 1)(X +4¢) 2T exp { —2ig j

ao

(F), Tog (y+46) v},
4¢

where fo = f(—4&).
At 3X +28€)=0, let

xo=4¢t,
(1.7.18) °

2

Yo= 10 +2§x]x=,o~%+ 2§xo—20'f§ logt+g(—4¢)

(note that g enters the calculation at this point). Near GX +28) =0, using
Taylor series, we obtain

(x. 1) + {x —Xo)z
¢’ X, 4.{/0 4t '
Thus in this region we define
Z:)C*_XO, wi =wi(Z; 1),
2t

so that (1.7.9) becomes

_ 72
(w1)z ~V2fow, exp {illlo'*’f‘z“},
(1.7.19)

2

- Z
(w2)z ~v20fow, exp { "il/lo—l—z‘}.

The general solution of (1.7.19) may be written in terms of parabolic cylinder
functions. It must match (1.7.16) as Z - —c0,and (1.7.17) as Z - +co. Omitting
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the intervening details, the final result is that on

X

X =>=-4¢,
£(5) == roglater =7z,
(1.7.20) g(f) = —arg{-ob(¢& 0)} +3Tﬂ— arg {I'(1 - 2io'f<2))}
—-4¢

+20f3 108220 | log |y +4¢l(f%), dy

—a0

o

+ 2aj ) log (y +4¢&)(f2), dy.
—-4£

These results, when coupled with (1.7.4), provide the complete asymptotic
expansion of the solution (1.7.2) in the limit 1 > 00. They may also be written
entirely in terms of (b/a)(£): on x/t = —4¢,

]
(1.7.21) g(;) - “arg{_03(5)}+§}T—a’g{r(l*2""’{2(9)}

s o)

) log (y +4&)(f°), dy.
3

Pzl

+ 2af2(f) log2 +4o J'
We have seen (in § 1.4) that solitons are distinctly nonlinear objects; they
cannot be linearized. On the other hand it is often asserted that the radiating
part of the solution, which we are now considering, behaves qualitatively like
the solution of the linearized problem. We may now assess this assertion on
the basis of the asymptotic solutions of the two problems; i.e., (A.1.39) vs.
(1.7.4) with (1.7.20). Note first that in both cases, two of the most important
aspects of the solutions are that:
{i) the overall decay rate is Y3
(i) information travels with the group velocity of the linear dispersion
relation, w = k% = (-2¢)”.
Second, in the limit of small amplitudes (f—» 0 uniformly in x in (1.7.20)) one
may show that b*(£)> o§(—2¢), and that the asymptotic solution of the
nonlinear problem reduces exactly to that of the linear problem (see Exercise
1). Thus, the two limits (¢t - co, flq(x, 0)] dx » 0) commute for solutions of
(1.7.2). Among the nonlinear features of (1.7.20) is that the phase contains a
log ¢t term and g depends globally on the scattering data through the two
integrals.
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The general solution of (1.7.2) with ¢ = —1 consists of both solitons and
radiation. For the nonlinear Schrodinger equation, the solitons travel in the
midst of the radiation and the interaction of the two is of some importance.
Using the conservation laws, Segur (1976) found the asymptotic (r-» )
solution of (1.7.2 with & = —1) in the simplest case, where the scattering data
contain one discrete eigenvalue plus continuous spectrum. The dominant
behavior is

q{x, t)~2n exp (i¢)sech ¢

-1/2 f . (§+X/4t+l’ﬂ tanh (11)2
(1.7.22) * f(r)[e"p ) e xjary +n’
2 2
L n”sech” ¢ —1/2
+exp (2ig zt6)————-——~(§+x/4t)z+ 772] +olt 7)),

where (£ +in) is the discrete eigenvalue,
¢ =—20ex+2(£ - 0]+ &,
¢ =2n(x +4¢0)+4,

2
9=x—t+0(1°—g5),

4 t
() -amreef+ 221
=j=—logil+|=t ——]f ¢-
f (z 47 & a\ 4t

The first termin (1.7.22) is simply the single soliton. The second term represents
the radiation, with a correction in the neighborhood of the soliton, and the
third term may be thought of as representing the interaction between these
two components. Because this result was obtained via the conservation laws,
various terms in the phases, including ¢ and ¢, remain undetermined. In

particular, the total phase shift of the soliton (from ¢t = —c0 to r = +00) due to
its interaction with the radiation is not determined by this method.

2

1.7.b. The modified Korteweg-de Vries equation. For mKdV,
(1.7.23) 0 — 6000, + Uyry =0, o==x1,

the linearized dispersion relation (w = —k?) is an odd function, so that the
group velocity, dw/dk = -3k, is of one sign for all real k. The consequence
is that the decaying oscillations, which covered all of space in the asymptotic
solution of (1.7.2) are restricted to x <0 in the asymptotic solution of (1.7.23).
This comes as no surprise, since it is also true in the linearized mKdV equation
(cf. § A.1), but it means that a separate analysis is required for x > 0.

Again we require that the initial data for (1.7.23) satisfy (1.7.1) for o = -1
in order to preclude soliton formation. In this problem we also require that
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the initial data decay rapidly enough in x that (¢, 0) can be extended off of
the real axis.
The linear integral equation for {1.7.23) may be written as

Kix,y; ) +oF(x+y; 1)
(1.7.24) =0'J J Kix,z; )F(z+s;1)F(s+y;t)dzds =0, y>x,
where )

1 00
F(x;1) =G j_ S— (&) exp {igx +8ig>t} dE

and
vix,)=—-2K(x,x:t).

Because F(2x; t) satisfies the linearized mKdV equation, its asymptotic (f - o0)
behavior is known from § A.1. In particular, for x » (31)'/,

r(ik/2)k?

where r(£€) =(b/a){¢), and k*>=(x/6¢). In this region

(1.7.25) Flx; )~ (-2,

K(x,y;)~~cF(x+y; 1)
in (1.7.24); the integral term is transcendentally smaller. Thus for x » 3n3,

ar(ik/2)k1?
2(3m)"?

These representations are not uniformly valid as x/t— 0. To obtain such
representations, we write

(1.7.26) vix, t)~ exp (—2tk>).

1 ® K . ,
F(x;t)= 41r(3t)17§ LD r(2(3t),,3) exp {ikZ/2+ ix?/3} dx,
where Z = y/(31)"">. Upon expanding r(¢) in a Taylor series near ¢ =0, one
finally obtains for - o, x/t >0, but Z = x/(31)'/* > 0,

(1.7.27)  ouvlx, )~ (36)"3r(0) Ai (Z)—(st)‘mi@ Ai'(Z)+0((B3D)™,

where Ai (Z) is the Airy function. This suggests that where |x| = O((31)"%) we
seek an approximate solution of (1.7.23) in the form

(1.7.28) o(x, ) ~BOY*w(Z)+ B0 Pwi(Z)+ - .
Then w(Z) satisfies the second equation of Painlevé (cf. § 3.7),
2

(1.7.29) Y Zw+ 20w,

daz
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with the boundary condition that as Z -» +00
(1.7.30) w(Z)=>or(0) Ai(Z).

The fact that (1.7.29) is nonlinear means that the solution in this middle region
(Ix|=0((3)'"®)) remains nonlinear as t-oo, even though its amplitude
vanishes in that limit. Such a nonlinear region exists for every mKdV solution
for which #(0)# 0.

At /=0, the scattering problem (1.2.7a) may be solved in closed form; for
og=+1

x

é1(x, 0) =cosh (J; v dx) s 2 =sinh (J:m v dx) ,

so that

o0

#(0) = tanh ( J

v dx) .
Similarly, for o = -1,

o

r(0)=—tan (L}O v dx) .

But v is required to be absolutely integrable (cf. § 1.3), so we have that
(1.7.31) [rO)<1 foro=+1, [r(0)j <o foro=-1.

In either case, the bounds in (1.7.31) guarantee that the solution of (1.7.29)
with (1.7.30) is bounded for all real Z (cf. § 3.7). Thus, in the region |x|=
O((3t)” %), the solution of (1.7.23) is approximately self-similar; the governing
differential equation is (1.7.29), with the matching condition (1.7.30). A typical
solution is shown in Fig. 3.2, p. 246.

The solution of (1.7.23) is rapidly oscillatory for —x » (31)"/°, as was the
solution of the linearized problem. In this region we may use either of the
methods we applied to (1.7.2), provided that we make the appropriate
modifications. In either case it is convenient to make use of the slowly-varying
similarity solution of mKdV. The general solution of (1.7.29) cannot be written
in closed form, but for Z > - (i.e., in the oscillatory region), a formally
asymptotic solution is

w(Z)~(=Z) Y*d sin 0+ 0(Z]7"*),
6~4-2)"*-2ad* log (-Z)+6+0(Z{?,

where d and 8 are the two constants of integration; d = 0 by convention. Then,
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by letting d, 6 depend on X = —x/3¢, we obtain the desired form for —x »
(3013

o(x, ) ~B) VX g sing+ 030,
(1.7.32)
o

2

This is the analogue of (1.7.4) to leading order.

The conservation laws determine d(X). The only modification required from
the previous application of this method is that in this case one must use (1.7.26)
and (1.7.28) to show that only the region —x > (3£)'/? contributes to the motion
constants as ¢ - 0. The final result is that along

6~2:X>* - d210g3t—%a'd2 log X + 6.

=-rlop
(1.7.33a) X=-=¢,

--Zefieof ()

Note again that (1.7.33a) identifies the group velocity of the linearized disper-
sion relation as the velocity with which information travels in the limit ¢ - co.
Note further that (1.7.33b) is virtually identical with (1.7.8b).

To obtain both d{X) and #(X) simultaneously, substitute (1.7.32) into the
scattering problem (1.2.7a). The analogue of (1.7.11) is

(1.7.33b) d*%(X) =%1og , a@

(W) ~BHO VA XV44(X) sin 6 - ¥ wy,

(1.7.34) .
(Wa), ~(3) 7 Y2X V4% 5in 0 - e ***w,.

The appropriate boundary conditions for (1.7.34) are that

() (o) asx=-e
Wi 0

()=o) =x=0

Here we have used (1.7.26) and (1.7.28) to show that w,, w, are constant (to
leading order) for x > 0.

The important difference between (1.7.34) and (1.7.11) is that as ¢ - c0 with
X =0(1), (1.7.34) contains explicitly two rapid phases (6 +2¢&x, 8 —2&x) and
aslow phase, X. Taking account of these differences, the analysis now proceeds
analogously to that leading to (1.7.20). We omit the details, which may be
found in Segur and Ablowitz (1981). The result is (1.7.33) again, along with

and
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(for £ =0),
01§21
(1.7.35) —-;-adz log2 -7 J:log (g%) (d?), dy

+% f log CT‘;) (d?), dy.

In the limit X = —x/3¢->0,but Z = x/(3t)1"3—> ~00, the approximate solution
of mKdV given in (1.7.32, 33, 35) matches smoothly to that given in (1.7.28-
30). This matching amounts to a partial confirmation of our analysis here, and it
plays a more important role in § 3.7.

Let us summarize our results for (1.7.23). In the absence of solitons, the
asymptotic solution of mKdV that evolves from appropriate initial data is given
by (1.7.26) for x » (37)'?, by (1.7.28, 29, 30) for |x|=O((31)"?), and by
(1.7.32, 33, 35) for (—x)>(31)">. If r(0) # 0, the solution remains nonlinear
in the middie region, no matter how small the amplitude becomes. Even so,
one may show that this asymptotic solution collapses to that of the linear
problem if the initial amplitude is taken to zero (in L;-norm). Thus, the two
limits (¢ - oo, initial amplitude - 0) commute for mKdV, as they did for (1.7.2).
Note that this commutation of limits does not depend on our having excluded
solitons; they are excluded by the small amplitude limit, according to (1.7.1).

1.7.c. The Korteweg-de Vries equation. Every solution of mKdV (1.7.23),
o =+1, generates a solution of the KdV equation

(1.7.36) u+6uu, +uy, =0,
through Miura’s (1968) transformation
(1.7.37) u=-v’-u0,.

In this way, our results for the asymptotic behavior of mKdV solutions
determine the asymptotic behavior of an infinite set of KdV solutions as well.
However, these KdV solutions turn out to be practically irrelevant in the
following sense: given almost any initial data such that KdV can be solved by
IST, the solution that evolves cannot be obtained from a rapidly decaying {in
x) solution of mKdV through (1.7.37).

We may examine this transformation in more detail. Let v(x, 0) be smooth,
rapidly decaying (in x) initial data for (1.7.23), o = +1. Let r(k) denote the
reflection coefficient corresponding to v(x, 0). From (1.7.31), |7(0)] < 1. Now
let p(k) = r(k), where p(k) is the reflection coefficient corresponding to some
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solution of the KdV equation. Then r(k) generates an mKdV solution through
(1.7.24), while p(k) generates a KdV solution through (1.3.37). By compar-
ing these two integral equations, it is easy to show that the two solutions are
related by (1.7.37).

On the other hand, Ablowitz, Kruskal and Segur (1979) showed that for
almost any smooth initial data for KdV satisfying |, (1 +|x[*)|u| dx < o,

(1.7.38) p(0)=-1.

Thus for almost all initial data for KAV, we cannot equate p(k)=r(k), and we
cannot use (1.7.37) effectively.

Hence, a separate analysis of the asymptotic behavior of KdV solutions is
required. This analysis follows our previous work on mKdV, but some
significant differences appear, due to (1.7.38). As always, we assume the initial
data to be rapidly decaying as |x|-> o0 and smooth, and we assume that no
solitons exist. Here we only state the main results; more complete details may
be found in Ablowitz and Segur (1977a).

For x »(3£)'3, the integral term in (1.3.37), as in mKdV, is exponentially
smaller than the other two, and

plik/2)k?
~ @) P {2k},

where k* = x/3t. An alternative representation in this region that remains valid
as x/3t-0is

(1.7.39) ulx, t)

© (__\n,n) n
(1.7.40) u(x, :)~—(3t)‘2’3[p(0)Ai' (Z)+ g%%‘ét)%(diz) Ai (Z)],

where Z = (x +x0)/(3 1'% and xois constant; xo = —ip'(0)/2p(0) is an especially
convenient choice.
In the region |x| = O((31)'?), we seek a solution of KdV in the form

(1.7.41) ulx, ) ~@B0PAZ)+ B0 FU(Z)+ B Z) +- - -],

(One of the few rigorous results in this section is the proof of Shabat (1973)
that (1.7.41) is truly asymptotic to leading order.) These functions satisfy
ordinary differential equations:

f"+6ff -(2f+Zf)=0,
(1.7.42) fi+o6(ff) - (Bfi+2Zf1)=0,
T +6(ff2) — (4f2+ Zf3) =-3(f1),

with boundary conditions obtained by matching to (1.7.40) as Z —» +o0. For
example

(1.7.43) f(Z)~-p(0) Ai'(Z) asZ > +c0.



THE INVERSE SCATTERING TRANSFORM ON THE INFINITE INTERVAL 81

Now the significance of (1.7.38) appears. The behavior of the solution of
(1.7.42a, 43) depends on p(0):
(i) If |p(0)|< 1, the solution is bounded for all finite Z, and oscillates as
Z - —0, These solutions of (1.7.42) are related to the bounded solutions of
(1.7.29) through (1.7.37).
(ii) Solutions corresponding to [p(0)|> 1 or to p(0) = +1 are of no interest.
(iii) If p(0)=—1, then as Z -» —00, f(Z) asymptotically approaches

(1748)  f@)=2-1 (22742 -22) 7+ O(-22) 7).

Thus the first term in (1.7.42) grows linearly as Z »— if p{(0)=-1,
However, f»(Z) grows exponentially in the same limit and f4(Z) grows even

faster; i.e., the expansion (1.7.41) becomes disordered. One mayshow that as
Z -»—0(p(0)=-1)

utr 0~ G| 5+ 02z e (F22))
(1.7.45) n
_ { (BnN*C(-22)* exp (___-3___) } 4 ] ’
where

C=0.118{p"(0)+[p'(0)T},

the coefficient being determined by a numerical integration (Ablowitz and
Segur (1977a), Miles (1979)). It is clear that (1.7.45) breaks down as Z » —c0.
This breakdown signals the existence of a new region, which may be called a
‘*collisionless shock” layer, or a transition layer. The existence of this new
region is a direct consequence of (1.7.38); there is no corresponding region in
the typical asymptotic solutions of mKdV.

The location and decay rate of the minimum of the leading wave (see Fig.
4.4) has some importance in applications. The location of this minimum may
be found by differentiating the expression in (1.7.45). For very large times, it
occurs at

(1.7.46a) (—2Z)~(21og 31)*"3,
and near this (moving) point

1/21log 3:) 273
(1.7.46b) u~-3 ( > .

This asymptotic decay rate is entirely independent of initial data, except
through (1.7.38). However, the time required to reach (1.7.46) is long and this
final state may not be attained in many applications.
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A separate analysis is required to determine the structures of the collisionless
shock layer. Details may be found in Ablowitzand Segur (1977a), Miles (1979).
The appropriate scaling in the layer is implicit insthe breakdown of (1.7.45).
It is convenient to define a new spacelike variable ¢,

A 3r2
(1.7.47a) @n7?P(=22)7" exp((—33—)———) =3,
and a dependent variable g(¢, 1),

-2Z
.47 = —— .
(1.7.47b) u(x, 1) G gl& 1)
One may show that, to leading order, the front of the collisionless shock is
given by

(1.7.48) g(& 1) ~—1+5sech® 3£~ &)

This matches to (1.7.45) if £ = —3 log (C/2). However, it is not uniformly valid
for ¢ large [(log £)>» & »log ¢ or t'/> (log 1)*'® » (—x) » t'*(log 1)**}, where it
must be replaced by another slowly varying solution:

(1.7.49) g~a(Y)+b(Y)en*(®+do; v(Y)),

where ® is an (appropriately defined) fast variable and Y is a slow variable.
This matches to (1.7.48) as Y - 0. As Y —» o, the solution of the KdV equation
at the downstream end of this layer is given by

1/2
ulx, )~ (3:)"2’3(—2)”4(3’—;’g—3f) co0s 6,
o

(1.7.50)
6~4-2)",

This is the behavior of the solution which must match into the solution in the
oscillatory region.

Finally, we consider the purely oscillatory region. There are no major
differences between the asymptotic analysis of KdV and mKdV solutions in
this region, and we may quote the final results. The asymptotic form of the
solution of (1.7.36) in this region is

(1.7.51)  u(x, )~38)"V2xY42d) cos 6 — (31) ' X *(2d*)(1 —cos 26),
where
0 ~2:X>*—2d%log 3t—3d’ log X +6,

X = —é’it, d=d(X), §=8X).
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Note that every solution of this form has a nonoscillatory term that is negative
and of order (3r) "X, Thus for KdV, solitons are intrinsically positive,
while the radiation has a negative mean. The relation between the d(X), 8(X)
and the reflection coefficient, p(k), is that on

X
X =——=4k"
3t

1
d2<x>=—4—;log{1—|p<k)l2},

(1.7.52) §(X)=§—arg{p(k)}—arg{F(1—2id2)}
6d” log?2 4J-0 log(2k+y)(d )y dy.

If lp(O)l <1, this solution matches as X - 0 to the one in (1.7.41); the entire
solution is qualitatively similar to an mKdV solution, and it may be obtained
from one via (1.7.37). If p{(0) = — 1, the solution in this region matches as X - 0
to the one in (1.7.50). A typical KdV solution is similar to that shown in Fig.
4.3, p. 285.

This completes the analysis of the solutions of KdV without solitons. Its
general solution also may contain N solitons, but as ¢ - o0 they are expected to
be confined to N regions where the rest of the solution is exponentially small.
Thus as ¢ -0, there is no interaction (to leading order) of solitons with the
nonsoliton part of the solution; we may simply add the N solitons (all at x > 0)
to the solution we have already discussed to obtain the asymptotic solution in
the general case. This result must then be corrected by the (constant) phase
shifts discussed in § 1.4. Ablowitz and Kodama (1980) have given the asymp-
totic solution of solitons and continuous spectrum. They use the notion of
scattering off a given N -soliton solution.

Finally, let us compare the asymptotic solutions of the KdV equation
(1.7.36) and the corresponding linear equation (A.1.49). In contrast to our
results for both (1.7.2) and (1.7.23)—effectively, in contrast to the results for
all solutions of equations of the form (1.5.16) for which a(k) has no zeros for
real k—the two limits (¢t - co, initial amplitude - 0) do not commute for KdV.
Part of the problem is that KdV solitons can be made arbitrarily small (in any
L,norm, 1=p =), but the limits do not commute even if no solitons are
present. In the linear problem, the asymptotic solution is dominated by the
leading wave, whose decay rate is YVt | udx # 0; otherwise the decay rate
of this wave is 172> if | xudx # 0, etc. But for almost all KdV solutions, ro
matter how small, p(0) = —1, and the asymptotic decay rate of the leading wave
is (log ¢/ t)Z/ ? by (1.7.46). Thus the asymptotic behavior of the two solutions is
always different in this region. Moreover, except in special cases where
[ u dx =0, the slowest decay rate is r_'/> for the solution of the linear problem,
but ¢ /% for the corresponding solution of KdV.
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EXERCISES

Section 1.1
1. (a) Show that (1.1.2) is obtained from (1.1.1) for 4 - 0.
(b) What are the terms proportional to #*; ¢h??
(c)” What happens when e/h*<1;e/h*»1?

2. Given K (u)in (1.1.5) and M(2) in (1.1.7), show that if u = — (0% + »,) we
have

K(u)= —-(20+ )M(v)

3. Given (1.1.11-13), verify that ¢,,, = ¢, yields (1.1.14), and hence
K(u)=0if and only if A, =0,

Section 1.2
1. Derive (1.2.13) from (1.2.8).

2. (a) Find an exact solutlon of (1.2.8) in terms of a fifth order expansion
of (A,B,C);i.e, A= Zo a.l", etc. What is the nonlinear evolution equation
for r = g, with the arbitrary constants chosen so that the linearized form of the
equation is [d, + (3,)°Jv = 07

(b) Find a solutnon of (1.2.21) in terms of a second order expansion of
(A, B); ie., A= Zo a,,A What is the nonlinear evolution equation that
linearizes to [, + (3, )° Ju=0?

(c) Show that these are related by Miura’s transformation,

2
U=—V — U

Section 1.3

1. Show from (1.3.3, 4) that ¢ = d¢ + b, ¥ = b — ad.

2. Prove that if r,q in (1.2.7a) each satisfy |r(x)| <_Ce—2m"| fo- some
C, K >0, then a({) is analytic for Im (¢)>—-K, b({), b({) are analytic for
|Im (£)| < K, and 4 is analytic for Im ({) <K.

3. (a) Whydoes r = +q* ¢ L, guarantee that (1.2.7a) has no discrete eigen-
values for Im (¢)>07?

(b) Show from (1.3.4, 14) that for r = +q*, |a|* = 1 for Im (¢) = 0. Conclude
that a(¢)# 0 for Im (()= 0 if r = +gq*.

4. For r=-q*eL, in (1.2.7a), (1.3.16e) was shown to be sufficient to
guarantee that a(£) # 0 for Im ({) 2 0. Let r = —q, real. Solve (1.2.7a) explicitly
at ¢ = 0. Show that a(0) = cos (|, q dx). Therefore it is necessary that Qp(c0) <
/2 to exclude discrete eigenvalues. (Satsuma and Yajima (1974) showed that
for a family of real potentials with r = —g, one discrete eigenvalue appears
when Qu(0) = /2, a second eigenvalue appears when Qo(o0)=37/2, etc.)
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5. Letr=—g*in{(1.2.7a), where q(x) = Q constantif 0<x < L,and q(x)=0
otherwise. Find the scattering data {a({), b()} explicitly. Discuss the number
and position of the eigenvalues as functions of Q and L. How does arg (Q)
affect the eigenvalues? Show that Im ({) < Q for each discrete eigenvalue,

6. Prove that a(k), defined in (1.3.35), has an analytic continuation into the
upper half plane.

7. Show that if g{x)=0 in (1.2.20a), there are no discrete eigenvalues (with
A <0). (Hint: use an oscillation theorem.)

8. (a) In (1.2.20a) let g(x)= Q (real) if 0 <x <L and q(x) =0 otherwise,
Find the scattering data explicitly. Discuss the number and magnitude of the
discrete eigenvalues as functions of Q and L. Show that |A|<|Q| for each
discrete eigenvalue.

{b) Repeat for g(x)=Q sech® mx, in (1.2.20a), with (Q, m) real. (Hint: let
¢t = tanh mx, and use associated Legendre functions.)

(c) In (a) and (b), compute p(k = 0) explicitly, and show that p(0) = -1 for
almost all potentials in these families. What is the significance of a potential
for which p(0)# —1?

{Other bounds on the location and number of the discrete eigenvalues may
be found in Segur (1973) for (1.2.20a), and in Ablowitz, Kaup, Newell and
Segur (1974), Satsuma and Yajima (1974) and Karney, Sen and Chu (1979)
for (1.2.7a).

Section 1.4

1. (a) Find the one-soliton, two-soliton, and breather solutions for the
mKdV equation (1.2.2) by solving the linear integral equation (1.3.29) with
the appropriate scattering data.

(b) There are actually two forms of mKdV that have solitons,

q. + 6‘12% + Gxxx = 0, q real,
ql + 6}Qfqu + qxxx = O

How do these special solutions compare for these two problems?
2. (a) Pick one of the coupled pairs of evolution equations (for r, q) solved

by (1.2.7) and let r,q be unrelated initially; i.e., let (a, b) and {(d, ») be
unrelated initially. Show that the one-soliton solution blows up for infinitely
many real points (x, ), unless » = aq*; @ constant. Show that this blowup may
evolve from infinitely smooth initial data.

(b) Show that | rq dx is conserved by the evolution equations. If r = ag*, a
real, show that the solution remains in L, if it started there. Show that no
L,-function can have the kind of singularity given in (a).

3. For (1.2.20a) let q(x)=N(N+1)m2 sech® mx (as in Exercise 8, § 1.3).
(a) For N =2, find explicitly the discrete eigenfunctions ,, . Find



86 CHAPTER 1

¢ d;(i = 1, 2) from these, and compute the phase shift of two KdV solitons from
(1.4.5). Verify (1.4.44) in this special case.

(b) Repeat for N =3.

{c) How do these phase shifts change if the evolution equation were not
KdV, but fifth order KdV? What if the evolution equation were first order
KdV (.e., q.+cq, =0)?

Section 1.5

1. Show that if A_ ()= (1/2i)(2¢)°, then (1.5.16) reduces to a coupled pair
of mKdV equations.

2. Show if A_(¢)=(1/2i}2¢)°, (1.5.16) reduces to a coupled pair of
fifth order equations. Show if y(k?)=—(2k*), (1.5.21) reduces to another
fifth order equation. If r=gq, real, show that the solutions of these two
equations are related by Miura’s transformation,

2
u=~p —u,.

3. Is (1.5.16) implied by (1.5.5) or merely consistent with it?

4. What is the general evolution equation, corresponding to (1.5.16), for
the scattering problem in (1.2.25)?

Section 1.6

1. Show that the mapping (g, r)- S, defined in (1.6.42), is a canonical
transformation for any of the Hamiltonian systems described by (1.5.16).
(Most of this analysis follows that of Zakharov and Manakov (1974)).

(a) As done for a(¢£) in (1.6.39), compute the gradients of 4, b, b with
respect to (q, 7).

(b) Let u™=(ui", us") and w' be two solutions of (1.2.7a) for &= ¢,
and let u'®, w'? be two solutions for £ = £,. Establish the identity

. 1), ... 2 n_ @)y, (1) (2)
2i(&— U uPww - uPuPwiw?)
(1), (2) (1} (2) 1y, (2) 1, (2

=3, [ Pud —uuPYwPwd - wPw)l.

(c) Because of this identity, the integrals in all of the Poisson brackets
involving (a, 4, b, b) can be evaluated exactly. Show that

(a (&), b(&) = [a(é)b(&:)—b(E)a(&:) lim exp{2i(1~ Ex})

1
2i(&1— &)
Find the Poisson brackets of all other combinations of a, 4, b, b.
(d) The identity
ikx

"’k = mis(k),

Hm

X -»Q0

where the left side should be intepreted in the principal value sense, can be
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established by evaluating lim, ..« o dk [*, dy ¢(y) cos ky, where ¢ (y) is a test
function, Use the identity to show that

1 T
(log a(£1), log b(&2)) = e 2 5(&—&2),
) N NPT
(log a(&1), log b(&2)) = et 2 8(&1—£2),

{a(&y), a(£))=0.
Using (1.6.43a), show that

(P(£1), P(&2))=0={Q(&), Q{&)),
(P(fl), Q(fz)) = 5(51 _fz)-

(e) Show that (logb,logb)#0. (This can be done easily, using the
Wronskian relation.)

(f) By extending b, b off the real axis, show that several other Poisson
brackets vanish.

(8) 8¢(m/6q(x) follows almost directly from the observation that a =
al{, q, r), so that
s
e

By definition, 8{./8q comes by requiring 8a = 0, » = 0 and extending (1.6.39)
off the real axis;

da da
da= { +—8q +—br.
0q ar

dal  8¢m
o l,, 6q(x)
Compute 8Z../8r, 85,/ 8q, 85,/ 8r. Use (1.6.43) and show that
(Pnu Qn) = amny <13k, él) = 8'([9

and that all other Poisson brackets of the variables in (1.6.43) vanish.

2. Derivation of (1.6.46) requires SH/ 8¢, 8H/ 8.
(a) From (1.6.19), show that for Im />0

= _¢2(x7 {m)¢2(x7 {m)

aloga) _ 1 +Lj°° 1 _ 1
om {—lm 2 ) b0 E~lm  (—lm
d(log a) 1
e (-4
(b) Expand these as || o0, Im ¢ >0, and use (1.6.6) to show
6C, 8C,

=20, S =20
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(c) Use (1.6.38) to show that

SH 8H_ ... 7
£—41A_(£m), 65"‘ 4iA_(&).

3. (a) What conditions must g, r satisfy in order that a, b, 4, b may be
extended off the real axis as we have done in this section?
(b) What conditions must they satisfy in order that

[ & 10gaate ae

exist for all n =0, so that the integral in (1.6.21) exists?

(c}) If A_({) is polynomial, what conditions must g, r satisfy in order that
the integral in (1.6.44) exists?

(d) Under what conditions may we use the polynomial conserved densities
(only) as the action variables? What are the corresponding angle variables?

4. The sine-Gordon equation, (1.2.3), has the linearized dispersion relation
w(k)=k™", and does not satisfy (1.6.37). Even so, the results of this section
apply, provided aa(0)=1.

(a) Show that (1.2.3) is Hamiltonian in the form (1.6.31) with

H= ji fcos (J_; o) dy) -1} dx.

{b) Show that the transformation to the variables defined in (1.6.43) is
canonical.

(c) Write the Hamiltonian in terms of these variables (McLaughlin (1975)).

5. When the dispersions relation for (1.5.16) is an odd function of ¢, the
equations admit real solutions with r = £4. As an alternative to the methods
developed here, impose this restriction on (1.5.16) a priori so that r and ¢ do
not vary independently, and develop a parallel theory for these restricted
equations.

{a) Show that (1.5.16) now takes the form (1.6.31),

(b) Show that the transformation to a subset of the scattering data is
canonical.

{c) Show that these are action-angle variables.

6. Here are two interesting problems that fall somewhat outside of the
formulation of completely integrable Hamiltonian systems that we have pre-
sented here.

(a) The problem of self-induced transparency (SIT) is discussed in §§ A.2
and 4.4. As noted there, a(¢) is not time-independent, although the locations
of its zeros are. There is only one polynomial conserved density. Nevertheless,
the problem is solved by IST. This suggests either that IST is not restricted to
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completely integrable Hamiltonian systems, or that the latter needs a broader
definition.
{b) The long-wave equations of Benney (1973) are

v
u,+uux—ux(J- uxdy)-!—hx =0,
0

h,+(Lh udy) = 0.

Here u=ulx,y,t), h=h(x 1), with —0<x<oo, O0<y<h, t=0. These
equations have an infinite set of conservation laws involving polynomials of
jg 1" dy. Further, there is a sense in which this sytem is Hamiltonian and the
conservation laws are in involution. Nevertheless, Kuperschmidt and Manin
have shown that:
(i) there are no more local (in x, f) conservation laws involving only the

moments of u beyond those found by Benney;,

(ii) there are not enough of these polynomial conserved densities to estab-
lish complete integrability;

(iii) there seem to be no solitons.

For more details, the reader may consult Benney (1973), Miura (19745),
Kuperschmidt and Manin (1977), (1978), Manin (1981) and Zakharov (1981).

Section 1.7

1. Linearization.
{a) Show that in the limit of g{x), r(x) small,

B(£)=>7F(28),  b(&)>—4(-2¢),

where 7(¢£) is the Fourier transform of r(x) and 4, b are defined by (1.3.3). Use
the L;-norm, which is a natural measure of “‘smallness” in this problem.

(b) Show that the asymptotic solution of the nonlinear Schroédinger equation
coilapses to that of the linear Schrodinger equation in this limit; i.e., that
(1.7.4), with (1.7.20), »(A.1.39). What must be small for this limit to be valid?
What is the next term in the expansion? Does the general solution of (1.7.2)
collapse to the general solution of {A.1.23) in the limit of small amplitudes
(independent of time)?

(c) Treat the nonlinear term in (1.7.2) as a small perturbation and solve
{1.7.2) by perturbing about the linear solution. Show that secular terms appear
in this expansion. How do you reconcile this result with that in (b)?

2. What is the asymptotic solution of (1.7.2) if a zero of a(¢) is allowed on
the real axis? (Ablowitz and Segur (1977a) conjectured that the decay rate of
the solution should be (log t/6)""? in this case.) Do the same for (1.7.23).
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3. Derive (1.7.33), (1.7.35).
4. (a) Let

Q, O<x<L,
0, otherwise,

q(x)={

be initial data for (1.7.2). Find a(§), b(¢) explicitly for ¢ =+1 and o =-1.
What inequality must Q, L satisfy to exclude solitons?

(b) Find the asymptotic solution of (1.7.2), both for ¢ = +1 and ¢ = —1, that
evolves from these initial conditions when no solitons exist. Sketch the
envelopes of these solutions based only on the dominant terms in the
asymptotic expansions. (You should find well-defined wave-packets, or
groups.)

(c) By computing the second terms in the asymptotic expansions and
comparing them to the first, estimate the time required for the asymptotic
solutions that you sketched in (b) to become valid.

(d) Manakov (1974a) noted the following application of (1.7.2). Letasteady,
uniform plane-wave of intense monochromatic light (with intensity |QJ°) shine
on a very long transparent slit (of width L) in an otherwise opaque wall. If x
measures the distance parallel to the wall, and ¢ the distance normal to it, then
the solution of (1.7.2) represents the complex amplitude of the steadily
diffracted wave beyond the slit. The nonlinear term in (1.7.2) represents the
change in the index of refraction of the medium caused by the intense light
beam. The solution that you sketched in (b) corresponds to the diffraction
pattern one would observe by placing a screen normal to the beam well beyond
the slit. The time estimates in (c) determine how far behind the slit the screen
should be placed. In this application, a soliton corresponds to a diffraction
fringe whose intensity does not diminish as the screen is moved away from the
slit.

5. Repeat problem 4 for (1.7.23) instead of (1.7.2).

6. Find the asymptotic solution of the sine-Gordon equation, ¢, =sin ¢, in
the absence of solitons.

(a) Find the similarity solution. Show that inside the light cone, the equation
has a slowly-varying similarity solution of the form

é~-2712Xx" 4 sin g,

1 d? -
6~ 2:X1/2—5d2 log t—-2—logX+ 6,

where X =—x/t, d =d(X), 6 = 6(X).
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2
G )
0—(X)=;—T——arg{r(9}-arg {I’(l —igj)}—%dz log 2

- J:_l log (g: ; ;}) (d%), dy.

(c) Express your final results in terms of laboratory coordinates, y = (x +¢),
T=(x—1).

(d) What happens near the light-cone? What happens outside the light-
cone?

7. Derive (1.7.52).
8. (a) Show that for large k (i.e., A »(g| in (1.3.33))

(k> ig(k)

2

(b) Show that along —x/t={¢"

1
dz(X)=—Iog{1+
m

p 2 k K
where § is the Fourier transform of ¢(x) and p(k) is the reflection coefficient
defined by (1.3.33-35).

(b) By comparing the asymptotic solutions of KdV and its linear counterpart
(A.1.49), show that the limits (z— 0, initial amplitude -» Q) do commute for
KdV solutions without solitons except in the vicinity of the collisionless shock
layer. In other words, this layer is intrinsically nonlinear; away from it, KdV
solutions without solitons are only weakly nonlinear.



This page intentionally left blank



Chapter 2

IST in Other Settings

2.1. Higher order eigenvalue problems and multidimensional scattering
problems. Up until this point we have only considered those nonlinear evo-
lution equations associated with second order eigenvalue problems. The work
of Zakharov and Manakov (1973) effectively showed that there are physically
interesting nonlinear evolution equations connected with higher order scatter-
ing problems. Specifically, they demonstrated that the well-known three-wave
interaction equations were associated with a certain third order scattering
problem. Somewhat later Kaup (197654) and Zakharov and Manakov (1976a)
examined the related questions of inverse scattering and solutions to the
equations of motion.

In this section we shall first show how the ideas of § 1.2 can be simply
extended to higher order problems, and then we shall discuss some of the
relevant details associated with actually working out the inverse scattering.

2.1.a. Deriving one-dimensional evolution equations. We begin with the
matrix formulation (Ablowitz and Haberman (19755)):

(2.1.1a) v, =ilDv+Nyv,
(2.1.1b) v, = Qv,

where v is an # X 1 matrix {vector)

25}

Un
and D,N,Q are nXxXn matrices with D diagonal, D=
dié,(diag (dy, d»,* - -, d,)), di constant and N is such that Nj; =0 (this latter

assumption is not really necessary, but it simplifies the analysis). Cross
differentiation such that v,, = v,,, and requiring ¢, = 0 yields

(2.1.2) Q. =N,+i[D, Q]+[N, Q]

([A, B]=AB - BA). Asin § 1.2 we wish to find Q given D, N such that (2.1.2)
is satisfied and so that (2.1.1a, b) are consistent. In general this requires further
restrictions, which are the nonlinear evolution equations. Expanding Q in a
power series in { is the easiest way to proceed. As an example we shall derive

93
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the three-wave interaction equation. It turns out that the three-wave interac-
tion is virtually the easiest system to obtain. We expand Q as follows:

(2.1.3) o= 0(1){_,_ o

(since the three-wave interaction has first order spatial derivatives). The results
of § 1.2, § 1.5 motivate the form (2.1.3). Substitution of (2.1.3) into (2.1.2)
yields at order ¢ 2

(2.1.4) ilD, QW) =i z (DrQ% - QWD) =0.

Using Dy = 8, d;, we have (d; —d; )Qm = 0. We shall assume
di1>d>>ds,

and hence

(2.1.5) Qi =48

We take the g; each to be constant (it can be shown that when g; is a function
of time the resulting equations are transformable to those when g; is constant).
At order { we have

(2.1.6a) P =i[D, Q1+IN, @M}
or
(2.1.6b) Qfr=i z (DrQ% - QWD) +z (NiQ%) — QWN,).

Substitution of (2.1.5) into (2.1.6b) yields (note that we are not using summa-
tion convention on repeated indices)

2.1.7) Qy = ‘,(d ‘3)1\7{;‘, 1#].
When [ = j we take Qf = 0. Defining

(2.1.8) ay= j — Z' —a

reduces (2.1.7) to

(2.1.9) Qi =ayNy,  1#].

At ¢° we have Q¥ = N, +[N, Q], from which we obtain
(2.1.10) Ny —ayNjx= % (an — ak;)NuNy;.

These are N(N — 1) equations (we note that N = 0 is consistent with (2 1.10)).
The number of equations can be halved by requiring N; =o;N}i. (This is
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analogous to the choice g = =r* in § 1.2—the second order case.) Then (2.1.10)
and its complex conjugate are mutually consistent if

(2111) Ty = — 0y [>k>j

and the a; are real.
Equation (2.1.10) may be put into a standard set of three-wave interaction
equations by a suitable scaling of variables. For example, we find the system

er + Clle = l'YlQ;Q;k’
(2.1.12) Q2+ C:Q;, =iy, Q7 0%,
Qs+ C3Q5, = iy; QT O3,

where y;1v2y:=—1 and v, = 1 if we take

Ni2=—iQ3/VB13B23, Nay=—iQz/VB12B23, Naz=iQ:/YB12B13
Ni3=~y173N$1, N3n=7v372N33, Nai=7y17:NT,

where

GGG

q; C By=di—d;=C—-C,
}

Cs>C>C.

In (2.1.12) decay instability (positive definite energy) occurs when we choose
one of the vy, ’s different in sign from the others, and explosive instability when
v1 =¥ = v3=—1. Directly from the equations we can derive the conserved
quantities

71M1 - ‘YzMz = const.,
(2.1.13) yaM, — ysMs = const.,
YlMl - ‘Y3M3 = const.,

where M, = |~ Q,Q% dx, and see that there is no positive definite energy in
the case v, =—~1,i=1,2,3.

We also remark that the so-called two-wave interaction case is obtained
from (2.1.12) by taking C5 = C3, Q3 = Q». From the standpoint of our deriva-
tion this is a singular limit and the eigenvalue problem (2.1.1) does not seem
to apply. Kaup (1978) discussed the two-wave case in some detail.

We shall return to the three-wave problem in more detail later in this section.
However, we first discuss the situation that occurs when we expand Q
differently.
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Specifically, if we had taken Q = Q®¢* + Q"¢ + Q¥ and followed the same
procedure as earlier, we would find

BiilNij,xx + €Ny x — kzl Vi (NuNgj )«
*1j

=Nyt ¥ (e~ ew) NNy
Py
2.1.14) +NA2B,N;Nuy + k; (Bii + Y INiN; = (Biet + Vit NNt}
]

+ Z (Bk}NIka] x Blka)le x)

k#lj
+ z Z (‘kaNkiNlmNmk - 'ijlekamij),
k#Lf m#EL)
where
(2) 2)
Dl VN, =
ai; l(d[ — d,) Qjis Blj l(d{ d ) ﬂl]’

=M A
ik = di—d;) itk = Ykijs

=g

l(dl d])

Ey = =é&jp,
and ¢, qi", are arbitrary constants. Schematically these terms can be inter-
preted as follows:

dA A A ]
— = -— + [—5 + BC+—(BC)
ot 0x ox ox

——

Y ST
group  dispersion triad resonance
velocity

+ A’A* + ABB* + BDE

e ——— ———
self-self self-modal quartic
interaction interaction resonance

It should be noted that all of these terms arise in systematic perturbation
expansions in which each derivative scales like an amplitude (note that BC
would have a different asymptotic order from 4, (BC)). For use in a particular
physical problem, one must verify that each coefficient properly reduces to the
equation of interest. For example, if the ay, By, etc. are chosen appropriately,
then (2.1.14) can be reduced to a number of physically interesting cases:
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(i) Manakov (1975). Coupled nonlinear Schrodinger equations:

[0 A, A,
N=|osA¥ 0 0,
0’31A§k 0 0.

(2.1.15) ) N
A1, =Aa +2A (021 A" +031|AL%),

Az, = As +2A5(0 A + oA

(ii) Yajima and Oikawa (1976). Interaction of Langmuir waves with
ion-acoustic waves in a plasma:

0 Ee™ in
N=| 0 0 Ee”|,
—i 0 0

(2.1.16)
iE,+3E +3(1-n)E =0,

n+n+(EMs=0

(see also Yajima and Oikawa (1973)). A similar system describing an interac-
tion of short capillary waves with long gravity waves had been studied by
Djordjevic and Redekopp (1977).

(ili) Zakharov (1974), Ablowitz and Haberman (1975b). A Boussinesq
equation:

0 0 1
N=[Ny 0 (1+w3)N3i|,
\Nap 1 0
where, if
i @ w
wi=e "™, Nayy=ud,+v, N21=H(‘2‘Bi¢r+73¢’xx)a
-1
w=w3—1, V=w?12 , w=0o,
then

(2~117) er _BZ( Wxx +6(W2)x1 + Wxxxx) = 0
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We note that (2.1.17) is ill-posed when B>=1 even though it is frequently
derived in physical situations. However, in these applications (2.1.17) arises
as a long-wave limit, and hence short waves which give rise to the ill-posedness
are prohibited by the asymptotic derivation.

Moreover, in this case the eigenvalue problem (2.1.1a) is reducible to a single
third order equation

(2.1.18) d/xxx+(A+Ml)d]+M2¢,x=0’
where

M;=Nj;,+Na, M,=(2+w3)N3

(analogous to setting » = —1 in the # = 2 case). Zakharov (1974) starts with an
equation of the form (2.1.18). The natural time dependence to associate with
(2.1.18) is

¥, =AV+BVY, +CV¥,,;

expand A, B, C in powers of A.

It should be noted that an interesting generalization of the above ideas
follows if we take, formally, n >0 in (2.1.1). In this case the eigenvalue
problem and associated time dependence are given by

oo

(2.1.19a) s_z(xy)’;t)=i{d()’)v(x,)’§t)+J’ Ny, 23 olx, 23 1) dz,

(o)

(2.1.19b) %?(x, y;t) =j Qlx, y, z; Dv(x, z; 1) dz.

The procedure described here then yields the integrodifferential equation

Ni(x, y, z; ) =aly, z2)N,(x, y, z; 1)
(2.1.19¢) +I (a(y, zN—al{z',2))N(x,y,2'; )N{x, z', z; ) dz’,

where

aly, z)=alz,y).

The symmetry condition N(x, y, z; ) =o(y, z)N*(x, z, y; t) for y >z is con-
sistent if o satisfies o(y, z2")o (2, z) =~ (y, 2) for y>z'> 1z,

2.1.b. Scattering theory., We now discuss the analytical inverse scattering
associated with the 3 X 3 matrix eigenvalue problem, (2.1.1). In addition, we
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shall examine the three-wave interaction both as an application of some of
these ideas and because of its physical significance. We will follow closely the
work of Kaup (19765) (some of these results can also be found in Zakharov and
Manakov (1976a)). At this time the complete inverse scattering analysis
associated with eigenvalue problems higher than third order is still open.
However, it has been shown (see for example, Zakharov and Shabat (1974),
Cornille (19764,b)) that if there is an n Xn Gel’fand-Levitan-Marchenko
formulation then it is consistent with the n X n operator; but it is not clear
what restrictions on the initial data are required for these formulations.
Similarly we mention work by Shabat (1975) who examined some associated
questions about the n X n scattering problem, and recent work by Zakharov
and Shabat (1979) and Zakharov and Mikhailov (19784a,b) on a certain
Riemann~Hilbert formulation.

Hence, let us consider (2.1.1a) on the interval |x| <o, where { is the
eigenvalue, vis a 3 X 1 column matrix (vector), N is a 3 X 3 “potential”” matrix
with zero diagonal elements (N;; = 0) and D = diag (d1, d3, d3).

Provided N;; » 0 sufficiently rapidly as |x|—> o0, three linearly independent
eigenstates for real { can be defined at each end; i.c., we define ¢’ (where
j =1, 2, or 3 designates the jth eigenfunction, n = 1, 2, or 3 designates the nth
component of ¢*”, by the boundary condition

(2.1.20a) D, e asxo>—®
and the eigenfunctions ¢’ by
(2.1.20b) U, e asx > +00.

As is standard with such matrix differential equations, the Wronskian is given
by

1 (23 Wi
(21213) W(M, 128 W) = PDet Uz UV Wal,

Us U3 W3
which is nonzero only if u, v, w are linearly independent. Moreover, we have
(2.1.21b) W, =i(Tr D)W

(TrD=Trace D =d,;+d>+ds). Thus the triads of vectors [d)“’, qS(Z), d)m],
[, ¢, ] are each a set of linearly independent eigenfunctions. Thus

i 3
(2.1.22a) ¢ =T [a(Olaw™.
k=1
The so-called scattering matrix is given by

ayl a2 Az
(2.1.220b) S=[apl=|an azn az;|.

az1 a3z a4ss
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It relates the solutions at x - 400 to those at x = —00. In the 2x2 problem
(§1.3) we had

(2.1.22¢) s=( “ b)

-b a
Taking the determinant of (2.1.22a) we find the analogue of ad + bh=1
(2.1.224d) det{a;]l=1.

In a similar manner we may define the eigenfunction ¢‘” in terms of the ¢":

_ 3
(2.1.23a) v =Y buo™.
k=1
Substituting (2.1.23a) into (2.1.22a) we find, upon taking a determinant,
3
(2123b) 21 a,-kbk, = 8,'1.
k=

The question of analyticity is examined by considering the integral equations
associated with (2.1.1a). For example, upon specifying the boundary condition

(2.1.20a) we find the following integral equation for oY ¥

(2.1.24a) ¢£,”(x)"“‘f*=6n,,-~if dy P Y N (V) (v) e T,
- m=1

where again
(2.1.24b) Bn=d,—d;

We note that: (a) (2.1.24a) is a Volterra integral equation; (b) 81,, >0 and
Bam <0. These facts suggest immediately that the eigenfunction ¢'" e "““+* is
analytic in the lower half {-plane for all real x, and P e g analytic in
the upper half plane. Indeed, by assuming that the potentials are in L, one can
show that (2.1.24a) has a convergent Neumann series. Moreover since a;; =
lim, .« ¢ e ““* we have also that a; 1(¢) is analytic in the lower half plane.
The same procedure applies to the ¢'” etc.
It is found that the following functions are

(i) analytic in the lower half plane ({ =& +in, n <0):
¢(1)e—scd,x, '/1(3) ¢ s, aun, bss:

(ii) analytic in the upper half plane (¢ = £+ in, n >0):
d)(3) e—i{dsx, l/}(l) e—-zd,x’ a3, bys.

(When the potentials N;, are on compact support or decay faster than any
exponential then all the above functions are entire. The functions in (i) and (ii)
are bounded as |{} > ¢ respectively.)
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These results suggest natural integral representations for o, 0, w(”, ({/(3)
with the required analyticity. However, we have no information regarding ¢
and ¢ . This is the first difficult question we have so far encountered. All other
ideas {(once (2.1.1a) is postulated) foliow the 2 X 2 case in an analogous way.

At this point Kaup (19764), by considering the adjoint eigenfunctions,
showed that the functions y, ¥ are analytic in the upper (lower) half plane with
the relations:

(2.1.25a) x =e by - by y?),
(2.1.25b) X =e T (ba® = basy™).

Before turning to the inverse scattering we note that by considering (2.1.1a)
as ||~ oo with the relevant boundary conditions (WKB) we have

0 1 ! 1
Im{>0, 6% e =\0 +0(~), g e =10 +o(—),
4 4
1 0f
(2.1.25¢)
1 1
= |-1 +o(—), a33=1+o(1), b11=1+0(—),
0 ¢ g {
! 1 0 1
Im¢ <0, ¢Pe “ =10 +O(—), Y e = |0 +O(-),
0 ¢ 1 ¢
(2.1.25d)
1 1
=11 +o(—), a11=1+0(—), b33=1+o(1).
o N ¢ ¢

On the basis of the analyticity we assume the following integral representa-
tions for ¢'*, y** (having the appropriate analytical behavior in each of the
upper, lower half planes respectively):

1

(2.1.262) e =0 +J KM (x, z) e® 7082 gy,
O Xx
0} .=

{(2.1.26b) W e %4 — o +J KP(x, 5) e %6 "B 4.
1 X

Requiring (2.1.26) to satisfy the eigenvalue problem (2.1.1a) gives us PDE’s
for the Km, K® (analogous to (1.3.19)); e.g., for K.

(2.1.27a) { (8, +8,) +B%(1 —dID*‘)ay} KP(x,y)=N(x)KV(x, y),
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with
lim K®P(x,s)=0,

(2.1.27b)
KE:) (xs x) -

gl nl(x)s n=29 3.

Hence K V(x, y) is independent of the eigenvalue {. From the same analysis
for ¥ we find that the relation between K and the potential is

(2.1.27¢) K®(x, x)= —223Nn3(x), n=1,2,

n3

and that K is also independent of the eigenvalues L.

In order to derive the inverse scattering equations we first derive certain
integral representations for the ¢'”, j =1, 2, 3. We assume that the potentials
decay faster than any exponential so that all functions are entire and hence
contour integrals can be defined. (This restriction can be removed, in which
case we would replace the contour integrals by integrals along the real axis
plus pole contributions.)

We define the contour ¢(¢) in the {-plane as a path going from —oo +ie
(—o—ig), €>0, to +0+ie (+00—jeg) passing above (below) all zeros of
by1, azs (ayy, bss).

We now evaluate the integrals

¢(1) o
N Lau(;‘)(c—;')

(2.1.28) L= (L J)({df ; t[/(2) e—i(dzx)’

¢(3) if'dyx '
T Ja33({)({ :)d

dt',

where for I1(Is) ¢ lies above (below) ¢ (¢), and for I, ¢ lies between ¢ and ¢.
Using (2.1.22a), the asymptotics (2.1.25), (2.1.24) and the analyticity require-
ments, we find, by contour integration,

1
M —igdyx _ o) 1[4 ~igdx, )
v x)e = g T L('—Z (W (L x)

(2.1.29a)

1 dl i @)
s | e e ),
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0 1 ar
v 2L x) e =1 +—.J‘ ——pe(¢) e YN, x)
0 2mi ¢
(2.1.29b) o 1 .
o 'Y n L —igdyx (1) g
27”- Icgr_{p5({)e l.l’ ({,X),
0 1 da¢’
¥V x) e =10 +——.j S T x)
1 2mi ). {'=¢
(2.1.29¢)
L (4 i oy @
+27” J‘C{;_é,e p2(£)d’ ({vx)v
where
asi _ a3 _ a3 L a1z
Pa=", Pz= """ P3=—", P1= ]
(2.1.29d) 33 asa an a
b2 _ b2
Ps=7— '

= ) o= .
bi» b33

In the formulae (2.1.29a, c) we substitute ¢ from (2.1.29b). This gives us
only integral relations between ¢'*, ¢, Next we substitute the integral
representations for ", ¢ from (2.1.26) into these relations. Operating on
the equation (2.1.29a) with (1/2m) [ e*“ %12 4¢ and on (2.1.29¢c) with
(1/27) %o € 7“>7""%23 g (Fourier transforms), after considerable algebra we
obtain for y > x,

0 1 0
KVx, y)+ [ 1|Fi(y)+{0]| Fa(x, y)+ { 0] Fs(x, )
0 0 1
(2.1.30a) -
+1 (K"M(x, 5)Fs(s, y) + K®(x, 5)Fs(s, y)) ds =0,
i
0 0! 1
K%, y)+ [ 1] Fa(y)+ | 0| Falx, y)+ 0] Fe(x, y)
0 1 0
(2.1.30b)

+j (K (x, $)Fo(s, )+ K ®(x, $)Fals, y) ds = 0,
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where

Filx >=’3—[ depy(Q) e,

(2.1.30¢)
Fafx) = —’;—‘—Z—j d¢ pa(0) ¥,

. de' S~
(2.1.30d) F;(X,Y)“LJ dZ o (g)e"—“*”‘fg,—{{p () e P

i d¢' "
(2.1.30e) Fai(x,y)= 46:;[ J_dfps({) e z;anj {/_{{pz({') L

Fs(x, Y)—Bwjd{ps(f) —il(By3y+Baax) _ /312 J’d{p(,({)e—'m”"

{2.1.30f) e
—_l2 Ir:ﬂny
J; I pi({) e
F(,(x, y)=£2;_2_3.[ d{p4({) ei((B;2x+Bg3y) BZE) Idf :{anp ({)
e 473
(2.1.30g)

!

dév i’ 623x
<[ g e
In (2.1.30f, g) the limit ¢ - 0 is taken (we obtain this when we interchange
integrals, keeping track of the relationship between ¢, ¢’). By considering

[¢]» o0 for ¢V, ¢, ¢ in (2.1.1a) and in the integral relations (2.1.26) we
have

(2.1.31a) N (x)=K% (x,x), Nalx)=-

(2.1.31b)  Nia(x)= —z“

Bz .1
K3 X, x),
BlZ

K®(x,x), Nalx)=—-K%(x,x),

(2.1.31c) N:z(x)=—.312(El(x)— j ds(K‘f’(x,s)Ez(s)«Ki“(x,s)El(s)),

X

(2.1.31d) st(x)——Bu(Ez(x)‘*'J‘ ds (K5 (x, $)Ea(s)— K m(x,S)El(S))

where

(2:1.322) E,(x)=51_ J po(d) O dr,
T e

(2.1.32b) Eyx)=—- j () et dg

.1, 2 2o C_p(, .
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In deriving (2.1.31) we used (2.1.29b) in the limit || o along the real axis,
and substituted the integral relations (2.1.26) into (2.1.29b).

2.1.c. Three-wave interaction. Now let us relate the above inverse scatter-
ing to the specific three-wave problem (2.1.12).

Using the scaling below (2.1.12) we have that the time evolution operator
(2.1.1b) reduces to

. [_clczch_iclczca

2.1.33
( ) cC, C

55:1] Uj:

We find the time dependence of the scattering data (e.g., d,n,.) as follows. Define
the time-dependent eigenfunctions as (¢, ¢'™"'"):

(2.1.34a) 0 = 3 exp (-i—————Clgzc3 gr),
(2.1.34b) g =g exp (—;’————C’(C;ZC3 gr).

Similarly at any time (r) ¢, """ satisfy

(2.1.35) B =

n

Arn (t — O)dlﬁﬂ,(l)

1

I 1w

since both ¢ "', """ satisfy both (2.1.1a) and (2.1.1b). Then we have, using
(2.1.22),

(2.1.36) @y (1) = @y (0) €XP (ic1 Czc3g(51;—é) z).

Thus the diagonal elements of the scattering matrix are time independent. This
is analogous to the 2 X 2 problem. Using trace formulae as in the 2 X 2 problem
an infinity of conserved quantities can be related to these quantities. Alter-
natively as we discussed in § 1.6 a direct approach on (2.1.1a, b) can lead to the
infinity of local conservation laws (Haberman (1977)).

With the relationships below (2.1.12), the following symmetry conditions
are necessary:

(2.1.37a) ps()= ‘717’2(01({*))*,
(2.1.37b) pe(l) = —v2v3(p2{ ™))",

(2.1.37¢) ¥1Pa(£) + ¥3(pa (¥ — y2(p2({™))*p2(0) = 0,
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where p;({) are defined in (2.1.29d). These in turn give
F3(x,y)=Fs(y, x),
F%(x,y)=Faly, x),
_ =v1Y2B12F5(y, x)

F’Sk (x’ )’) - [
(2.1.38) B2
Eyx)= y1v2FY (x),
B2
Ez(x)=lll3f_)2k_(x_)_
B23

A special soliton solution is computed by considering the case where we
have degenerate kernels. Even though the three-wave interaction is nondisper-
sive and hence the solitons are no more important than the continuous
spectrum contribution, it nevertheless is enlightening to have a closed form
solution. We consider the case where both a; and as; have zeros in their
respective half planes. Let {1({3) be a simple zero of a;;(ass) in the lower
(upper) half plane, and C(C) be the residue of pa(p1) at ¢ =¢{3(¢ =) (the
residues of p, at {3, p3 at {1, ps at (T, pe at ¢, are determined by (2.1.37¢)).
Then the kernels reduce to

Fi(x)=iB1,Ce #1241%
Fo(x) = ~iBy3C P25

éé* : Feo ¥
Fs(x, y) = —v172812 gPrateix=t)
21’]1

C*C g o

(2.1.39) F4(x, y) = ——)/Z-YBBZ3 217 e 853043 §3y)’

3
. CC* v orren s
Fs= 17273612?;_* g BaatixtBaly)
1 743
o (B, x+B34,y)
FG(xs )’)= _i‘Y]‘Ysz3 { == e' 1247 2383V ,
3761

with_ the others defined from (2.1.38). From (2.1.3b) the time dependence of
C, C is given by

C = Coe‘iBn{}C‘l
(2.1.40a) C‘, - CO 85312216‘3”

where we shall represent C,, C, and the eigenvalues {1, {3 by

(2.1.40b) g bz, _Gtin

B ' B2z
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M3y e'iESX_l

(2.1.40¢) Co=2ms° )
B
Xy i€y Xy
(2.1.40d) Co=2m =5
B2

With these choices, the integral equations (2.1.30) are degenerate. Their
solution leads to

L3

Ol=\/BlzB—-132n3eigs(x—Clr—i‘]l:enl(x—C3r—x3) yiys o2 51 {3 —n1<x—c3z—x3)]
P {4

—4mi13B13y273 o T CaImEg) ity (x - Cy1=y)
b

VB12B2s(1 — (NP

M s
03=\/Bl3ﬁ23‘}’172f@‘le"€‘(x Csi=%3)

2 =

—cyi- & 5'3 (= Cyt—
X[eTI;(X 3t xl)_'Yz'Ys na{x—Cyt ’Cx)]

P2
-4 ° ’
where
P = [enl(x—C3r—x3) —v1v2 e-n,(x~C3t—x3)]
(2 1 41) . [eng(xgclr—xl] ~ Y2v3 e‘"a"“cl"xl)]

((1 I —h) ¢ M Caimxy) == Cremxy).
P G-t ¢

For t » —00 we have Q; and O, moving along their respective characteristics
(Qs to the left of Qq) x —Cst, x — Cyt respectively. When ¢ increases, the
envelopes come together and Q; is produced. As ¢ - 00, Q, decays back to zero
and Q;, Qs again move along their respective characteristics (Q; to the right
of Q;). The amplitudes of Q;, Qs are unchanged. The solution is not singular
if any one of the v, is different from the other two. It is singular in some region
of space-time if vy, = v, = y3 = ~1 (explosive instability).

One of the great simplifications inherent in the three-wave problem is due
to its nondispersive nature. If initially (which we shall refer to as 1 » —o0) the
envelopes are well separated and have no significant overlap, it can be argued
from the solution procedure (Kaup (19765)) that this also occurs when ¢ - +00.
When they are well separated the envelopes propagate with their characteristic
velocities Q; ~ Q;(x — Cit), i = 1, 2, 3. Moreover the solution of the three-wave
problem reduces to solving a sequence of 2 %2 scattering problems already
discussed in Chapter 1 (as opposed to the complication of the 3 x 3 problem!).
All significant results can then be argued in terms of the analysis of § 1.3. Since
Ci>Cy>C4, as t»—o we have that the envelopes are spatially ordered
Qs, Q;, Q,. To show why the 3 X 3 scattering problem effectively reduces to
2X2, consider the envelope Q3. As ¢+ — in the region of support of Qs, the
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envelopes @, Q; are zero. Hence the 3 x 3 problem takes the form (recall that
Ni2€Q3)

Uiy = i{d101+ Nya02,
(2142) Vay = i{dzUz‘*’Nzﬂ)l,

Vaxy = i{d3v3.
We see that v; does not change from the value e“*. hence the solution
effectively depends only on the components v;, v, which satisfy the 2x2
problem (1.2.7a) with g = N1z, r = N,;. Due to the fact that v; = ¢ “®*, the

scattering matrix going from the left of Q; to the right of Q3 (where Q; =0), we
have that S, the scattering matrix over this region, satisfies

ad af o
(2.1.43) §P=1a af 0.
0 0 1

In what follows we recall that the 2 x2 scattering problem has a scattering
matrix

(2.1.44) S(2><2)=[ Z— lj]
- a

(Here for purposes of analogy we will consider V> of §1.3, ¢V >y of
§1.3, 6P >—¢ of §1.3, y® > ¢ of § 1.3, etc. We also acknowledge a minor
modification due to d; multiplying the eigenvalue,) Continuing this argument
we see that as t > —©

(2.1.45a) §=8PsPsY,

where 0 indicates values at —oc0 and (omitting the subscripts)

a(3) b(3) 0 a(2) 0 b(21
s(3)= _b_(3) 5(3) 0 A S(2)= 0 1 0 ,
0 0 1 -5?® 0 a%?
1 0 0
S(1)= 0 a(l) b(l) .
0 _5(1) d(l)

Similarly, as # >+ we have
(2.1.45b) §=8"sPs?

where the values at +00 are to be denoted by subscript f. By equating (2.1.45a)
and (2.1.45b) and multiplying on the right first by (S’ )~" and then by (S}z))“l,
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we find the final values of 5/a in terms of the initial values, i.e.,

3 - (1) (3 ~(3) (2, (1
b() a(())bq(:))_a( )b( )b()

f 0 0 0
(2.1.46a) - = —
a;_3) 082)063) 4
(2) 5(3)
f f (3) 2) (1) "'(1)_(3)
(2.1.46b) — =T 4o bg'],
as aop a
"(fU d}Z)
(3) = (2) (1) (3)7(2)
(2.1.46C) DS N § S WY )] [af aq b(} _bf b() ].
ar dg Ao

All connection information (from 7 - —o0 to t » o) regarding the solution can
be obtained from these formulae. (Note that b is related to # and a is related
to 4 because of symmetry; see also § 1.3, e.g., (1.3.14).)

An example, and an amusing application of these ideas, is the ‘‘transfer of
solitons’” between envelopes. Here we caution the reader that in what follows
we shall refer to the solitons associated with the 2x2 Zakharov-Shabat
eigenvalue problem and not “‘full solitons,” i.e., not the modes associated with
discrete eigenvalues of the 3 X3 problem, which we discussed earlier in this
section. Let us recall that zeros of a({) (or a({)) in the complex plane
correspond to the analogous solitons in the 2 %2 problem (the reader should
also note that we are assuming the scattering data a, d, b, b are entire

functions of ¢). From (2.1.46a) we see that whenever as, or @ 83) have zeros,

so does @$, unless the numerator in (2.1.46a) vanishes. For general initial
data this will virtually never occur, so here we shall ignore this possibility.
Hence the final number of solitons in Q3 equals its original number plus the
original number contained in Q.. Q. will end up with no solitons since the
zeros of @5 match those in a5, @5 Similarly, the final number of solitons
contained in Q; is equal to its initial number plus the initial number contained
in @». (It should be stressed that these are only representative results. In
principle, we could obtain any results we wish since (2.1.46) contains all the
information needed to reconstruct the complete solution as 1 » +c0.)

Next we make some remarks on the explosive or decay instability cases. When

v1 =72 =va= —1 (explosive instability) we have

Q3X Ny, = N3, QX N3 =—NT, Qi C Ny =+N%,

@147

(l)* (2) _ (2) 3)

_._+q r __q , r =+q(3)*‘

From the results of § 1.3 only Q; can have solitons initially (i.e., 7> = —¢¥*).
But if Q, does have solitons then, from (2.1.46), 4, @’ will have zeros in
the complex plane. But if |Q}"’| and |Q}"| are mtegrable the results of § 1.3
show this is impossible (since in these cases r'”=+q*, i =1, 3). The only
way out of this paradox is to lose integrability. Indeed, it is well known that
the explosive instability case gives singularities (nonlinear instability) in a finite
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time (see also the previous discussion regarding the solitons associated with
the full 3 X 3 problem).

In the decay instability cases we have two possibilities:

(a) vi=vy3=-1, y,=+1. Here

(2.1.47b) Q1 XNy =-N3%, Q:X N3 =—NT, QX Niz;=-N%,

FO= g% r® = —g@% rO = g%

Since r’ = —¢'""* i =1, 2, 3, the results of § 1.3 show that a unique solution to

this problem always exists (see also Ablowitz, Kaup, Newell and Segur (1974)).
(b) y1=7y2=+1, y3=—1. Here

Qi XNy =—-N3, Q;xN3; = +NT, Q;x<Ni2=N%,
(2.1.47¢) (%

ri=—q ",
Since the envelope associated with Q; never has any solitons there are no zeros
of @, hence no solitons associated with Q; (as with the explosive instability
case). Moreover the conserved quantities (2.1.13) imply that we necessarily
have L, integrability of the envelopes if they were initially L,. (We also
encourage the reader to consult Kaup (19765) and/or Zakharov and Manakov
(19764) for more information and details regarding the three-wave interaction

problem.) This completes our discussion of the three-wave problem.

r(2) - +q(2)*, r(3) — +q[3)*.

2.1.d. Multidimensional scattering problems. We now describe a pro-
cedure to find multidimensional nonlinear evolution equations associated with
linear scattering problems. This procedure is a natural generalization of the
one-dimensional case described earlier in this chapter. The ideas follow closely
those presented in Ablowitz and Haberman (19755). Another approach, using
the linear integral equation as a starting point, was presented by Zakharov and
Shabat (1974), and is discussed later in this chapter as well as in § 3.6.

We begin by considering the following spectral problem and associated time
dependence:

(2.1.48) V,=i{V+NV+BV,,
(2.1.49) V,=QV+C V,+CVyy+ +CV gy .
h_v_/

m

Here V is a vector (n X1) and N, B, Q, C; are n X n matrices. We claim that
corresponding to each assumed form of time dependence for V, there is one
nonlinear evolution equation. This is as opposed to the one-dimensional case,
where a class of evolution equations come from the same time-dependent
structure (i.e., V, = QV). Special cases of the scattering problem (2.1.48) have
been considered by Zakharov and Manakov (1979), Nizhik (1973) and Kaup
(1979) with regard to developing the required inverse scattering formulae.
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With these inverse scattering results, the nonlinear evolution equations we
shall discuss are solvable (namely the three-wave interaction, Kadomtsev—
Petviashvili equations, etc.).

Here we shall present the technique via an example: the three-wave interac-
tion in two spatial dimensions (corresponding results can be found in three
spatial dimensions (Ablowitz and Haberman (1975a))). As a special case of
(2.1.48-49), consider

(2.1.50) V,=i({DV+NV+BV,,
(2.1.51) V,=QV+C(CV,.
Assuming {, = 0 and also that B, D, C are constant, we have
V.=iD(QV+CV,)+NV+N(QV+CV,)
+B(Q,V+QV,+CV,,),
Vo=Q,V+Q(i{DV+NV+BV,)
+CHDV,+N,V+ NV +BV,).

Setting the coefficients of V, V,, V,, equal we have

(2.1.52a) V,,:[C B]=0,
(2.1.52b) V,: ¢[C,D]+[Q,B]+[C,N]=0,
(2.1.52¢) V:i£[Q,D]+[Q, N]+ Q.+ CN,—BQ, =N,

A simple case is when
C=adj, B=bb; D=ddbd,, N,=0,
with a;, b, d; constant. Then (2.1.52a) yields
% (CiBij — BaCj) =0 = cib; —cib;

(trivially). Equation (2.1.52b) yields
il[C, D] +§ (QiBij — BaQx;j) +% (CucNij — N Cyj) = 0,
which simplifies to

Ci—¢C;

bi—b,

Qi=gq; (take g; = constant).

Qiy‘ =

N, i#j,
(2.1.53)

Define
Ci—Cj

=4,



112 CHAPTER 2
then Q; = a;N;, i # j, and (2.1.52¢) yields
174 %: (QiuDyj — D Qu) + % (QuelNij — NuQy;)
+ Qi +§. (CieNijy — BueQujy) = Nij.e

For i #j we have

il(asNy(d;— di))+(q: — q;,)N; +k§.' .(aik = ;) NNy
19
(2.1.54)
+a;iNijx +cilNij,y = Nijr.

When i =j the equation is automatically satisfied. But we also note that
(2.1.54) contains ¢{. To eliminate the {-dependence we take g, = ¢;({) (q; is
free); specifically, q; —q; = i{a;(d; —d;) (the equation is satisfied if we take
d; = b, q; = ilc;). With these choices, (2.1.54) reduces to

(21.55) Ni,',‘ = ai,-N,-,;x +Bl'iNij,y + kz (a'.k — aki)Nikaj,
#=i,i
where
bic; — cib; .
Bij=ci—ba; = b, — cib (y group velocity),
b;—b;
a;= Z::Z: (x group velocity).

Again, N, =o;N} is consistent if
Tij = — OO, i>k>j

and aj;, B are real. The three-wave equation is obtained if one takes n =3
(third order) and N12 = Ul, N13 = U2, N23 = Ugl

Ui = annUi, + B12Ury +o32(a13 — azs) U, U,
(2.1.56) Uz = a13Ua, + B13Uay + (@12 — a23) U 1 Us,

Us, = az3Us; + B23Usy + 021(a12— a23) UT U,
If o3,> 0 and o2, > 0 we then have explosive instability; otherwise a positive
definite energy exists and we have decay instability.

There are many other equations that can be deduced. For example, if we
choose the time dependence in (2.1.49) as

(2.1-57) Vl = Qv+ Clvy + CZVyy)
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with B, C,, C> diagonal matrices, we find, for

N=( O 1) =11
“Negax o) TVTT0
(2.1.58) ,
A =D1A+ WA, DoW =0 Dy(|A]),
where
D, = (e1—e2)02+ 2(bres— €1h2)3, 8, + (e1b3— bies)d>
(b—b,)° ’
Do=—32+(b1+b3)d,d, — b1b2d>.
Taking

_2ei—e)(AP)

by =—by, =—gy=-2i, W= 2iQ,
1 2 €1 2 (61— b2)
we have
1
iA, = (—ZA,X +Ayy)+2OA _29 44,
b1 bl
(2.1.59)

Oxx - b%ny = _201(|A|2)yy’

or, by choosing Q = (2¢1/b3)|A|* + @,

1 2
A= AL A, + ST APA+20,4,
1 1

(2.1.60)
20’1

q>xx~b%q>w=—¥

(AP

For 47 real these equations are the long-wave limit (kh - 0) of (4.3.27) (see
§ 4.3), which governs the evolution of a nearly monochromatic, nearly one-
dimensional packet of water waves of small amplitude. (The arbitrary depth
case appears not to be of IST type (Ablowitz and Segur (1979)). Anker and
Freeman (1978) considered the case b; pure imaginary via the Zakharov-
Shabat procedure, and developed N-plane wave soliton (interacting at angles)
solutions, and Satsuma and Ablowitz (1979) show how one may obtain “lump”’
{i.e., a multidimensional soliton decaying to a constant in all directions) type
envelope hole solutions to these equations (see § 3.4).

The L, A pair for the Kadomtsev—Petviashvili equation (this equation also
arises in water waves when the y variations are sufficiently slow to balance the
long x-direction waves and weak nonlinearity, see §4.1),

(2.1.61) 3 (U +6(UU)+ Uyer) = ~3b°U,,
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was originally found by Zakharov and Shabat (1974) and Dryuma (1974).
They found that (2.1.61) is related to the scattering problem

(2.1.62) Vex +{(A +u)v +bv, =0.

These results may also be obtained from the above procedure by taking

0 0 0 1 1 0
B_[—b 0]’ N'[—u 0]’ D“[o —1]’

and carrying out the indicated analysis. (2.1.62) is the starting point of the
scattering analysis of Zakharov and Manakov (1979). It should also be stressed
that the spectral problem here is not Vio+(A+ u)v =0, i.e., the usual multi-
dimensional Schrodinger eigenvalue problem where the inverse scattering
analysis is very complicated (see, for example, Newton (1979)).

2.2. Discrete problems. Many interesting physical phenomena can be
modeled by discrete nonlinear equations. Examples include vibration of
particles in a one-dimensional lattice (Toda (1970)), ladder type electric
circuits (Hirota and Suzuki (1970), (1973), Hirota and Satsuma (19765)),
collapse of Langmuir waves in plasma physics (Zakharov, Musher and Ruben-
chik (1974)), growth of conflicting populations in biological science (Hirota
and Satsuma (19765)), difference simulations of differential equations, etc.
Hence it is undoubtedly significant that the ideas of the inverse scattering
transform apply to certain types of discrete evolution equations.

The story in this chapter begins with the so-called Toda lattice, a system of
unit masses connected by nonlinear springs whose restoring force is exponen-
tial (this lattice is sometimes referred to as the exponential lattice). The
equations of motion,

(2.2.1) Quu= e~ (@ Quy) __e—<0..+:—0..)’

are derivable from the Hamiltonian

(2.2.2) H=Y {%P,? 4 (e™@m v _ 1)},
j=~c0

where P, = Q;, (recall Hamilton’s equations P;, = —aH/3Q;, Q;, = 6H/dP;). This
lattice was extensively studied by Toda (see, for example, Toda (1967a),
(1970)) who discovered a number of explicit solutions for both the periodic and
infinite lattice. Flaschka (19744,b), using the discrete inverse scattering theory
(a discrete Schrodinger equation) of Case and Kac (1973) and Case (1973), was
able to solve the lattice (2.2.1) by the inverse scattering transform. Similar
results were also obtained by Manakov (1975). Shortly thereafter Ablowitz
and Ladik (1975), (1976) proposed a new discrete scattering problem. This
scattering problem is a discrete version of the 2 X 2 Zakharov-Shabat problem,
and serves as a basis for generating solvable discrete equations (special cases
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are the Toda lattice, a nonlinear self-dual network (Hirota (1973b), etc.).
Moreover these ideas can be extended to nonlinear partial difference equations
(Ablowitz and Ladik (1976), (1977)). In this section we shall first discuss the
discrete Schrodinger scattering problem and its relationship with the Toda
lattice. Here we shall follow the work of Flaschka (19745) and then proceed to
discuss the evolution equations associated with the discrete 2 X2 Zakharov~
Shabat scattering problem. Finally, we shall return to indicate how to solve the
inverse problem.

2.2.a. Deriving evolution equations. Consider the Schrédinger scattering
problem

(2.2.3) Ve T A+ )M =0

(A, refers to the eigenvalue of the continuous problem—see Case and Kac
{1973) and also Case (1973)). A discretization of (2.2.3) is

¢n+! + (r//n—l "2‘//n
2

(2.2.4) "

+(Ae +q)‘/’n =0,

with ¢, = ¢ (nh), etc. Using the substitution v, = g,.4,, where g, = exp (h°g,/2),
we have
2 2

h h
(2'25) €xp (—_2_'(q""'1 +q")) Dn+1 +exp ("_2'(CIn +qn—l))vn—-1 = Avm
where we have used exp (h°q.)~1 +h2qn, A =e " Defining a, =
exp ((—h2/2)(qn+1 +¢.)), we have

(2.2.6) Aplni1+ Ay 101 =AU,
Flaschka (1974 a) used the generalization
(22.7) a,,b‘,,+1+a,.-1v,,_1+b,,vn =Avn.

To derive the Toda lattice from (2.2.7) we follow Ablowitz and Ladik (1975).
Consider the associated time evolution equation (note that v, =(3/df)v, in
what follows)

(2.2.8) Du, = AUt + Bun.

Taking the time derivative of (2.2.7), and using (2.2.7) to solve for v, and
Up—1 (€.8y Unt28n+1 = AUps1— bni1Un 11— Q4tn), We find two equations by setting
the coeflicients of the terms v,.; and v,, respectively, to zero (and assuming
A /9t =0):

An<bn—A>+a"" (A = bns1)Anat
n+1
(2.2.9a)
+8,(Bpa1~By_y) =2tln_ g

n—1
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_ .2
anAn+l+Bn(bn _/\)

Ani1

(2.2.9b)

+(’\ _bn)Bn—l +an*1An—l ='a_n:l_'(Ml~bn

n
an-1

Expanding A,, B, as (for example)

A, =AY+ AY (DA,

(2.2.10)
B,=BY (1)+BY (1A,

and requiring the coefficients of A % A, A% to vanish independently yields A,, B,
and two coupled evolution equations. The procedure works in a straightfor-
ward manner (e.g., at A% (2.2.9a) yields ~A’ +a,AM1/a,,,=0, AD =
const.), so that AV =a,AL. Similarly, (2.2.9b) yields -BY+BY, =0>
B =B =const., etc. After some algebra we find (AL, BY,i=0, 1, are
const.)

A, =AYar+ADa, + AL a,b,,
(2.2.11)

B,=B%\ +BP+AP1-ad)+ Y 9, logag_1,
k=—00

and the evolution equations

A, =3AR 0, (bre1 = ba)+3AR A, (a0 —any +biiy —bh),
(2212) 0 2 2 1) 2 2
bn, = Aoc (an _an—1)+Aco [an(bn+1 -+ bn)_an~1 (bn + bn~1)]'
The Toda lattice is arrived at by taking A% =0, AD =2,
an,=an(bn+l_bn)s
bn, = 2(“?: _ai~1)’

and relating Q, in the Toda lattice (2.2.1) to a,, b, via
10,02

(2.2.13)

an
1
bn = —ZQn—lf’

Another interesting lattice equation is obtained by taking AX =0, b, =
0,AS =1in (2.2.12):

(2.2.14)

(2.2.15) An =3a,(ahs1 —an1);
choosing a, = e” "2, we find
(2.2.16) Up =g "“nm1—g trn

(Manakov (1975), Kac and Van Moerbeke (1975a)).
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We now demonstrate that both (2.2.16) and the Toda lattice (2.2.1) can be
related to KAV in the continuum limit via appropriate asymptotic limits. For
(2.2.16) (the easier of the two cases) assume h -0 and u, = h°i,. Then the
continuum limit yields

3
(2.2.17) a,~2ha,+%am -2h’ai,.

If we define
3

X =x+2ht, T=%t,
then i ~ d(X, T) solves the KdV equation
T ~ dxxx —6iliix.
In the case of the Toda lattice we have, assuming Q, = hQ,, = hi,
(2.2.18) Qrr = O + 1 (OQurax — QxQu) +- -
and that (2.2.18) with w = Q, reduces to the Boussinesq equation:
Wer = Wax + B2 (Wegax =0, (Gw7)

(see § 2.1). Finally, KdV is obtained by looking for unidirectional waves; i.e.,
we define

Q~w(X, T),
ht
X=x-n7 T—T’
u=Q,,
and find
(2219) —UT = Uxxx — UlUx.

Before considering the question of discrete inverse scattering let us consider
the discretization associated with the Zakharov-Shabat eigenvalue problem.
As motivation we shall ndively discretize (1.2.7a) by letting

_ Vin+1~ Uin

(Ui)x == /’l
Thus (1.2.7a) gives
Ui,n+1 7 vl,n(l - igh)+q"hvz,n’
(2.2.20)
Va1 =02, (L +ilh) +r by,

where v;, =v;(nh), q, = q(nh), etc. If q,, r, were zero it would be natural to
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define z = ¢ ", so that the continuous solution v; goes to the discrete limit
—ilx —i{nh

nicely: vi=e " =e¢ " =z"" and similarly for v,. Hence here we take z =
e~ 1—ith, 1/z=e"" ~1+ilh and if we define Q, = q.h, R, = r,h we find

Vin+1 = 2010 + Qulap,

(2.2.21)

1
V2n+1 = —Z'_UZ,n + anl,n-

There is a generalization of (2.2.21) which is significant:

V11 = 2010 + QuU2,n + Sal2, 041,
(2.2.22)

1
Uy n+1 = ;02.n +anl,n + Tnvl.n+1

{note that in the continuum limit, (2.2.22) also relaxes to (1.2.7a)).
First we shall discuss nonlinear differential-difference equations. Associated
with either (2.2.21) or (2.2.22) we write the time evolution of v; as

d
5”1,:: = Anvl.n +anz,m

(2.2.23)

d
5”2.71 = Cnvl,n +Dn02,n-

The analogue of (2.2.9) is obtained by assuming 4z/d¢ = 0 and letting

d av;
s 4 - in) = (—ﬂ), j = y &y
(2.2.24) at(Ev, )=E Py i=1,2

where E is the shift operator E(v;,)=v;,+:. In what follows we take, for
simplicity of presentation, 7,, = S, = 0. We have, for example,

d d d
—(Evin)=z—v1n+ Van+Qn—02n
at( 1, ) at 1,n Qn.r 2, Qnat 2,

=2z (Anvl.n + BnDZ,n) + On,tvz,n + Qn (Cnv‘l.n + Dv2.n)

and

d
E(;,’;vl,n) =Ap1V1n+1 T BraiV2 41

1
= An+1(zv1.n + QnUZ,n) +Bn+l (;U2m + anl.n> .

Doing the same for v, ,, and setting the coefficients of v;, equal, we find the
analogue of (1.2.8) (which is obtained in the continuum limit):

(2.2.25a) ZA,.A,. = QnCn —Ran+1)
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1
(22.25b) ;Bn+1 - ZBn = Qn,l '"An+lon +Dnom
1
(2.2.25C) ZC,;-+-1_'Z—C,1 =Rn.r—Rn(An~Dn+1)’
1
(2.2.25(1) ;AnDn =_(ann+1_Ran+1)!

where A,A,=A, .1 —A,, etc.

We now wish to solve (2.2.25) in a manner analogous to that for (1.2.8).
Some motivation (not necessary) comes from consideration of the dispersion
relation of the linearized problem. In the continuous problem the key function
was w(2(), i.e., the dispersion relation corresponding to wave number 2¢ of
the associated linearized problem. The analogue in the differential-difference
case is w(z?); i.e., we look for special solutions of the linearized problem in
the form Q, = z*" ¢ “**". As an example let us derive a differential-difference
nonlinear Schrodinger equation. Its linearized version is iQ,,=
Q,+1+Q.-1—2Q, (an obvious discretization of ig, = q,, ), for which w(z =
22+1/z*-2. As in the continuous case, it turns out that (A —D)w=
limj,j»w (A, = D,) is a quantity which arises in the time dependence of the
scattering data. This quantity is proportional to w(z?). This (or alternatively,
judicious inspection of (2.2.25)) suggests the expansions

2 402 0
A, =2’A7+ A,

1.
B.=:B,+-B",
p4

(2.2.26)

1
Co=2C" +-CY,

1
(0) -2)
D, =D} +—22Df, .

Note that we take only even powers for A, D. The symmetry of the equations
(2.2.26) allows us to take B, C in odd powers of z.

Substitution of (2.2.26) into (2.2.25) and equating coefficients of z yields
equations for AE,Z), A(,,O), SIS D" D$? . The algebra is straightforward and is
listed below. The labels (a)-(d) refer to the satisfaction of a specific equation
in (2.2.25).

(@ Z* AAP =02AP = AP =const.
® Zz%  AD?=0>D? =D"? =const.
by Z% -BP=-A4%0,2B"=A20Q,.
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c Zx Cl=APR,>CP =A®R, ..

® Z7  Bol=DY"Q,2B."=DI"Q...
© Z% -ciP=-D"?R.,>c{P=DVR,.
@ Z: AAL = AP(Q,R.-1 — Qni1R,)

>A0=-A®Q.R,.,+AY.
@ Z  ADY=-DEP(QuR,+1—-R.Qu-y)
:>D$.°’ =-DY?R,Q,_1+DY.
(a) JARE Q.CYY-R,.BLY =
=Q.(DY?R,)-R.(DY?Q,)=0 (consistent).
d  Z: Q.Cili —R.BY =0
>Q,(A?R,)-R,(A®Q,)=0 (consistent).
®  Z% Qu=A?(Qu1-Q.n1QuR.)F+AQ,
~-D®(Q,-1~Q,-1Q.R,)-D?Q..
@ Z%  R.=D?R..1-R,.1R.Q.)+DR,
~A®R,.,~R,_.1R,Q.)-A"R..
The last two expressions yield the evolution equations
(2.2.272) Qni=(1~QuR)Qn1AS - Q1 DS?)+(AD - DY Q,,
(22.27b) R, =(1-0Q.R)(Rs1D2Z —R,_1AZ)+ (DY - AD)R...

These equations are consistent with R, =+Q} if D$? = A2 and (A9 -
DP)=—(AJ-DQ)* I wetake AD = —i/h*and AD — DY =2i/h?, we find

2:2288) Qu=(73)(Quer+ Q1 =200 Qu0H @us+ 0u-)FH),
or, if Q, = hq,,

n + n 2 n
(2.2.28b) iqns = q—Lf’F-‘-——f’—tqan(qm + Gno).

We refer to this as the differential-difference nonlinear Schrodinger equation.

It should be noted that (2.2.25) with the substitution (2.2.2b) gave 12
equations for 8 unknowns. Two equations are identically satisfied; two others
are the evolution equations. This is unlike the continuous theory, where we
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found 10 equations for 8 unknowns. Summarizing, we have

An=(h%)<1—z2¢ono>:_l), Bn=(hi;)(—o,,z+9§-1),

(o B). pm(i-teo0).

We note also that as |n| >

lim (A,.—D,,)=(hi2)(2— 2—%).

|nj=»cc

The linear form of (2.2.28b) is ig,, ={(gn+1tGn-1— 2q,1)/h2. Its dispersion
relation is obtained by letting g, & 2 exp (~iwt); hence w = (z2+z272=2)/h".
Thus A,, D, satisfy the relation

(2.2.29) lim (A, ~D,)=—iw(z?).

|00

Here are some other interesting nonlinear differential-difference equations
associated with (2.2.25).

(1) Discrete mKdV.In (2.2.27)take AV =D =0,A?=Dp"? =1,0, =
hq., q. real (R, =zQ,):

(2.2.30) Gnr = (12 h2q2)Gns1— Gn-1).

(2.2.30) relaxes to the mKdV equation in the same way that (2.2.16) relaxes
to KdV.

Using (2.2.22) with the associated time dependence yields other interesting
nonlinear differential-difference equations (the algebra is somewhat more
tedious; see Ablowitz and Ladik (1975)):

(2) Self-dual network.

Rn=iQn=In, Tn:isnz—vm
(2.2.31) L.=QzI) (V.= V,),
Vn.r = (1 + V%l )(In _In+1)'
(3) Toda lattice (2.1.1).
R,=0, T,=1, Qu=un, S,=1—e¢ 7%

Uy = €)=y
These equations are obtained by the expansions
B(“l) D(‘l)
1 0 0 n 0 (4] n
A=Az +AY, B,=B)+—— G, =C.'z+C), D.=DJ+=——,
z

etc., substituted into the equivalent of (2.2.25) with §,,, T,, included. Moreover,
we note that a scattering problem similar to (2.2.7) is obtained from (2.2.22)
whenever we take R, =0,T,=1, Q,=—8,, S,.=1—a, and we take A =
z+1/z.
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{4) “Discrete KdV”(2.2.16).R,=0,T,=1,0Q0,=0,S,=1—¢"". Here we
find

H W, -

U, =e " t—e”

These evolution equations have been found by finite expansions, as in § 1.2.
Alternatively Chiu and Ladik (1977) have found generalized evolution opera-
tors for some of these problems. Hence, analogous formulae to those in § 1.5
exist for discrete problems.

Next we note that the above ideas also apply to nonlinear partial difference
equations, by a discretization of the time variable. Consider, for example,
(2.2.21) where all quantities are not evaluated at time ¢ but rather at time step
m (50 v, (1) really is ¢, =v;(ndx, mAx, mAr), Q.(1)» OF = Q(nAx, mAr),
etc.). Moreover, we consider the associated time evolution of the eigenfunc-

tions to be governed by

ATev . =ATCT, + B,
{2'2'32) m m m_m m_om
AT, =Cle{ .+ DLy

m

Here A™¢], = ¢y —vlh, i =1,2. Assuming A™z = 0 and setting
A™Entin)=EA"c])
{(following (2.2.24, 25)}, we find a completely discrete version of (1.2.8):
28,4, =077 'C, - R B4,

1 -

;BHOI_ZBR =AmQ:‘ —(Anvlorrxn_DnOrrln 1)9
{2.2.33) .

2Ci1 =7 G =A"RT +(AR7 —D,,RY),

1 .
~A.D, =R7'B,-QICp.1,

where A, = A etc.
Expansions are again suggested by the dispersion relation. The inverse
scattering method (Ablowitz and Ladik (1977)) gives the result

(2.2.34) wiz®)= lim iig

where w(z°) is the “amplification factor” or dispersion relation of the linear-
ized problem f(see also § A.1). For example, the most general six-point

(constant coefficient) linear partial difference equation (difference scheme) is
given by

A"QY = (@71 + 2o +a_,Q7-)

(2.2.35) et o
—(B2Q7 +B.Q7 T +B,Q ).
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2n m

The corresponding dispersion relation is found, using Q7' =z "w (zz), to be

1+ayz’+ag+a_pz ?
(2.2.36) w(z) =
1+ 822"+ Bo+B-2z
A scheme is purely “dispersive”” or neutrally stable when |w|=1. This is a
requirement of inverse scattering. A sufficient condition for this to occur is
Ba=a*,, Bo=af, B-=ai. (2.2.36) suggests the expansions A, =
AP+ AP+ ATP272, ete. in (2.2.33).
For example, one interesting partial difference equation is given by
A"qn 1 n-1

v At _2A [(qn+l 2qnm +qnm~l _1—010 A'\;n)+(qn+1 H Ak_zqm+l+qnm_+11>]

m+ltg m+1 m+1 m*l*)

1 m m+
iZ[qn (qn qn+1 +qn qn+1 )+q 1(qn lqn*+qn
(2.2.37)

+2qmiiqn*qn H AT+2qm 1qn* *qnt! H Ak]

—qn L ATSE—q7" Z ATST

where
lisz m+l*qm+l

m__
k —

Si=A (Qk+1Qk*+Qk +qi5).

We note that (2.2.37) is a nonlinear version of a Crank-Nicolson scheme. The
truncation error is O(At?, Ax?) and in the linear limit the scheme does reduce
to the standard Crank-Nicolson scheme. It should also be noted that:

(i) On a periodic interval [—p, p], — in the global terms (containing A,
S¢) would be replaced by —p.

(ii) The associated linear scheme is ‘“neutral” and dispersive: |w|=1.

(iii} Corresponding to each linear scheme (2.2.35) we may find a nonlinear
difference scheme by taking appropriate expansions for A, -, D} in
(2.2.33).

(iv) The full difference scheme for the nonlinear Schrédinger equation
preserves ‘‘x-t symmetry,” i.e.,

continuum: xX>-x, t-=>—1 i->—i
discrete: n->-n, m-a>—-m, i-»—i

{v) The order of accuracy of the difference equations as approximations of
differential equations (i.e., truncation error) is generally the same for the linear
and corresponding nonlinear schemes.
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(vi) The schemes are global; i.e., they depend on all the mesh points.
However, local six-point schemes are suggested (take [JAY =1, Y A"S' =0)
which preserve the linear stability, x-t symmetry and accuracy. Even though
the equations are global as a single equation (2.2.37), they can be made into
a local system of difference equations.

{(vii) Solutions can be calculated by inverse scattering (see following) and
can be shown to converge to solutions of the differential equation as Ax, Az > 0.
Soliton solutions are obtained explicitly.

Recent numerical calculations (Taha and Ablowitz (1981)) have shown that
such schemes are quite good from a practical point of view. Moreover, the
analysis presented here can be easily extended to other “'solvable’ nonlinear
evolution equations.

2.2.b. Scattering theory. We shall now describe the inverse scattering
associated with the discrete 2 x 2 Zakharov-Shabat scattering problem. These
ideas follow in a manner similar to the continuous case § 1.3. However there
are some important changes. At the end of this section we shall list the results
associated with the discrete Schrédinger equation as it applies to the Toda
lattice.

Since it is not very much more difficult, we shall discuss how to do the inverse
scattering associated with (2.2.22). Then as a special case we shall take
S, =T, =0 to obtain results for (2.2.21). The details can be found in Ablowitz
and Ladik (1975), {1976). The Jost functions are defined as

el e

2238 no-or T LI
5o~ ( e (D)o

Using ideas similar to those in § 1.3, it can be shown that, for potentials Q,,
R,, 8., T, decaying sufficiently rapidly as |n| - <0,

bnz ", Wnz" are analytic for |z|> 1,
baz", a2 " are analytic for |z < 1

(outside and inside the unit circle). This is particularly easy to show when the

potentials are on compact support. In this case, by induction one can establish

that the above functions are polynomials in 1/z (analytic|z|> 1) and z (analytic
|z| < o) respectively. The Wronskian relation is given by

- = 1-8T

W, (¢, &) = —

(w w) l'l;ln 1 —RiOi

When T; = —S¥ and R; = —Q}, W, is positive definite. Otherwise we assume

that S;T;, R,Q; are smaller than 1 initially, The linear independence of ¢, ¥,

= wlnd;f!n - d’ZnJln-
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implies
(2.2.39a) b = ahy, + b,
(2.2.39b) b= —al, + b,

and the Wronskian relations imply

(2.2.39¢) ad + b6 = [1( RQ)

1-8.T;

a, b, 4, b depend parametrically on time through the potentials. We will
show that aa + bb is independent of time. Hence, ifl—[c_oc,o ((1-R,Q)/(1~-8T))
is a nonzero finite number initially, then the Wronskian W, is finite and does
not vanish. We will work with (2.2.39a) on the unit circle; (2.2.39b) is similar.
We divide (2.2.3%a) by @ {assuming a(z )# 0 on the unit circle):

(2.2.39d) ﬂ= Ynt— !//m

and assume the following representanons (which have the desired analytic
structure):

(2.2.40a) o, =

(2.2.400b) Yn=

in analogy to (1.3.17)
g = (?) e +J‘ K(x,5)e“ds

Substitute ¢,, ¢, into (2.2.39c) and operate on (2.2.39c) with
(1/2mi) §dz-z~™ " (where § is the contour integral on the unit circle). We find

L [P m
_2wi§ z dz

(2.2.41) z K.(n, n)———§ memel gy

n'

+ Z l)_____§ ( ) —(m+n")— 1
Noting that )
1 .
——§ 2" N 4z =8(n', m)
21
(6(n,m)=1 when n=m, 0 otherwise; 8(n, m) is the Kronecker delta
function), and defining

(2.2.42) F.(m+n')= 51_ b pypmtmet gy

mrJ a
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we have

(2.2.43) I=K(n m)+ ‘f K(n,n"\F.(m +n").

n'=n
We now evaluate the left-hand side of this equation:

L g o gy Lo

—m—1
, 2" d.
2 a

(2.2.44) I=—

2mi
#.z"" and a(z) are analytic in the region |z|> 1; hence the only singularity is
from a(z;)=0 (i.e., zeros of a). Also, as z >0, ¢,z "/a > Jx,. (We may
evaluate J», by consideration of the limit z » 00 in (2.2.22). But this formula
will not be needed in the sequel.) Assuming a has N simple zeros and noting
that at 2y, &x = &, we have

I=-3% _‘*‘(b:l(zi)zfm_l +Jxn8(n, m)
i=1 4 (Z,')
(2.2.45)
__z ZK(", (n-H") 1+Jcc,n6(n,m).
j= la Z; ) n

Defining Fp(m +n )—-Z Gz ¢j=¢;/a;, we have, from (2.2.44) and
(2.2.45),

(2.2.46a) Kn,m)+ § Kn,n\Fm+n')=Jc,6(n, m),

where
Fm+n)Y=F.(im+n)Y+Fp(m+n')
(2.2.460)
___1_ b —fn+m) ldz+ Z C] —(n+m) 1
27ri a i=1

If we do the same for (2.2.39b), we find

(2.2.47a) Kn,m)— ¥ K(n,n"\E(m+n'y=—-J,,8(n, m),

v
n=n

b n'+m-1 N - =n'+m—1
(2.2.47b) F(m+n)———§ dz— Y GiZ; ,

ji=1

where

I~ l_’e‘l

Jon=lim 2"
z=0

(as before, Jo, can be calculated, but it is not needed). We need (2.2.46),
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(2.2.47) only for m > n. Define

K, m) =Tl 7l m),
_ o 1 _
K,(n, m)=n 1 —‘R'Q'K(n’ m)a

K(n,n)=(?>, E(n,n)=(é).

(2.2.46), (2.2.47) then yield for m>n

(2.2.482) E(n,m)+((l))F(m+n)+ S w(m, n')Fin'+m)=0,

n+1

(2.2.48b)  «(n, m)~ ((l))ﬁ(m +n)— T &(n,n)F(n'+m)=0.
n+1
These equations are the discrete (see 1.3.24, 25) analogue of the Gel’'fand-
Levitan-Marchenko integral equation. They are linear summation equations.
We relate K(n, m), K(n,m) to the potentials by substituting ¢, =
Ec: K(n,n")z™", etc., into the scattering problem (2.2.22). We find discrete
partial difference equations for K (n, m), K (n, m), and

Qn =K1(n’ n+ 1):

Rn =—K > + 1 >
(2.2.49) Ratn, n +1)

S, = [k1(n, n+2)+ Qukain, n +1)],

SR
1-R,Q.
1

Tp= oo
I—RnOn

[ka(n, n+2)+ R,<1(n, n +1)].

When R, =FQ%F and T,=FS}, we may establish the following symmetry
properties:

g _izc,;z, F(n)=£F*(n),
N _( k3 (n,m)
&(n, m)= (:FKT(n, m))'
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Equation (2.2.48) then yields
ki(n, my—F(n+m)

(2.2.50a) - -
+ Y Y kun, n"F*n"+n)~Fn'+m)=0,
n'=n+1l n"=n+1
= 1 b_ n—1 N - =n—1
(2.2.50b) F(n)=—.§T(2)Z - Y &z,
2wl ) a i=1
(2.2.50c) kn,m)x L ki(n,n)E(n'+m)=0,
n'=n+1
(2‘2.50d) Qn =K1(ns n+1)1
1
(2.2.508) S, =—m[K1(n, n+2)+Q,,Kz(n,n+1)].

We now recover §, = T, =0 as a special case. When S, = T,, = 0 one can show
that a(z), a(z) are even in z and b(z), b(z) are odd in z. The eigenvalues
come in =% pairs, and ¢;(z4) = ¢;(z-). These properties show that

_ _ 2Fr(n+m), m=n+2p—1, -
(2.2.51a) F(n-*-m)—-{o’ e pEL
_ 1 b 4 N/2 .
(2.2.51b) FR(n)=_TI 2" dz - Y gz},
27 cpd 1

where Cg is the contour along the right half of the unit circle. We take

KlR(n’m)9 m=n+2p"1,

(2.2.51¢) Kl(n,m)={ pz1,

0, m=n+2p,
and for m =n+2p -1, we have, from (2.2.50)-(2.2.51),

kir{n, m)=2Fg(n+m)

(2.2.52) N -
x4 3 Y kir(n, n")Fk(n"+n")Fr(n'+m)=0,
n"=n+ln'=n+1
where

n"=n+2p"=1, n'=n+2p',

p'=1,2,---, p'=1,2,---.
k2{n, m) also has a symmetry property in this case:
k2r(n, m), m=n+2p,

(2.2.53) Ka(n, m)={
0, m=n+2p-1.
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Withm=n+2p,p=1,2, -, (2.2.50)~(2.2.51) yield

(2.2.54) kor(n,m)=2 Y witrln n)Er(n'+m)=0,
n'=n+1

where

n'=n+2p' -1, p'=12,-"
The potentials are related by
(2.2.55a) Q. =-«kir(n,n+1),
(2.2.55b) S.=0.

The (spatial) inverse scattering is the same for both differential-difference and
partial difference evolution equations. The only difference in the analysis is
the time dependence, which we list here.

(1) Differential-difference. The time evolution equation is given by
(2.2.23). We assume that as n >+, A,>A., D,»D,, B, C,—>0. The
eigenfunctions that satisfy both (2.2.22) and (2.2.23) are given by

(1) __ A_t (t} D,
¢n —"bne 3 wnt :d’ne ta

T _ 7 Dt (1) _ Ar,
n "(bne y n —djne H

(2.2.56)

Using similar ideas to those in § 1.4 (the continuous problem) we have

_ (A,—A_) (D —A )t
a=age" b=boe "~
(2.2.57a) oopy o ’
a= dO e + - r, b = bO e(A*~D7)(;
hence
b
_(t)“(—) P
a’o
(2.2.57b) =~ X
P (T) AP
a’o
and similarly,
¢ =Cio e DA
(2.2.57c¢) - . (A,-DME)
Ci=Cipe L

—iwm(2)t

The linearized dispersion relation from Q,=z"¢ is found to satisfy

(2.2.57d) ~iw(z}) = (A, - D.)(2).

(2) Partial difference. Here the associated time evolution equation is given
by (2.2.32). We also assume that A, > A, D ->D., B >0, C7 -0 as
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n - +00, The eigenfunctions that satisfy both (2.2.22) and (2.2.32) are given by
o= (1+A)", Y=yl (1+D)",

(2.2.58) - - —mi) _ Tm m

dn" = (1+D)", Y =gl (1+A)™

As above, we then may deduce

N 1+A+)'" o (1+D+)’"
“‘“0(1+A> ’ a=a\1sp.)
(2.2.59a) N
b=b 1+D" b-_-<1+A+
N °<1+A_) ’ “"\1+D_/
b b\ (1+DN\" b B\ (1+AN"
aow SR, B ()
¢ ) a al’yp 1+A. a a/o\1+D.
and
1+D\"
C’=C”0(1_+—A_:) (z;),
(2.2.59¢)
o (1HANT
o=l 5p,) 5
Note that here ao, * - +, ;0 Stand for the values of the scattering data at m = 0.
The linearized dispersion relation (Q;' = z"w™) is found to satisfy
1+A.
2.2.59d A= :
( ) w(z”) 1+D.

The solution procedure for the differential-difference and the partial
difference formulations is complete. Special soliton solutions can now be
calculated. For example, corresponding to one eigenvalue and no continuous
spectrum (F(n)= —c’z‘,’-"l, S., T, #0), the method of solution is to define

'31(’1)=ZK1(’1, m)zm*

and reduce the summation equation to finding <,(n) (i.e., operate on (2.2.50)
with 3., Z™*). In the differential-difference problem a single soliton is given by
(8, T, #0)

172

Q.= (ii) exp (—(é)(w +w*)t +2in0>

Co
(2.2.60a) .
xsinh W sech (2nw-é(w*—w)t+¢o>,
-k, 1/2 :
__(% _(* *yy ;
T, = (CO> exp( (2)(w+w ) (2n+1)19)
(2.2.60b)

xsinh W sech (2nW—é(w*~w)t+d)0+ W),
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where
(2.2.60c)  w=w(Z), =V ¢o=-log (2 thifll W)’

e.g., in the self-dual network, w = %i(z - z7h.
IfS,=T,=0, we find

- 1/2

Q. =(2) " sinh2W exp (2in8 - (5) (0 + %))
(2.2.61a) ’ ,
x sech (2nW—é(w*—w)t+¢o),
where
_ ICO‘ )
(2.2.61b) bo= —log (sinh2W .

For example, in the discrete nonlinear Schrddinger equation, w(z%) =
2’+z72-2,
In the partial difference case when S, = T,, =0, we write (Q) = Axq,")
0)(22) = le eiArgw,
(2.2.62) QT =sinh 2W 20" 2mAm I+ goch (2nw — mn|w| — do).

In the partial difference nonlinear Schrédinger equation (2.2.37), we use the
linearized dispersion relation

_1+io(z*-2+27%)
T1-ig(z?=2427%

where o = At/(Ax)z.

It should also be mentioned that the conserved quantities can be worked out
asin § 1.6. For example, when S, = T,, = 0, it can be shown from the scattering
problem that

a0

(2.2.63a) loga(z)= Y logg.(z?),

n=-00
where g, satisfies

2Rn+l

(2.2.63b) gn+1(gne2— 1)~z R

(gn+1 - 1) = ZZR,,+1O,..
From (2.2.63b), as z » 0, g, (z%) has the expansion

- (i) 2§

1 !

=2 8aZ .
i=0
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We find, from (2.2.63b),
(2.2.64a) g, ~1+2’Ru01Quz+2°Ruc1Quos(1=Ru2Qpozt - o).
Thus, d(z), analytic for |z] <1, has the expansion as z >0
(2.2.64b) loga(z)~Y c:iz*,
0

where the C; are constant, since d(z) is constant. Setting (2.2.64a,b) equal,
we have found that

C = Z Rkok—ls

(2.2.65)
o 1
C2= £ Riu-sll = RiciQuo) ~5 REQH |
The C, i=1,2, -+, are the conserved quantities. It should be noted that

(2.2.63a,b) is found from the scattering problem by relating a(z) to the
eigenfunction ¢,, by

a(z)=lim (=2a2")
and finding an equation for g, from

¢2.2" =Y g

Once again, we point out that although the solution process looks formi-
dable, the conceptual program of solution is analogous to that of linear Fourier
analysis. Naturally, in the nonlinear problem we have the added difficulty of
having to solve either a linear integral equation, in the continuous case, or a
linear summation equation, in the discrete case.

Next, we shall simply quote (for completeness) the results for the discrete
Schrédinger equation (2.2.7) with specific application to the Toda lattice
(Flaschka (1974a,b); see also Case and Kac (1973), Case (1973), Manakov
(1975) and Moser (1975a)).

We shall assume that (a,—3) and b, decay rapidly as |n|->. Set A =
(z +1/2)/2 and define solutions ¢,, ¢, by the asymptotic conditions

D, ~z" asn->+00,
(2.2.66) B
Yo~z " asn->-—00,

for |z| = 1 (these are the discrete Jost functions). By the linear independence of
&.(2) and ¢.(z ") we have

(2.2.67) Un(2) = B(2)dn(2)+a(2)da(z ),

where |a|?=1+|8]>. R(z) = B(z)/a(z) is called the reflection coefficient. The
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eigenvalues are discrete in number and correspond to real values of z in the
interval (=1, 1). If A, = (z; +z,-—1 )/2 is a discrete eigenvalue, we call {,(z;) the
normalized eigenfunction, defined by the condition

(2.2.68) 5 LAz =1,

and it has the behavior {,(z;) ~coz] as n > 0. The inversion is carried out by
computing

1 e S 2.n
(2.2.69a) F(n)=—‘.§R(Z)Z Ydz+ ¥ ciz]
27ri i=0
and solving, for m > n,
(2.2.69b) k(n,m)+F(n+m)+ ¥ «(n,n)F(n'+m)=0
n'=n+l

for k(n, m). Then define

22700)  (k(n) P =1+FQ@m+ T «(n,n)Fln+n),

n'=n+1
and find
2.2.70b) _lK(n+1,n+1)
2.2. oy T k)
and
(2.2.70¢) bn=_lK(n,n)K(n—l,n)—x(n,n+1):<(n~1,n—l)’

2 k(n—1,n=1x(n, n)

For the Toda lattice (2.2.1), related to (2.2.7) via (2.2.13-2.2.14), the time
dependence is given by

R(z,)=R(z,0) """
ci()=¢;(0) e 5T,

Finally, in the case of a purely discrete spectrum, R(z, 0)=0, the soliton
solutions are computable in closed form. A one-soliton solution corresponding
to a single eigenvalue (z,) is given by

(2.2.71)

2 -2
-(@,-0,_) 21tz =2
n n-1 —1:——————_,
(2.2.72a) e Az Az

where A = ¢, exp ({23 —z1He/2). Setting z = o eV, o = =1 reduces this to
(2.2.72b) €™'%"%-2 =1 4sinh® W sech® (W(n —no)+ o sinh W),

where ng is a constant depending only on ¢, z;. We note that this soliton
solution may travel in either the positive or negative n directions.
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2.3. Periodic boundary conditions for the Korteweg—-deVries
eqguation, One of the research areas in this field which has attracted great
interest is the periodic boundary value problem associated with these special
nonlinear evolution equations. Some of the early studies on this problem were
done by Lax (1975), Novikov (1974), Kac and van Moerbeke (1975b,¢),
Dubrovin and Novikov (1975), Its and Matveev (1975), McKean and van
Moerbeke (1975), McKean and Trubowitz (1976) and Date and Tanaka
(1976a,b). In addition, there have been numerous further studies, with
significant results. Many of these are discussed in the survey articles of Matveev
(1976) and Dubrovin, Matveev and Novikov (1976). In this chapter we shall
only consider the integration of the KdV equation for so-called finite band
potentials with periodic boundary values. The resulting solutions are condi-
tionally periodic, or quasiperiodic, i.e., a wave with N phase variables, 6, =
kix —w;t, periodic in each 6; but with, generally speaking, noncommensurate
frequencies w;. The waves we discuss in this section will be periodic in x and
almost periodic in time. (Roughly speaking, a function f(¢) is almost periodic if
there exists a period T(¢) such that for any &, |f(t+ T)—f(t)| <& for all ¢
For a rigorous definition see Nemytskii and Stepanov (1960) or an equivalent
text.) We shall reduce the KdV equation to a finite number of nonlinear
ODE’s which can be integrated. The integration involves knowledge of some
algebraic geometry and hyperelliptic functions. We shall not go into the details
of the latter here. In this section we follow the work of Dubrovin and Novikov
(1975). Some of the other equations with periodic boundary values that have
been considered are the nonlinear Schrodinger (Ma and Ablowitz (1981)),
sine-Gordon (McKean (1981)), and Kadomtsev-Petviashvili equations
(Novikov and Krichever (1981)).

Mathematically speaking, we consider the question of constructing the
solution to KdV,

(2.3.1a) u,—6uu, + Uy, =0,
with periodic boundary conditions, period T,
(2.3.1b) ulx, ) =u{x+T,1)
and given initial values g(x),

(2.3.1¢) u({x,0)=g(x).

Subsequently g(x) will be more restrictively defined (i.e., g(x) will be an
N-band potential).

2.3.a. Direct scattering problem. Associated with (2.3.1) is the
Schrodinger scattering problem (see also Chapter 1 and note sign change)

(2.3.2) v t(E-up=0, E=k*
Define two solutions of (2.3.2), ¢ (x; xo, k) and ¢ *(x; xo, k) (¢™* is the complex
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conjugate of ¢), such that when x = x¢ (x¢ is an arbitrary point which we fix to
be in the interval 0= xo = T)

¢(x0;x0’ k)zla ¢*(x0;x0’ k)=1’
& (%05 x0, K) =ik,  P¥(x0; X0, k) =~ik.

If ¢(x; xo, k) is a solution of (2.3.2) then, from (2.3.1b), so is ¢ (x + T; x0, k).
Since ¢, ¢* are a complete basis we have that the fundamental solution
matrices satisfy

(2.3.42) ®(x + T3 xo, k) = Txo, K)D(x; x0, k),

(2.3.3)

where

b

¢ ¢x)(x;x0,k), T(Xo, k)=(ba* a*)(XO,k)~

¢* &%
T is often referred to as the monodromy matrix (cf. § 3.7). It plays the role of
the scattering data in the periodic problem. The Wronskian of two solutions
of (2.3.2) is constant in x i.e., W(u, v) = uv, — u,v = const. Since W{(¢, ¢*) =
—2ik, we have, upon taking determinants of (2.3.4),

(2.34b)  ®(x: x0, k) =(

(2.3.4¢) lal* =16 =1.

Next the so-called Bloch eigenfunctions, .{x;xo, k), are defined as
solutions of (2.3.2) with the proviso
2.3.5) Yelxos xo, k) =1,  ¢(x+T;x0, k)= At(x; x0, k).
Since .. satisfy (2.3.2) they also must be linear combinations of ¢, ¢*:
(2.3.6) Yu(x)=Cp(x)+D¢*(x)

(the other arguments are understood; C, D are constants). Employing the

definitions (2.3.4a), (2.3.5), we have that C, D satisfy
{a—A)C+Db*=0,
(2.3.7)
bC +(a*—A)D =0.

For nontrivial solutions, (C, D)A must satisfy

(2.3.8a) A=Aa+a*)+lal*=[6]*=0
or
(2.3.8b) A=2agA +1=0,

where ag, is the real part of a. For real E(E = k?) we have the following cases:
(1) If |ar|> 1, one value of |A| is greater than one, and one value is less than
one. Hence the Bloch eigenfunctions are unstable.
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(2) If |ar| <1 then |A| =1 and the Bloch eigenfunctions are stable. In this
case if we call ag(k)=cos p(k) we have A =exp (zip(k)).

(3) If |ar| =1 then A = =1 and the Bloch eigenfunctions are either periodic
or antiperiodic.

Next we define two spectra which will enable us to reconstruct the potential
u.

The main spectrum. The main spectrum is composed of the eigenvalues

E, = k? for which at least one of the eigenfunctions is periodic or antiperiodic.
The E; are roots of }aRl =1. A stable band is an (open) line segment between
any two adjacent E; such that |ag|< 1. (In this case the Bloch eigenfunctions
are stable.) Likewise an unstable band is an open line segment between any two
adjacent E, such that |ag|>1. The E; are called the band edges. A typical
function ag = ag(E) is given in Fig. 2.1.

- \El E./\E: Ev ~\Ev A =+1
L Y: T:\
\ "
E
Y Y ¥
E;5FE, E.YE, E;, 2 Epyei ay =1

l- <

unstable band

FiG. 2.1. A typical function ag = ag(E).

Hence in this case (Fig. 2.1) the unstable bands occur between E3; and E5; ..
The plot ar (E) is sometimes referred to as the Floquet (determinant) diagram.
Many of the spectral properties that we shall discuss in this chapter are
considered in depth in Hill's Equation by Magnus and Winkler (1966),
although the point of view is somewhat different.

The auxiliary spectrum v, We shall define these values as those correspond-
ing to locations of E where

(2.3.9) aj +b[ ={.

Since we necessarily have the conditions |a|*—|b|* =1, (2.3.9) implies ak =
1+ b%. Thus the eigenvalues v; lie in the unstable bands or possibly at the band
edges.

An alternative way to define the auxiliary spectrum is to require an eigen-
function satisfying (2.3.2) (we call it y(x; xo, k)) to satisfy fixed boundary
conditions. For example, in this case,

(2.3.10) y{xa)=0 and y(x¢+T)=0.

Then from the fact that y = A¢ + Bo* for some nonzero A, B and using
(2.3.10) and (2.3.4) we obtain the condition (2.3.9).
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Next, we state a number of spectral properties of the E; and y.. The proofs
follow essentially standard applications of the theory of ordinary differential
equations. (The reader may wish to consult Magnus and Winkler (1966) or
McKean and Van Moerbeke (1975) to see the methods of proof.)

Spectral properties.

(1) The main spectrum contains a denumerably infinite number of real
eigenvalues. We divide them into nondegenerate band edges E;, and degener-
ate band edges E.. The property dar/oE|z-g #0 (i.e., E; is a simple root of
a%k —1=0) holds at the nondegenerate band edges, whereas dag/dE|z-5 =0
at the degenerate band edges. Each E, represents a double root of ag —1=0;
there are no higher order roots. ag(E) # 0 for {ag(E)| < 1.

(2) The auxiliary spectrum also contains a denumerably infinite number of
real eigenvalues. They must be inside the unstable bands or on the band edges.
All these eigenvalues are simple roots of a; + b; = 0. Furthermore, we split the
auxiliary spectrum into two portions, y; and ¥, The ¥; must coincide with the
E; and there is one and only one ¥; in each unstable band. (These spectral
properties are consequences of the oscillation theorems of ODE’s.)

Finite-band potential. An arbitrary periodic potential may have an infinite
number of nondegenerate eigenvalues in the main spectrum (the simple roots
of azx = 1). Here we consider a finite band potential, i.e., one which has only
a finite number of nondegenerate band edges E;, i= 1,2, -, 2n +1, with all
others being degenerate.

The general case has a denumerably infinite number of nondegenerate band
edges. This theory was extended to the general case by McKean and Trubowitz
(1976), but the extension is far from trivial,

At this point it is convenient to introduce the function y = —iy.,/¥.. Since
. satisfies (2.3.2), we have from this relation that y satisfies a Riccati equation
(2.3.11a) ~ix'+x +u=E.

Thus if y = xz +ixr we have
(2.3.11b) x1 =3{log xr)x

and the formal representation
Xo; X0, EY\V/? x
(2.3.11¢) wi(x;xo,E)=(§%) exp (lj xr(x; x0, E) dx).

Later on we shall use the following asymptotic result, as |E|-> o0, E = k? (we
can extend these results into the complex E-plane}):

(2.3.12a) Y. ~exp (xik(x —x)),
1
(2.3.12b) Xt~kX1+XO+EX~1+£—§X42+' ty
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with
x1=x1, xo=0, x-1=%Fu/2,
i
X—2=:F(-E)ux’ X—3=i(2uu-u2),' ey
i.e.,
u 2iu, 1
(2.3.13) Xi~i(k_—2_z—(—2k_)5+§-?(2u”‘—u2)+‘ . .>.

We remark that, generally speaking, the KdV equation and its higher order
analogues can be written in the form (cf. Zakharov and Faddeev (1971) or
§1.6)

N
___i 8 sto Cm12m+1

(2.3.14) = 3ux)

where Iom+1 = w0 X-@m+1)(x) dx, and 8I/8u is the Fréchet derivative of 1.

2.3.b. Inverse scattering problem. The function x has a representation in
terms of the scattering data a, b. To see this we use (2.3.6). Applying ¢(x = xo)
and ¢'(x = xo) = ix (x = xo) (the latter from the definition of x), we have

(2.3.15a) ¢=%(1 +2‘;(9)¢ +%(1—’%)¢*,

where xo= x(x = x0) = ¥ (X0} X0, k). Then, using the relation (2.3.5) at x = x,,
and (2.3.8b), we have

_k(xvV1-ak+ibg)

(2.3.15b) Xox = ar+b; = Yor+t IX0r1%-
Hence
+kv1—a>
(2.3.15¢) Xore=—¥1-2k
ar +b1

Next, let us introduce another basis for the purpose of discussing analyricity
of the scattering data. We define eigenfunctions c(x; xo, E), s{x;xo, E)
(E = k?) such that at x = xg

(2.3.16a) c{xo; x0, E)=1, ¢o(x0; x0, E)=0
and
(2.3.16b) s(xo; x9, E}=0, Se{xo; x0, E)=1.

One can write the translation operator as
(2.3.17a) c(x+T;x0, EY=a11¢(x; x0, E)+ a125(x; x0, E),
(2.3.17b) s(x+T; x9, E)=a3i1¢(x; x0, E) + a225(x; X0, E).
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Then the relationship between the bases (2.3.3-4) and (2.3.16-17) is

a1 =ag +bg, @z = ag — bg,
(2.3.18) b
ar +
a1, =—~k(a; - by), Q31 = Ik I-

By converting the Schrodinger equation (2.3.2) into a Volterra integral
equation (from x, to x) we can establish that the eigenfunctions ¢, s are entire
functions of E. This implies that the functions ¢; in (2.3.18) are entire functions
of E. From the theory of complex variables we may write an entire function
as the product of its zeros and an entire function with no zeros. Specifically,
we write

2N+1 oo EA 2
(23192)  1-a%(E)=g(E) 11 (E—E) Il (I_Er) ,
i=1 i=1
(ar+by)° 5

(2.3.19b)

j=

~eo) [l B T (1-2).

E E

Note that g,(E), i =1, 2 are entire functions of E with no zeros; the E; are the
simple roots of 1 —a% = 0; the E; are the double roots of 1 —a% = 0 and simple
roots of ay + by = 0; the vy, are the simple roots of a; + b; = 0 inside the unstable
bands. Thus x4r satisfies

E(l-a%)_[iy (E-E)

2.3.20 k= =
( ) Xor ==~ N E-7) g(E),

where g(E) = g1(E)/g2(E) is entire with no zeros. The asymptotic behavior of
g(E) is fixed by considering xg as E -« from (2.3.13), namely

1
(2.3.21) X§=E—u+O(E).

We see that limg.o g(E)=1 by comparing (2.3.20-21). Hence, from
Liouville’s theorem,

gi(E)
g2(E)

Using (2.3.22), expanding (2.3.20), and comparing with (2.3.21) we have the
inverse scattering formula for reconstructing « (at point x = xo):

(2.3.22) g(E)= =1.

2N+1 N

(23.23) U= Z E,'_2 Z Yi.
i=1 i=1

Next we shall establish that the E; are independent of the point x,, whereas
the v; depend on xo. Moreover, we shall develop the equations for the y;(xo).
In this way we shall use (2.3.23) to reconstruct the potential u at any arbitrary
point x,.
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Consider changing the point xo to xo+dxo. The fundamental matrix
®(x; xo+dxo, k) can then be expanded by Taylor’s theorem:
D(x; xo+dxo, k) ~DP(x; x0, k) + D (x; x0, k) dxo
= (] + Qdxo)®P(x; x0, k).

Since both ®(x ; xo+ dxg, k) and ®(x; xg, k) are fundamental solution matrices,
and ®(x; xo, k) is already a basis, we know that I + Q dx, must be independent
of x. Next we have, from (2.3.4) and (2.3.24),

®(x + T;x0+ dxo) = T(xo0+ dxo)P(x; x0+ dxo)

(2.3.24)

(2.3.25) .
= (1+ Q dxo) T{x0)®(x; xo).
Then
(2.3.26a) T(xo+ dxo)(I + Q dxg) = (I + Q dxo) T(x0),
and in the limit dxy;=> 0
(2.3.26b) ar_ [Q, 11,
de

where [Q, T]= QT — TQ. (The reader may note the analogy to (1.2.4c).)
Next we compute Q{xo) from

(2.3.27) Q(x0) = @y (x; x0)® ™ (x; x0).

Since the right-hand side must be independent of x, we evaluate it at a
convenient location: x = xo. From the boundary conditions we have

1 ik
(2.3.28a) (D(xu;xo)=[1 _l‘,k].
Similarly, the matrix
X0 ¢xxo

(2.3.28b) ¢, = [‘:* bF ]
is found to be

[~k E- u(xo)]
(2-3.280) ¢xo— [ ik E“'u(xo) .

In deriving (2.3.28c) we have used the boundary conditions
(a) @(xo; x0, E)=1, hence (d/dxo)d(x0; xd, E) =0, whereby
$xolX0; X0, E) = — by (x0; X0, E) = —ik;
{b) @x(x0; x0, E) = ik, hence (d/dxq)d.(x0; X0, E) =0, whereby
G xo(%0; X0, E) = = s (X0; X0, E) = (E — u(x0)) (x0; X0, E) = E — u(x0).
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Using these results we have, from (2.3.27),

(2.3.29) oo=-i]) _J]+Hxl

Finally, substituting (2.3.4b) into (2.3.26b) and using the above results, we
find

da iu iu
3. —_— = — ] +— — h* ; ————
(2.3.30a) 3 ika 3 {a—b"+ika % {(a+b),

Xo

b iu iu

2.3.30 —=—ikb+_—(b—a*)—ikb+—(a+

(2.3.30b) Py ik 2k( a*)—ikb 2k(a b)

and their complex conjugates (we assume y is real). From (2.3.30a) we find
that ag = (a + a*)/2 satisfies

dar _

(2.3.31a)

3

axo

which means that the roots (E;) of akx =1 are independent of xo. Moreover,
we can now establish the equations for the v;(x,). From (2.3.30) we have

d
(2.3.31b) —(ay; +by)=-2kbg.
axo
From |a|’ - |b|* = 1 we have at the eigenvalue E = y,, where (ay + b;)(E = y,) =0
(from the definition of v;(2.3.9)), that
(2.3.31¢) br=ioN1—a%, o;==%1.

Using (2.3.19), (2.3.22) and evaluating (2.3.31) at E = y;, we have

N . 2N+1
(2.3.32) -1 ﬂi: =2io; 1 (y,-—Ei)‘/z, j=1,---,N,
k=1 de i=1
ki
or by defining
2N+1
(2.3.33) R(E)= [l (E-E),

we have from (2.3.32)

dy; 2o R (y)

(2.3.34) —= s
dxq H;cv=1,k¢,‘(7'i =)

o;=#%1, j=1,---,N.

Equations (2.3.34) give the motions of the y; with respect to xo, which in turn
determine u(xg) for all x, so long as the vy; are given at one xo and the signs o;
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are specified at that point. The ¢; will change sign as the y; reach the band edge.
The E;, i=1,2,:-+,2N +1 are the branch points. Moreover, for the root
RY %(E) we make branch cuts in the nondegenerate unstable bands between
E,; and Eji forj=1,- -+, N, as well as from the point E = -0 to E;. From
this we can form the Riemann surface of the root R*’ 2(E ).

It is remarkable that there is a transformation by which the N nonlinear
ODE’s (2.3.34) can be integrated. Before discussing this we shall first show
how the auxiliary spectrum evolves in time, due to the KdV equation; again it
will turn out that the vy, satisfy N nonlinear ODE’s in time.

2.3.c. Time dependence. We recall from § 1.4 that the time evolution
equation of the eigenfunctions associated with (2.3.1), (2.3.2) is given by

d
(2.3.35) v,=Mv, M= (4E+2u)5;——ux.
At any given time ¢ there are two linearly independent eigenfunctions vy, v,

which satisfy (2.3.2) and (2.3.35). In terms of ¢, ¢*, we may express them as
follows:

(2.3.36) vi=fie+g()ed*, i=1,2.
Substituting (2.3.36) into (2.3.35) we find that ¢ satisfies
(2.3.37) & — Mo =2 +ud*,

where A, o are functions of r only. (Similarly, ¢* satisfies the complex
conjugate equations.) Next we shall determine A, u. At x = xo,

(2-3-38) ¢ = 19 ¢l = 09 ¢x = ik; (bxl = 0
(similarly for ¢*). Thus at x = xo we have, from (2.3.37),
(2.3.39a) 0=(k(4E +2u(xg)) —t,(xo) + A + u.

Then by taking 4, of (2.3.37) and evaluating at x = xo we have
(2.3.39b) 0= ikue(x0) — Usx(x0) + (4E + 2u(x0))(u (x0) —E) + ik (A — ).
Solving (2.3.39a,b) for A, u we find

__ b Caagsadoa
(2.3.40a) A K U, (x5) —4ik +ku (x0),

(2.3.40b) = Uy (x0) — 2iku(xo) +ﬁ Uy (xg) —iuz(xo).

Very generally, these results can be written in the form
(2.3.41a) O, =QP+ADP+ YV,
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where ® is given by (2.3.4b), Q by (2.3.27) and A, V by

A wu J _ [0 Qo, J
(2.3.41b) A—[u* Nt V= 0 Qp*l
Evaluating (2.3.41) at x = xo+ T and using (2.3.4), we have
(2.3.42a) T, ®(x0)+ Td,(x0) = QT D(xo) + AT B(x0) + V(xo+ T),

which reduces to
(2.3.42b) T, =[A, T,

where [A, T1=AT-TA (again note the correspondence to 1.2.4¢c).
Evaluating (2.3.42b) yields equations for the scattering data a, b:

aa
—— b*_ *b,
ot “ M

%l;’=(/\ - ANb+ula*-a).

(2.3.43)

From this we deduce that ag, and a; -+ b; satisfy (recall that ag = %(a +a*), etc.)

(2.3.44a) %ar_
ot

0
(2.3.44b) é-;(az-i-bz): —2ugr(ar+b;)+2(pur +Ar)br.

From (2.3.44a) we immediately have that the eigenvalues E; of ai =1 are
independent of time. Moreover, from (2.3.44b) we may obtain the motion of
the auxiliary spectrum vy, We use (2.3.19) and b%z = afz —1+ai- bf. Hence at
the eigenvalues E = y; we have

© A N dv:

-1l (m—Ev %83 () T1 (‘Yj""Yk)j

k=1 k=1 dt
irk

(2.3.45) -
==2i(A; +#1)0';g}/2(Y1)R1/2(Yj) I (v _Ej)y
K=1

where o;==x1 and R(E) is given by (2.3.33). Using (2.3.40), and
gi(E)/g:(E)=1, we have

dy; _ 4ic;
dt nkN=1,k#j (yj—ve)

(2.3.46) (2y; +u(x0))R”2(y,-), j=1,-+- N,
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Finally, using the inverse formula (2.3.23) in (2.3.46), we have

dy; 8io; ( N 12841 ) 12
&Y ~2Y E)RY(y),
dt HkN=l,k#j(YI_yk) kI;II Y73 k§1 “ )

(2.3.47)
o ==%1, j=1,--- N.

Equations (2.3.34) and (2.3.47) provide the solution of y(x,, t) from which we
may reconstruct the solution of the KdV equation, u(xo, t) via (2.3.23). These
equations are ordinary differential equations which turn out to be integrable
via a suitable transformation (Abel’s transformation). Given y,, j=1,---, N,
at some value of x, and signs o, we solve (2.3.34) for y,. Then we solve (2.3.47)
with the appropriate initial values.

Since for N =1 we note that R(E) is a cubic polynomial (2.3.33), it is clear
that the solutions of y; in x, and ¢ (2.3.34, 2.3.47) are simply elliptic functions
when N = 1. Hence, by integration, the solution u(x, ¢) from (2.3.23) is the
well-known elliptic function solution

u=-2E;—E;)cn* WE;—Ei(x —2(E;+ Ez+ E3))+ no/m)+ E, + Es,

E;-E,
E3—E1

{cn (1/ m) is the usual Jacobian elliptic cosine with modulus m). Moreover, this
theory now extends known periodic (in x) solutions for KdV to those of the
hyperelliptic class.

Geometrically we may think of the y; as moving in the nondegenerate
unstable bands [, ={E: E;; = E<E;;,;,j=1, -+, N}in the E-plane. With the
branch cuts taken inside the unstable bands, we may form the Riemann surface
R of the root R(E), (2.3.33). A path for v, has two sections, [/, + 1]and [/, —1].
The former is the upper sheet with o; = +1 and the latter is the lower sheet of
R(E) with o; = —1. A point transfers sheets when it reaches a band edge (see
Fig. 2.2).

['5- )
Ezjmgzjn
\_-____’/
TR

F1G. 2.2. Branch cut; motion of v;.
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Next we describe the integration of (2.3.34) and (2.3.47). Define the
coordinates
(2.3.488.) P[ = (7j9 (T]'),

i.e., ¥; with a choice of signs, and the transformation (Abel)

N-1 E“dE
(2.3.48b) Q. (E)= Z Ckam(E)
P
(2.3.48¢) N (Pryet, P)= Z Q. (E).
Ey;

Typically, the Cy. are normalized by the condition (¢, is a closed cycle around
the unstable band /)

(2.3.48d) §3 Qo (E) = 211 81,

which provides N equations in N unknowns. (2.3.48d) indicates that the Cy,,
are real (R'/*(E) is purely imaginary if E lies in an unstable band). Moreover,
we note that the transformation (2.3.48¢) is not uniquely defined (e.g., we can
add any multiple of §,,,_ ., to n,,). In any event, calculating dn,,/dxo using
(2.3.48¢) and (2.3.34), we find after some manipulation that

A d - N /
(2.3.49) == z 2.(Q) Hioa; Z Ckm( T X )
d k=0 1=1Hn=1.n¢i(‘}’]‘""7n)
But the following relationship is true in general:
N .yk
(2.3.50) y L = 8k.N=1,

N
j=1 Hn:l,n#j(YI—Yn)

where §,, is the Kronecker delta function. (We can prove this via contour
integration, e.g., by considering the integral

— v dy.
; N s
2mi Hn=1,n¢i ('Y“’Yn)

with the § being a closed contour containing ail the y,.) Thus with (2.3.50) we
immediately have from (2.3.49) that 7,, satisfies

(2.3.51) D it
dXQ

(2.3.51) shows that (2.3.34) is integrable (Cy,. are constant) using the transfor-
mation (2.3.48).
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In a similar way we may compute the time evolution of the variables 7,
(using (2.3.50)):

dnn, d
_1"‘_ Z Q (O) YJ
i=
.yf‘ 12N+1
(2.3.52) =8i Z Cim Z : (H ')’s__ Z E)
k=0 j= 1Hn ln;é] Yn
sEj
12N=1 N ‘YkH
c(f L )G T G E
5 2 k=0 i= IHs 1s¢](7] 'Ys)

The following identity holds:
0, k=0,1,-++,N-3,

§ it k=N-2,

(2353) j= 1Ht=lx¢) (‘YI 71’)—

N
Y . k=N-1.

i=1

The first two results in (2.3.53) (k =N —2) recapitulate (2.3.50) and the last
result can be proven by induction. Hence (2.3.52-3) give

d‘nm AN +1
(2.354) 7=—8iCN_2,m—4l‘CN—1_m Z, Ej,
i=1
whereupon (2.3.51, 2.3.54) imply
(2.3.55a) N = (KX ~ Ot + '),
(2.3.55b) Km =2CN-1,ms
2N+1
(2.3.55¢) Wm =8Cn_am+4Cn_1m 2 E;
j=1

In (2.3.55) the wavenumbers k,,, and frequencies w,, are real since the Cy
are real (the Cj, are determined from (2.3.48d)).

The transformation (2,3.48) is invertible (see Dubrovin and Novikov (1975)
and Dubrovin, Matveev and Novikov (1976)); hence we may write

(2.3.56) Pi=P;i(n1,"**,n).

Thus from (2.3.23) and (2.3.48a) we have that u can be written in the general
form

(2.3.57) u(x)=f(n1, -, ny)+const.

(i.e., u is a function of my, - -, ). This result indicates that the spatially
periodic solution of KdV corresponding to an N -band potential has exactly N
phases, and that the solution is, in general, conditionally periodic in time.
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Indeed, each v, ““‘moves’’ within its own unstable band and possesses a definite
period. Since we have imposed from the beginning that the solution be periodic
in x with period T, all the vy, are periodic in x (here x, is replaced by x when
(2.3.33) is used).

It can be shown (see, for example, Dubrovin, Matveev and Novikov (1976))
that this solution (2.3.57) of the KdV equation can be expressed in terms of
an appropriate algebraic function on a 2N-dimensional torus, namely

2
(2.3.58a) U= ~25(1-210g On(ny, -+, mn) +const.,

where O is the so-called Riemann theta function,

®(n19 T, TIN)
(2.3.58b)

[eo}

1 N N
= > exp (5 Y BiMM, + ¥ M:mk),
My =—© k=1

M=Mj, ", k=1

and the matrix Bj is determined from

(2358C) B,'k = Q,(E)
B

The cycles B« on the Riemann surface do not intersect the cycles «; with j # k,
while each B; intersects cycle «; at one point E5; (Fig. 2.3).

The cycles a;, B, represent cycles on the torus of the deformed N-banded
Riemann surface. The constant term in (2.3.58a) as well as the phase constant
7% in (2.3.552) can also be given explicit representations on this Riemann
surface. The interested reader may refer to Its and Matveev (1975), Matveev
(1976) or Dubrovin, Matveev and Novikov (1976). Indeed, Its and Matveev
(1975) construct rather general solutions with (2.3.58) as a starting point.
These solutions are almost periodic in x as well as in ¢,

We shall not here discuss in more detail the results pertaining to the periodic
problem. However, we do note that many significant results in this direction
have been made. In addition to the papers already discussed we suggest that
the interested reader consult the following: Krichever (1976), Marchenko
(1974), Flaschka and McLaughlin (1976a), Meiman (1977) and Cherednik
(1978).
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There are not yet many applications of this theory. Recently Flaschka,
Forest and McLaughlin (1979) have examined the slow modulation theory of
these N-band potentials. Many years earlier Whitham (see Whitham (1974))
worked out the theory for single-phase waves as did Ablowitz and Benney
(1970) and Ablowitz (1971), (1972), for multiphase waves. In the latter,
numerical integration was used to show the existence of multiply periodic
modes (despite the presence of small divisors). The advantage of the present
theory is the explicit analytic representations of the solution.

EXERCISES

Section 2.1

1. (a) Prove that ¢ ¢ ““* and ¢ e “>* are analytic in the lower half
plane and that ¢ ¢ " and ¢ ¢ "““* are analytic in the upper half plane.

{b) Take the limit x » o and deduce the corresponding results for a1, bas,
ass, b1y,

2. In (2.1.1), set

iQ=const. if|x|<L,,

Ni2=N% =
e {0 lx|> Ly,
iR =const. if |x|<L,,

Nis=N% =
13 31 {0 |xl>L2,

with all other N;; = 0. Compute the scattering data explicitly.

3. Show that the time-dependence of @1 and as; each yields an infinite set
of conserved densities. Are these sets different? Give the first three nontrivial
densities in each set. Is there a recursion relation for the nth conserved density?
Expansion of a», also gives a set of conservation laws.

4. (a) Under what conditions do zeros of a§’ in (2.1.46) correspond to
zeros of @} ?

(b) Show that Q2 has solitons in this case. What happens to Q,, Qsf?

5. Discuss the differences between the bound states (corresponding to the
discrete eigenvalues) in the 2 x 2 and 3 X 3 scattering problems.

Section 2.2
1. Aikawa and Toda (1979) have shown that
*)  B+@—-a Mo Plog(l+au)=a Hulx +Va)+ulx —va)—2u(x)}

is a completely integrable equation that contains both the (discrete) Toda
lattice and the (continuous) KdV equation as special cases.
(a) Show that under the transformation

a,—a,-1=-log (1+au,)
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the Toda lattice (2.2.1) becomes
(%) 37 log (1+ at,) = (a1 + U1 — 2U,).

(b) Show that (*) reduces to KdV in the limit a -» 0.
(c) Show that under the transformation

-~ 1
x=\/an+(a——)t, T=a3/2t
a

{(*) becomes (*+*). Because (*#*) is completely integrable, and the transformation
is simply a change of variables with no limits, it follows that (*) is completely
integrable. What is the scattering problem?

2. Find the discrete version of the sine-Gordon equation in light-cone
coordinates. It is more difficult in lab coordinates; one which is completely
integrable in laboratory coordinates has not yet been found

3. Prove solvability of (2.2.48). See § 1.3 (1.3.30)fT.

4. (a) Corresponding to (2.2.63-65), find the recursion relation for the
infinite set of motion constants if S,, T, 0 (see (2.2.22)). Find the first three
explicitly. For what choices of Q, R, S, T is there a positive definite motion
constant {i.e., an “‘energy’’)? How is this related to the solvability of (2.2.48} in
Exercise 37

(b) Find the “trace formulae’ for the Toda lattice. How do these compare
to Hénon’s (1974) integrals?

(c) Find the action-angle variables for the Toda lattice. Differential-
difference equations arise as models of one-dimensional crystal lattices. These
models are natural candidates for quantization since quantum-mechanical
effects often are important in lattice dynamics. The formulation of the problem
in terms of action-angle variables may be viewed as a necessary step in the
process of quantization; see also § 4.5.

5. Are there any cases in which the scattering data can be worked out
explicitly? If so, pick one and find the relevant scattering data.

Section 2.3
Perhaps the exercises in this section should be called ‘‘open questions”.

1. The word “soliton’’ has come to mean an exact solution of a completely
integrable evolution equation on —o0 < x <0, represented by one discrete
eigenvalue in the IST-spectrum. However, the word originally was coined by
Zabusky and Kruskal (1965) to denote an identifiable, localized wave in their
numerical experiments on KdV with periodic boundary conditions. In terms
of the (entirely discrete) spectra of the periodic KdV equation, what distin-
guishes the “‘solitons’ that Zabusky and Kruskal observed? If one knows both
spectra for a particular set of initial data for a periodic KdV problem, can one
predict how many ‘“‘solitons” the numerical experimentalist would observe?
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2. (a) What is the recurrence time of an N-band solution of the KdV
equation?
(b) Based on his numerical experiments on

4+ un, + Szum =0

on 0 <x <L with periodic boundary conditions and initial data of the form
2mx
u(x, 0) =sin —,
(x,0) 7

Zabusky (1969) found empirically that the recurrence time obeyed

0.71
Tr =—T, ]
5 b
where T, is the time at which the solution with 8 =0 breaks down. Can this

formula be derived analytically? For what conditions does it apply? Is there
a natural generalization to a wider class of initial conditions?



Chapter 3

Other Perspectives

Overview, We have seen in the previous two chapters that certain nonlinear
partial differential equations, when coupled with appropriate boundary condi-
tions and initial data, can be solved exactly by the inverse scattering trans-
form, IST. It is worth noting that one obtains in this way the general solution
of the problem posed, which cannot be obtained by any other method known
at this time. Even so, IST is not the only possible approach to these problems.
In this chapter we consider some other viewpoints and methods for these
special equations.

Some order can be imposed on the wide variety of methods available by
grouping them in terms of questions they might answer. Here is an attempt at
such a grouping, which includes viewpoints that will be discussed in this chapter
as well as some that are omitted.

Characterizing IST problems. Problems that can be solved by IST possess a
great deal of structure, which may include solitons, an infinite set of conserva-
tion laws and a complete set of action-angle variables. Other problems do not
possess this extra structure, and presumably cannot be solved by IST. Thus the
problem arises of characterizing the set of partial differential equations that
can be solved by IST. The practical question is whether there is a relatively
simple test that can be applied directly to a given problem to determine
whether it can be solved by some version of IST. This question is relevant
for partial differential equations, differential-difference equations, partial
difference equations, etc. In this chapter, however, we concentrate almost
exclusively on partial differential equations.

It is generally believed at this time that if a problem in (1+ 1) dimensions
has a Bicklund transformation (§3.1), or a non-Abelian pseudopotential
(§ 3.2), or an N-soliton solution (perhaps N = 3 is sufficient, but N =2 is not;
Hirota (19794, §3.3, §3.6)), then it should be solvable by some version of IST;
i.e., these conditions are thought to be sufficient for IST. On the other hand,
the requirement that a partial differential equation have the Painlevé property

151
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(§ 3.7) has been proposed as a necessary condition for a problem to be solvable
by IST. Whether any condition is both necessary and sufficient is unknown.

In more than (1+1) dimensions, Zakharov and Shulman (1980) have
proposed a method based on whether or not the linearized dispersion relation
admits resonant triads. The Painlevé conjecture (§ 3.7) may also be used in
higher dimensions. The relation between these two concepts is unknown at
this time.

Finding the scattering problem. Given that a problem has the structure
required for IST, is there a systematic procedure to find an appropriate
scattering problem? Better yet, is there a method to identify scattering prob-
lems that is comprehensive enough that its failure implies that the problem in
question cannot be solved by IST? That is, can we settle (a) while solving (b)?

Historically, the most successful method for finding scattering problems has
been clever guesswork, perhaps with inspiration drawn from a known Béck-
lund transformation (§ 3.1). Pseudopotentials (§3.2) offer an alternative
approach that involves less guessing and is exhaustive in some cases. Chen,
Lee and Liu (1979) have proposed another method based on linearization
which simultaneously tests the evolution equation and constructs a scattering
problem if one exists. Satsuma (1979) has proposed making use of soliton
solutions and bilinear forms in construction of Biacklund transformations and
scattering problems. Geometric and group theoretic methods also have been
used in special cases.

Special solutions. A viewpoint with some appeal is to abandon the search for
general solution, and to concentrate instead on the special solutions that these
problems possess (e.g., N solitons on the infinite interval, N-band potentials
for the periodic problems). “Direct” methods have been developed (§ 3.3,
§ 3.6) to find these special solutions. These methods ordinarily are simpler and
more direct than IST, and they avoid some of the delicate analytical questions
that arise in the study of scattering problems. As an added bonus, the direct
method also may generate solutions outside the function-class to which IST
applies in its current form. This wider set of solutions includes rational
solutions (§ 3.4), higher dimensional solitons and lumps (§ 3.6), and self-similar
solutions, including Painlevé transcendents (§ 3.7).

What's going on? Some of the work in this field is aimed not at discovering
the next equation solvable by IST, but at learning why this miracle should work
at all. Some work suggests that group theory is at the heart of the miracle (e.g.,
Corones, Markovski and Rizov (1977), Kazhdan, Kostant and Sternberg
(1978), Berezin and Perelomov (1980), Hermann (1978)). Related viewpoints
focus on differential geometry (Estabrook 1981)) and on algebraic structures of
Hamiltonian operators (Gel'fand and Dikii (1977), Adler (1979), Lebedev and
Manin (1978), Dorfman and Gel’fand (1979)). Deift and Trubowitz (1980)
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view problems solvable by IST in terms of infinitely many coupled oscillators
constrained to lie on a hypersphere. This description applies both to the
periodic problem and to the problem on the infinite interval.

Exploiting the structure. Another viewpoint is simply to accept that these
problems possess a great deal of structure, and to use the structure to expand
our range of mathematics. The development by McKean and Trubowitz (1976)
of hyperelliptic functions with infinitely many branch points is an example, as is
the work of Novikov and Krichever (1980} on generalizing hyperelliptic
functions.

In summary, there is a wide variety of approaches to problems solvable by
IST. Some of these approaches are discussed in this chapter.

3.1. Backlund transformations. The focus of this section is on transforma-
tions of locally defined solutions of partial differential equations. It may happen
that these local solutions can be extended into the global solutions discussed
in the previous chapters, but the possibility of such an extension is not germane
here. Throughout this section and in § 3.2, a “*solution’’ of a partial differential
equation must be defined only on some open connected domain, and does not
necessarily satisfy any particular boundary or initial conditions. Moreover, this
solution will be understood to be a classical (or ‘‘strong”) solution. For
example, if u(x, t) is to be a solution of KdV, then (u, u, u,, ., u,,,) all must
be defined pointwise in some local domain, and

U, +0uu, + ., =0.

For simplicity, we will restrict our discussion to {(systems of) partial differen-
tial equations in two independent variables, (x, ). Because the entire analysis
will be local, no distinction between time-like and space-like variables is
relevant. It will be convenient to use

Du)=0 and E(v)=0

to denote partial differential equations. Depending on the context, these may
denote the same equations or different ones.

We begin with some definitions.

DEFINITION. A relation

L{u, v, uyy v upy vy, - 252, 1) =0

{or a set of such relations) is said to map E(v) = 0 into D(u) = 0 if every {local)
solution of E(z)= 0 uniquely defines a (local) solution of D(u)=0.

Example. From Miura’s transformation,

(3.1.1) u=—-v, -0

’
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one computes
9 2
Ut Oul, + Uy, = —(a_+ 20)(v,—6v v, + Vsxx )
X

Hence, every solution of mKdV is mapped under (3.1.1) into a solution of
Kdv.

Example. The transformation of Cole (1951) and Hopf (1950),

f
3-1;2 _ ——x
( ) u=-2 PR

maps solutions of the heat equation into solutions of Burgers’ (1948) equation,
because (3.1.2) implies that

2vfd 6,
(3.1.3) U+ Ul — vuy, =—7(a—3>(0,—1/0,,).

Two points are worth noting here. The first is that this is the usual definition
of a mapping. It is included here only to emphasize that no new terminology
is needed to describe (3.1.1) and (3.1.2). Second, mappings do not necessarily
identify either D(u) =0 or E(v)=0. Thus,

(3.1.4) u,+cu, =0

is mapped into itself by either (3.1.1) or (3.1.2). In fact, (3.1.1) maps the infinite
sequence of “higher order mKdV’s” into the sequence of higher order KdV’s,
and a similar statement holds for (3.1.2) (cf. Exercises 1,2).

DEFINITION. A set of relations involving {x, ¢, u(x, )}, {X, T, V(X, T)} and
the derivatives of u and V is a Bdcklund transformation (BT) between
D(u;x,t)=0and E(V; X, T)=0if:

(i) BT is integrable for V if and only if D(u)=0;

(ii) BT is integrable for « if and only if E(V)=0;

(iii) given u such that D(u)=0, BT defines V to within a finite set of
constants, and E(V)=0;

(iv) given V such that E(V) =0, BT defines u to within a finite set of
constants, and D(z) =0.

(Recall that v, = f(x, t) and v, = g(x, t) are integrable for v iff v,, = v, i.e.,
they must be compatible.)

Example. In the theory of complex variables the Cauchy—-Riemann condi-
tions,

(31.5) Ux = Dy, Uy = Uy,
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are a BT from the Laplace equation to itself. To see this, eliminate u from
(3.1.5) to obtain
(3.1.6) Ve + Uyy = 0.

Then, given v satisfying (3.1.6), (3.1.5) defines u to within one constant

Uo = u(xo, yo). Because (3.1.5) is symmetric, this function u must also satisfy
(3.1.6).
Example. The transformation actually discussed by Bicklund (1880) is

b9 (29 men(t5Y (55 ~Len(2).

2 2
which transforms the sine-Gordon equation
(3.1.8) b = Sin P

into itself. Again, this is verified by cross differentiation of (3.1.7).
Example. The scattering problem for KdV is

(3.1.9a) ox + (P + u)yYr =0,

(3.1.9b) b= (@({) + )+ (4~ 2u)Y.

These relations also are a BT between the KdV equation and
3 x¥xx

(3110) d/t"'d’xxx_ad/_ﬁéﬂwx’—%:o'

In this case (3.1.10) is found by solving (3.1.9a) for u and substituting into
(3.1.9b), whereas KdV is found by compatibility (.., = ¢, ). Note that u is
uniquely determined from ¢ (except where ¢ vanishes), whereas ¢ is only
determined by u to within two arbitrary constants (¢ and . at {xo, fo}).

The distinction between a BT and a mapping is this. Given v, a mapping
uniquely defines u but does not specify either D(u) =0or E(v) = 0. A BT need
not define u uniquely, even given v, but does specify both D(u)=0 and
E(v)=0. Often a BT can be constructed from a mapping by specifying an
appropriate evolution equation.

Example.
(3.1.11a) Uy =—u—v’,
(3.1.11b) 0= 6070, ~ 0,

is a BT between KdV and mKdV. Note that (3.1.11a) is just (3.1.1). If desired,
(3.1.11b) can be rewritten without any x-derivatives of v by using (3.1.11a)
repeatedly.

Similarly, (3.1.9a) by itself is a mapping from ¢ to u (in a domain in which
¢ #0).
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For the sake of comparison, let us mention some of the other types of
transformations possible.
(i) The simplest is a point transformation,

(3.1.12) u=u(v;x,t).

Given a two-dimensional surface defined by v(x, t), (3.1.12) defines a new
surface. No differential charac.zr is implied. An example is (3.1.1).

(ii) A contact transformation (or tangential transformation, or Lie transfor-
mation) is characterized by the geometric property that surfaces in one space
with a common tangent at a point are transformed into surfaces in another
space with a common tangent at the corresponding point. If v(x, ¢) is trans-
formed into u(X, T), the transformation is a contact transformation if

(3.1.13) du —uxdX —urdT =(dv — v, dx — v, dt)p,

where p is a nonvanishing function of (v, v,, v;; x, t). The theory of these
transformations was developed by Lie; an ancient reference is Forsyth (1906,
Vol. I). An example is the hodograph transformation, used in gas dynamics,
in which the role of the dependent and independent variables is reversed.
However, these differ from BT’s in that neither u nor v is required by (3.1.13)
to satisfy any particular differential equation.

(iit) Contact transformations may be generalized to require that higher
order contact be preserved under the transformation. Such a transformation
has been called a Lie-Bdcklund transformation (Anderson and Ibragimov
(1979)). The choice of nomenclature is somewhat confusing because it is
apparently unrelated to the Béacklund transformation defined here (but see
Fokas (1980), Ibragimov and Shabat (1979)).

(iv) Another definition of a BT, in terms of local jet bundles, was given by
Pirani (1979).

Now we come to the main point. What do BT’s have to do with solitons and
IST? There are a variety of answers to this question, but the most fundamental
seems to be this: the scattering problem and (associated time dependence) that
constitute an inverse scattering transform also constitute a Bicklund transfor-
mation. We have already seen, in (3.1.9), that the scattering problem for KdV
is also a BT. In fact, this identification can be proved rather easily for a large
class of problems.

THEOREM. Let

(3.1.149) v1, +ilvy = qua, V2, — IV = rvy,
(3.1.15) V1, =Av+ Bv,, vy, = Cvi— Av,,

and let w=(q, r) satisfy evolution equations D(u) =0 consistent with (3.1.14)
and (3.1.15), and with polynomial linearized dispersion relations. Then for every
£, (3.1.14) and (3.1.15) form a Bdcklund transformation between D (u) =0 and
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some E(v; {)=0, where E(v; {)=0 is a pair of partial differential equations for
v = (1, v2) involving ¢, but not u.

Proof. By hypothesis, the integrability condition of (3.1.14) and (3.1.15) for
v is D{(u)=0; this is condition (i) of the definition of a BT. Then, given u
satisfying D(u) =0, the scattering problem defines v to within two constants
(in Chapter 1, these were fixed by boundary conditions as x —» +c0, say). This
is condition (iii) of the definition. Conversely, given any smooth v in a
neighborhood in which neither v, nor v, vanish, (3.1.14) defines u uniquely;
this is condition (ii). Finally, because D(u)=0 has a polynomial linearized
dispersion relation, (A, B, C) may be found explicitly in terms of u and its
x-derivatives via a finite series expansion (cf. § 1.2). Then from (3.1.14) it
follows that (A, B, C) may be given in terms of {, v1, v; and their x-derivatives.
With this substitution, (3.1.15) becomes E(v; {) =0, which v must satisfy. This
is condition (iv) and completes the proof. U

The identification of a scattering problem as a BT is not restricted to
evolution equations with polynomial dispersion relations, or to this particular
scattering problem. We shall not attempt to prove a more general theorem
here, but some examples that lie beyond these restrictions are given in the
Exercises.

We have now given three different interpretations of IST:

(1) IST is a generalization of the Fourier transform that applies to certain
nonlinear problems;

(2) IST is a canonical transformation to action-angle variables of a com-
pletely integrable Hamiltonian system.

{3) IST is a Backlund transformation.

Each interpretation is valid, and emphasizes some aspect of IST. Whether any
of them satisfactorily answers the question “Why should IST work at all?”
depends to some extent on the tastes of the reader.

Given that a certain differential equation has a one-parameter family of
BT’s (i.e., the scattering problem) that relate it to a family of other equations,
it may not be surprising that one can construct from these a BT from the
equation to itself. The simplest way to do this was developed by Chen (1974),
(1976). To illustrate his method, let us derive the BT from KdV to .itself,
starting with the scattering problem for KdV. If we define v =,/¢, then
(3.1.9a) becomes

(3.1.16a) vx=-—g’2-u—vz,
and (3.1.10) is equivalent to
(3.1.16b) 0, =6(0" + {)0x — Dynss

This transformation is simply a generalization of (3.1.11), to which it reduces
if £*=0. The essential point of Chen’s method is this: if v is a solution of
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(3.1.16b), then so is (—v). Thus, (3.1.16a) produces two different KdV sol-
utions, i and ', from the ‘“‘same’ v:

Uy =—(2—u—vz,

(-0} ==L —u'—(-v)".

Adding and subtracting these yields

(3.1.17)

u+u' 5,
={"+v",

(3.1.18)

Define a potential function w such that u = w,. Then it follows from (3.1.18)
that

(3.1.19) —(W;W')x =;2+(W‘Tw')2.

This is the x part of the BT from KdV to itself, originally found by Wahlquist
and Estabrook (1973). The other component comes from substituting these
into (3.1.16b):

w—w' w+w\ fw—w' w—w'
(3.1.20) ( 2 ),+6( 2 )( 2 )+( 2 \)m_o.

Equations (3.1.19, 20) are a BT between
(3.1.21) wi+3wi+wy,, =0

and itself. The solution of KdV is obtained from u = w,,

The main point here is that ' may be constructed from u because v » (—v)
leaves (3.1.16b) invariant but changes (3.1.16a). This same device cannot be
applied directly to the scattering problem, because ¢ = (—¢) leaves both
(3.1.10) and (3.1.9a) invariant. The appropriate symmetry to exploit in this
case is - 1/¢, which leaves (3.1.10) invariant but changes (3.1.9a). The
equations corresponding to (3.1.17) in this case are

m Y
u=-¢ v
(3.1.22) v o\
P g2 ¥xx Yx
u' = §+d] 2($).

Manipulating these equations yields (3.1.19) as before.
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It should be emphasized that (3.1.19) is appropriate for all of the higher
order KdV equations, which have the same (spatial) scattering problem,
{3.1.9a). The ¢ component, (3.1.20), identifies which equation is being trans-
formed.

The derivation of BT’s from an equation to itself, starting from the appropri-
ate scattering problem, also was discussed by Ablowitz, Kaup, Newell and
Segur (1974) and by Konno and Wadati (1975).

Historically, Bicklund transformations have been useful both in the dis-
covery of scattering problems and as a means of generating special solutions
to these problems (e.g., solitons). We have seen why BT’s often have led to
scattering problems. Next, let us see how to generate special solutions from
BT’s. In particular, we consider one-parameter families of BT’s between an
equation and itself, such as (3.1.7) for the sine-Gordon equation, or (3.1.19)
and (3.1.20) for KdV. Then, if one solution of the equation is known, an
integration of the BT yields another solution. In each case studied, however,
even this integration can be avoided most of the time by showing that the BT
in question admits a “theorem of permutability”, as discussed by Lamb (1974),
(1976). This theorem was first discovered by Bianchi (1902) for the sine—
Gordon equation, (3.1.8). From (3.1.7), he showed that four solutions of
(3.1.8) are related by

(3.1.23) tan (¢4—¢1) _ata (¢2—¢3>’

4 a,—a, 4

where (a;, a;) are arbitrary constants. This result can be used to generate an
N -soliton solution of (3.1.8), as shown by Lamb (1971). Given a BT from an
equation to itself, it is ordinarily not too difficult to find the formula cor-
responding to (3.1.23), but proving its validity gets rather involved. More
details may be found in the papers of Lamb (1974), (1976). (See also § 3.3,
where we discuss BT’s in terms of Hirota’s bilinear equations.)

Roughly, the effect of a BT on a given solution of KdV (say) is to add or
subtract one soliton. This may be stated more precisely if the original solution
(uq) satisfies

(3.1.24) I [uol(1 +]x|) dx < 0.

We now show that the effect of applying the BT to ug is to create u;, which
also satisfies (3.1.24) and whose spectrum (as a potential in (3.1.9a)) differs
from that of uo by exactly one discrete eigenvalue. The presentation given here
is based on work of Deift and Trubowitz (1979); see also Miura (19765,
especially the paper by Wahlquist), Wadati, Sanuki and Konno (1975) and
Calogero (1978b). Note that time dependence is irrelevant to this argument,
and therefore is suppressed. Because it is irrelevant, the result also applies to
any of the higher order KdV’s, whose scattering problem is (3.1.9a).
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Let uo(x) be real and satisfy (3.1.24), and have n discrete real eigenvalues
A=—-k2<- <=k in
wxx+u0d’=—Ad/: -0 < x <00,

The possibility that n =0 is not excluded, and ue; may have a continuous
spectrum as well. Let { > K,z,, and let g(x) satisfy

(3125) gxx + uOg = {2g7

with g(x) > e > 0 for all x. Deift and Trubowitz (1979), generalizing a theorem
of Crum (1955), show that if u; is defined by

2

(3.1.26) u1=u0+2—d—§log 8
dx
then u; satisfies (3.1.24) and has n + 1 discrete eigenvalues (A = —{ le—ilc
coe<—kd)in
(3127) ¢x1+u1¢= _All’

Moreover, the eigenfunction corresponding to (—¢ %yis 1/g(x), as may be seen
by direct substitution in (3.1.27).

To relate (3.1.26) to (3.1.19), set v = g,/g. Because g=>¢ >0, v is defined
everywhere. Using (3.1.25) we have

B (&)
v,=£—(—") ,
g g
i.e.,

(3.1.28) vx=—uo— (-3 =0,

which is Miura’s transformation. With w, = i, (3.1.26) becomes
(wl)x = (WO)x +20x’

so that

and by (3.1.28)

(W1+Wo) _ {2_(W1 - W0)2
2 . 2 ’
which is just (3.1.19) with %> =%, If uo and u, satisfy (3.1.19) and each
satisfies KdV, then (3.1.20) is necessarily satisfied.
In this case, we have shown that the BT adds one discrete eigenvalue to the

spectrum, i.e., it adds one soliton. Alternatively, if we had taken u; as given,
then uy is defined by (3.1.19, 20) and the requirement that u,- 0 as x - 0.
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This uo satisfies KdV and has the same spectrum as u,, less one discrete
eigenvalue. In general, solitons may be either added or deleted by BT’s. More
generally, Deift and Trubowitz (1979) derive the N-soliton formula for KdV
directly from Crum’s theorem.

To simplify the presentation, we have concentrated exclusively on BT’s for
partial differential equations in this section. However, the close analogy
between continuous and discrete problems discussed in § 2.2 suggests that
discrete BT’s ought to play a role in the theory of partial difference equations
analogous to the role of the continuous BT’s discussed here. Work on discrete
BT’s is of much more recent origin, but several examples of discrete BT’s
between certain partial difference equations and themselves have been found
by Chen (1974) and Hirota (19774,c), (1978), (19795).

We have not yet addressed the question: How does one determine whether
a given partial differential equation has a Backlund transformation, relating it
to itself or to any other equation? This question was addressed by Clairin
{1903), but we defer a discussion of his method to the next section.

3.2. Pseudopotentials and prolongation structures. As in the previous
section, our interest here is in local solutions of partial differential equations
in two independent variables. Pseudopotentials, originally discussed by
Wahlquist and Estabrook (1975), (1976), are closely related to Bicklund
transformations and IST; the terminology is somewhat different. (At first sight,
the terminology appears to be very different, because the theory of
pseudopotentials usually is developed in terms of exterior differential forms;
e.g., see Morris (1979) and the references therein. However, as noted by
Corones (1976) and Kaup (1978), that framework is not necessary for the
development. The presentation given here does not require familiarity with
differential forms.)

3.2.a. The basic concept. The original work of Wahlquist and Estabrook
was motivated by the fact that the KdV equation has an infinite set of local
conservation laws of the form

aT; aF;
=

” i=1’2!.."
df  dx

where {T;, F;} are known functions of u(x,t), here a solution of KdV, its
x-derivatives, and {x, f}. Every such conservation law defines a potential
function, w;:
9’%= is B_Wi-_““TG
at ax
ie.,

3.2.1) dw;=F;dt—T;dx



162 CHAPTER 3

is an exact differential. Given u and its derivatives, w; may be obtained by
quadrature from (3.2.1). For example, writing the KdV equation as
u, + (3”2 + uxx)x = 01

we obtain its simplest potential,

(3.2.2) we=3u+ Uy,  We=-—u;
ie.,
(3.2.3) Wi, )= — J’ u(E, 1) di.

With appropriate restrictions, (—w) satisfies (3.1.21). Thus, for a given solution
of KdV, w is a function of {x, ¢}, defined by (3.2.3). Alternatively, considering
all possible (local) KdV solutions, one may think of -w as a function of five
independent variables, {x, ¢, u, u,, u..}, with w defined to within a constant by
(3.2.2).

Once w is fixed (by choosing this constant), one may enlarge the space of
independent variables to {x, ¢, u, u,, 4., w} and seek new potentials defined on
this large space. This is called ‘‘prolonging” the original set of variables, and
the sequence of potentials obtained by repeated prolongation determines the
prolongation structure of the original problem.

The next potential, w,, (if it exists) satisfies equations of the form

(Wi)e = AX, 4, U, Uy, Uex; W),

(3.2.4)
(wl)r = B(x, I, U, Uy, llxx',W),

where A and B are to be determined from (w1), = (w1),, (integrability), and
the fact that u satisfies KdV. Proceeding in this way, one finds a sequence of
equations of the form (3.2.4); at each stage, the right-hand sides, A and B,
involve the original variables plus all of the new potentials that already have
been found. Once A and B are known, the equations may be integrated by
quadrature over known functions.

Alternatively, if one allows the unknown potential to enter into the right-
hand side as well, then the sequence of equations like (3.2.4) is replaced by a
coupled set of equations of the form

ax(wi) =Ai(x’ by Uy Uyy Uyy W)

3.2.5
( ) 3(wi) = Bi(x, t, u, Uy, Uxe; W)

L stz

where w = (wy, wa, * + +, wy). With N fixed and A and B known, solving (3.2.5)
means solving coupled partial differential equations, in contrast to the previous
sequential quadratures. Thus the solutions of (3.2.5) are not necessarily limited
to the sequence of potentials discussed above. Wahlquist and Estabrook
(1975) called the solutions of (3.2.5) pseudopotentials. For reasons to be given
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later, pseudopotentials that are not (one-to-one) equivalent to a sequence of
potentials are called non-Abelian.

Examples. (1) The BT between KdV and mKdV, (3.1.11), is also a
pseudopotential, because (3.1.1) may be put in the form of (3.2.4), i.e., (3.2.5)
with N = 1:

U, =—U— UZ,
U=ty + 207+ 200 = 2u0.
(2) The scattering problem for KdV, (3.1.9), may be written as
Ue=¢, o=@+ u + (407 ~2u),
b=~ H w0, b=[un— @ =20+ + (@~ u)é.

Thus, the eigenfunctions for {3.1.9) are also pseudopotentials, with N =2,

(3) The generalized Zakharov-Shabat scattering problem (1.2.7), with A,
B and C determined by a finite series expansion, is in the form (3.2.5), with
N =2. All of these examples are non-Abelian. The last two also happen to be
linear in the pseudopotential.

It should be clear that pseudopotentials, Backlund transformations and IST
are all very closely related by the underlying concept of compatibility of 9,, 3.
In particular, a linear scattering problem (without boundary conditions) for a
given partial differential equation is, by definition, also a pseudopotential.
Therefore, if it can be determined that a given equation is not consistent with
any pseudopotential, linear or not, then there is no scattering problem and the
equation cannot be solved by IST.

Thus we come to one of the fundamental open questions in this subject:

For a given partial differential equation, is there a systematic procedure that
always finds a pseudopotential if one exists, and fails conclusively if none exists?

The question is relevant for any number of independent variables, but we
restrict our attention here to two: {x, ¢}.

3.2.b. Problems with polynomial dispersion relations. The clearest results
apply to equations that are first order in ¢ and of finite order in x; i.e., the
linearized dispersion relation, w(k), is polynomial. We will show below that,
subject to some restrictions on its form, the question of finding a pseudopoten-
tial always can be reduced to a certain question in the theory of Lie algebra. As
we will show, an important consequence of this reduction is the following fact:
if a given equation has no linear pseudopotential, then it has no pseudopoten-
tial at all.

The method of Wahlquist and Estabrook (1975), (1976) for finding
pseudopotentials also has been used by Corones (1976), Corones and Testa
(1976) and Kaup (1980). It overlaps significantly with the much older method
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of Clairin (1903), which was used by Lamb (1974), (1976) and others. We
illustrate the method by considering Burgers’ equation,

(3.2.6) U+ U, = Uy,

Our interest is in all possible (local) solutions of (3.2.6), so0 (i, u,, U, * * +) all
may be given independently at a particular point, with ¢-derivatives then found
through (3.2.6). If complex solutions were permitted, x-derivatives of u™ also
would be independent. We seek a pseudopotential that depends on u and its
derivatives, up to but not including the highest derivative in the equation. For
(3.2.6), this means

ax (ql) = A,’(H, Uy, q)
8:(q:) = Bilu, us, q)

where q=(q1, - * *, qn), fOr some finite N.
(i) If N =1, then ¢ is a scalar and (3.2.7) is in the form of a BT.
(ii) If A; and B; are linear in q, then

0,(qi) = Aiq;

3,(qi) = Byq;,
where A;(i,u,) and By(u, u,) are N XN matrices (summation over the
repeated index in (3.2.8) is implied). If A;; and B;; also contain a free parameter
(i.e., an ‘“‘eigenvalue’’), then (3.2.8) is a candidate for a linear scattering
problem. We will see below that if any pseudopotential exists, then a linear

one {of some finite dimension) exists.
For fixed A, B, (3.2.7) is integrable for q only if

(3.2.9) (@Qx = (Q)x-

This is the fundamental requirement for a pseudopotential. It is worth noting
that in Chapter 1, the basic equations (1.2.8) were obtained by the same
requirement (integrability of (1.2.7)). For Burgers’ equation (3.2.6),

(3.2.7) }, i=1,-+,N,

(3.2.8)

oA A
Qx: = (uxx _uux) +(uxxx_(uux)x) + (B' V)Aa
ou oL,

(3.2.10)

3B B
=y, —+ U, —+ (A V)B,
G = tx b o = (A D)

where (A - V)=Y, A, 3/3q;. Because u,,, is (locally) independent of u, u,, u,.,
(3.2.9) cannot be satisfied unless

(3.2.11) 9A 0.

au,
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Similarly, the coefficients of u,, must balance:

B e @ =22 ()
o, oM V=G
so that
oA
(3.2.12) Blu,u,q) = uxgg(u, q +C(u, q).

Thus (3.2.9) becomes

A oC EYN oA
3.2.13 208 S S ,[—— ] _
( ) u Py uau uu " u au’A +[C, A]=0,
where
(3.2.14) [A,B]=(B -V)A—-(A-V)B.
For N=1,

9A
[A,B1=B°~-A §=Bzi(’—4—),
aq aq aq\B

whereas for linear pseudopotentials [A, B] is proportional to the usual commu-
tator of matrices:

(3215) [A, B]z(A,‘ijk“B”'Ajk)qk

{proof by computation).
In (3.2.13), the dependence on u, is now explicit. The coefficient of
u: (i.e., 3°A/ou’) must vanish, so that

(3.2.16) A =ua(q)+B(g).
Then the coefficient of «, in {3.2.13) becomes

2 Cu, )+ ue(@) + [, B1=0,
ou

which can be integrated:
2

(3.2.17) C=~%a—u[a, B1+5(q).
Define

(3.2.18) v(q) =[a, B],
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and substitute (3.2.16-18) into (3.2.13). The coefficients of u*, u and 1, along
with (3.2.18), are

(o, ¥]+3y=0,
[@, 8]1-[B, ¥]=0,
(3.2.19)
[8,.B]=0,
[, B]-v=0.

Thus, (3.2.6) has a pseudopotential of the form (3.2.7) if and only if (3.2.19)
has a nontrivial solution. For evolution equations that are first order in time
and of finite order in x, the existence of a pseudopotential always reduces to
finding a nontrivial solution of a set of relations like (3.2.19). For example, the
reader may verify that if we had started with Fisher’s (1937) equation (a
popular model of population dynamics, cf. Hoppenstaedt (1975)),

(3.2.20) ut=uxx+u_u2’

instead of (3.2.6), a similar calculation would have yielded

[, y]+a=0,
[o, 8]+[B, Y]-a=0,
(3.2.21a,b,c,d)
[8’ ﬂ] = O’
[a, B]—Y =0.

instead of (3.2.19). The calculation for KdV also follows these lines (Wahlquist
and Estabrook (1975)).

It is not difficult to find solutions for (3.2.19) by taking N = 1. One (nearly)
trivial solution is

(3.2.22) N=1, a=-% g=y=5=0,
so that (3.2.7) becomes

(3.2.23a, b) __u =L _”_2)
vdae N qx zq, q: 2(“,‘ 2 q.

The reader will recognize (3.2.23a) as the Cole-Hopf transformation (3.1.2),
and (3.2.23b) becomes the heat equation after u is eliminated. Note also that
(log q) is actually a potential, corresponding to the conservation law of (3.2.6).
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A less trivial solution of (3.2.19) is (for N =1)

9
@ =—-,
2
ﬁ:(:lq2~ 2 q,
(3.2.24)
G o
Y 2 q,
s GG 2 Ci
2 4 ¢
so that (3.2.7) becomes
(u+Cy)
L= 5 2 q+C1q2,
(3.2.25)
1 u C3 el 5
q = 2(ux > 2)q—7(u-Cz)q

In the special case (C; = %, C,=0),(3.2.25) is a BT between (3.2.6) and itself.
Thus, Burgers’ equation has a BT (to itself), and can be solved exactly (via the
Cole-Hopf transformation) (cf. Exercise 2). It has traveling wave solutions, but
no solitons and (apparently) only one conservation law of polynomial type and
independent of x, «.

The same procedure fails when applied to (3.2.21): there are no nontrivial
solutions of (3.2.21) with N =1 (Exercise 4). For the general case (N # 1), it
is helpful to introduce some concepts from the theory of Lie algebras. (More
information about Lie algebras may be found in the books by Jacobson (1962)
or by Samelson (1969), which are reasonably self-contained.)

3.2.c. Lie algebras. Let (v, - -, v,) be elements of a linear vector space,
V, {dimension m =n). The vector space can be made into an algebra by
defining an operation (“‘multiplication”) which associates with every pair of
vectors {vy, va} in V a product (v10,) € V. The operation of multiplication must
satisfy bilinearify conditions,

(1) (V1 +v2)03 = 0103+ VU3, vi(v+v3) =002+ U3,
(3.2.26)
(i) c(v1v2) = (cv1)v2 = vi(cva),

for any scalar .
Because the space has finite dimension (m), the operation is defined com-
pletely by a set of (m) basis vectors and an m x m multiplication table of these
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vectors. The algebra is a Lie algebra if its multiplication also satisfies

(l) D10y =0’
(3.2.27)
{it) (v1v2)va+(v203)vy +{0301)v, =0,

(ii) is the “Jacobi identity”. A Lie algebra is Abelian if
(3.2.28) 0102 =0,

forevery v, v2in V, and non-Abelian if any two elements of V have a nonzero
product.

Examples. (1) The solution (3.2.22) of (3.2.19) is an Abelian Lie algebra on
a one-dimensional vector space. A basis vector is a.

(2) The *‘special unitary Lie algebra,” su(2), consists of all complex-valued
2x2 matrices with zero trace, where ‘“‘multiplication” of two matrices is
defined by their commutation:

(3.2.29) [A, B]=AB-BA.

A basis for this vector space is

_1(0 1) __1_(0 —1) _i(l O)
“Z\1 o) ¥T2\1 o) ¥T200 -1)

and it is easy to verify that
[sxy Sy]=523 [Sw sz]=sx7 [Sz, sx]zsw

so that su(2) is non-Abelian. Note that the scattering problem in Chapter 1,
(1.2.7a), has the form
v, =XV, v,=Tv,

where X and T are elements of su(2).

What has all of this to do with pseudopotentials? By hypothesis, the vectors
{a, B, v, 8} in (3.2.19) or (3.2.21) are elements of an N-dimensional vector
space. It is easy to show that the bilinear operation [A, B] defined by (3.2.14)
satisfies (3.2.26, 27). Thus a set of relations like (3.2.19) or (3.2.21) has a
solution if and pnly if the relations are consistent with some (finite dimensional)
Lie algebra. More- importantly, the original problem has a pseudopotential (of
the form specified) if and only if such a Lie algebra exists.

The general problem of determining whether a partially completed multipli-
cation table can be embedded in any finite dimensional Lie algebra is open at
this time. Even so, this connection with Lie algebras can be exploited, using
Ado’s theorem.

DEFINITIONS. A representation of an abstract Lie algebra is an explicit
identification of each element of the algebra with an N X N matrix, such that
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the multiplication table is satisfied. The representation is faithful if the only
element identified with the zero-matrix is the zero-element of the original
vector space.

ADO'S THEOREM. Every finite dimensional Lie algebra has a faithful finite
dimensional representation.

The proof may be found in Jacobson (1962, p. 202). The consequence of
the theorem is that it is always sufficient to look for linear pseudopotentials like
{3.2.8), and to look for matrix solutions of systems like (3.2.21). (This result
applies to systems that are first order in ¢, and of finite order in x.)

A system like (3.2.21) always has a trivial solution (@=B=y=8=0), as
well as nearly trivial Abelian solutions

a=y=0, [B.8]=0.

We now show that every Abelian Lie algebra corresponds to a sequence of
potential functions, which in turn corresponds (at best) to a sequence of
conservation laws for the original problem. Given an evolution equation for u
(first order in ¢, pth order in x}, we seek a (linear) pseudopotential in a form
similar to {3.2.8). A calculation similar to that given above further restricts the
pseudopotential to

(3.2.30) q. =Za,'g¥,'(b qf=zb,9/‘b
i

I

where a;, b; are known scalar functions of (u, u,, * -+, wp-1)¢), and @; are NxN
constant matrices (elements of the Lie algebra). The system is Abelian if

(3.2.31) (@, @;]=0, foralli /.
Let A, be a simple eigenvalue of ¢, and v its eigenvector, i.e.,
ai1v = Ay
If [a1, @2] =0, then
a1{@av) = @21t = 2(A1t) = Arlgav);
thus (g,v) must be a multiple of v, i.e.,
@ov = A0,

so v is also an eigenvector of a,. Thus, two matrices that commute have
common eigenvectors. If a, (say) is diagonalizable and has a complete set of
eigenvectors, then it follows from (3.2.31) that'every ¢; has the same eigenvec-
tors. Thus, there is a coordinate system for q in which the right side of (3.2.30)
is diagonal, and each component of g satisfies two scalar equations of the form

g==rarqg  g.=Lbrq
! !
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Thus (log q) is a potential function, corresponding to the conservation law
0 d
(T ad) + =L b) =0,

Different components of g that correspond to different eigenvalues represent
different conservation laws. Moreover, one may show that an Abelian Lie
algebra gives only conservation laws even if none of the matrices a; is
diagonalizable (see Exercise 5). )

Because Abelian pseudopotentials give only conservation laws, it often is
asserted that the pseudopotentials of interest are non-Abelian. This is true
from the standpoint of IST, but Abelian pseudopotentials should not
necessarily be ignored, as was shown by the fact that the Cole-Hopf transfor-
mation follows from one.

Now let us return to Fisher’s equation, (3.2.20). It has a nontrivial
pseudopotential in the form (3.2.7) if (3.2.21) has a non-Abelian solution in
terms of N x N constant matrices. But (3.2.21) has no such solution (the proof
is somewhat involved, and is given in Exercise 7). Therefore (3.2.20) has no
pseudopotential, no BT and no linear scattering problem that depends only on
u and u,, i.e., none of the form (3.2.7). However, it is not clear from this
approach whether the method failed because of the structure of the equation
(3.2.20), or because of the form of the pseudopotential (3.2.7). There is no
known way to generalize the method so that its failure guarantees that the other
methods discussed in this chapter must also fail.

3.2.d. More general problems. To this point, we have restricted our
attention to equations whose linearized dispersion relations are polynomial.
The method begins the same way for equations of higher order, but the
problem does not necessarily reduce to a purely algebraic one, and it may not
be sufficient to look for linear pseudopotentials. To illustrate, consider the
second order equation

(3.2.32) Us = flu),

which includes the sine-Gordon equation as a special case. Under various
simplifying assumptions, Kruskal (1974), McLaughlin and Scott (1973) and
Rund (1976) all showed that (3.2.32) has special structure (extra conservation
laws or a BT) if and only if

(3.2.33) f=kf

for some k. However, Mikhailov (1981) has shown that there are other
functions for which (3.2.32) is in the 1ST class (cf. Exercise 8, § 3.7). These are
related to a third order eigenvalue problem, whereas those obeying (3.2.33) are
related to a second order eigenvalue problem.
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Let us seek a pseudopotential for (3.2.32), to find out whether (3.2.33) can
be generalized. Following the usual rules, consider

(3.2.34) q, = A(u, U, U, q), q. =By, u,, u, q).

Integrability (q,. = q..) requires that

dA B
(3.2.35) —=0= 4
au, ou,
and that
oA B A
(3.2.36) (A, B]+—u,——u,+(8 —ﬂ) ~0.
du u u, ou,

At this point, the difference between first order (in ¢) evolution equations and
higher order equations appears: none of the independent variables (i, u,, u,, q)
is completely explicit in (3.2.36). Thus, whereas (3.2.13) was reduced to the
purely algebraic problem (3.2.19), no such reduction is known for (3.2.36).
Solutions can be obtained by imposing additional restrictions on the form of
A, B (e.g., Forsyth (1906, vol. VI), Lamb (1976} or Anderson and Ibragimov
(1979)). Subject to these additional restrictions (3.2.32) has a pseudopotential
if (3.2.33)) holds. The general question, however, is open.

3.2.e. Summary. Let us summarize what is currently known about pseu-
dopotentials.

(i) The method presented here finds pseudopotentials for some problems.
A non-Abelian pseudopotential, once found, typically can be made into a BT.
If it is linear and contains an arbitrary parameter, it is a candidate for a
scattering problem.

(ii) Failure of this method on a particular problem suggests (only) that none
of the other methods discussed in this chapter will work either. (This is also
true of the “direct’” methods for finding N -soliton formulas presented in §§ 3.5
and 3.6.)

(iii) If the equation in question is first order in ¢ and of finite order in ¥, it
is sufficient to look for a linear pseudopotential. The problem then can be
reduced to one of finding a Lie algebra with a specified substructure. For any
specific case, it appears that this problem can be conclusively resolved, but no
general results seem to be available.

(iv) The situation is murkier if higher order derivatives are allowed to enter
into the pseudopotential, or if the equation is higher order. Then the existence
of a pseudopotential comes down to a set of differential~algebraic, rather than
purely algebraic, relations, and it is not known whether one may look only for
linear pseudopotentials without loss of generality.
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3.3. Direct methods for finding soliton solutions—Hirota’s method. One
of the areas of interest in the study of nonlinear wave propagation is the
development of techniques for finding special solutions to the underlying
equations. For those equations admitting soliton solutions Hirota has made
many significant contributions (for a review of some of this work see Hirota
(1976), (19795) and Hirota and Satsuma (1976)). It should be pointed out that
these direct methods virtually always work for equations where the IST is
known and sometimes work for equations where the IST is still unavailable.
In practice these direct methods have often motivated a search for the IST and
sometimes have suggested them (e.g., Satsuma and Kaup (1977), Nakamura
(1979b), Satsuma, Ablowitz and Kodama (1979), etc.). The basic ideas in this
direct method are as follows: (i) Introduce a dependent variable transformation
(this may require some ingenuity although there are some standard forms).
The transformation should reduce the evolution equation to a so-called bilinear
equation, quadratic in the dependent variables. Hirota has developed a novel
differential calculus and it is convenient to use it at this stage. (ii) Introduce a
formal perturbation expansion into this bilinear equation. In the case of soliton
solutions this expansion truncates. (iii) Use mathematical induction to prove
that the suggested soliton form is indeed correct.

In this section we shall carefully examine the analysis in the case of the KdV
equation. We shall briefly indicate the results for some of the other well-known
nonlinear wave equations as well as discuss other problems in which this
method gives interesting results.

3.3.a. The KdV equation as an example. Consider the KdV equation

(3.3.1) U, +6un, + ., =0.

In § 1.4 we saw that the N-soliton solution takes the form
d2

(3.3.2) u= PlogF,

where F is the determinant of a certain matrix. This form suggests transforming
(3.3.1) to an equation involving F. Substitution of (3.3.2) into (3.3.1), integrat-
ing once and setting the integration constant equal to zero yields

(3.3.3) F F—F.F,+F, . F—-4F.  F. +3F% =0.

Equation (3.3.3) is a quadratic form (Hirota usually refers to this as a bilinear
equation); such forms are typical once we have isolated the correct dependent
variable transformation. The introduction of the following special operator is
helpful in the analysis:

(3'3-4) D;.'"D;'a : b = (ax _ax')m(at —al')na (x: t)b(xlv t,)‘X'=x-

Using this definition (3.3.3) can be written in the form
(3.3.5) (D.D.+D3)F - F=0.
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The following properties, which are easily verified, are useful in working with
this new operator:

(3.3.6a) Dla-1=9)a,

(3.3.6b) DYa-b=(-1)"DYb - a,
(3.3.6¢) D7a-a=0, m odd
(3.3.6d)

- Kax— —
D:nD;'le(klx w ), e( KX —wyt) :(kl_kz)m(_wl+w2)ne(k1+k2)x (w1+w2)r.

There are many other relations involving this D operator. The reader may
wish to consult some of the above-mentioned review articles. The method
proceeds by assuming a formal expansion in powers of &,

(3.3.7a) F= 1+sf(1)+ezfm+- .,
where
N
(337b) f(l)= Z eﬂ', N = k,‘X _wit_'_ngo)’
i=1

and k;, w;, nf-o) are constants. In the case of KdV, and indeed all those problems
which admit N-soliton solutions, this formal perturbation procedure truncates.
Hence, substituting (3.3.7b) into (3.3.5),

(DD, +D)A+efV+e’f P+ ) (L+ef P+ P+ =0,
equating to zero powers of ¢, and using the properties (3.3.6a—d), we have
{(3.3.8a) O(1): 0=0,

(3.3.8b) Oe): 20,9, +39)f V=0,
(3.3.8¢) O(e?): 20,0, +d0f P =—(D.D,+DHf" - 7,
(3.3.8d) O(e®): 23,0, +00f =-2(D.D,+ DOfV - £,

The first nontrivial equation above, (3.3.8b), is homogeneous. For the
solution we take (3.3.7b). Unfortunately, if we try to continue to higher orders
with the solution (3.3.7b) for arbitrary N, the analysis becomes unwieldy. Most
frequently one obtains solutions for N =1, 2 (and sometimes N = 3) and then
hypothesizes a solution for arbitrary N and proves this by induction. For N =1
we take f''=¢™. Then (3.3.8b) requires that w, = —k3. The equation for f*
is then given by (3.3.8c). But it is clear that using (3.3.6d) reduces (3.3.8¢c) to

(3.3.9a) (3.0, +aDf? =0,
so that
(3.3.9b) =0,
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and the expansion then terminates. Hence for N =1 we have
Fi=1+e™,  wi=-k;

and

(3.3.10) u= k; sech’ %(klx —kit+n).

For the case of N =2, we take for one solution of equation (3.3.8b)

(3.3.11) fP=em+e™  m=kx—kit+n.

Then (3.3.8¢) reduces to

(3.3.12a)  2(3, 8, +90f? = ~2((k1 — k) (w1 + wp) + (ky —k2)*)e ™™ ™,

with the solution

(3.3.12b) £ = gt mtan
Ay ki—ki)z
(3.3.12¢) e _(—k,-+k,-

(note that k, # k,). Substituting £, %' into (3.3.8d) shows that the right-hand
side of (3.3.8d) vanishes, whereupon we take fm =0, Hence for N =2

(3313) F2=1+enl+e"2+e"l+"2+A12.

The two-soliton solution for KdV is obtained from u =2(d*/dx>) log F-.
Similarly, performing the analogous calculation for N = 3 yields

Fi=1l+eM+em+eM+em ' Mz 4 pmtmatai

(3.3.14)

Ny+tny+A +H,tntA LA LA
+ M2 M3 23 +e"‘1 ALY 12 13 23,

where Aj; is given by (3.3.12c¢).
On the basis of these solutions we hypothesize the general N-soliton solution

N N
(3.3.15) Fn= Zmexp ( ‘Zl Mini +1 ) I-‘vi"'liAi;'),
#=0, i=

=iy

where the sum over 4 =0, 1 refers to each of the u;,i=1,---, N. Before
proving by induction that (3.3.15) indeed satisfies (3.3.5), we mention how the
A; can be easily seen to be the phase shifts of the solitons from the above
formulae.

Consider the two-soliton case. Let us assume 0< k, < k, and define

&=x—kit, i=1,2.
Thus
& =—(k3 “k%)t'*'fl-
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In the frame of the first soliton, ¢ fixed, we take the limits as ¢ > £00, First, as
t-= 400, £ - —0, hence ¢™ -0 and

F2~ 1 +€ﬂl,
with
2 2 M

(3.3.16) u~%sech ~2—

Similarly as t-» —00, £&;» 400, ¢™ - +00 and

F2~e’72(1 +€"1+A12).

ax+bt

From (3.3.2) two solutions are equivalent up to a multiple of e . Hence the

solution is given by

2mt+An
s

Thus a two-soliton solution is such that a phase shift A, is produced upon
interaction (note that this is the same result as that of § 1.4; see (1.4.43)).
Similar ideas apply in the N -soliton case.

We now return to verifying the validity of the N-soliton solution (3.3.15)
(Hirota (1971)). We caution the reader that this is somewhat tedious. Without
loss of continuity one can pick up with the example of mKdV (equation
(3.3.32)).

THEOREM. The function Fy given by (3.3.15) satisfies (3.3.5).

Proof. Substituting (3.3.15) into (3.3.5) and using the relevant properties of
the D operators we have

k2
(3.3.17) u ~7’sech

4

25 (S (8 k) (£, ik |

i

(3.3.18)
X exXp (Z (wi+vidm + . ) _(I-lviﬂq‘ + ViVj)Aii) =Q.

=i<j

Since w;, »; =0, 1, it is clear that we only have exponential terms of the form

exp(z m+ Y 2n,->, 0=n=N, n=m=N
i=1 i=n+1

(where we might have to rearrange the indices). Next we show that the
coefficient of this general exponential term is zero, the coefficient being given

y |

N 4

A=§ g { ‘( Yy (p.,-—v,»)k;) (‘gl (wi— Vi)k?) +<§1 (wi "Vi)ki)

i=1

X exp ( T (g + Vivi)Ai}') cond (u, v).

i<j
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Here cond (u, v) is given by:

(fori=1, -, n we take only those u;, »; such that
D : witw=1, 0s=h=N;
(3.3.19b)
fori=n+1, -+, m we take only those u;, »; such that
cond (g, y)=j
Q@ : wi=w=1, 0=m=N;
fori=m+1,:--, N we take only those w;, »; such that
8 @ M ‘,L,'=V,'=0.
Let us call
(3320) T = ki — Vi, i=1,2,'-',n
Fori>n,o;=0({either u;,=v;=1,0ru;,=v;=0). Sincefori=1,---,n we
have u; +»; =1 (from (3.3.19b)), with (3.3.20) we have
1+0’,‘ 1-0','
(3321) Mmp = 2 s Vv = 2 .

With (3.3.21) all of the terms in (3.3.19a) with the exception of the exponential
term are readily transformed.
Using the numbering scheme in (3.3.19b) we evaluate the term

N
T=exp ( Y (s + vy )A.,>

i<j
=exp( Yy + ¥ +3¥+3¥Y+3 4+ Z )(p,-u,—+v,-1/,-)A,-,-.
D<@ O<@ O<B® D<@ Q<@ <3

The only contribution from this exponential which depends on oo; is the
“@< @ term. Hence T is given by

(3.3.22a) T = const. ): (I_c__—__k_) (1+00;)
i<y k k
_ n U'ik,' _Uiki)z
(3.3.22b) = const, E,-(——_k.- s

the latter relation being true since o; =+1 only. This then indicates that the
coefficient A is given by A = const. X 4, where
4

6323 A=73 { - (él o'ik,-) (z ok ?) + (); aiki) } 1 (ki = ik,

i=1 i<j

(note that we have absorbed the term ZL (1 (ki + k,»))z, into the multiplicative
constant).
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Now we show, by induction, that A=0.4is a polynomlal in the k;’s;
specifically, A= A(kl, , k,). We shall write this as A= A,, Also note that
the order of the polynomlal product Z,<, (o:ki —ak;) is 3n(n—1); hence we
have that the order of A is such that

(3.3.24) order (A,)=n’-n +4.

To carry out the induction we note that

(3.3.25a) Alk)=A,= ¥ {~(o1k)o:1k}) +oiki} =0,
ay=1

Alky, ko) =R= T {~(o1ks+0aka) ok +02k3) + (o1k1 + 0ak2)")

ay,o2=1
2
X (o1k,~ o2k2)

=3kiko(ki —k3)ki—k3) T oo

oy,0p=%1
=0.

(3.3.25b)

A(kl, - -+, k. ) has the following properties:
(1) » is even in the k; i.e.,
(3.3.26a) Alky, - ko k)= Ak, oy —kpy ey k).
(i1) An is symmetric upon interchanging k; and k;; i.e.,
(33.26b) Atky, - ki ok k) =By Ky ke k).

Equation (3.3.26a) is easily seen by replacing k; by —k; and ¢; by —o; (dummy
index) in (3.3.23). The only question as to the symmetry (3.3.26b} is with
regard to the product term. However, since

(3.3.27) (ki -k = ()" 1] (oki— k),
1=i<y i,i]':il
it is clear that the product term is symmetric on interchanging k,, k,.
Evaluate A, at k; =

An,k1=OEA(k1=03 k27 T, kn)

=5 5 (R ok (L okl)+(£o4)

(3.3.28) n
X H k2 (o'iki_a'jkj)z

2<l</

k?)fs i

]

ro
o
F=t
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(note that here 5,,_1=5(k2, ks, -+, k,)). Similarly, evaluating A, when
k, = k; yields

Adi=r= 2 Y {“((0'1+0'2)k1+ i O'iki) ((0'1"‘02)/(% + i Uikf)

ay.a==x1 other i=3
g==x1

i=3

4

(3.3.29a) +<(01+0'2)k1+ 5 cr,~k,-) }

=3

2,2 2 2 2

X(o1~02) k1 I (o1kr—0ok:) (02k2~oik;) 3H (oik; — aik;)".
i=3 =i<j

We see that the only contribution occurs when ¢y = —o; hence
4

An‘k1=k2=8k% y {_<.i a,-k.)-%—(li Uik?)+<,£: O’fki) }

(o3, 0,)==x1 i=3 i=3 i=3

(3.3.29b) 1 (k2 —k2)? (ki —ok;)’
i=3

3=i<j
=8k? I;I(kf —kDA, -,

where A, = A(ka, k4, " * * , k). By induction it is clear that both A,|,,-0=0,
A,,!kﬁkz =0 for all n. Hence A, is certainly factorized by k,(k,—k,). But
interchanging k; with any other k;, and similarly treating k, makes it clear that
for any i, j

A"Ik:‘:O’ Anlk‘»=k,—=0,

and therefore [S,, must be factorized by

n

1 & 11, Gk or Tk T G-k

But since A, is even in k; for all i, we have that A, must be factorized by
(3.3.30) Mk} T ki-kH
i=1 1§:<;
This implies that the order of the polynomial for A, must be at least of order
2n%ie
order (A,) = 2n°.

Since 2n°>n*—n+4 for all n =2, we have a contradictiﬂon; i.e., A, cannot
satisfy both the restrictions order (A,)) = n®—n+4,order (A,)=2n>. The only
way out of this is to have, for n =2,

(3.3.31) A,=0.
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From (3.3.25a), (3.3.31) is also true for n = 1. In this way we have proven that A
in (3.3.23) and hence A in (3.3.19a) vanishes, whereupon we have verified that
the N-soliton solution u =2d*(log Fn)/dx? satisfies the KdV equation. [

3.3.b. Some other nonlinear PDE’s. We now turn to another aspect of this
direct method. Hirota (1976) has pointed out that very often a useful depen-
dent variable transformation can be deduced. We shall illustrate these ideas
for the mKdV equation

(3.3.32) 0,4+ 6020, + Uyyx = 0.

Substituting the expression v = G/F into (3.3.32) and using the definition of
the D,, D, operators, we find

6 1
(3333) (D, +D)G -F+—135(DXG-F)(EDEF‘F—GQ)=O.
Since F, G are both arbitrary we decouple the equations as follows:
(3.3.34a) (D, +D>)G - F =0,
(3.3.34b) DF .- F=2G>

The motivation for this choice of decoupling is to build in the linearized
dispersion relation appropriately by (3.3.34a). The following expansion gives

soliton solutions (such that v » 0 as |x| = )
F=1+82Fz+€4F4+' t,
(3.3.35) )
G=eGi+e’ G+,

where each expansion truncates. For example a one-soliton solution has

(8 +89)G, =0,

Gi=em, m=kix~kir+n?,
(3.3.36) OiF2=Gize™,

F2—4—’12 ™,

F;=0, j=z4,

G,=0, j=z3

With this result, with ¢ = 1, a one-soliton solution of mKdV is given by

e™

3.3. —t
(3.3.37) P v e ake

=k, sech n,.
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Similarly a two-soliton solution has the formulae for G, F (v = G/F)

1 (ky=k\* oo 1 fki—ka\* oy
- Th+ "12+ (__) nytin, +__(___~) M '712,
G=el+emt i\ kioh,) ¢ 4 \k + k) €
(3.3.38a)

1, 1 , 2 N
=14+—= oy — "72+— MT
Felr e e st

Next note that F may be combined as

2 2
F=(Lenl+ie ) +(1___(1(_1.__&7'l,_e"1+"72)

(kl—k2)4 eZn‘+2n2
16k2k: (ky + ko)* :

2

2k, C " 2k, dkskalks+ ko)
(3.3.38b) ) Ao
With this combination G may be written as
(3.3.38¢) G=2D¢f,

hence v has the form

Dxé '.f éxf‘_ﬁté
3.3.39a v=2= =2 = o
( ) P+t TR+

or

(3.3.39b) v= 2(tanf' %) = ’(“’g (;: E))

If we define f = f +ig, we have the dependent variable transformation
kK
(3.3.40) = i(log [f_) .
With this new dependent variable transformation we find the bilinear
equations
(3.3.41a) (D, +D)f* - f=0,
(3.3.41b) D2f* - f=0.

After substitution of (3.3.40) into (3.3.32), N-soliton solutions are derived by

substituting fu=1+ f(”"' 2f(2>+
=1 ef Y R e

into (3.3.41), equating powers of ¢ and then taking ¢ = 1. One- and two-soliton
solutions are given by

— +im/2
fi=1l4em™ ™",
(3.3.42) fam14eMmTim2 L gmatimi2 L pmitmprint Ay,

ki— ki’
g, A.,=('__l).
n =kix — kit e ki +k;
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The N-soliton solution has the structure

N T
luf(ni+t—>+ ) /-Lil-LiAii>-

2 1=i<j

(3.3.43) fu= Y exp(
u=0,1

For completeness we next give the results for the sine-Gordon equation
(Hirota (1972); see also Caudrey, Gibbon, Eilbeck and Bullough (19734,5))
and the nonlinear Schrodinger equation (Hirota (1973a)). First, consider the
dependent variable transformation

(3.3.44) u =2i log (ffi)

for the sine-Gordon equation
(3.3.45) U, = 8in u.

(The reader might wish to recall the results of Chapter 1 which shows the deep
relationship between sine-Gordon and mKdV). Then, noting

(3.3.46) sin u 22%((];2)2-(];)2),
we find
(3.3.47) D.Df - f==3f*~f)

(and its complex conjugate) after substituting (3.3.44) into (3.3.45). A one-
soliton solution to (3.4.47) is given by

(3.3.48a) fi=1+em ™2

whereas the N -soliton solution satisfies (3.3.43) with

N w N
33480) o= 5 ew( L m(nril)t T uma),

#=01 l=i<j
where
n=kx —wi+ ni”,
(3.3.48¢) w; = %,

a,_ Uk~ koY@ —wg) _ (ki=k2)’

T atk)(witwy) (ki tko)

Alternatively, we note that if

f=F+iG, F, G real,
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then (3.3.47) can be written as
(3.3.49a) DD(F F-G -G)=0, D.D\F-G=FG

and

F-iG
(3.3.49b) u=2i logF G =4 tan F

In the case of the nonlinear Schrodinger equation {(Hirota (1973a))
(3.3.50) i+ g +ulfu=0,

one has a significantly more complicated structure for the N-soliton solution.
Substituting u = G/F, F real, into (3.3.50) gives

1 G
(3.3.51) Fz—(iD,+Di)G -F—F(DfF~F—GG*)=O,

whereupon we decouple the equation by choosing

(3.3.52) (iD,+D%G-F=0, DF- -F=GG*.
Hence
GG* DIF-F
(3.3.53) luf* = 77 = pr— = 200g F)y.
A one-soliton solution takes the form
G=eMm,
F= 1+e"1+""1'+¢1.'1 ,
(3.3.54) © )
m=pix—Oit+n;, Q= —ipj,

e?™ =3(p+p¥)

An N-soliton solution is given by

F= Z Dx(u BXP(Z pmit ¥ ¢.-,u.'u,-),

1=i<j

G= Dz(y)eXP( Y opwmit Z ¢uu»u,)

= e
=px~Qu+n", pin=pf, Qun=QF i=1,--- N,
nien =07, ;= —ip,z',
¢.».»={ Mpi+p)™ fori=1,2,---,Nandj=N+1,---,2N,
3pi—p)° fori=N+1,---,2Nandj=N+1,--+,2N,
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and where
N N
1 when ¥ ui= % tisrs
Di(u)=
B otherwise;
(3.3.55)
N N
1 whenl+) uion =2 i
Dz(l-_l-) = ! !
0 otherwise.

3.3.c. Discrete evolution equations. It is significant that many of the
previous ideas can be extended to handle discrete problems. (See, for example,
Hirota and Satsuma (1976a).) Here we shall indicate how the analysis proceeds
in the case of the Toda lattice, i.e.,

d2y
dr’

n Y

(3.3.56)

RS RS

e

If we define r, = y, — v, -1 and subtract two equations involving y, and y,_,, we
have

d’r, - - .,
(3.357) dtz =2€ n—p n+l —p n-t
If we define
(3.3.58) r. =—log (1+V,),

then (3.3.57) obeys

d’log (1+V,)
¢ gt * )

(3.3.59) o

= n+1—2Vn+Vn—1-

Physically speaking, (3.3.59) describes a certain nonlinear ladder network
where V, is the voltage across the nth node (Hirota and Suzuki (1970)).
The following dependent variable transformation is useful:

_d’logF,
" dr’

(note that here the subscript refers to the coordinate location, not the number
of solitons). Substituting (3.3.60) into (3.3.59) yields a bilinear (quadratic)
equation

(3.3.61) AD?F, F,=F,,F,—F% =F ,.,Fy_,—F-..

(3.3.60)

The analogue of the operator D, is D,, which satisfies

(3.3.62) ePra, by = e’ " auby| e = Ana1bn_1,
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8
where e~a,, = a,,,1. Thus

(3.3.63) cosh Doy, * by = 3(@ps1bn_1+ An_1bps1).
Using (3.3.62), we may rewrite (3.3.61) in the form
(3.3.64) 3D?F, - F,=(cosh D, - 1)F, - F,

or

(3.3.65) iD’F, - F,=2(sinh3D,)’F,  F,.

Again the perturbation approach works; i.e.,
Fo=1+eFY 12F? 4...
A one-soliton solution has F"/ )= 0,j=2and F M) = ¢™, The result is

F1=1+en1, T]1=k1n_CU1t,
(3.3.66)

2

k
2 LTS T
wy = (2 sinh 2) ;
hence the voltage is given by

w0’ 1
V.= —i-lsech2 3 1.

(A one-soliton solution may propagate to the left or right.) The N-soliton
solution has the form
N
(3.3.67a) F,= CXP( Y umi+t T Aij#i#/),
p=0,1 i=1 1=i<j

where

m=pn—Qit+ 715'0),

Q;=2¢ sinhip,  &==1,

A — (- er)2 —(2sinh %(p, —pj))z
(Q:+Q;)* — (2 sinh 3(p; + p)))°

or

sinh (p; — Pi))z .
LAY 7 & >0,
(sinh Wpi—p) if ece;
(cosh ipi—p)\’

(3.3.67b) A =
cosh 4(p; + p,-)) if £ie; <0

S

3.3.d. Backlund transformations in bilinear form. It is interesting, and will
be useful to us in later sections, to derive the Backlund transformations and
permutation relations via direct methods for the KdV equation. We begin with
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the N(fn)- and (N +1)(fn+1)-soliton solutions (here again the subscript N
refers to the number of solitons) satisfying KdV (in bilinear form):

(3.3.68a) D, (D,+D)fx * fxn =0,
(3.3.68b) D (D, +D3})fn+1 fne1=0,

We shall show formally that given fv we can find fy.1 by solving a linear
equation (Hirota (1974)).

Muitiplying (3.3.68a) by fa., and subtracting (3.3.68b) multiplied by fx
yields

(3.3.69)
P=[D.(D, +Di)f1v ’ fN]fN+1fN+l”‘[Dx(D!+Di)fN+1 “fvelfnfn =0.

Using the identities (which may be verified)
(3.3.70a)

(DxDrfN : fN)fN+1fN+1 _foNDxleN+1 * fN+1 = 2Dx[(DrfN : fNH) ‘ foN+1]
and

(3.3.70b) fN+lfN+1(D:fN 'fN)—foNDifAHI 'fN+1

=2D,[(Difn - fne1) fufaner=3(Difn - frver)  (Defn  fs)h
we have that P reduces to
(3.3.71) P=2D,[(D,+D})fxn * fus1=3(D3fn * fnr1) - (Dsfn * fne)]=0.
The Backlund transformation in bilinear form is obtained by choosing
(3.3.72a) szzv Cfner=AfNfNet,
(3.3.72b) (D, +3AD, +D)fn * fve1 =0,

since (3.3.72) satisfies P=0 (the new soliton solution contains the para-
meter A). The equations (3.3.72) are a bilinear version of the Bicklund
transformations given in § 3.1.

As an example, we show how to compute a one-soliton solution from the
vacuum state. A ‘“‘zero’’ soliton solution corresponds to fo =1 which yields
u = 0. f; then satisfies, by the Bicklund transformation (3.3.72a),

(3.3.73a) 3f1 = Afu,
(3.3.73b) (3, +3A 83, +83)f1=0.
The solution satisfying (3.3.73) is

— ,m/2 —-n/2
fi=eMT +eT ™M,

3 (0) k%
m=kix—kit+ny, A=—,

(3.3.74)
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Since u =242 log f, it is clear that
(3.3.75) fimem?(1+e™)s1+e™

X

(here f<g if and only if f = ¢***®g, where a, 8 are independent of x) in the
sense that the right and left sides of (3.3.75) yield equivalent solutions for w.
Moreover, if we had taken fi=e /Y™ then we would see that this is
equivalent to fo = 0. For this reason we take the linear combination (3.3.74).

It is easy to verify that, if we take f; given by (3.3.74), then the solution
generated by the Bicklund transformation is given by

fo=(kr = ko)€M 2 T2y L (4 gy g pmimmni2y
(3.3.76)
where n; = kix — k2t + 7. Note that
fo= (k1 —k2) e—(n,+n2)/2(1 _(%1__"_%) o™ ~(£1_i%z) eﬂ2+en1+n2)
Sl+eM+emem T A
(the usual two-soliton solution), where e®'2 = (k; — k2)*/ (k1 + k2)?, so long as
the phase constants are chosen appropriately, i.e.,

o k1—k2] )
Yy —_ ] "
¢ > [k1+k2 e

In general, the N-soliton solution that satisfies the Backlund transformation is
given by

N (eik:— ek N
(3.3.77a) fv= % H‘—q(—ﬁwexp (}: '1‘£mi>-
g==1 i=1 gik; 12

(3.3.77a) is equivalent to the usual N-soliton formulas (3.3.15). This may be
shown as follows. In (3.3.15) take ¢;=2u;~1, i=1,2,' -+, N and take a

convenient choice of phase factors 7" =n{"+n{, where expn'" =

—T10L 1 i (ki + k;)/ (k; — k;). Calling & = kix — kit +7{> we have that (3.3.15)
becomes

(3.3.77b) Fy= Y (-)NN*O2 f[1 eﬁ(s—lﬂ’ﬁ) exp(g l(e,-+1)a;’;-),

g=xl i<i\ Ki—k; i=12
where we have used

N N
(3‘3.77(:) (_1)21 (£i+1)/2= (_I)N H &

i=1

ﬁ (k, _kj)(55+1)(51+1)/2 ﬁ (k‘ +k]) (,+1)/2
1=i<j k,-+kj Li=1 k,"—kj

- N ek —ek;
= (=1)NWN-D/2 EK; — & ,)
( ) 1§<j( k,'—'k_,' ’

(3.3.77d)
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(3.3.77¢) (_1)(e,+1)/2(£,-_—_kl-) et e +11/2(o e 1/2 (e 10721 (eki— o)
3. ki+k; (ki — k)
ax+3

Using f==gif andonlyif f=¢ g, we have

3379 mee g M55 —kk))l'lllsk exp( % 2em).

e=x] i<j 1

It is clear that (3.3.78) is equivalent to (3.3.77a) since the factor H,<, 1/(k? -
k ) is simply a constant.

Next we use the Bicklund transformation (3.3.72) in order to derive a
soliton superposition (i.e., permutatiog) formula (Hirota and Satsuma (1978)).
First consider four solutions fnx-1, fx, fv and fx .1 with parameters defined by:

fNAl =fN—1(k1, T, kN~1), fN =fN(k1, T, kN—l, kN+1),
(3.3.79)
fN =fN(k1, e k-1, kN), fN+1 =fN+1(k1, ity kN—l, kN, kN+1),

and satisfying the Bicklund transformations

(3.3.80a) (D} =5k X)fn-1 fn =0,
(3.3.80b) (D? =3kX+1)fn-1+ fn =0,
(3.3.80c) (D% =k %e)fw - fne1=0,
(3.3.80d) (D} =3k 3)fn  fy1 =0,

Multiplying (3.3.80a) by f'NfNH and (3.3.80d) by fn-1f~ and subtracting one
from the other gives

(3.3.81) fufnerDifn-1 ) = fyv1fu(Difn + frvar) =0.

Given any four smooth functions of x(a, b, ¢, d), the following identity exists:
(3.3.82) (Dia:b)ed—abDi(cd)=D,((D.a " d): bc+(ad) (Dsc - b)).
With this identity (3.3.81) is reduced to

(3.3.83) D.[(Dufn-1*faer)  fvfn+(fn-1fner) - (Difn < fn)]1=0

Similarly we get from (3.3.80b) and (3.3.80c¢)

(3.3.84) D.[(D.fx* fn) - (fv-1fusr) +(nfa) - (Dafn-1- fau+1)]=0.

Subtracting (3.3.84) from (3.3.83) and noticing that D.a - b=-D,b * a, we
have

(3.3.85) D (Defn-1" fns1) - (fnfn) =0,
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which means D, fy-; - fix+1 is proportional to foN; ie.,
(3.3.86) D.fu-1+ faue1=Cfnfn-

The constant C is determined by any three-soliton solutions (at any location).
(3.3.86) is referred to as the soliton superposition formula. Hence, given fo =1,
we use the Bicklund transformations to develop f; and thereafter use (3.3.86)
to develop fv (N = 2).

It is instructive to see how the scattering problem and time dependence for
KdV can be derived from the Backlund transformation in bilinear form. We
define

(33873) u= 2(10g fN)xx - 2 fofo fo’

fu
(3.3.87b) y =t
fn
and observe that
(3.3.88a) Difwaartn_,,
f
Di +1°
(3.3.88b) Db I_y b,
~n
3 »
(3.3.88¢) Difwr Iy +u.
fn
Using (3.3.72) we have the IST pair
(3.3.89a) Yex + U =AY,
(3.3.89b) Y+ 30 + P +unr, =0,

from which ¢ = ¢ex. (Note that (3.3.89b) may be reduced to the form
¥, = Ay + By, by making use of (3.3.89a).) Thus we see that it is possible to
derive from the evolution equation itself, and its N-soliton solution, both the
Biécklund transformation and the IST pair.

3.3.e. Comments on some multidimensional problems. Finally we note
that this direct method of finding soliton solutions has been applied to certain
multidimensional nonlinear problems. We shall briefly discuss two such
equations.

First we consider a two-dimensional version of the KdV equation,
specifically the so-called Kadomtsev—Petviashvili (K-P) equation:

(3.3.90a) (u+6uu, + Uy ) +atty, =0, a==%1.
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Substituting u = 2(log f),, into (3.3.90a), we find
(3.3.90b) (DD, + D3 +aD3)f - f=0.

Satsuma (1976) has shown using the method described earlier that the follow-
ing N-soliton solution holds:

N N
(3.3.91a) f= 13X exp[ Y mipAGt+ X um.],
w=0,1 15i<j i=1
where
i = ki(x +piy — Cit), Ci=k; +ap%,
a, _3Uki=k) ~a(pi=p)
3(ki+ k) —alp—p)*

(3.3.91b)

This N-soliton solution expresses how N plane wave solitons interact with each
other.

Miles (1977a,b) has investigated certain circumstances in which the inter-
action of two such suitable plane wave solitons resonantly produces a third one
Specifically, he noted that the phase shift caused by the interaction of two
solitons could be made arbitrarily large. Miles’ idea can be seen from the
two-soliton solution of (3.3.90) when & = +1. We note that ¢ = 0 if we choose
the wavenumbers to satisfy

(3.3.92a) V3(ky —k2) £ (p1—p2) =0,
whereupon the two-soliton solution is
(3.3.92b) f=14+eM+e™.

If we assume k; >0, i = 1, 2, then as x > —co the only nontrivial portions of the
solution occur when n; = const. or 1, = const., whereupon u ~ (k;/2) sech’ 37;,
i.e., two plane wave solitons. However, as x - +00 the only nontrivial portion of
the solution occurs when 7;—7n;=const. (Note that f~e™(1+e™ ™)
(1+e™7™).) Thus we have only one plane wave soliton emerging from this
interaction: u = (k3/2) sech? jns, where

nN3= N1~ 7M2,
kiCi—k,Cs

ki=ki—ks kips=kip —kzpz. Cs=
ki—k,

If
w; = k,C,-

(the dispersion relation), then we may verify that from (3.3.92a) we have

w3 =W —wWj3.
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Thus k3=k;— k> and w3 =w; —w,. Hence we have a triad resonance situ-
ation and two solitons as x - —o0 produce a third when x » +00! Note that this
type of resonant interaction also occurs in ion acoustic waves in a collisionless
plasma (Yajima, Oikawa and Satsuma (1978)).

It is interesting to note that Hirota’s method works, in a restricted sense, on
the sine-Gordon equation in (2 + 1) dimensions,

(3.3.93) Uyx + Uy — Uy =SIN U

(Hirota (1973a); see also Liebbrandt (1978), Burt (1978), Gibbon et al. (1978)
and Whitham (1979)). Applying the dependent variable transformation

(3.3.94a) u=ilog (f?*)

in (3.3.93), we find
(3.3.94b) (DY +D%-D>f f=3f2-f*.

Interestingly enough, it is found that the formula

(3.3.95a) f= Y exp (lg (p.m,-+ig)+ ) jﬂi#iAii>

w=0,1 = l=i<
with
(3.3.95b) m=kx+py—wi+n",  ki+pl-wi=1,
(3.3.95¢) oA i)+ (pimpi) — (0 )"

(ki + k) + (pi+ ) = (01 + 0)

satisfies (3.3.94b) for arbitrary k;, p; when N =1, 2. However, for N =3 the
solution necessarily must satisfy the additional constraint

kq P1 an
(3.3.95d) det k2 D2 w2 =0.
ks ps ws

The situation for higher orders than N = 3 has been considered by Kobayashi
and Izutsu (1976).

Finally we note that: {(a) Hirota and Wadati (1979) have shown how the
linear Gel'fand-Levitan integral equation may be deduced by the direct
method; (b) Hirota (1979a) has given examples of equations for which two,
but no more than two, ‘‘soliton’ solutions may be constructed; (¢) Nakamura
(1979a,b) has used the direct method to find periodic and multiply (two)
periodic wave solutions; (d) Oishi (1979) has shown how Fredholm deter-
minants and ‘‘continuous spectrum” solutions may be viewed via this direct
approach.
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3.4. Rational solutions of nonlinear evolution equations. It turns out that
the special nonlinear evolution equations discussed in this monograph admit
as solutions a class of rational functions (in x, the spatial variable). These
rational solutions were first discovered by Airault, McKean and Moser (1977)
(with further results and variants being obtained by, for example, Adler and
Moser (1978) and Ablowitz and Satsuma (1978)). In this section we shall follow
the methods of Ablowitz and Satsuma (1978). (i) For the KdV equation one
can recover these rational solutions by taking (long wave) limits of the one-
dimensional soliton solutions obtained via direct methods (i.e., using Hirota’s
method). In particular we demonstrate the results for the first few soliton cases,
and then we show how, by performing the above limiting procedure on the
Backlund transformation of KdV (in bilinear form), we obtain a recursion
formula capable of generating the full class of rational solutions for the KdV
equation. The corresponding rational solutions have poles on the real axis. (ii)
These ideas also can be applied to the first few soliton (rational) solutions of the
modified KdV, Boussinesq and Kadomtsev-Petviashvili (K-P) equations (as
examples). For the modified KdV equation there exist real nonsingular rational
solutions. This result for mKdV is in agreement with that of Ono (1976).

In the latter (K-P equation) case, one special solution is real, nonsingular
and algebraically decaying in all directions. It has solitonic properties. We refer
to this multidimensional soliton as a lump solution. This result was first noted
by Manakov et al. (1977). It should be remarked that these methods also apply
to other multidimensional problems of physical significance (see Satsuma and
Ablowitz (1979)).

We begin with the KdV equation in the form

(3.4.1) u, +6uu, +u.,, =0.

As we h.ave seen in § 3.3 (3.4.1) has an N-soliton solution of the form
(3.4.2) u = 2(1og Fn)xx

where F, satisfies

(3.4.3) D.(D,+D3})Fx * Fy=0.

Recall the definition of the D operator,

(3.4.4) DiD"a - b =(8,—3,)" (8 —d)"a(x, )b(x’', )] x=xr=c

(see also § 3.3), and that Fy can be obtained simply by expanding Fy in a
(formal) perturbation series

(3.4.5) Fn=1+e¢FY +e?FP +. ..
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Substituting (3.4.5) into (3.4.3) and equating powers of ¢ yields a system of
equations to be solved. This expansion truncates when Fy is chosen to be of
the form

N
(3.4.6) FQ =Y exp(n), mi=kx—kit+n,
i=1

where k; nﬁo) are constant (a posteriori, we can take £ = 1). From § 3.3 we
have the first few multisoliton solutions given by

(3.4.7a) Fi=1+e™,

(3.4.7b) Fo=1+eM+em et e

(3.4.7¢) Fi=l+eM+eM+em+em M Az g oMot 40

Ny+n,+A +7ytnyt A ,+A L +A
+ MM 23 +e771 2 M3 TA127 A3 23’
with the general N-soliton formula

N N
(3.4.8a) Fn= Y exp ( Y Ayt Y M—ﬂ'h’) ,
u=0,1 i<j i=1
where A;; in (3.4.7) and (3.4.8a) satisfies

ki - k,‘)z
ki +k;

(3.4.8b) exp Ay =( :
It is easy to see that (3.4.7a—c) are special cases of (3.4.8). In addition we
note that from (3.4.7a) and (3.4.2) the usual simple soliton is given by
2

. . )
(3.4.9) u =(—2-1-) sechzi(kuc —kit+q?).

The fact that one can recover rational solutions relies on our freedom to
choose arbitrary phase constants n.". For example, in (3.4.9), if we choose

e™® =—1, then we have the singular soliton
k3 .1 )
(3.4.10) u= —(?> cosech 2 (kix —kit).
Passing to the limit k;, >0 (i.e., the “long wave” limit) we find
-2
(3.4.11) u=—.
X

(3.4.11) is the first in this class of rational solutions. Moreover, it turns out if
the phase constants are chosen appropriately, all the Fy described above have
nontrivial distinguished limits.
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We now discuss this technique as it pertains to the computation of Fx. One
can easily recover u from Fy by use of (3.4.2). For this purpose let us again
consider (3.4.7a). Calling a; = exp (n'®), we write (3.4.7a) as

(3.4.12) Fi=l+ae®, & =ki(x—kir).
As k; >0 we have
Fi=1+a,(1+£&)+0(k}).
Choosing a; = -1, we have
Fy=—ky(x + O(ky)).

Since u is given by (3.4.2), we take
F1 =x+ O(li

X

(here f<g if and only if f = ™ *"g, where a, b are independent of x). Then in

the limit k; - 0, f; = ©,, where

(3.4.13) Q,=x.

Hence in the “long wave” limit k, - 0, we have recovered the rational solution
(3.4.11) (via 3.4.2, of course). The same idea applies to F, (as well as the
higher Fy).

For N > 1, we consider all the ; to be of the same asymptotic order as k; >0
(i.e., k; = ek;, k; = O(1)). For F, we have, from (3.4.7b),

(3.4.14) E=l4+ae%+ae%+aaeb %42,

As &4, k2> 0, we require that the coefficients of the O(1), O(k) terms in F,
vanish:

O(1): 14a;+ar+aare2=0,

O(k): kiai+kas+{k;+ kz)alazeA” =0,

The solution to these equations is

As it turns out, this solution also satisfies the equation at O(k”), and we find
(3.4.15a) Fy= —gkika(k + k2)[(x>+122) + O (k)].

Thus as k » 0, F; is equivalent to ©5:

(3.4.15b) 0,=x>+12¢ u =2(log 0),,.
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©,, has three zeros, so # has three poles. In the three-soliton case, if we choose
kitks ks+k,

Q)=

ki—ky ki—k,
o _k2+k3. ki+ka
2 ko—ky ki—ks
k3+k1 k2+k3
X3 = .
*Tka—ky ko—ky
we find a six-zero solution associated with Fj:

(3.4.16a)
F3 = —3sok1koka(ky + ko) (ko + k3) (ks + k)[(x® +60xt = 72065 + O(k)),

or simply, in the limit k > 0, F;=@5,

(3.4.16b) 05 =x°-60xt—720:>

In principle this technique applies to any number of solitons. However, the
calculations are tedious, and here we shall instead use the Béacklund transfor-
mation (in bilinear form) for KdV to generate a recursion relation for the
polynomials.

Before doing this, for convenience, we shall employ a slightly different
formula for the N-soliton solution (3.4.8a). From § 3.3 (3.3.78) we have

N (eiki—eik;) exp(Z,=128m.)
3.4.17 FyoEy= ,
( ) NN gzﬂ E, ki—k})  TIL, ek

so, for example,

- 1 n,/2 -ny/2 1 —n,/2
- — /e 1 = —_ 1 1- ™
Fy kl(e e ) € (1-e™),
which is seen to be equivalent to (3.4.7a). One of the advantages of (3.4.17)
is that the limit as k, - 0 directly yields the polynomlal in x. We may rewrite
Fy in the following way (hereafter we shall drop the on EV):

3.4.18 Fyn =
G418) S T L
where
N N N 1
(3.419) gn= zl H (Eik,‘ ‘—El‘kj) H] €; exp( Z]_ 5 E;”T]i) .
e=%1i<j i= i=

It is important to note that g has the following properties:
(l) gN(klykb”" kia"'akj""akN)=—gN(klv k2,"',kj,"', ki,"':
kx), for i <j (gn is antisymmetric in the k/s),
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(li) gN(k1=O’k27".,kN)=0’
(ii]) gN(kl = kZ, k3v tty, kN)= gN(kl = —st k39 Tty kN)=O-
(i)-(iii) and (3.4.19) imply that gy is factorized by

N 2 » N
[T ki—k;) 1 ki
<y i=1

Thus, the first term as k; - 0 in Fy is at least order one, and we write
(3420) Fn =aN®N(x)+O(k).

We shall later show that ax # 0. Moreover, since every k; in the phase factor
of (3.4.17) has an x multiplying it, in order for Fy to be at least order one, the
polynomial O (x)=x"+ - - must have its highest power satisfying

N - 1) _N(N+1)
2 2 ’

Next we derive a recursion relation for ® . From § 3.3 we take the following
soliton permutation formula derived from the Bécklund transformations:

(3.4.21) D,Fx_1 - Fn.i=CFnFy,

P=N+N<

where the parameters of the N-soliton solution Fj, etc., are defined by
Fn-1=Fn_ilky, -+ s knoa),
Fn=Fn(ky, -, ko1, k),
Fy=Fyky, s k-1, knsa),
Fni1=Fnaylky, ooy ke, by kner).

The constant C is determined by any three soliton solutions given by (3.4.17).
For example, using

Fo‘—'l,
L oan  —a2
F1=k—(e‘ —e 7Y,
1

1

Fr=——s——r
2 kika (kT —k3)

[(k1 — kz)(e(mwrz)/z _ e—(n1+n2)/2)

+(k1 +k2)(e—(‘n,—nz)/2 _e(nl—nz)/Z)]

]

we find C = —3, whereupon the superposition formula is given by
(3.4.22) D.Fy.1* Fn-1=3FnEn.

Using (3.4.20) and (3.4.22) we can obtain a recursion formula for ay and ®n.
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Inserting (3.4.20) into (3.4.22) yields
(3.4.23) an+1an-1D:On 1 On_1 =3a WO

Since On(x) is a polynomial in x, (3.4.23) must hold separately for each power,
and in particular for the highest power, x¥ "% Hence ay satisfies the
recursion formula

(3.4.24) an+1an-1(4N +2)=akx,
and Op satisfies
(3.4.25) D, On:1On_1= (2N +1)0%

(see also Adler and Moser (1978)). Using our earlier calculations involving the
first few solitons, we have already deduced

a0=1, a1=1’ a2=%s a3=3_éﬁy
[

Bo=1, O,=x, O,=x>+12f, O;=x°+60x>r-720¢%.

From the recursion relations using ao, ai, we see that a,,a; above are
recovered, and that ay # 0, for all N =0. Similarly, we can use (3.4.25) with
0y, 0, to deduce ©;, O3 and the higher @y, if we supplement (3.4.25) with a
time evolution equation. For this purpose we can use either the original PDE
(KdV in this case) or the time-dependent equation obtained from the Bécklund
transformation (3.3.72b) (using A = k% .1 and taking the limit k - 0):

(3.4.26) (D, +D3})®p - Op.1=0.

This still allows an arbitrary multiple of ®5_, to be added onto a particular
solution @y 1. In this problem we take this arbitrary multiple to be zero. In
the limiting procedure described above, one can see that to obtain a given
asymptotic power of k, each x* term corresponds with each power of . As an
example, we know the leading order term in ©; is x°. Thus the general form
of this polynomial must be x°+ax’s+B¢t%. We determine a =60, 8 = —720
from (3.4.25)-(3.4.26). Although we can add the term Cx to this result, and
still satisfy (3.4.25)-(3.4.26), we take C = 0 since it cannot arise via the limiting
procedure on Fj.

Since each x* term has a corresponding power of ¢, all of the above solutions
satisfy the similarity equation for w(z), where

u=—=mw(z), z

1
(31

w"+6ww' — 2w+ 2zw')=0.

__x
(3n'*

Hence the similarity solution w(z) also has a class of rational solutions. Since
we have shown that the rational solutions arise from limits of the soliton
solutions and that they may be computed from Bécklund transformations, we
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have a direct connection between the solitons and the similarity solutions.
Special elementary solutions may be obtained for other equations including the
classical Painlevé transcendents (Erugin (1976) (review article), Airault
(1979), Boiti and Pempinelli (1979)). These authors also derive Backlund
transformations between solutions of such nonlinear ODE's. (See also Fokas
and Yortsos (1981).)

As mentioned earlier the methods we have employed can be readily adapted
to other nonlinear evolution equations possessing soliton solutions. Here we
shall only discuss the results of the limiting procedures on the first few soliton
formulas of (i) the K-P (two-dimensional KdV) equation; (ii) the Boussinesq
equation; and (iii) the modified KdV equation with a nonzero background
state.

The K-P equation is given by

(3.4.27a) B (U +6ul, + Uy )+ auty, =0,

where « is a constant depending on the dispersive property of the system. We
look for a solution of (3.4.27a) with -0 as |x|-> 0, of the form (Satsuma
(1976))

(3.4.27b) u = 2(10g Fn) xe
Inserting (3.4.27b) into (3.4.27a) yields
(3.4.28) (DD, + D% +aD?)Fy - Fy =0.

The N-soliton solution can be ascertained by direct methods (cf. § 3.3). Here
we will only discuss the N = 1, 2 cases. The one- and two-soliton solutions are
given by

(3.4.29a) Fi=1+e™,

(3.4.29b) F2= 1+e"l+er’2+e"l+"2+A1z,
where

(3.4.29¢) m = ki(x + Py — (k? +aP})) + 0!,

3(ki— k)’ —a(P,— P,)’
3(ki+k;))>—a(Pi—P)*

Taking ™" = —1, k; > 0 (with P, = O(1), k1/k»= O(1)), we find

(3.4.29d) exp A, =

(3.4.30a) F1=—k101+0(k%),
2
4. =kik ( +—)+O %,
(3.4.30b) Fy=kyk,| 616, 2 (PP (k”)
where

(3.4.30¢) 6; = x + Py —aPt,
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and we have used

12kik2
G(Pl—Pz)Z'

Since u is given by (3.4.27b) we have therefore deduced the following rational
solutions:

(3.4.30d) expApp~1+

(3.4.31a) Fi=6,,
(3.4.31b) F,=0,0,+B B=—12
4, 2= 6102 125 12 a(Pi—P)%

Although Fy, F, are generally singular at some position, a real nonsingular
solution is obtained for F; if « = —1 and P, = P}. In this case we have

A 12
3.4.31c Fy=0,0f ———5.
( ) 2 1v1 (P1 _P;Ik )2
Letting P; = Pr +iP;, we have
3
(3.4.32a) u=23%log [(x’+PRy')2+P%(y')2+}‘,?]’

where
x'=x—(Px+P),

y' =y +2Pgt.
Alternatively (3.4.32a) may be written explicitly as

_4(=(x'+Pry")*+P3(y") +3/P})

(3.4.32b) u= ((x'+PRy’)2+P}°‘(y')2+3/P?)2 .

Hence we have a permanent lump solution decaying as, O(1/x%, 1/y?) for
x|, ly|= 0, and moving with the velocity v, = P% + P?, v, = —2Px (see Fig.
3.1). When N =4 one may obtain in this way a two-lump solution, Here we
simply present the results of the calculation for N =3, 4. We find

(3.4.33a) F3=010:63+B203+ B30, +B1.163,

F = 6.160,030, + B 1,630, + B,36,0,+ B 140,03 + B,36,6,

(3.4.33b)
+ B40183+ B346162+ B12B34+ B13B2s+ B14B2s,

where 6; is given by (3.4.30c), B; = 12/(a(P; —}’,-)2). Taking « = -1, P; =P,
P,=P% in (3.4.33b) yields a two-lump solution. We note that with this
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L

~

V!
Ll
\i/
y 1-0

FI1G. 3.1. Lump solution of {3.4.32) as seen in two dimensions at a fixed time. Pg =0, Py =3,
a=-1,

proviso F, is positive and yields a solution u via (3.4.27b) which decays as
O(1/x%, 1/y?) for |x|, |yl = . This two-lump solution yields zero asymptotic
phase shift. All of these results agree with those of Manakov et al. (1977). In
general when N =2M this method yields formulae for an M-lump solution
(see Satsuma and Ablowitz (1979)). Of course, the methods used here unfor-
tunately do not give strong evidence about the role of these solutions in the
general initial value problem, e.g., genericity, stability, etc. Recent work by
Zakharov and Manakov (1979) shows, however, that for rapidly decaying
initial values (faster than O(1/x%, 1/ y?)) the K-P equation (3.4.27a) is solvable
by IST. (See also the long time asymptotic results of Manakov, Santini and
Takhtadzhyan (1980).) No permanent soliton solutions are found. This seems
to indicate that the above solutions, and in general permanent wave solutions,
may not play an important role in (3.4.27a) (as opposed to the one-dimensional
version, i.e., KdV).
Our second example is the Boussinesq equation,

(34-34) Uy = Ugx — (3u2)xx T Uxxxx T 0.

Note that (3.4.34) is a special case of the K-P equation discussed above.
However, the rational solutions we will now obtain are in a different class.
We note that the methods we employ work equally well if the sign of
the last term in (3.4.34) is changed. With a positive sign in the last
term the equation will be well posed on the infinite interval (even with this
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change the equation remains an isospectral flow). It should also be noted that

(3.4.34) arises in a physical problem (e.g., water waves) as a long wave

equation. Thus, in the context of the physical problem, it is, in fact, well posed.
Following Hirota (1973a), we let

(3.4.35) u =2(log Fr)sx

and find the bilinear equation

(3.4.36) (D?~D?>—-D*Fn - Fx =0.

The first two soliton solutions are (as usual) given by

(3.4.37a) Fi=14e™,

(3.437b) F2= 1+enl+e"2+e’71+"2+‘412’

where

(3.4.37¢) m=kx+ekV1+ki+n®, e=+lor-1
and

(3.4.37d) A 23—k (VT k= eaVT+ kD)
- 3(k1+k2)2+(€1‘/1+k1-—32~/1+k22
For N =1, taking e"" =—1and k, > 0, we have

(3.4.38) Fi~~ki(x+1¢).

For the two-soliton solution, we note

ki—ka\* 1
4. ( ) ( +- ) =1,
(3 393) eAu k1+k2 1 3k1k2 for E1E7 1
(3.4.39b) 1-3kik, for e16, = —1.

In the case of £165 =1, we take

0) kl + k2 1
3.4.40 i + kika,
( a) e k %, 2
(3.4.40b) o = itk lklkz,

+
~k, 6
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and find

(3.4.41) Fo~ —gkika(ky+ ko){(x £0)° + (x £ 1) F 61},

It is interesting to notice that F, gives another rational solution for the case,
£162 =—1, In this case, taking e™ =¢"" =—1and using (3.4.39a), we obtain
(3.4.42) Fy~kiko(x* =12 =3).

Thus, the first few polynomial solutions of the Boussinesq equation are given
by (3.4.35) with the following Fx:

xx1, x2—t7=3, (xx’+(xx1)F6L

Higher order polynomials can be obtained in this manner, and presumably the
Backlund transformation will yield a recursion relation between rational
solutions, although this has not yet been carried out.

Finally, let us consider the modified KdV equation

(3.4.43) v+ 6070, + 0, =0,

with a nonzero asymptotic condition, v = vy as lx] - o¢, Following Hirota (1974)
and Hirota and Satsuma (1976a), we have

(3.4.44) b= Dot i(log gﬁ) .

N7 x

Substituting (3.4.44) into (3.4.43) and decoupling the resulting equation,
we get

(3.4.45a) (D, +60iD, +D})Fx - Fy =0,
(3.4.45b) (D% —2ivoD,)Gn * Fn =0.
In order to obtain soliton solutions, we expand
(3.4.46a) Fn=1+¢eFni+e Fya+ -,
(3.4.46b) Gn =1+6Gn1+e2Grat- )

substitute (3.4.46) into (3.4.45), and equate coefficients of ¢. Starting with
Fyi=e™ ' and Gy =¢™"™, we obtain a one-soliton solution

(3.4.47a) Fi=1+e¢m™®,
(3.4.47b) Gi=1+e™m™",

where

(3.4.47c) mi = kx ~ (6vdk; + kD)t +9,
(3.4.474d) e® =1+ ik;/2v,,

(3.4.47¢) e'i =1—ik;/2va.
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Inserting (3.4.47) into (3.4.44), we have an explicit form of the one-soliton
solution,

ki

(3.4.48) V=Vt e ’
0 (V4vz + k3 cosh n1+200)

which was also found by Ono (1976). To get a two-soliton solution, we start
with

2 2
— n+é — Y
Fni=Y em™®y Gna=Y e )
(=1 i=1

i=

and find
(3.4.492) Fo=14eM"%1 4 oM¥ %2 4 pmtmtdrtdatas,
(3.4.49b) Gr=1+e™Mm* ¥ 4 oMt pmitmtditintas,
where
ky—ka\*
3.4.49 Ara o (__-_) ,
(3.4.49¢) ¢k rk
As before, rational solutions are deduced by taking the limit k; >0 and
choosing the phase constant adequately. For N = 1, choosing e™ = 1, we get
(3.4.502) F1~—k1(x—evgz+i),
200
(3.4.50b) Gl~—k1(x—6u§t-——l—),
200

which gives the rational solution

41.)0
4pd(x 6050 +1°

(3.4.51) v=vp—
This solution was also found by Ono (1976) and is a nonsingular one-

dimensional algebraic soliton. For N = 2, taking

kytka (. kik
o o 1 2 1A2
1 =—pl2 = 1+ )’
¢ kl-kz( 8v5

e
and k; -0, we find that

1 3 3 1
(3.4.52a) F,, Gy~ _g kika(ky+ ko) - [§3+ 12t—a—;g fii_t;; (fh—m)] s
where

(3.4.52b) E=x—-6vit
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and the upper (lower) sign stands for F»(G,). Substituting (3.4.32a) into
{3.4.44), we see that the solution is also a nonsingular algebraic soliton, given
by

1200(&* +(3/200)€” - 3/16v5 - 2441)
42+ 12t - (3/402)E)7 +3(£2+ 1/4vD)

(3.4.53) U=

3.5. N-body problems and nonlinear evolution equations. The phil-
osophy which we frequently expound in this book is that reductions of
“integrable” nonlinear evolution equations are also (in some sense)
“integrable.” For example, similarity reductions lead to equations of Painlevé
type (cf. §3.7) such as the classical transcendents of Painlevé, or special
hyperelliptic function solutions (cf. §2.3). Here we shall discuss another
example of this principle. By looking for algebraic ‘‘pole expansion” solutions
of various nonlinear evolution equations we obtain a finite dynamical system
of ordinary differential equations, i.e., N-body problems. These dynamical
systems have an interest in their own right.

The original idea of investigating the motion of the poles of solutions to
nonlinear evolution equations is quite old; it was used, for example, in studying
the motion of point vortices in hydrodynamics (see, e.g., Onsager (1949)). With
regard to problems of IST type, Kruskal (1974) first examined this question in
the context of the KdV equation. He reasoned that a soliton is expressible as an
infinite array of poles, and hence the interaction of solitons could be studied by
the interaction of poles. Thickstun (1976) carried these ideas further and
Airault, McKean and Moser (1977) showed how rational and elliptic solutions
could be considered from the point of view of finite pole expansions (see also
the work of Chudnovsky and Chudnovsky (1977)).

In this section we shall concentrate on pole expansions (i.e., the rational
solutions) of three nonlinear evolution equations: the so-called Benjamin-Ono
(B-0O) equation, KdV and an intermediate equation which has as limiting forms
both of the above equations. All of these equations arise in the propagation
of long internal waves in a stratified fluid. It should be noted that Moser
(19754,b) has considered another interesting finite dimensional system. This is
obtained from the Toda lattice (§ 2.2) with free ends. We shall not go into this
problem here.

In each of these cases we shall develop the associated dynamical system. In
only the first example shall we carry out an explicit integration. We shall obtain
solutions to the dynamical system studied by Calogero (1971), (1976), Suther-
land (1972) and Moser (1975a,b). While the solutions to the associated
nonlinear evolution equations are rational functions of the spatial variable (x),
we are splitting this section off from the previous one since the point of view
here is to obtain and study certain interesting dynamical systems.
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We begin with the B-O equation (first proposed by Benjamin (1967) and
later derived via a formal asymptotic expansion by Ono (1975)): a nonlinear
singular integral-differential equation,

(3.5.1) ur+2uux +H(uxx)=0’

where H (1) is the Hilbert transform

(3.5.2) H(u )——£ = _xd '

§ f(x) dx is the usual principal value integral. As suggested by Case (19785)

and Chen, Lee and Pereira (1979) we look for the motion of the poles (i.e., a
pole expansion) of a solution of this equation, namely,

3.5.3 > d 5

WD u= + .

( ) ,'§1X"x!'(t) ,-=1x—x,’-"(t)

—i

We may view as partial motivation the fact that the solitary-wave solution to
(3.5.1) is a rational function of x found by Benjamin (1967):

2c . 1 1
(3.54) u= 1+[Cx=Cr—x)T ’C[C(x—Ct—xo)'H' Clx— xo)"l]

We note that the Hilbert transform of a pole is a pole; i.e.,

1 i
H( )= , Im x; > 0.
x—x/) x—x

Substituting (3.5.3) into (3.5.1) yields

Z-l—z{iff‘l'Z(Z ]

i (x—x;) =i (x=xi) Kx—xk

+2 ){ zx,+2(z ! -y ! )}=O.

k#j(x—xt) % (x = xi)

(3.5.5)

where X =dx/dt
There are various ways to obtain the motion of the poles. Rational fraction
decomposition shows that

1 A B C

(3563) (x__a)Z(x_b)z(x—a)2+(x—a)+(x—b)’
with
(3.5.6b) A-——, p-—2 :

a—-b’ a-b C=(a-—b)2°
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Then, using (3.5.6) and the facts that

1

(3:5.78) R TS o T bl
and
(3.5.70) LY : iTT ! _o
- TR —x)x—x) TR —xHx—xHx—xFH 7
we have

N 1 1

2,-'(x—xi)z{lxi+2(k§j(x,—xk) zk:Xj"‘x’;f)}
(3.5.8)

L

®
; (x k#;‘(xl‘ _xk) EXj —Xg

whereupon we have the dynamical system (N-body problem)

N o1 A |
(3.5.9) ifj+2( » -5 *) =0,
k=1X; "Xk k=1 X;— X
k#j
as well as the complex conjugate system. We also note that (3.5.9) may be
derived from (3.5.8) by substituting x = x; + ¢ and expanding for ¢ » 0.
It is remarkable that (3.5.9) can be embedded into a Hamiltonian system.
By taking another time derivative of (3.5.9) and rearranging terms we have

1, 1 )
_4x, 2(k2#i(xj—xk)3 itk (X — X)X~ x)(x; — x1)
1
(3.5.10) R (xF —x) 0 —xF)xf —xF)
1

+2 2

i T (e —x) e —x ) —x )

1 1 1
+3 Y - + )

% ik (X8 = xp)(x = xMx ¥ —x)) Zk: (x¥ —x;)° % (x¥ —x)°
We may verify that the second and third terms on the right-hand side of
(3.5.10) are reducible to zero, and the fourth through seventh thus cancel each
other. Hence, we are left with an N -body Hamiltonian system with a pairwise
inverse square potential:

(3.5.11) gy —
k;e,(x Xk)
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with Hamiltonian

N =

02 1
He= R it 2L L o
The system (3.5.11) has been studied by numerous authors, including
Calogero (1971), (1976), Sutherland (1972), Moser (1975a,b), Olshanetsky
and Perelomov (1976a,b,c) and Kazhdan, Kostant and Sternberg (1978). In
connection with the B-O equation, see Case (19785), (1979) and Chen, Lee
and Pereira (1979).

At this point it is convenient to rescale (3.5.11) in the form

: 1
3.5.12 =2 Pam—
( ) ti kéi (x; _xk)3

by simply rescaling time: ¢~ 2+,
The integration of this N-body problem has been given in a more general
version by Moser (19754, b). Consider the L, A pair

(3.5.13a) Ly =Ad,
(3.5.13b) o, = Ad,
where L, A are the matrices

(1—8..
(3.5.14a) L = 8458, L1d=dy)

Xi = X;

1 i(1—8,:

(3514b) Akj = —i‘skj Z 1(1 sk,)

2 7
e (e~ x)" (% —x,-)

Then, assuming A, =0, we have the evolution equation L,=[A, L] or, after
some algebra,
-2

(1 —Skf)(
(xk “xi)
(1-8,)(1—6y)/( 1 1 )
+ - + .
Z{ (X — x)(x; ‘Xj)\ (xe—x1) (xs —Xj)
When k =j we have (3.5.11), whereas when & # j both sides of (3.5.15) vanish.

Hence the dynamical system (3.5.12) is isospectral. This immediately implies
that we have N invariants of the motion (action variables). To see this, let

od
8ij,- =
Isi

5 (re-x) = X (=)
(3.5.15) !

(3.5.16a) w=tr (L"), n=1,--+,N;
then
(3.5.16b) dI”=0,

dt
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since the traces (tr) of L™ are expressible in terms of the eigenvalues of L.
Another set of N quantities (angle variables) may also be obtained
{Olshanetsky and Perelomov (19764,b,¢)). By direct computation we have that
the equation of motion may be written in the form

(3.5.17) X, =[A X]+L,

where X;; = 8;x;, and L, A are given in (3.5.14) and we note that [A, X]=
1(1=87)/ (x; — %i).
Next, by induction we may verify that

d

(3.5.18) E(XL"‘1)= [A, XL ']+L".
Calling
(3.5.19) Jo=tr (XL™Y),
we see that
dl,
5. =1,
(3.5.20) ot

where we have used the fact that tr [4, B]=0 for any A, B. Hence
{3.5.21) J. () =1t+1,(0).

Thus we have two sets of N quantities given explicitly for all time. These
completely determine the motion of the poles.
For example, consider, the case N =2:

(3.5.22a) trL=1I,=%+%,

2 a2 02 2
(3522b) trL =12=X1+XZ+*———2',

(x1—x2)

(3.5.22¢) tr X =Ji=x1+x,=I11t+J1(0),
(3522d) tr XL =Jz=x1f1+x2f2=12t+12(0).
From (3.5.22d),
(3.5.23a) %(xi +x3) = 2(x1 %1 + x283) = 21,1 + 21,(0).

Hence

(3.5.23b) X1 +x3 =Lt +27,(0)t + x5 (0) + x3(0).
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Using (3.5.22c) we have an algebraic equation to solve for x{(¢) or x,(t) (Z is
either x, or x;):

(3.5.23¢) 2Z7 25/ Z + T (t) = L* +21,(0)t + x 2 (0) + x 3 (0).

A detailed analysis of the solution can be given, but we shall not do so here.
Instead, we shall show that the eigenvalues of the operator

(3.5.24) M1, to) = X (to)+ (t = to) L(to)

coincide with the poles x;(¢), i = 1, - - -, N. Then the motion of the poles follows
from writing (3.5.24) in diagonal form. Consider

(3.5.25) K(t=U"' (XU,

where U (#,) = I. Since A is anti-Hermitian, i.e., A"=(A*)T = — A, we have that
U(t) evolving according to

dU
(3.5.26a) o =AU
is unitary, i.e.,
U'u=1
Thus
d -1 _4 0 -1
.5.26 — =—(U")y=- ,
3 b) dt(U ) dt( ) U A
and by direct computation
(3.5.27) %( =U X +[X, AU
From (3.5.17)
(3.5.28) = UTLU.
Differentiating again and using (3.5.26) and L, =[A, L] gives
d’K
(3.5.29a) 71‘_2—= 0;
hence
(3.5.29b) K({)=Ci+(t-1)C,,
where Ci, C, are constants. Since U(t) =1 we have, from (3.5.25), (3.5.28)
(3.5.29¢) K(to)= U (t)X (8) U (to) = X (to) = C1,

(3.5.29d) %((to) = U (to)L(to) U (t0) = L(to) = C..
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Thus

(3.5.29¢) K(t)=X(to)+(t —to)L(to) = M(t, ty).

Using (3.5.25) we may solve for X (¢) in terms of K (¢t), or rather M (s, 1),
(3.5.291) X()=UM(@ t))U™,

So if we consider the eigenvalues of X(¢) we have

(3.5.30a) 0=det (AT -X (1)) =det (U -M(t, to)U ).

But since Xj;(r) = 8ixi (1) we have

(3.5.30b) det Al - X (1) = ﬁ (A = x (1))
k=1

This then proves that the eigenvalues of M (s, 1,) coincide with the location of
the poles x; (). Moreover, the pole solution of the Benjamin-Ono equation is
obtained by noting that

9 Jopdet A =X (D)ror= ¥ ——
an OB Ce AT S x —x(t)

whereupon we have

d
u= ié—; log det (AT — M (21, 2tp))

A=x

(3.5.31)
—i;}\— log det (AT — M*(2¢, 2to))

A=x

(Note that we have rescaled the time so as to obtain solutions of B-O in the

form (3.5.1.) It is in this sense that the pole dynamics of the Benjamin—-Ono

equation are solved. The above solutions represent soliton interactions. Indeed,

this fact suggests that the B-O equation is, in fact, solvable by inverse

scattering. Later in this section we shall briefly discuss some of the known

results, and give a linear scattering-like problem which is related to B-O.
For the KdV equation (Airault, McKean and Moser (1977))

(3.5.32) u,+6uu, +u,,, =0,
the finite pole expansion is

N 1

(3.5.33) u=-2% (x —x:(8)*
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Substitution of (3.3.33) into (3.5.32) yields

)
(3.5.34) Elm[ 122

1
-0
L (x—x;)°
’?*l
Carrying out a rational fraction decomposition, or more simply just letting
x =x;+¢, € » 0 and setting the O(1/€%), O(1/&?) terms to zero, we have

N 1

(3.5.35a) =12 —
i=1 (xr —x;)
il

and a subsidiary condition on the solution manifold,
N 1
(3.5.35b) Yy ——=0,
=1 (xr — x;)
It
It should be noted that these solutions of KdV correspond to the rational
solutions found in § 3.4.
By differentiating (3.5.35a) we may reduce it to the Hamiltonian N-body
system

(3.5.36) % =—(12) Z
=1 k= x)

eI

(see, for example, Chudnovsky and Chudnovsky (1977)). Indeed, the pole
expansions can be generalized (ibid) to elliptic function interactions:

N
(3.5.37a) x=-12 E P(xr—x;),
e
N
(3.5.37b) .Z P'(x1 —x;)=0,
o

where P (x) is the usual Weierstrass elliptic function. Taking a derivative we
have

N

(3.5.38a) Fr=—(12* T P'(x;—x)P(xr —x),
j=1
i#I

with the Hamiltonian

(13) Z EAQZ(Xi—Xj)-

The earlier (3.5.36) pole expansion results may be obtained from the elliptic
function solution by taking P(x)=

(3.5.38b) = 2
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Next we briefly mention the pole expansion results (Satsuma and Ablowitz
(1980)) for an intermediate equation which describes long internal gravity
waves in a stratified fluid with finite depth (Joseph (1977), Kubota, Ko and
Dobbs (1978)). Here § is a parameter representing the distance between the
boundary and the internal wave layer. We shall write the equation in the form

(3.5.39a) u,+2uux+(1+é>T(u”)=O,
where

B B
(3.5.39b) T(ux)—][_oc[ 2Scoth >3 +265gn(x &) (ug dE.

Alternatively, the equation may be written as

(3.5.40a) u,+2uux+(1+%)%J- K(x~&)u(£) dE =0,

where

K(x)=iJ' C(k) e™ dk,
27 o
(3.5.40b)

C(k)=~k cothké +%,
In the shallow water limit, § = 0, (3.5.39) or (3.5.40) reduces to KdV:
(3.5.41) Uy + 22Ul + Slhex =0,
and in the deep water limit, § » ¢, to the B-O equation:
(3.5.42) o+ 2uu, + H(u ) =0

(again H (u) is the Hilbert transform of u). The question of finding N -soliton
solutions to (3.5.39) has been considered by Joseph and Egri (1978) and Chen
and Lee (1979). Before going into the pole expansion analysis, it is convenient
to transform equations (3.5.39-40) into bilinear form (see § 3.3). In (3.5.40),
removing the integration and formally replacing & by —i d/dx (Fourier trans-
form) we have the following differential-difference equation:

) 1 1 1 a
3.5.43 +2 x+_(1+_> x~'(1+—> t ( _) =0,
{ ) u, uu 5 5 U, —1 5 coth zﬁax u 0

Using the dependent variable transformation (with ¢ *°"°*f(x) = f(x £ i8))

"= —2i<1 +%) sinh (i&%)% log f(x)
(3.5.44)

1>_a_l flx+i8)

=—j{1+=2
’( T5)ox B fx—id)
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we reduce (3.5.43) to the bilinear equation

> ipsLip, D) f -
(3545) (1+51Dz le+Dxf f _Os

where we have used
(3.5.46) fF=f(x £i8),

with D,, D, defined in § 3.3 (3.3.4).

Although this is certainly suggestive, one must be careful. Specifically, by
substitution of (3.5.44) into (3.5.39) or (3.5.40) we find that (3.5.45) is obtained
only when the following condition holds.

Condition A. f(x+i8) has no zeros in the strip =26 =Im x =0.

If condition A is satisfied then

]Lii_cothW(x £) 1gf(‘f+16)

F] 8 f(£-i8)

follows (if we suppose f is well enough behaved at infinity).
The simplest nontrivial soliton solution may be given by

d¢é = % log f(x +i8)f(x — i8) + const.

f(x)=1+exp (kix — wit+nY),

(3.5.47) - =(1 +%)(5kl—k§ cot 5k1)-,

ki, n® are arbitrary parameters. A restriction, 0< k6 <, is required in
order to satisfy condition A. Substituting (3.5.47) into (3.5.44) gives

ki sin 6k,
(cos 8k, +cosh {kix —w it +1n"})

(3.5.48a) u =(1 + 1)

It is easily seen that (3.5.48a) is reduced to the KdV soliton

ki
(3.5.48b) u == sech’ (klx YL ‘0’)
as § » 0. In the limit § - o0, on the other hand, there is no proper limit unless
ky- 0. Taking 6k, = 7 — k1/C; with a positive real constant C,(~0(1)) yields
the B-O rational soliton

2C,
(1+Ci(x—-Cit)?y
N -soliton solutions may be obtained from (3.5.45), but we shall not go into
this here (see Satsuma and Ablowitz (1979)).

We now discuss the dynamical system of the motion of the poles of the
intermediate equation. It is particularly convenient to use the equation in the

(3.5.48¢) u=
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bilinear form (3.5.45). We assume

=T @ fimx/>s:

=—l(1+1),§1[(x x,(lt)+l5) (x - x(lt)_"s)]

(Im x,]> & is required in order to satisfy condition A). Substituting f(x) into
(3.5.45), we find

N

. 1 _
igl (x —xi)2+52{xf ralre) kz;ej((x _xk)2+62)} =0

This may be rewritten, using partial fraction decomposition,

N 1 1 .

E( = ; )xf

iS1\x—x;+i8  (x—x;—18))
N

1
+41+5) jgl kéi{((x ~x;+i8) (o — x;) (X —x;'+2i5)>

1
- (x —x; = i8)(xe — x)(xp — x; — 21'5)} =0,

whereupon we immediately have

1
:0,
(3.5.492) ) L G 7, +2i6)
1
(3.5.49b) X+4(1+8) ¥ =4,

7 (X = x;) (X — x; — 2i8)
forj=1,: -+, N. Adding (3.5.49a, b) yields

1
3.5.50 +4(1+8 ————— =0,
(3.5.508) §+401+8) T s

and subtracting yields

N 1
(3.5.50b) k=§k#i(xk_xi)((x"_xj)2+462)—0'

(3.5.50) is a dynamical system with a constraint. As §->0 we have the
dynamical system associated with KdV (3.5.35), suitably rescaled since
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(3.5.32) is different from (3.5.41) (t in (3.5.41) > 31),

(3.5.51a) £+4 Y (xe—x)2=0,
k#j
(3.5.51b) Y (xe—x) =0
k#jf

For & » o we introduce £; = x; —i6 (here Im x; > 8§ so £; is in the upper half
plane) for j=1,2,--- ,Mand £;=x;+i6 for j=M+1, M+2,. - N (here
x; < —i6 so Im £; is in the lower half plane). Then as § » o we have

1, M 1 N 1 ,
(3.5.52a) —k=Y —>~- ¥ ——F forj=1,2,--- M
2§ K=1Xx —X; k=m+1 X=X
k#j
and
M 1 N 1

(3.5.52b) Ls_ Y - -

X = - Py Py
2i k=1Xg = X; k=M+1XK—X;

, forj=M+1,--- N,

k#j
which is a dynamical system without any constraint. If we take N =2M and
£, =R%%+; for j=1,2,- -, M, we have simply
M M
(3.5.53) L8 S e 1A*,
2i K=1X;— X k=1X—Xg
koo

which is equivalent to the complex conjugate system of (3.5.9) (note that here
%, 1,2, -, M lies in the upper half plane, whereas the x; in (3.5.9) lies in the
lower half plane).

Moreover, by taking the time derivative of (3.5.52) we have (after some
algebra and using identities similar to those used in deriving (3.5.11))

ao M

(3.5.54a) 5=8Y (£~%)°, forj=1,2,--+,M
k=1
k#j

and

o0 N
(3.5.54b) 5=8 Y (£-%£)° forj=M+1,.---,N.
k=k}\:]-.¢-l

It should be noted that the pole representations are expressed as f =
[T, (x—%;) and f~=T]/Lar+1 (x— %) in this limit (§ »0). Thus the result
(3.5.54) shows that the motion of the poles belonging to f* is not affected by
those belonging to f~ and vice-versa; i.e., the poles in the lower half plane
move independently of those in the upper half plane.
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Finally we mention that Backlund and generalized Miura transformations
may be given for (3.5.39) (Satsuma, Ablowitz and Kodama (1979), Satsuma,
Ablowitz (1980)). Calling W, = u, we may write (3.5.59) in the form

(3.5.55) W, + w? +(1+§>TWH=O,

and the Backlund transformation is given by
(3.5.56a)

(WH+ W), =d+iT(W = W), ~i8 (W = W)+ ed W Wraes,

(W' —W), =-{%(1+1)+A}(W'- W)x+z'(1 +-;—)(W’+ W)r

)
(3.5.56b) -1
_I(W'_W)XT(W'~W)X+15 (W’—W)(W’—W)x"

where A, u are abitrary parameters. If W satisfies (3.5.55) then W' defined by
(3.5.56) also satisfies (3.5.55). Introducing V = W' — W(and using W, = u) we
may rewrite (3.5.56) to give a generalized Miura transformation:

(3.5.57a) Ve+2u=A+iT(V)—is ' V+pe V@12

V= ~((1+%)5'1+A) v,
(3.5.57b) +,-(1 ﬁué)(vxx +2u) =iV, T(V,)+i8 ' VV,.

Substituting V, +2u from (3.5.57a) into the right-hand side of (3.5.57b) gives
a modified internal wave equation,

(3.5.58) V,+AV, +(1 +%) T(Vxx)+{u e"“”’“”v+iT(V,)—i61V} V. =0,

which has the same dispersion relation as the intermediate equation. Alterna-
tively, solving for u in (3.5.57a), and using the identity

(35'59) T( vx)T(Vxx) - vxvxx - T( VxT( Vx))x = 6'1(VT( Vxx)'_ T( va)),
we have (directly from (3.5.39))

1.9 o1 .8 usnesv 3}
x ) =3 *
w,+2uu, + T (uyy) [216x7 i +/.u———l ae Tar

1
(3.5.60) x[v,+,\vx+(1+g)r(vu)
+{u e‘“’”“wir(vx)—év} v,].

Thus we can see that (3.5.58) plays the same role in this intermediate equation
as does the modified KdV equation with respect to the KdV equation.
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Imposing V(x0)=0 and using [Z fT(f)dx =0, we note that (3/dr)
(|%% Vdx)=0. This implies that (3.5.39) has an infinite number of conserved
quantities. Substituting V = —i(1+1/8)(x +log (—A/u)) into (3.5.57a) yields

- 1 1 - 1
(3.5.61) e¥—1=2 1[;'(1 +5)Xx +(1+3)T(X,)~5 1(1+§)X—2u].
Expanding x =Y.1 A ", for A > and equating powers of A gives x, recur-
sively. Arguments such as the above show that each y, is a conserved density
of (3.5.39). The first four y, are given by

1
X1=U x2=u’, x3= u3+(1+5)guTu,‘,

ea{igheme i) () e 31
= = AL+ s+ 14+ =) (Tu) += +=uTu,.
X4 u+3(1+8uTu2 5) Y 2la(u) 25 15uu
The conserved densities reduce correctly to those of KdV as § >0 and
Benjamin-Ono as § » .

A formal linear problem can be derived by defining

vi_. 8
(3.5.62a) log = =i 5V,
(3.5.62b) (log ¥4 )s = —2—[~T(V.)+8 V],

1+6
In the limit & - oo, for appropriate V, this amounts to splitting the function V
into functions analytically extendable into the upper (—), lower (+) half plane,
i.e., log ¢* = £(i T H)V. Substitution of (3.5.62) into (3.5.57a) gives
1\ _ A\ i
3.5.6 ( +-) x-'( --) =L,
(3.5.63) 18411 Ru-3)o i

(There is also an appropriate linear time evolution operator; see Satsuma,
Ablowitz and Kodama (1979).)

As 8§-0, letting V=2(1+8)(logd),, A=—(1+1/8)kcosks, wu=
(1+1/8)k cosec k8, we find that (3.5.63) goes to the Schrédinger scattering
problem

(3.5.64) ¢xx—(%2— )(b =0,

whereas when 8 » 0 we have
R \ WU T
(3.5.65) Y z(u 2)¢ = 21/./.1!/.

Equations (3.5.63, 65) are differential Riemann~Hilbert problems. For
finite 8, ¢+ are the boundary values of functions analytic in strips (+: =26 <
Im x <0), (—; 8 <Im x <28) and periodically extended. Recently, use of these
linear problems has led to solutions via IST; see Kodama, Satsuma and
Ablowitz (1981). Work in this direction has also been done by Nakamura
(19795h) and Bock and Kruskal (1979).



OTHER PERSPECTIVES 217

3.6. Direct approaches with the linear integral equation. In previous
sections we have established that related to certain nonlinear evolution
equations is a linear integral equation (of Gel’fand-Levitan~Marchenko form).
In this section we shall discuss a procedure for deriving the evolution equation
directly from the linear integral equation. The derivation applies to partial as
well as to ordinary differential equations (see also § 3.7). We need only require
that the solutions decay rapidly enough as x » 400 (say) that the integral
operators are defined. It should be noted, however, that in general a solution
which decays rapidly enough as x > +co0 may diverge at some finite value of x,
diverge as x » — o0 or have weak decay as x » —0. In any of these cases, the
classical analysis of inverse scattering using the analytic properties of the Jost
functions is not applicable, since this requires “‘nice” properties of the potential
on the whole line (see, for example, Faddeev (1963), Deift and Trubowitz
{1979)). Because of this freedom, the range of solutions obtained by the
present approach is larger than that obtained by IST. In this way the self-similar
solutions satisfying ODE’s related to these evolution equations can be
obtained.

This method was first used in the field of nonlinear evolution equations by
Zakharov and Shabat (1974) (see also Shabat (1973)). Blazek (1966) and
Cornille (1967) have used similar ideas for various problems associated with
inverse scattering; Cornille (19765), (1979) has also made a number of further
contributions using these ideas for nonlinear evolution equations. In this
section we shall first follow the presentation of Ablowitz, Ramani and Segur
{1980a); subsequently we discuss the work of Zakharov and Shabat (1974),
which has a somewhat different point of view.

Consider the linear integral equation

(3.6.1) K(x,y)=F(x,y)+I K(x 2)N(x:z,v)dz,  y=x

Besides the arguments (x, y, z) which appear explicitly in (3.6.1), F, N and K

may depend on other parameters (f, A, - * *)}. Derivatives with respect to these

extra variables may appear in the differential equations that F and K satisfy,

but (3.6.1) is understood to be solved at fixed given values of these parameters.
In each specific case N is explicitly given in terms of F. For example,

(A) Nix;z,y)=Fl(z,y) (KdV, higher order KdV,
Boussinesq, Kadomtsev-
Petviashvili, - - -);

(B) Nix;z,y)= :tj F(z,8)F(s,y)ds (mKdV and higher order
: mKdV, sine-Gordon, - - *);

(C) Nix;z,y)== j F*(z, s)F(s, y) ds (NLS, higher order NLS, - - *).
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In the usual approach, F is constructed from the scattering data of the *‘direct
problem” and the scattering potential u(x) is reconstructed from K (e.g.,
u(x)=K(x, x) or u(x)={(d/dx)K(x, x)). Here we do not give to F any such
interpretation, but only demand that it satisfy some linear (partial or ordinary)
differential equation.

Define the operator A, by

(3.6.2) Afly) = J‘ f(z)N(x;z,v)dz, yZx,

0, y<x.

We assume that for each specific choice of N, one can prove that (I —A,) is
invertible. More precisely, there is an x large enough and a function space on
which (I — A, ) is invertible, and ( — A, )" is continuous. Moreover, we assume
that the operators obtained by differentiating (3.6.2) with respect to x or y also
are defined on this function space. It can be shown that these assumptions are
valid in a large variety of problems (see, for example, Ablowitz, Ramani and
Segur (1980a)).

Subject to these assumptions and the fact that F satisfies some linear
differential equation, we show in this section that «(x) (defined above) satisfies
a nonlinear differential equation. We shall say that this equation is solvable by
an inverse scattering transform even though no reference is made to the direct
scattering problem.

The outline of this approach can be stated rather simply.

(i) F satisfies two linear (partial or ordinary) differential equations

(3.6.3) LF=0, i=1,2.
(ii) K is related to F through (3.6.1) which we may write in the form
(3.6.1") (I-A)K =F.
(iii) Applying L;, i =1, 2 to this equation yields
(3.6.4) L(I-A)K =0, i=1,2.
This can be rewritten as
(3.6.5) (I-A)LK)=R, i=1,2,

where R, i = 1, 2 contains all the remaining terms in (3.6.5). However, (3.6.1)
and (3.6.3) are chosen such that we can write

(3.6.6) Ri=(I-AJM(K), i=12,

where M;(K) is a nonlinear functional of K.
(iv) Therefore
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But (I — A,) is invertible, so K must satisfy the nonlinear differential equation
(3.6.7) LK-M(K)=0, i=1,2.

Therefore every solution of the linear integral equation (3.6.1) is also a solution
of the nonlinear differential equation (3.6.7).

The basic ingredients to this approach are the linear integral equation (3.6.1)
and two linear differential operators L; i =1,2. The two linear operators
correspond to the linear scattering problem (i =1, say) and the associated
linear time evolution of the eigenfunctions (i = 2, say). In order to make the
method effective we must identify a class of suitable operators L,, i =1, 2. The
operator (L), related to the scattering problem, is crucial. In addition we find it
convenient to establish a “‘dictionary”’ of terms that may appear in the right side
of (3.6.5): R;. These results and those generated from the L; operator allow us,
in every specific case, to reduce (3.6.7) for i =2 to a nonlinear differential
equation along the line y = x. Finally we note that: (i) it is straightforward to
show that K, defined by (3.6.1) is differentiable enough that LK exists; (ii) the
equations L,F =0 may be either PDE’s that depend on time or suitable
similarity forms (see Ablowitz, Ramani and Segur (1980a)).

In what follows we shall discuss two prototype examples, namely the KdV
and the mKdV equations. The integral equation we shall begin with is

(3.6.8) K(x,y)=F(x, y)+.[ K(x,z)F(z,y)dz

(i.e., (3.6.1) with (A)). First we begin by establishing a “dictionary” of results
which we shall call on again later.

(3.6.9a) 4% j K(x,z)F(z,y)dz = J- dz F(z, y)@:K(x, 2))+A,,

(3.6.9b) axa:“j K(x,z)F(z,y)dz=6x“' F(z,y)a;'_lK(x,z)dz+A,,_1].

X

An integration by parts and setting (3.6.9a, b) equal yields
(3.6.9¢) A=A, 1~ Fx, y)00 K (x, 2)):=x,
with
(3.69d) A;=—-K{(x,x)F(x,y),

d
(3:6.9¢)  Ay=——(K(xx)F(xy)~Flx, yN8K (%, 2))z =x,

d\’ d
(3.6.9f) A;= —(E) (K (x, x)F(x, y))—E(F(x, YIOK (x, 2)]:=x)

~F(x, »)[33K (x, 2))z =,
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where (d/dx)K (x, x) = (3,.K (x, z)+3,K (x, 2)), -,. Similarly, by integration by
parts, we have

o

(3.6.10a) J K(x,2)3;F(z,y)dz = (—1)"J F(z,y)3;K(x,z)dz +B,,

X

with
(3.6.10b) B, =-K(x, x)F(x, y),
(3.6.10c¢) By =~K(x, x)(0,F(x, y))+(8.K (x, 2)).=-F(x, ¥),
oK
(3.6.104d) Bs=—K(x, x)33F (x, Vo a.F(x, )
- (BiK(x, z))z=xF(xa )’),
Hence
(36118) A]‘B1=0,
(3.6.11b) A;—By=-2F(x, y)8,K (x, x),
d
(3.6.11¢) Ai—Bi=—33.F(x, y);i;K(x,x)

—3F(x, y)[(33+8,8)K (%, 2)]: =«

Next we introduce the operator L, and require that F satisfy
(3.6.12) L,F=(3;-3})F(x,y)=0.
Then we operate on (3.6.8) with L;. We find

@E-)K =@3-0) [ K 2F (@ y) dz

= J’ F(z, y)3:K (x, z) dz +A2—I K(x,2)F,(z, y) dz.
Using F,, = F,, and (3.6.11b) gives

@ =aDK (5, y)= | Flx, 2)6-0)K 5, 2) dz
(3.6.13) : )
_2F(x, Y);Zt-K(xs x)-
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Using F = (I - A;)K in (3.6.13) and rearranging, we have
d
(3.6.14) (I—Ax){(ai—ai)K(x, y)+2[EK(x, x)]K(x, y)] =0.

The invertibility of (I — A,) yields
(3.6.15a) (07 —9DK (x, y) +u(x)K (x,y) =0,

where u(x) is defined to be

(3.6.15b) u(x)=2—‘~1—K(x,x).
dx

Thus we have shown that if F satisfies a linear differential equation (3.6.12)
and if F generates K through (3.6.8), then K satisfies the nonlinear equation
(3.6.15). This is an example of (3.6.7). If we take K (x, y) = #(x, k) ¢™, (3.6.15)
reduces to

(3.6.15¢) o + K2+ =0,

i.e., the Schrodinger scattering problem.
We now introduce a second linear operator on F, and require that F satisfy

(3.6.16) LoF =0, +(3,+8,))F=0.
Operating on (3.6.8) with L, gives

(3.6.17) (8, + (8, +ay)3)K(x, y) = (8, + (9, +ay)3) J K(x, z)F(z,y)dz.

X

On the right-hand side of (3.6.17) we have the term

(3.6.18a) 1=J’ K(x,z)F,(z,y)dz+(ax+ay)3J- K(x, 2)F(z,y) dz

X

(3.6.180) = -—j K(x, 2)(0. +8,)°F(z, y) dz

+(0,+5,) j K(x, 2)F(z, y) dz.

x

We write

(3.6.18¢c) I=L+1L+1,.

First, I, is given by (arguments understood)

(3.6.18d) Il=aij' KFdz—-[ K 3XFdz;

x x
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from (3.6.9, 10),
(3618@) I = J (aiK +82K)Fdz +A;—Bj.
Then I, is given by

Iz=3aiayJ' KFdz—sj K 820,Fdz

(3.6.18f) =3j (92K —8K)F, dz +33,(A2—By)

X

(3.6.18g) =—3ud,(K(x, y) = F(x, y)) +38,(A2— B,),

where we have used (3.6.15) and (3.6.8) in the form {;” KF dz = K —F. Finally,
for I3 we have

(3.6.18h) 13=3axa§I KFdz—sj Ko,0iFdz

X x

oo

=3| 3.K)F, dz+3 j K.F,, dz

p

=3| (3,K+8,K)F,, dz

Yx
00

=3 (0.K +98.K)F,. dz

“Xx

= [3(sz +Kzz)F— 3(Kx +Kz)Fx]z=x

(3.6.18i) ©
+3 j ((8%3, +3)K)F dz.

x

Summing the results, and using K, = K, + uK in the last term in (3.6.18i), we
have

I=IL+L+I= r (9 +98,)’K)Fdz + As—Bs—3ud, (K — F)
+39,(A2~ B2) +[3(K.. + K. )F - 3(K; + K;)Fy]; -
+3u Jm K. Fd:.

Inserting this result in (3.6.17), we have

e +]
(3.6.19a) (8, +(0; +8,)° +3ud,)K = J' (K, + (3, +0, K +3uK,)Fdz + T,



OTHER PERSPECTIVES 223

where
T =(A3—B3)+33,{A,— B,)+3uF,
+3[(Ky: + K )F = (K + KOF o -
Substituting for A; — B3, Az — B3, and using (3.6.15), (3.6.8) we find
T =3u(x)K(x, x)F(x, y) = 3u(x)F,(x, y)

(3.6.19b)

==3u(x)K,(x, y)+3u(x) J K. (x,z2)F(z,x)d:z.

Using T we find that (3.6.19a) reduces to
(3.6.20a) (I~ A, + (3, +3,)° +3u(9, +3,)K (x, y)} =0,
whereupon

(3.6.20b) K.+ (3, +38,°K +3u(a, +9,)K = 0.

On y =x, using u = 2(d/dx}K (x, x) we have KdV (after taking a derivative
of (3.6.20b)):

U, +6uu, + ., =0.

Thus every F that satisfies (3.6.12, 16) and vanishes rapidly as x » +o
generates a solution of KdV via (3.6.8). In particular, F need not have
originated in a direct scattering problem.

As a second example, we begin with the linear integral equation (o =zx1;
the factor ; is for convenience)

o0

(3.6.21) K(x,y)=F(x,y)+%J J' K(x, 2)F(z, u)F(u, y) dz du.

X

First we introduce the operator L, such that

(3.6.22a) L\F = (3, —8,)F = 0;
hence

x+y
(3.6.22b) Flx, y) =F( . )

(again with a factor 3 for convenience). Using (3.6.22b) and shifting to the
origin, we rewrite (3.6.21) as

(3.6.23a)

K(x, y)=F(x;y) +%J‘: J.:K(x,x-é-{)F(zx +2{+W>F(X+;I+Y) dl dn
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or

(3.6.23b) [ - cANK](x, y) =F(" Y )

2
where A, is defined as

2x+;+n)F(x+n +y

2 2 ) dg dn.

(3624)  Af(y)= f [: F@F(

It is also useful to define

x+{+2z

(3.6.25) Kalx, )= Lw Kix,x+ {)F( : ) dz.

With (3.6.25) one easily shows that

(3626)  (I-0A)Ka(x, 2)= f F(2x2+ ‘)F(" * § ) a,

and we may write the integral equation as

(3.6.27) K(xy) =F(x—§-}-') +(ZT L Ka(x, x + n)F(x————+ 12' * y) dn.

Applying the operator L, = (3, —4,) to (3.6.27) yields

x+1;+y) dn

(3.6.28)(ax—ay)K(x,y)=§fo [(81+62)Kz(x,x+n)]F( >

where 9, and 8, are derivatives with respect to the first and second arguments
of K. Similarly, applying (8, + 3,) to (3.6.23a) yields

x+§+z)

oo

(8 +8,)Ks(x, 7) = J {(a1 + K (x, %+ g)F(

0

+K(x, x +{)F<x +§+z)} d¢
(3.6.29)

- Lw [0 —3:)K (x, x + )IF (x +§ +z) “

“2K(x, x)F(x—;—y).

Substituting (3.6.28) into (3.6.29) we see that

(I'an)(ax +82)K2(x, Z) = —2K(x, x)F(f%)

=-2K(x, x)I - 0cA K (x, z).
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Similarly, substituting (3.6.29) into (3.6.28) leads to

(I-0A) 5 = 3,)K (5, ) = =K (3, x) Lm F(2x2+ T E(2HE) g

- _%’K(x, )~ cA)K(x, y).

Note that A, commutes with multiplication by a function of x. Thus, if
(I —oA,) is invertible, we have proven that

(8x +9,)Ks(x, y) = 2K (x, x)K (x, y),
(3.6.30)

(3.~ 8,)K (x, y) = ~§K(x, OKalx, y).

These are the results expected from the inverse scattering analysis (cf.
(1.3.19)). However, here we obtained them using only invertibility of (I —cA,),
which is a much weaker condition than what is required to apply the usual
analytic approach. Moreover, taking K(x, y)=11(x) e, and Ky(x,y)=
va(x) e yields (1.2.7a) for vy, v

Next apply (9, +d,) to (3.6.23a):

(8: +9,)K(x +y)

=F’+%J‘; J'om [(8,+3,)K (x, x+z)]F(2x ’;“’7)1:(" +;’ +”) d¢ dn

(3.6.31)

+2 J:c Lm K(x, x+ )0 +ay)[F<2x +2{ s ")F(x i ;’ * y)] d¢ dn.

But

. +ay)F(2x +2§ + n)F(x + ;; + y)

(3.6.32) _ F,(Zx +2§+ n)F(x +12; + y) +F(2x +2{ + n)F’(x + 72, + y)

~anf (R )
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Performing the n integration in (3.6.31) leads to

(I —gA)0:+8,)K(x, y)

~F (x;y) (gJ:OK(x, X +OF(2x+¢) d{)F(x ry)

_ F,(x ; Y) _‘21K2(x, I —aA K (x, y);

i.e.,

xX+y
2

This is the ‘“‘dictionary.’ required for this problem.
The final step makes use of the fact that F satisfies another linear equation

(3.6.34) LoF=(3,+ (3, +9,))F =0,

(3633 F(22)=1-oa)@+0,)K (5 1)+ 5Kolx 0K (3, ).

Applying L to (3.6.23a) yields
(3.6.35)
{8+ (82 +8,)’}K (x, y)

=0+, + (s +ay)3}‘[:’o K(xx +{)F(2x +2§+ ")F(" +Z+y) dnds.

The terms on the right side of (3.6.35) proliferate when the differentiation is
performed under the integral, but several simplifying cancellations occur. For
example, using (3.6.34) leads to

s B ()

It follows that (3.6.35) is equivalent to
(I —FANB + (8: +8,)}K (x, y)

(3.6.36) =—§2‘—’[a, L“’ d{{al

o} AEH ()

32[‘”<2 ]F( 2y>

But, from (3.6.30),
9,Ky(x, x)=-2K{x, x)
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and

o jooo dgF(zx; {)al ;._BZK(x’ ¥+4)

= 0,[(8x —3,)Ka(x, ¥)]y=x

=[(8x +9y)(8x — 3y ) Kalx, ¥))y=x

= (9, — 8,1 —2K (x, \)K (x, y)}y =«
=—2[3,K (x, x)IK (x, x) + oK *(x, x)Ka(x, x),

where we have used

(0, —9,)Ks(x, y) = J'o @1+ 02)K (x, x + g)p("_tgil) d¢.

Then, via (3.6.23), (3.6.33) and the invertability of (I —cA,), (3.6.36) becomes
(for y=x)

{8, + (3, +8,)}K (x, ) =30K (x, x)K (x, y)8.K (x, x)

(3.6.37) )

+30K"(x, x)(3, +9,)K (x, ).
If we define
(3.6.38) qx,)=K(x,x;1)

and evaluate (3.6.37) along y = x, then

(3.6.39) 3,q+33q =60q°q.;

i.e., g satisfies the modified Korteweg—-de Vries equation.

Thus, every solution of these LF =0, i =1, 2, that decays fast enough as
x - o defines a solution of (3.6.39), via the linear integral equation (3.6.21).
No global properties (on —00 < x << 00) are required. A special case of interest
is obtained if F and K are self-similar:

(3.6.40) K(x,y;)=030""°K(& ), F(xTﬂ )_(30_1/3F(§;n>

where

y

— e _x,.__ e e o
g - (3t)1/3’ n= (301/3'

Substituting these into (3.6.23) shows that K satisfies an equation of the same
form:
§+m

(3.6.41) I%(g,n)=ﬁ(—2—)+§L R {)F({ ‘/’) (‘” )d;dw, nZE
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Substituting (3.6.40) into (3.6.34) yields

F (@)= [F&)+¢eF(©]=0,
which can be integrated once:
(3.6.42) (&)~ ¢F (&)=

If C; =0, the solutions of (3.6.42) that vanish as £ - ¢ are multiples of the
Airy function:

(3.6.43) F(f%?) =7 Ai (%7)

Meanwhile, Q(£) = K (£, £) must solve the similarity form of (3.6.38),
Q"-[Q+£Q'1=60Q%Q,

which can also be integrated once:

(3.6.44) Q"' =¢(Q+20Q%+C,.

This nonlinear ODE is the second equation of Painlevé (Py).

What we have shown here is that every solution of the linear integral
equation (3.6.41) in which F is defined by (3.6.42) also gives a solution of
(3.6.44). In particular, if C;=0 it then follows from (3.6.41) that Q(¢) is
exponentially small as £ -» 00, so that C, vanishes in (3.6.44). Thus (3.6.44)
becomes

(3.6.45) Q"= £Q+20Q°.

Then, if (3.6.43) is used in (3.6.41), a one-parameter family of solutions of
(3.6.45) is obtained from the solutions of

(3.6.46) [I-0r?AJK (& 7;r)=r Ai (§; n),

where

oo

6641 Adfm=1|
'3

f 0) Ai ({;‘Il)A ("”;"’) dt dv,

since Q(&;r) = K (&, &; r). This result was first obtained by Ablowitz and Segur
(1977b).1In § 3.7 we discuss in more detail some of the properties of Py, that can
be derived from (3.6.46).

Next we shall discuss the original Zakharov-Shabat (1974) procedure with
specific application to the Kadomtsev—Petviashvili equation. It will be con-
venient to rewrite (3.6.8) in the form

(3.6.48) K(x,z;y,)+F(x, z;y, t)+J K(x,z;y,)F(x,z;y,t)dz =0.
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We shall first state the results for the Kadomtsev—Petviashvili (K-P) equation,
and then discuss the actual procedure of Zakharov and Shabat (1974) (which
is somewhat different from that described earlier).

If we require F to satisfy the linear equations (L;, i =1, 2)
(36493) LIF:ﬂFy +F,—F..=0,
(3.649b) L2F = aF{ +Fxxx +Fzzz = O,

and follow either the recipe described above or the one that follows later, we
will find that u = 2(d/dx)K (x, x) satisfies

(3.6.50a) By (et + $thyy +6uny)) = —3Bu,,,
or, if a =§,
(3.6.50b) B (e + 6Uth, + Upe) = — 3B 1y

This is the K-P equation (see also § 2.1, §3.3, § 3.4).

We now derive (3.6.50) using the operator formalism of Zakharov and
Shabat (1974). All operators are denoted by a symbol with a caret above them
{e.g., K is an operator, K is a function, perhaps a matrix function). The
operator form of the linear integral equation is written in a factorized form

(3.6.51) 1+K)A+FH=(1+K.),

where If'i, F are NxN (matrix) operators acting on a (vector-valued)
function ¢ ={¢,, - - -, Yn}" and

(3.6.52) Fy= J' F(x, 2)(z) dz

(F is an N XN matrix function). Here K. are Volterra operators where
K. (x,z)=0for z <x, K_(x, z) =0 for z >x. It is assumed that the operators
(1+ K.) are invertible. Applying (3.6.51) to ¢ yields

(3.6.53a) K. (x,z)+F(x,z2) +J K. (x,2)F(s,z)ds =0,

X

(3.6.53b) K_(x,z)=F{x, z)+J K.(x, s)F(s, z) ds.

Note that (3.6.53a) is equivalent to (3.6.48) (here it is understood that F also
depends on auxiliary variables y, ¢).

Next, certain ‘‘unperturbed’” operators 1\310,.-, i=1, 2, are defined. They are
required to satisfy

(3.6.54) [M()’,', ﬁ]':Mo’iﬁ‘—ﬁMo',‘ =0.

Hence if My=3> then (3.6.54) requires a2 (S0 F(x, ) (z) dz -
[%% Flx, 2)3%4(z) = 0, which in turn yields the equation (82-32)F =0. These
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“unperturbed” operators induce “‘perturbed” operators M, i=1,2 via the
condition
(3.6.55) M(1+K)-(1+RIMo; =0, i=1,2.
The M, have the form
Mo=ad,+Bd,+Lo, Lo=Y 1"

(I, are constant matrices). Equation (3.6.55) induces an M of the form
M=aa+po,+L, L=3lia+ § viwn),
n k=1

where the V. (x) are determined recursively, and an equation for K, of the type
(3.6.56a) adK,+Bo,K,+LK. +Y (-1)" 92K, =0

(this is analogous to (3.6.7)). For example, if a =8 =0, Lo=4} (a scalar
operator) then V1=0, V,=2(d/dx)K(x, x)=u(x), i.e., L=d+ u, and K,
satisfies (97— 32+ 1)K, =0.

Now, condition (3.6.54) with the integral equation (3.6.51) implies

MA+E)-(1+E )WMo=M1+K)1+F) -1+ K1+ F)M,
(3.6.57) = (M(1+R.)~(1+R)M)(1+E).

For z > x the left-hand side of (3.6.57) vanishes, hence we must have (3.6.55).
Suppose that

Mm =ad, +£0,1,
Moa= Ba, +Lo.2,

such that [M,;, F1=0, i = 1, 2. From (3.6.57) we have
M(1+K)=(1+K)Mo,  i=1,2.

Operating on the i =1 equation with M,, the i =2 equation with M, and
subtracting yields

(3.6.58a) [M,, M,]=0,

or

(3.6.58b) ad.Lr—Bo, L +[L,, [2]=0,
or

(3.6.58¢) L=ga,+L,, —=4, L =(L, A].



OTHER PERSPECTIVES 231

(3.6.58) is the nonlinear evolution equation solvable by the linear integral
equation. (3.6.58¢c) is the standard Lax form, whereas (3.6.58b) shows
explicitly the additional auxiliary variable y.

For the case of the K-P equation, two linear operators are defined on F via
{3.6.54):

(3.6.59a) Moy =ad, +d,

(3.6.59b) Moo= B3, +32.

Hence F satisfies

(3.6.60a) {ad, + @3 +a}F =0,

(3.6.60b) {Bo,+ (85— 02)}F =0.

Moreover the induced “‘perturbed” operators are

(3.6.61a) My=ad, +L;,

(3.6.61b) M, =Ba,+1L,,

where

(3.6.61¢) Li=00+3ud, +d,u)+w,

(3.6.61d) Ly=02+u

(note that d,u = ud, +u,), and u =2(d/dx)K (x, x),
w2 i((ax —0)K(x2)|  +(K(x x))z).

2 dx .

We may verify that
(3.6.62) (L2, L1)= 0w + way — Hitax +6uus).

Hence (3.6.58b) yields (after operating on ¢ and setting coefficients of , ¢,
equal to zero, respectively)

(3.6.63) oty + i(Unex +6UU,) = Bw,, Wy = —%ﬁuy.

This reduces to the K-P equation (3.6.50). If we set a =, the LA operators
(3.6.58c¢) are given by

(3.6.64a) L=02+u+Ba,

(3.6.64b) A=4ai+3(uax+axu)—3ﬁf u, dx’'.

We also encourage the reader to compare this method with the alternative
approach, discussed in §2.1 (see also Dryuma (1974)) of Ablowitz and
Haberman (1975a).
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It is clear that the above method is very powerful. It yields both solutions
and L, A pairs. The pair in (3.6.64) are the starting point in the work of
Zakharov and Manakov (1979) on the inverse scattering solution of the K-P
equation (see also Zakharov (1975)).

It should also be noted that by taking the time-independent limit, 3, = 0, of

(3.6.63) we obtain the so-called Boussinesq equation
(36.65) uxxxx+6(uux)x +332u)’y =0‘

On the other hand, if 3, =0 then we have the derivative of the usual KdV
equation. Special solutions may be constructed from the linear integral
equation. Assuming

(3.6.66) F=Y M, y) e T ME
then we have

(3.6.67) M, (t,y) =M, (0) exp {(n>~k2)y + (ks + 1)t}

from (3.6.60). Then putting K (x, z) =Y, K,,(x) e ™ into the integral equation
(3.6.48) yields the system

€Xp (_(Kn + nm)x) =
(Kn +Nm)

From this we can verify that the potential u(x)=2(d/dx)K (x, x) has the form
2

d
u= Ex—zlogA,

(3.6.68) K,(x)+M,e " +M,Y K,.(x) 0.

(3.6.69)

—(Kp +
A=det(6,,m+M,,exP( (s "’")x)).

Kyt N

This is equivalent to the result in § 3.3 by Satsuma (1976). It corresponds to
solitons interacting at arbitrary angles to the x-axis (save for the resonant case
examined by Miles (1977a,b); see also § 3.3 and Newell and Redekopp
(1977)). When a =1, ﬁz =—1, Manakov et al. (1977) have shown that limits of
(3.6.69) yield lump-type solitons decaying like 1/R* (R*=x>+y*) as R>®
(see also § 3.4):

(3.6.70a) u=23%logdetB,
where B is a 2N X 2N matrix

2
(B6.700)  B=bunx = ivyy — £ = 3v30) + (1= 8,0) )
Vi = Vm
Asymptotically this solution breaks up into lumps having velocity V, = 3|u,.]2
V, = —6Im v, ; there is no phase shift upon interaction.

bl
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Apart from all of these results, Zakharov and Shabat (1974) discuss certain
other solutions, as well as showing how these methods can be used to study
the three-wave problem in three spatial dimensions,

du
‘-'_l"‘ Vl . Vul =i'}’1u>2ku;<1
at
. au?_ . Kk
(3671) Ft"‘i' Vz‘Vu2=1~yzulu3,
du
—6;3'4‘ V3 : VLl3= i-y3u’2ku}k.

This idea was generalized by Zakharov (1975) and furthered by Cornille
(1979). The inverse scattering solution for appropriately decaying u; as |x
lyl- o is considered by Kaup (1979).

Finally, it should be noted that finite perturbations from special solutions
can be constructed using this method. Namely, if uo(x, ¢} is a special solution
to one of these equations (say, KdV to be specific) then the perturbation v (x, r)
(u(x, 1) = uolx, 1) +v(x, t)) can be expressed in terms of a Gel'fand-Levitan—
Marchenko integral equation. For example, in this way rational-exponential
soliton solutions can be constructed; such perturbation ideas were examined by
Shabat (1973), Kuznetsov and Mikhailov (1975), Ablowitz and Cornille (1979)
and Ablowitz and Airault (1981).

’

3.7. Painlevé transcendents. Among the possible solutions of a partial
differential equation (PDE), certain special solutions may depend only on a
single combination of variables, so that they effectively satisfy an ordinary
differential equation (ODE,; in this section we use ODE loosely for either a
single or a system of ordinary differential equations). For example, the KdV
equation

(3.7.1a) u,+6uu, +uy, =0

admits both traveling wave solutions
ulx, )=Ulx—ct),
where U(z) satisfies the ODE

(3.7.1b) U'+3U—cU =K,

and self-similar (or similarity) solutions

_ -2/3 X
u(x, t)= (3t f((3t)”3)’
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where f(z) satisfies
(3.7.1¢) f"+6ff =zf +2f.

Each of these ODE’s is an exact reduction of the PDE, obtained by suitably
restricting the set of solutions.

The methods discussed in this chapter and elsewhere in this book succeed
because of the remarkably rich structure of the PDE’s in question. The ODE’s
obtained by exact reductions of these PDE’s exhibit rich structure as well, and
some of the methods we have used to analyze nonlinear PDE’s also can be
applied successfully to nonlinear ODE’s. Recognition of this fact has provided
solutions to some problems in nonlinear ODE’s that have been outstanding
for almost a century.

The ODE’s obtained by these exact reductions have a rather simple charac-
terization: they all have the Painlevé property (which will be defined below).
Exploiting this fact provides a direct method to test whether a given PDE can
be solved by IST. As we will see, this connection between ODE’s with the
Painlevé property and PDE’s solvable by IST may be used to obtain informa-
tion about both the PDE’s and the ODE’s.

3.7.a. The Painlevé property. We begin by reviewing some facts about
linear ODE’s (cf. Ince (1956, Chapt. 15)). Consider the nth order ODE
d"w d"'w

d
WP T 4P () P (2w =0,
z dz dz

If the n coeflicients are all analytic at point z, in the complex plane, then 2 is
a regular point of the ODE, which has n linearly independent, analytic
solutions in some neighborhood of z,. Any singularities of the solutions of the
ODE must be located at the singularities of the coefficients of the equation.
These singularities are called fixed, because their locations are independent of
the (n) constants of integration. It is a general property of linear ODE’s in the
complex plane that their solutions have only fixed singularities.

Nonlinear ODE’s lose this property. A very simple example of a nonlinear
ODE is

dw

(3.7.2a) — 4+ w?=0;
dz
its general solution is
1
(3.7.2b) wi(z;zo) = .
Z— 2y

Here zo is the constant of integration; it also defines the location of the
singularity. This singularity is called movable because its location depends on
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the constant of integration. Nonlinear ODE’s may exhibit both movable and
fixed singularities.

Any singularity of a solution of an ODE that is not a pole (of any order) is
called a critical point. These include branch points (algebraic and logarithmic)
and essential singularities. A problem of interest in the late 19th century was
to classify ODE’s on the basis of the singularities they admitted. (A review of
much of this work may be found in Ince (1956, Chapt. 12-14), or in Hille
(1976).) In 1884, Fuchs showed that out of all first order equations in the form

where F is rational in w and locally analytic in z, the only equations without
movable critical points are generalized Ricatti equations,

(3.7.3) ‘;—:= Po(z) + Py(z)w + Pa(z)w’.

Undoubtedly familar with this result, Kovalevskaya made the next
significant advance. She was awarded the Bordin Prize in 1888 for her major
contribution to the theory of the motion about a fixed point of a rigid body
under the influence of gravity. Her main idea was to carry out the apparently
nonphysical calculation of determining the choices of parameters for which the
equations of motion admitted no movable critical points. In all such cases she
then solved the equations explicitly. In all other cases the solution is still
unknown. (For a discussion of this work the reader is recommended to consult
Golubov (1953).)

Shortly thereafter, Painlevé and his coworkers examined second order
equations of the form

(3.7.4) w'=F(w', w,z),

where F is rational in w’, w and locally analytic in z. They showed that out of
all possible equations of this form, there are only 50 canonical equations with
the property of having no movable critical points. We will call this property
the Painlevé property, and will refer to any equation possessing this property
as being P-type (P for Painlevé). All 50 of these equations may be reduced
either to an equation already solved, or to one of six nonlinear, non-
autonomous ODE’s. These six equations are

d2W P
P; —==6w +1z,
dz
2
w
Py ——=zw+2w’+aq,

dz*
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P d*w 1 dw) ldw 1 5
— = —] - — +8)+ +——
dz* w(a’z z dz 7 (aw B)+yw
d*w 1 fdw\?® 3w’ B

P]v Z§=‘2—;(E) +—2'—+4ZW +2(Z —a)+—

d*w {1 1 }(@)2 Ldw, (w— 1) {aw+£}+ﬂ

Py 422 2w w—1J\4z zdz z° wl z

6w(w+1)
w—1 ~
dzw_l{_1_+ 1,1 }(dw) {l+ 1,1 }gﬂ
p dz* 2lw w-1 w-zJ\dz z z—-1 w-zldz
Vi w(w—l)(w-—z){ +Bz+y(z—1)+6z(z—1)}
23z -1)° w? (w=1 (w-2)

Painlevé and Gambier proved that these equations cannot be reduced to any
simpler ODE’s. Therefore they define new functions, the Painlevé trans-
cendents.

The question of which ODE’s have the Painlevé property is appropriate at
any order, but comprehensive results are available only at first and second
order. (Bureau (1964), (1972) has given a partial classification of third order
equations.)

3.7.b. Relation to IST. How are these ODEs’s of P-type related to the
nonlinear PDE’s that we have been studying? Recall from § 3.6 that a
nonlinear PDE is said to be solvable by an inverse scattering transform if
K (x, x)[or (d/dx)K (x, x)] solves the PDE, where K (x, y) is defined by a linear
integral equation of the Gel'fand-Levitan-Marchenko type,

615 Kwy=Fun+| KeyNwznd, yzr

where N is known in terms of F. Here we have suppressed the dependence of
K on other variables (necessarily £, perhaps also y, etc.) to emphasize the
distinguished role played by (x) in (3.7.5). Ablowitz, Ramani and Segur (1978)
made the following conjecture:

PAINLEVE CONIECTURE. A nonlinear PDE is solvable by an inverse scatter-
ing transform only if every nonlinear ODE obtained by exact reduction is of
P-type, perhaps after a transformation of variables. (See also McLeod and Olver
(1981) and Exercise 13.)

For the moment, let us assume the validity of the conjecture and spell out
how to use it to test PDE’s.

(i) Given a nonlinear PDE, find an exact reduction to an ODE. The easiest
reductions occur if the PDE admits traveling wave or similarity solutions, but
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these are not the only possibilities. Often a number of such simple reductions
are apparent from the equation.

(i) Using the singular point analysis that will be described below, determine
whether this ODE is of P-type. If the ODE is not of P-type, then the PDE in
its present form cannot bé solved by IST.

(iii}) However, a transformation may be available to make the ODE of
P-type; these transformations often are suggested by the details of the singular
point analysis. If such a transformation exists, then the transformed PDE is
the candidate for IST. The sine-Gordon equation is an example for which such
a transformation is necessary. Recall from § 1.2 that the equations actually
solved by IST are (1.2.17), which are then transformed into the sine-Gordon
equation, (1.2.18). See also Exercise 6.

(iv) If the ODE is of P-type, one may try a different reduction, and test it.
However, because there is no systematic way to find every exact reduction of a
PDE, the test is definitive only in ruling out PDE’s that are candidates for IST.
If one or two nontrivial reductions of a given PDE yield ODE’s of P-type
then one may start looking for a Bécklund transformation or a scattering
problem with some confidence.

(v) At the other extreme, if one knows that the PDE can be solved by IST,
then any particular reduction in a variable relating it to the inherent linear
integral equation must yield an ODE of P-type.

Here are some examples.. Zakharov (1974) showed that the Boussinesq
equation,

(3.7.6) = g + (ﬁ) 41

i U = Uxx 2 . 4 Uxxxxs
is solvable by IST. An exact reduction to an ODE may be obtained by looking
for a traveling wave solution

ulx,)=wx—ct)=w(z),

where w(z) satisfies
3,1

AN L Wy o _
3.2.7) A=cHw'+(5)+gw" =0,

which can be integrated twice. Depending on the constants of integration, the
result after rescaling is either

(3.7.8) w'+2wl+a=0 or w'+2w?+z=0.

The first possibility defines an elliptic function, whose only singularities are
poles. The second possibility is the equation for P;. In either case, the ODE
has the Painlevé property.
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Another example is mKdV,
(3.7.9) U= 6 Uy + gz =0,

which can be solved by IST. An exact reduction to an ODE may be obtained
by looking for a self-similar solution:

w(z) X
(3t)2/3’ Z—(3t)”3’

Sw” —6ww' —(zw) =0.

ulx, t)=

This can be integrated once:
Py w'=2w’+zw +a.

Again, the ODE is of P-type.
The sine-Gordon equation

(3.7.10) Uy =SIN U

can be solved by IST (after a transformation). It has a self-similar solution
(3.7.11) u(x, t)=f(z), z = xt.

If we set w(z) = exp(if), then
1 11
Pm W"=;(W')2-—;(W )+5;(w2—1).

Again, the ODE is of P-type.
The derivative nonlinear Schrédinger equation

(3.7.12) iq, = g —4iq°(q%). +8lql'q

can be solved by IST (Kaup and Newell (1978a)). Its similarity solution
eventually reduces to Py, (Ablowitz, Ramani and Segur (1980b)). Other
examples have been given by Jimbo (1979), Salihoglu (1980), and McLeod
and Olver (1981); also see the exercises at the end of this chapter. In every
example known to us, PDE’s solvable by IST reduce to ODE’s of P-type, and
PDE’s for which there is general agreement that they are not solvable by IST
(e.g., based on numerical experiments in which two solitary waves do not
interact like solitons) reduce to ODE’s that are not of P-type. To avoid any
confusion, we should emphasize that the critical question is not whether the
ODE turns out to be one of the six Painlevé transcendents, but only whether
it is of P-type (i.e., has no movable critical points).

These examples demonstrate that the conjecture seems to work. Following
Ablowitz, Ramani and Segur (1980a), we now sketch a partial proof of the
conjecture, which shows why it should work. Consider a special case of the
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linear integral equation (in which F(x, y)= F(x +y)):
(3.7.5a) K(x,y)=F(x+ y)+J K(x,z)N(x; z,y) dz, y=x,

We require that F satisfies a linear ODE, that F vanishes for large positive
values of its argument, and that N depends on F in a known way. (Several
examples of how N might depend on F were given in § 3.6; generally, the
reasoning here is closely tied to that in § 3.6.) We want to show that every
solution of a linear integral equation like (3.7.5a) must have the Painlevé
property. Then if K also satisfies an ODE, the family of solutions of this ODE
obtained via (3.7.5a) has the Painlevé property as well. Thus, the relation
between ODE’s of P-type and PDE’s solvable by IST is a direct consequence
of the role of the linear integral equation (3.7.5a) in the IST formulation.

A rough outline of the proof is as follows (for details see Ablowitz, Ramani
and Segur (19804a)):

(i) F satisfies a linear ODE, and therefore has no movable singularities at

all.

(ii) If F vanishes rapidly enough as its argument becomes large, then the
Fredholm theory of linear integral equations applies. It follows that (3.7.5a)
has a unique solution in the form

Di(x;z, y)
D,(x)

where D; and D, are entire functions of their arguments. Therefore the
singularities of K (if any) can come only from the fixed singularities of F, or
from the movable zeros of D,. But D; is analytic, so these movable singularities
must be poles.

(ili) Therefore, K, the solution of the linear integral equation, has the
Painlevé property.

This proof relates the Painlevé property to the linear integral equation.
McLeod and Olver (1981) give a similar proof. However, the connection to
IST may be exploited from other points of view, Flaschka (1980) and Flaschka
and Newell (1980) have made use of the scattering problem and associated
time dependences. Flaschka’s results may be stated quite simply.

{i) As discussed in § 1.2, compatibility of a given scattering problem,

Lv=Av, V., =My,

(3.7.13) K(x,y)=F(x+y)+J. F(x+2z) dz,

leads to a PDE solvable by IST that can be written in Lax’s form,
(3.7.14) [L,M]+L,=0.

(ii) The stationary solutions of (3.7.14), which include its N -soliton and its
N-phase quasiperiodic solutions, satisfy a commutator relation of the form

(3.7.15) [L,B]=0.
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(iii} The self-similar solutions of (3.7.14) satisfy a different commutator
relation,

(3.7.16) [L,B]=L.

The practical value of (3.7.15) is that it can be reduced to an algebraic
equation, and finding its explicit solutions reduces to function theory on an
algebraic curve. Whether the algebraic nature of (3.7.16) can be exploited as
efficiently is not known. Later in this section we briefly discuss how Flaschka
and Newell (1980) use the concepts of monodromy preserving deformations
to examine Py;.

3.7.c. Singular peint analysis. Given a nonlinear ODE, how does one
determine whether it has movable critical points? If the equation happens to
be of second order and of the form (3.7.4), one may consult the list of the 50
equations found by Painlevé et al., in Ince (1956, Chapt. 14). If the equation
is on the list, then it is of P-type. If not, then it is still possible that a simple
transformation will put it on the list, so we recommend determining the nature
of the singularities admitted by the equation (see Exercise 8).

If the equation is third order or higher, there is no alternative to analyzing
the local structure of movable singularities, Two methods are avilable. The
a-method of Painlevé is described in detail by Ince. Ablowitz, Ramani and
Segur (19804) describe an alternative method, which is similar to that of
Kovalevskaya, and which we illustrate below. We should note that both of
these methods may miss essential singularities, which require a separate
analysis.

Example 1. Consider the family of ODE’s

(3.7.17) w'=z"w+2w’.

(If m =0, (3.7.17) defines elliptic functions. If m =1, it is Py. For m #0, 1, we
will find movable critical points.) There are three main steps to the method.
The first is to find the dominant behavior of the solution in the neighborhood
of a movable singularity, at zo. Thus we assume that, as z - zo,

w(z;zo)~(z—_z;);.

In this case the dominant terms in (3.7.17) are the first and last, and p=1,
a’=1.1f we take a =1, then as z » zo

(3.7.18) w~(z=20) ' +0(lz—zo[ ).

If p had not been an integer, the dominant behavior would have been that of
a (movable) algebraic branch point, and the equation would not be of P-type.
(Even so, we recommend continuing the procedure since a transformation to
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bring the equation into P-type may be suggested.) If p had two or more roots,
a separate analysis would be required for each root.

Because (3.7.17) is second order, its general solution has two constants of
integration. One of these is z,. It is necessary to carry the expansion in (3.7.18)
to higher order, until the other constant of integration appears. The second
step is to find the power of (z — z,) at which this arbitrary constant may enter,
called a resonance. To do so, set £ =z — z¢ and substitute

(3.7.19) w(z)~¢  +pE
into the dominant terms of (3.7.17), To leading order in S, this gives
Blir—-1)(r-2)-61¢">~0,

which amounts to an algebraic equation for r. One root is always (—1),
corresponding to the arbitrariness of z,. In this case, the other root is r = 4. (If
r had not been a real integer, it would have indicated a movable branch point
at zg.) This tells how high we must carry the expansion:

(3.7.20) w(z)~¢  Faotaif+a’ +asg+ .

We can expect (ao, a1, az) to be determined, and the second constant to appear
when we get to a;.

The last step is to find the coefficients in (3.7.20), by substituting it into
(3.7.17) and equating powers of £ (note that z™ = (zo+ £)™). The result is that

-2y mzg !
(3.7.21) a0=0, a= 6“, a= :
At O(&£’) we find

1
(3.7.22) 0=0"a; =5m(m -1Dzg 2

There are two possibilities.

(i) If m=0o0r 1, (3.7.22) is identically satisfied for any value of a3, which
is therefore the second arbitrary constant. Using a method of Painlevé (cf. Ince
(1956, § 14.41)) one can then show that (3.7.20, 21) does indeed represent the
beginning of the Laurent series of the general solution of (3.7.17) in the
neighborhood of a movable pole. Because no other algebraic singularity is
possible, there are no movable algebraic branch points.

(iiy If m #0, 1, (3.7.22) cannot be satisfied for any choice of as. In this case
(3.7.20) must be augmented by logarithmic terms:

(3723) w(z)~& '+aotat+arfi+{az +b:& logé)+- .

Now (3.7.21) is valid, but at O(§3) b3 is determined while a5 is arbitrary. The
expansion in (3.7.23) is indicative of a logarithmic branch point at the movable
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point zo. Thus, the equation is not of P-type unless m =0, 1. (Note that higher
terms contain higher powers of both ¢ and log £.)

Example 2. A nonlinear Schrodinger equation in (n + 1) dimensions (cf.
§4.3)is

(3.7.24) i+ Ve ~2|p|*p = 0.

An exact reduction is obtained by setting

(3.7.25) F=Sxl,  &=R(r)exp ()
5

where

(3.7.26) R”+£—:—1— R'=2|RPR +AR.

(If we also require real R for real r, then the nonlinear term in (3.7.26) becomes
2R3 and we may search for (3.7.26) on Ince’s list. We consider the more
general case here, to show how to analyze complex equations.) The nonlinear
term in (3.7.26) precludes our considering R(r) as an analytic function.
However, we may replace (3.7.26) with

R"+5’—E—1 R'=2RS+AR,
(3.7.27)

n-—

S"+ 1 S=2RS*+AS.

r

If A is real, and S = R* for real r, then (3.7.27) includes (3.7.26). In any case,
(3.7.27) is a fourth order system of ODE'’s, whose singular points we may
analyze.

Step 1. At leading order, the dominant behavior of any algebraic sin-
gularities of (3.7.27) is

a 1

~

r—re a(r—ry)’

(3.7.28) R~

Two of the four arbitrary constants of integration are (ro, a).
Step 2. To find the.resonances at which the other two constants of integra-
tion enter, set x =r—r,

- - 1 _ -
R~ax '+ Cix™ 17, S==x"14Cox 1",
a
and substitute this into the dominant terms in (3.7.27), keeping only linear

terms in (C;, C,). The result is a fourth order polynomial for p, with roots (-1,
0, 3, 4). The first two roots represent the two free constants (ro, ), respectively.
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The last two roots determine the powers at which the other two constants may
enter.

Step 3. If (3.7.28) represent the first terms in a Laurent series about a
movable pole, then

-1 2 3
—~x +aptaixtax t+asx’,
a

(3.7.29)
aS ~x 4+ bo+bix +bax?+bsx’.

Substitute this into (3.7.27) and solve recursively:

n—1
=b = — .
ao 0 670
J S et G )
1T 6 36r2
tot b, M= (n—1D)(@n®~35n +85)
2T 6 10873 '

with {a, — b;) free. This is the third constant of integration. (So far, so good!)
However, at the next order we find

(3.7.30) 0+(az+bs)=(n—-1)(*),

where (*) # 0. If n = 1 (where we already know that (3.7.24) can be solved by
IST), (3.7.30) is an identity, (as+ b3) is the fourth constant of integration, and
(3.7.27) has no movable branch points. If n # 1, (3.7.30) is a contradiction and
{(3.7.29) must be augmented with a logarithmic term at O(x?). This logarithmic
term then generates an infinite sequence of increasingly complicated terms at
higher order. Equation (3.7.27) is not of P-type if n # 1.

If the Painlevé conjecture is correct, it follows that the nonlinear Schrédin-
ger equation (3.7.24) can be solved by IST only in (1 + 1) dimensions.

These two examples do not exhaust the possible nuances of singular point
analyses. The reader may consult Ablowitz, Ramani and Segur (19804) for
more details.

3.7.d. Global properties of Painlevé transcendents. Apart from its value
in testing PDE's, the connection between IST and ODE’s of P-type can be
used to obtain global information about Painlevé transcendents. For example,
we saw in § 3.6 that if K (x, y) satisfies

Kx,y)=rAi (i‘_g_y)
(3.7.31)

2

r o< o0
-HTZJ; J; (x,z)Al( 2 )Ax( 2 )d ds, y=x,
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where Ai (z) is the Airy function, o = £1, and r is a parameter, then w(z;r) =
K (z, z; r) satisfies a restricted form of Py:
2

(3.7.32) —==Zzw +20w>, og==x1,
dz

with the boundary condition that as z » +0,

(3.7.33) w(z;r)~rAi(z).

Thus (3.7.32) is irreducible as an ODE, but (3.7.31) is an exact linearization
of a one-parameter family of its solutions. This family includes all of the
bounded solutions of (3.7.32).

The global existence of this family of solutions may be proved directly from
(3.7.31), as follows. If we write (3.7.31) schematically as

(3.7.34) [I-ar*A(2)]K =r Ai,

then the existence of a bounded solution of (3.7.32) follows directly from the
boundedness of [T —ar’A(z)]™" in (3.7.34). Here are the results (for details,
see Ablowitz and Segur (1977b), Hastings and McLeod (1980), Ablowitz,
Ramani and Segur (19805)).

(i) A(z) is a positive operator. Therefore, if ¢ =-1, (3.7.32,33) has a
unique bounded solution for all real z and for all real r.

(ii) The L,-norm of A(z) does not exceed 1 for any real z. Therefore if
o =+1,(3.7.32, 33) has a unique bounded solution for all real z if ~1 <r<1.

(iii) If o=+1,|r|=1, one obtains a critical branch of (3.7.32), which
vanishes as z - +00, and grows algebraically (2 wr+z~0) as z->—00.

(iv) If o = +1, r> 1, there is a real zo(r) such that [T — or*A(z)] " exists only
if z > zo. We suspect (but have not proven) that w(z, r) has a pole at z,.

(v) According to the argument given below (3.7.5a), the only singularities
in the complex z-plane of these families of solutions are poles. (This result, of
course, was first obtained by Painlevé.)

The story does not end with existence proofs. Just as Airy’s equation,
d*w _
prcaaE Al
is representative of a simple linear turning point, so (3.7.32) is representative
of a class of simple nonlinear turning points. For example, Haberman (1977)
showed that the weakly nonlinear solution of

2

(3.7.35) %+k(ez)u —eBle2)u’, e«

is approximated (asymptotically) by the solution of (3.7.32) near a simple zero
of k(ez). Thus, the qualitative behavior of this solution of (3.7.35) is weakly



OTHER PERSPECTIVES 245

nonlinear and exponentially decaying for k <0, weakly nonlinear and oscilla-
tory for k >0, but fully nonlinear and represented by the solution of (3.7.32)
in the transition region. In this context, we are forced to consider the solution
of (3.7.32), because it connects two regions in which the solution of (3.7.35)
has different qualitative behavior. Thus we come to the connection problem:

Given the complete asymptotic behavior of a bounded real solution of (3.7.32) as
z » +90, find the complete asymptotic behavior of the same solution as z » —~c0.

This information is sufficient to connect the two weakly nonlinear regions of
the solution of (3.7.35).

It is evident that this connection problem is global, and cannot be solved by
any local analysis of (3.7.32). However, recall from § 1.7 that given almost any
smooth, rapidly decaying initial data for mKdV (3.7.9), its asymptotic (¢ - )
solution exhibits three regions, with qualitatively different behavior in each
region.

(i) For x »t'/?, the solution is exponentially decaying (in x).
(i) For |x|= O(s'?), the solution is approximately self-similar and gov-
erned by (3.7.32).

(iii) For —x »¢'"?, the solution is oscillatory.

Segur and Ablowitz (1981) found the solution of the connection problem
for (3.7.32) simply by taking the appropriate limits of the asymptotic solution
of the mKdV equation in regions (i) and (iii). The results are as follows.

There is a one-parameter (r) family of bounded real solutions of (3.7.32).
These are exponentially decaying (as z increases) for (2ew?+2z)>0, and
oscillatory for (2ow®+2)<0. A typical solution is shown in Fig. 3.2. As
z » 400, all of these solutions satisfy (3.7.33), with ~1<r<1 for ¢ =+1 and
with any real r for o =—1. We may assume r =0 without loss. As z - -0,
these solutions have formally asymptotic expansions

(3.7.36) w(z)~d(—=z)"V*sin 0+ 0(z]77",
where _

6~3(—2)"?~3od’log (—2)+8+0O(z| ).
The constants d(= 0) and § are given by

d*=-Ziog{1-or?,

m
(3.7.37)
id*

5T _ _idT\V 3 _p
9—4 aarg{l‘(l 2)} 2a-a' log 2,

shown in Fig. 3.3. There are no other bounded real solutions of (3.7.32).
Next we consider the general case of Py,
2

d—2-=zw+2w3+a.
z



246 CHAPTER 3

2wl z<Qer i
.a_ L 2w?+2>0

wi(z)

U

-26  -20 -18 -10 -6 0 s 10
¥4

FiGg. 3.2. Typical solution of (3.7.32,33). Here o =+1, r=0.9. The dividing parabola
(2w?+ z = 0) also is shown.

Airault (1979) and Boiti and Pempinelli (1979) put the Backlund transforma-
tion for KdV into self-similar form, and deduced a recursion relation among
solutions of Py;:

2a+1
2w(z, @) +z +2w,(z,a)"

(3.7.38) wiz,a+1)=—w(z,a)—

This relation already had been found by other means by Lukashevich (1971).
In addition, Py; admits a symmetry transformation

(3.7.39) w(z, a)=>—w(z, —a).

If this is used with (3.7.38), then any explicit solution of Py, w(z, a), may be
used to generate a doubly infinite sequence of other solutions, w(z, a £ n),
n=0,1,2,:--. Beginning with the trivial solution (w(z, 0)=0), Airault
(1979) constructed in this way all of the rational solutions of the KdV equation
(cf. §3.4).

More generally, the one-parameter family of bounded real solutions of Py
at a =0 generates a one-parameter family of real solutions of Py; at every
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w,
j_ /4

F1G. 3.3. Asymptotic (z -» —0) amplitude (d) and phase constant (8) for Py as functions of initial
(z » +0) amplitude, r. Taken from (3.7.37).

integer a. All of these solutions are bounded as z - +0, but we show next that
none of them are bounded for all real z. It will follow that for integer @ Py; has
no bounded real solutions except those at a = 0.

We begin with @ = 0 and take 0 = r <1, so that all the bounded real solutions
are qualitatively similar to that shown in Fig. 3.2, It is apparent from the figure
that the denominator of (3.7.38) is negative where (2w’ +2) =0, is positive as
z - +00, and must vanish somewhere in between. This zero is a pole of w(z, 1).
(A similar argument applies if r <0.) Thus every real solution of P;; at « = 1 that
is bounded as z - +0c© has at least one pole at some finite real z.

Now let @ be any positive integer. We show next that if w(z, a) has a pole,
then so does w(z, @ + 1), generated by (3.7.38). Let z, denote the rightmost
pole of w(z, a). Near z,, the Laurent series for w(z, &) begins as

+1
(3.7.40a) w(z,a)= w+~(z—z())_l—%(z——zo)—a4 (z—zo) 2+,
or as

~1
(3.7.40b) w(z,a)=w_~-(z—zo)"+569(z—zo)—“4 (z—20)%+--.

In these cases the denominator of (3.7.38) takes the form

(3.7.41a) 2wl +z+428,(we)~—Q2a+ 1)z —z0)
or
(3.7.41b) 2wl +2 420, (w)~4(z —20) %

For w_(z, a), the first term on the right of (3.7.38) has a pole at z,, while the
second term vanishes there. Thus, z, is also a pole of w_(z, a +1).

For w.(z, @) with « >0, the denominator in (3.7.38) is negative for z =
zo+¢€(0< e « 1), positive as z » +oc and must vanish somewhere in between,
But z, is the rightmost pole of w(z, ) by hypothesis, so this zero is a pole of
w.lz, a +1). Thus for a >0, if w(z, a) has a pole at some finite real z, and
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vanishes at z > 400, then so does w(z, @ +1). Because w(z, 1) has a pole, so
does w(z, n) for every integer n>0. By (3.7.39), w(z, —n) has poles at the
same locations.

We have concentrated on Py up to this point, but it is clear that these
methods can be applied to the other Painlevé transcendents as well. For
example, Bicklund transformations have been found by Boiti and Pempinelli
(1980) for Py, by Airault (1979) for Py, Prv and Py and by Fokas and Yortsos
(1980) for Py;. As with (3.7.38) for Py, some of these results had been found
earlier by Soviet mathematicians, including Gromak, Erugin, Lukashevich and
Yablonsky, using other methods. (See Erugin (1976) for a review of this Soviet
work, with an extensive bibliography.)

In another direction, Ablowitz, Ramani and Segur (19805b) identified a linear
integral equation whose solution also solves Py, and another such equation
for Prv. They also found a convergent series expansion for a family of solutions
of Pyyy via the integral equation. This series expansion turns out to be equivalent
to that found by McCoy, Tracy and Wu (1977) by an entirely different
approach. The latter authors also found connection formulae for Py corre-
sponding to (3.7.37) for Py;.

The original motivation of Wu, McCoy, Tracy and Barouch (1976) was that
P arises in the scaling limit of the spin-spin correlation function of the
two-dimensional Ising model. Their work makes no reference to IST, but
aspects of it show some similarity to an IST approach. Thus the question arises:
Is there some connection between the two-dimensional Ising model and IST?

A series of important papers by Sato, Miwa and Jimbo (1977),
(1978), - - - have dealt with connections between: (i} monodromy-preserving
deformations of linear differential equations; (ii) holonomic quantum field
theory; (iii) the scaling limit of the two-dimensional Ising model; (iv) theory
of Clifford groups; and (v) IST (see also Kashiwara and Kawai (1978), Ueno
(1981) and a comprehensive review by Jimbo, Miwa, Mori and Sato (1979)).
The description of these ideas which follows is based on the closely related
work of Flaschka and Newell (1980), who emphasized the connection with
Painlevé transcendents.

We need some more definitions. Consider the (matrix) system of linear
ordinary differential equations

(3.7.42) ZLeyy—L,

where A; are constant m X m matrices and x is complex. The solutions of
(3.7.42) at x are ordinarily multi-valued, and we denote by Y(x) a single-
valued fundamental solution. If x moves along some contour that encircles one
of the singular points (a,), Y (x) ordinarily does not return to its original value,
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but may be expressed as a linear combination of the original solutions
(3.7.43) Y(x)=MY(x).

M; is the monodromy matrix at a; (cf. § 2.3). The question of monodromy-
preserving deformations is this. If the singularities (g;) are allowed to move in
the complex plane, how must the matrices (A;) change in order that the
monodromy matrices (M;) remain fixed? In the simplest nontrivial case, where
A; is a 2 X2 matrix, N = 4 and only one singularity is permitted to move, the
problem eventually reduces to solving Py;! In other words, Pyy may be viewed
as a condition which constrains the deformation of the coefficients of a linear
differential equation so that its monodromy is invariant.

In this example the ODE has only regular singular points. The emphasis of
the work by Flaschka and Newell is on irregular singular points, where the
monodromy matrix is effectively replaced by the Stokes multipliers.

In a sense, we have been dealing with the theory of deformations of linear
equations all along, although we have not called it that. For example, in
Chapter 1 we considered the linear ordinary differential operator

p

d
L=:1?+q(x),

and asked: How may we deform the coefficient g(x) as a function of an external
parameter (f) so that the eigenvalues of L are invariant? The answer, of course,
is that g(x, ¢) should satisfy the KdV equation or one of the higher order
analogues in (1.5.21).

Thus we have yet another way to view IST and Painlevé functions, in terms
of the theory of deformations of linear differential equations. This perspective
focuses attention on the direct scattering part of IST (rather than the inverse
scattering part), and suggests that the scattering problem (1.2.7) for mKdV
should be put in self-similar form. The transformations

(3”1,3, x=¢B0Y, qlx, =030 w(2),

‘/l'(xa t’ {) = ¢,’(Z, X)
finally lead to the system of linear ODE’s
ox ¢ =—l(4,\/ +z42w? Y1+ (dxyw +2iw,)dq,
(3.7.44) ' ' ?
ax dr=dyw —2iw,)d, + i(4,\/ +z+2w )¢2~

The Stokes multipliers of the solutions of (3.7.44) near an irregular singular
point are independent of z only if w(z) satisfies a form of Py;. Knowing the
properties of the monodromy matrices and the locations of the singular points
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allows Flaschka and Newell to recast the problem in terms of a system of
singular linear integral equations. The authors do not examine the question of
the existence of solutions. In special cases, the integral equation reproduces
known results.

It may be worthwhile to summarize the results of this section. There is a very
close connection between PDE'’s solvable by IST and ODE'’s of P-type. This
connection may be used profitably to study either the PDE’s or the ODE'’s. In
particular, it has turned out in studying the ODE’s (especially Py;) that almost
every aspect of IST (the direct problem, the inverse problem, Backlund
transformations) is of value when specialized to the ODE’s.

3.8. Perturbations and transverse stability of solitons and solitary
waves. In this section we shall briefly discuss the influence weak perturbations
(including transverse perturbations) have on solitons and solitary waves. This
is, of course, a very natural question to ask, and a great deal of work has been
devoted to these questions in the literature.

Here we shall consider three prototype problems: (a) an example of a soliton
undergoing a dissipative perturbation; (b) a solitary wave undergoing a dissipa-
tive perturbation; and (c) the transverse stability of a soliton (similar ideas
apply to transverse stability of solitary waves). Each of these subsections can
be read independent of the others.

For those problems giving rise to solitons, there are various methods which
have been developed that use the techniques of IST (see, for example, Kaup
(1976a), Kaup and Newell (1978a), Karpman and Maslov (1978), Keener and
McLaughlin (1977)). The methods of Kaup and Newell (1978a) and Karpman
and Maslov (1978) develop the perturbed equations of the scattering data by
using perturbation theory on the associated linear scattering problem. The field
variable is recovered via the inverse equations (e.g., the linear Gel'fand-
Levitan equation). From a somewhat different point of view Keener and
McLaughlin (1977) develop a perturbation theory using a Green’s function to
solve the associated linearized equation in the higher order problems. In order
to calculate the Green’s function, information from IST is needed.

On the other hand, it is well known that there exist very general perturbation
techniques that are applicable to nonlinear problems where the leading order
problem has a well defined solution {e.g., solitons, breathers, solitary waves,
periodic solutions). These ideas have been applied to a wide variety of
problems (see, for example, Taniuti and Wei (1968), Ablowitz (1971), Johnson
(1973), Whitham (1974), Zakharov and Rubenchik (1974), Kadomtsev and
Petviashvili (1970), Yajima (1974), Ko and Kuehl (1978), Kodama and
Taniuti (1979), Kodama and Ablowitz (1980). In this section we will illustrate
how these ideas can be applied to problems with solitons and solitary waves.
It is not our intent to survey completely the various perturbation approaches
for solitons and/or solitary waves.
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The basic idea of the perturbation approach can be explained as follows. We
study the solution of a perturbed nonlinear dispersive wave equation of a fairly
general form:

(3.8.1) K(q,q:1, g5 ") =eF(q, s, " * ), O0<exl,

where K and F are nonlinear functions of g, q,, - * - . The unperturbed equation
(e=0)

(3.8.2) K@, a” a0, =0

has as its solution ¢'”. ¢'” is to be taken as a solitary wave or soliton solution
(or perhaps a breather or a more complicated soliton state). We write this
solution in terms of certain natural fast and slow variables:

(3.8.3) q=4"(61,60s ", 6m T:Pi, Py, -+, Pn).
In (3.8.3), 8.(i=1, -, m) are so-called **fast’ variables, T = ¢t is a ‘“‘slow”
variable and the P/(/=1, .., N) are parameters which depend on the slow

variable (in some problems, one might need to also introduce a slow variable
X =ex; see, for example, Whitham (1974), Ablowitz (1971)). In many prob-
lems we need only one fast variable, such as 8 = x — P, ¢ in the unperturbed
problem. We generalize # to satisfy 46/dx =1, and 46/0tr=—P; and use
P, = P,(T) to remove secular terms. With this, we call such a solution (3.8.3)
a quasi-stationary solution and write g =§(6, T, €). It is necessary that we
develop equations for the P, - - - , Py by using appropriate conditions, such as
secularity conditions (there must be N such independent conditions). Some of
these conditions are formed from Green'’s identity, as follows. We assume an
expression for § of the form

G§=4+edV+--.

(after introducing appropriate variables ¢, T, etc.). Then (3.8.2) is the leading
order problem, and (if we assume K has only first order in time derivatives)

o o 0K .
(3.8.4) L84, q‘O))q‘”=F(q(0))-£ - qr =F

q=q‘10)

is the first order equation. Here L(3,, é(o)), u = 0 is the linearized equation of
K(q, q, q., - - ') =0 after (x, ¢) is transformed to the appropriate coordinate 8.
Calling v; ({ = 1, - - - , M) the M solutions of the homogeneous adjoint problem
satisfying the necessary boundary conditions (e.g., v; > 0 as |8 > o),

L%%,=0, i=1,---,M, M=N,
where L* is the adjoint operator to L, we form
(3.8.5) (Lg" - v, = (L*v) - § = Fu,.

The left-hand side of (3.8.5) is always a divergence (Green’s theorem). It may
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be integrated to give the secularity conditions. These secularity conditions
allow us to be able to compute a solution §* to (3.8.4) which satisfies suitable
boundary conditions (e.g., é“) is bounded as |#| - o). However, as is standard
in perturbation problems, there is still freedom in the solution. This is due to
the fact that some terms in the solution 4 can be absorbed in the leading
order solution § by shifting the other parameters. The solution § can be
made unique by imposing additional conditions which reflect specific initial
conditions or other normalizations. Continuation to higher order 4’ is
straightforward.

Consequences of this method are the following,.

(i) The expansion obtained is generally not uniformly valid on |x| < o (see
also Ablowitz (1971), Kaup and Newell (1978a), Karpman and Moslov (1978),
Kodama and Ablowitz (1980)).

(i) In its region of validity we find a quasi-stationary solution; i.e., the
solution depends on the 6; and T only.,

(iii) In order to develop a uniformly valid expansion, one must match the
solution obtained via the method above to a nonstationary solution for large
|6:] (e.g., 6]~ O(1/¢)).

As examples of the general scheme, we study the KdV and higher “non-
linear”” KdV equations with small dissipation-like perturbations. Physically,
the former corresponds to the evolution of a soliton in a slowly varying medium
(Johnson (1973)). An interesting feature of the former equation is the appear-
ance of a shelf behind the perturbed soliton due to the dissipative perturbation
(see also Leibovich and Randall (1973), Kaup and Newell (1978a), Karpman

and Maslov (1978)).

3.8.a. KdV with a dissipative perturbation. Let the perturbed KdV equa-
tion be of the form

(38.6) q+ 6QQx +Grxx = —EVY,

with v, € constant, ¥y >0, v order one, 0<e« 1. The soliton solution to the
unperturbed equation, £ = 0, can be written

a0 a0

(0) 2 2 2
8. =27 h -6y, —=1, —=-475",
(3.8.7) q 27° sech” {6 —8y) p n

(Although we shall present results for (3.8.6), one should consider (3.8.6) only
a prototype equation. The analysis applies in much wider generality.) Here n
and # are arbitrary parameters which may depend on a long time scale T = et.
Under the assumption of quasi-stationarity, (3.8.6) becomes

(3.8.8) —4112@9 +644s + dsee = —€vq — €dr.
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Expanding § in terms of ¢, at leading order, we have
(3.8.9) ~4n'45" +645°45" + 4w =0,
and we take the solution (KdV soliton)

4” =2n" sech® n(6— ).
At order ¢, we have

(3 5 10) L‘qa(l)__ 41721«(1) +6(q(0)a(1))0+é(910)8 _F(l)

FO E—'yéw) 4(0) =—'yq __1_T’T{2.(0) +(0 6(0))q(0)}+0(0) )
n

From (3.8.8) we find that §'”is a proper solution of the adjoint problem of
Lu=0,ie.,

(3.8.11) [29=0, L[*=4n%,-6q"%3,-0,
decaying rapidly as |§| - c0. Then the compatibility condition
(3.8.12) J ) §qOFYde=0

leads to . ) h -
(3.8.13) ——6—;':=—§'y or n(T)=n(0) exp(—EJ; ydT').

This implies that the amplitude and speed of the soliton are decreasing (y > 0)
adiabatically simply by dissipation. (3.8.13) is the most important result in this
problem. Taking (3.8.13) into account, we may solve (3.8.10) to obtain the
solution

§v = [ 1+tanh¢+3(1+ o‘°’)(1—¢ tanh ¢) sech® ¢
6n
(3.8.14) +¢(2— ¢ tanh ¢) sech’ ¢],

||« O™,

where ¢ = (8 — 6o)(See the exercises at the end of this chapter. We note that
8% will be found later. Higher order calculations indicate that the expansion
breaks down when |¢|= O(e"?). It should be remarked that this order is
related to the breakdown of the expansion in Kaup and Newell (1978a),
Karpman and Maslov (1978), for time ¢t~ O(e ~*/?).) From (3.8.14), one can
see that there is a shelf introduced by the dissipation; i.e., asymptotically

_5;{1 24’ €Xp (2¢)} for 1<K —p < O(e ~1/2)
(38.15) V-

- il @ exp (—2¢) for 1« ¢ < O(e™"?),
n



254 CHAPTER 3

which agrees with the results via the inverse method. We also notice at this
point that the parameter 6> can be taken arbitrary, since the term 62 (1 -
¢ tanh ¢) sech’ ¢ can be absorbed into the leading order solution c?(m by
shifting n to n —82"/(87). It should be noted that the results obtained so far
are the most crucial from the point of view of perturbation theory. For those
not interested in further details, it is possible to proceed directly to § 3.8.b.
However, for n to be given by certain initial data, one can determine the
evolution equation of 8'” by the following. Let us consider an initial value
problem with the initial value in the form of an unperturbed solitary wave, i.e.,

(3.8.16) q(x, 0) = 2n” sech® nx.

From (3.8.6) we have the following global relation (rate of change of energy):
d = =] oo

(3.8.17) EJ- q° dx =-—25yj q° dx.

Moreover, let us assume that g takes the form g, + 8q, where g, expresses the
soliton part, i.e., (3.8.7), and 8¢ the correction to the soliton. Note that in order
to use (3.8.17) we will need to use the results of asymptotic analysis far away
from the soliton described below. Taking (3.8.13) into account (i.e., at leading
order (3.8.17) is equivalent to (3.8.13)), we have

(3.8.18) %A(t) =-2eyAlt),

where A(z) = Ii, {gas8q + (8q)*/2} dx. From 8q(x, 0) = 0, we obtain
(3.8.19) A(t)=0.

It turns out that the length of the shelf is O(e ™) for t~O(e ™). Hence for
these times the order of the second term in A(¢) is the same as the first one.
We argue that even though for short times the problem is not stationary, the
nonstationary portion of the wave quickly moves to the tail of the soliton. For
times 1 ~ O(e ~') the region near the soliton, |6| « O(¢ ~'/?), is quasi-stationary,
and in this region 8q = 86q (6, T). Hence, in order to determine the evolution
equation of the parameter 8”, we require the following relation as an
additional condition:

(3.8.20) I q‘“’(e)q“’(o)de%j (8q)* dx = 0.
The condition (3.8.20) gives
(3.8.21) 9% vy 1 I‘” 2

T~ 3p g )80 dx

Here we notice that for the range of time O(1)« t« O(e ") the second term
in (3.8.21) (i.e,, fm (Sq)2 dx in A(#)) can be ignored. For this range of time,
(3.8.21) gives the same results as Karpman and Maslov (1978). Also, in
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(3.8.20) and (3.8.21) we must use the results of the computation of 8q for
—8 « O(¢ %) which now follows.

In the region |8] « O(e ~"/?) the solution is quasi-stationary; however, in the
other regions the solution depends on x and ¢ strongly. For times ¢ ~ O(e "),
i.e., O(e '?)« (=x) <0, behind the soliton, the expansion is nonuniform due
to the shelf. Following Knickerbocker and Newell (1980) the equation (3.8.6)
is approximated in this region by g ~ §, where 4 satisfies

(3.8.22) i+ G = —€74,
with the boundary condition
T

£y asx—»lj 4n%(T") dT',
€ Jo

(3.8.23) Gx, )= { 3n(T)
0 as x -» —00,

If we take the moving boundary condition into account, a solution to (3.8.22)
is given by

(3.824) Gy, 1= —nTolex)) (ITOW) dT’> J Ai(y) dy

ST T Toen) P T L ’
where Ai(z) is the Airy function, z = x/(31)""? and To(ex) is given by inverting
the relation ex = IOT °4q(T') dT'. Note that 8q in (3.8.20-21) may be replaced
by 4.

In the region 6 » O(e i.e., ahead of the soliton, the expansion is also
nonuniform. Again the linear equation (3.8.22) applies, due now to the
exponentially small solution. Using a WKB method the solution may be given
asymptotically in the form § where

¢(1: T)>’

—1/2)
b

qssn2exp( 920(:"?),

(3.8.25) dr—4n°dy + 3 =0,
Y =¢6(6-6y), T = et

Thus the “uniform’ solution is obtained from

4 —-6>»0(e7?),
(38.26)  q(x =146, T)+e46, T),  |8]« O,
g, 8> 03,

Although we shall not go into any details here, it is instructive to consider the
conservation laws. Besides verifying them via the above formulae, one can
actually consider the conservation laws as the starting point of the analysis.
One must be very careful, but if the work is done correctly, all of these results
may be obtained. See, for example, Ott and Sudan (1970) (note that their
results must be modified due to the shelf), Kaup and Newell (1978a), Knicker-
bocker and Newell (1980).
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Another example, a dissipatively perturbed NLS equation, is given in the
exercises.

3.8.b. Higher nonlinear KdV with a dissipative perturbation. Next we
briefly discuss certain perturbed ‘“‘higher” nonlinear KdV and NLS equations
as examples of (presumably) nonintegrable systems. We find that if the order
of nonlinearity is sufficiently large then the perturbation method suggests that
the perturbed solitary wave is undergoing a focusing singularity in an analogous
manner to that of the higher nonlinear NLS equation (Zakharov and Synakh
(1976)).

Let us consider the following ‘higher”” nonlinear KdV equation:
(3.8.27) 9+ AQ°G+ Gunx = —€vq,  PE1

in which the unperturbed solitary wave may be written

2
(3228 g% = a sech’? n(8-6), §;f-= 1, %?: -4 -35,
where o is given by Aa”=2(p+1)p +2)n?/p%. By assuming a quasi-
stationary solution we have
2
~4 L340+ AdPdo +dooo = eF (@),
(3.8.29) P
F(§)=-v4—dn
from which, at order ¢, we obtain
2
Liy==42548" + A7)0+ G500 =G,
(3.8.30)

2.0 ©) »(0)} 30 .0
Z49+0-6 +&
pq ( Y e aT 6

Using the fact that %4> = 0, the compatibility condition is given by

A 1 an
B0y = _ 4(o>_____{
G =~7q o

(3.8.31) j §OF (G do =0,
which leads to
1 an 2p
8.32 - —=——y.
(3.8.32) T 4_p'y

From (3.8.30) and (3.8.32), we find that there is a shelf which is given by

3 oo
(3.8.33) ‘?(1)“’“&_“%—{)J 4 dé, for 6~ —c.
n - -0
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This result (found by reduction of order of (3.8.30)) is consistent with KdV.
Uniform results (for p <4) can be obtained following the previous ideas. From
{3.8.32), one can see that the perturbation scheme breaks down at p = 4. This
implies that the assumption of quasi-stationarity is not valid for this problem;
that is, the effects of the perturbation are not adiabatic. For the case p = 4, this
result suggests that the equation admits a self-focusing singularity. Whereas
we have not proven the existence of the singularity, we can show that a similar
situation occurs for ‘“higher” NLS equations (where the existence of a
singularity is provable).
In this regard, consider

(3.8.34) i+ g+ Alg"q = ~ieve,  pZ2,
which has an unperturbed solitary wave of the form
(3.8.35) Go=a sech’? 1(8 -6 exp i(o—-a),

where Aa?” =(p+1)n°/p°. Here, for simplicity, we have taken the solitary
wave in the rest frame, i.e.,

08 a6 do d
==1, £=0, Z=0, Z=1,

(3.8.36) = .
dax ar dx at p

Under the assumption of quasi-stationarity for the solution, g=
46, T,e)expilo— o), we obtain

—(0*/p)d + Goo + AlG1°G = eF(§),

(0) A

(3.8.37) . L
F(@)=—ivd—igr—orq.

At order g, we have

2
(3.8.38) —(%) GV+4% +(p +DAGO G +nA@G )G = FVG),
in which, setting 4“) =P+, we obtain

2
(3.8.39) —(1;7) ¢+ +AQp+1)(G )" =Re [FV@G™),

2
38390 ~(T5)V+E +AG Y = Im (A G
The compatibility condition
(3.8.40) J g Im [FPGM)1do=0
gives
(3.8.41) 1on__ 2
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At p =2, the perturbation scheme breaks down! Thus, if the degree of non-
linearity is greater than or equal to 5, the effects of the perturbation change
the solitary wave drastically. However, this effect is not really due to the
perturbation; rather it is inherent in the equation itself. By using the conserva-
tion laws Zakharov and Synakh (1976) proved that (3.8.34) admits a self-
focusing singularity, as we now show.

Consider the evolution of the following quantity (moment of inertia):
o

(3.8.42) J= j x%lq|* dx.

From (3.8.34) we obtain
dzj dJ 2 2 J. { 2 PA 2p+2}
— — = ——— dx.
(3.8.43) i +dey dt+4s v I=811lq.l 2(p+1)lql x
For p = 2, this becomes
d*y

(3.8.44) ;i—tf=813+0(€),

where I is one of the conserved quantities (if y =0)

(3.8.45) 1= [ {laP-Z1al*} ax.

This implies that if I; <0, J goes to zero in a finite time, and the equation has
a focusing singularity. No such argument has yet been given for (3.8.27) for
p=4.

We also note that in a similar manner it may be shown that the two-
dimensional NLS equation

(3.8.46) A +A,+A,, +24%°A%=0

has a focusing singularity. Specifically, (3.8.46) has the conserved quantities

Ii= ” |A]? dx dy,
(3.8.47)
B=[[ (AP +IAF- 141 dxay.

By direct calculation we may verify (Zakharov and Synakh (1976), see also
Talanov (1965)) that

2

(3.8.48) 89;2” 2+ y?)|AP dx dy =81,

whereupon, if the initial values are such that I <0, then we have a focusing
singularity.
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3.8.c. Transverse stability of a soliton for the Kadomtsev-Petviashvili
equation. Once we have a mode such as a soliton or solitary wave, another
natural question to ask is whether such solutions are stable. Ordinary stability
(not transverse stability) of solitons is not in doubt when we have IST.
However, it does turn out that solitons are often unstable to transverse
perturbations. We shall consider the Kadomtsev-Petviashvili (K-P) equation
(i.e., a two-dimensional KdV equation) as an example).

Consider the K-P equation

(3.49) 3 (thy + 6ULL, + ) = =3B Uy

with o = £1. We shall assume long wave perturbations in the y-direction, i.e.,

Bl 1.

The unperturbed equation and solution dictate the variables we shall use:
(3.8.50a) Ny =6, +6u"u) +uly)=0.
A soliton solution is given by

uo=2mn"sech® n(6 — 6%,

(3.8.50b)
6=x—-4n% 69=0(T y), n=const.

Employing the usual multiple scaling ideas and using 6, T, y transforms the
K-P equation (3.8.49) to

(3.8.51) da(~4m°Ug + 6ulis + Ugss) = —ar — 3B Tl

0) (1 2 (2

Expanding u=u +Bu '+8°u
sequence of problems to be solved.

- and equating powers of 8 yields a

(3.8.52a) N(u(O)) Bo(— 4’02 (0)+6u(0) (0)+u(0t:9)8) 0,
(3.8.52b) deL(u'"™)=F"™,

with

(3.8.52¢) 3oL (1) = 05(~4n us” +6(uVu™)g + 1),

It is somewhat more convenient to work with an integrated form of (3.8.52b),
L]

(3.853) Lu™=—4nus” +6(u'"u")o+ ugo = F" = I £ g

the adjoint problem to L in (3.8.53) is

(3.8.54) LA = 41" — 61V — voes.

Clearly v = u" solves L%t = 0 (this is a “proper”” homogeneous solution). An
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application of Green's identity, vLu'"—u""L% =%", shows that (by
integration)

(3.8.55) I F"uU®do=0

—0o0

must be satisfied to have a bounded solution "

When n =1, we have F V' = 62uy and (3.8.55) is automatically satisfied.
A forced solution u'" is given by

1
(3.8.56) u(1)=§—7—’§0(79)(2u(0)+0u(90)),

homogeneous solutions having been absorbed into u'”. When n =2, we have

é
(3.8.57) FP = —35(6u)uy’ —oout —3aJ usy de'.

The only terms remaining after applying (3.8.55) are those in %™ which are
even in (8 —8%):

1 ® -
(3.8.58a) _-8_1;30(70'}[ (2(u(0))2+6u§°)u(0)) d0+309(y(;)J W do=0
or
(3.8.58b) 0% —480126' = 0.

Thus, when o = +1 we have that the soliton is unstable to transverse perturba-
tions; otherwise, the soliton appears to be neutrally stable (although we note
this has yet to be proven). Physically, in water waves, the case of instability
occurs when we have sufficient surface tension (see § 4.1).

In the exercises the example of transverse instability of solitons in the
two-dimensional NLS equation is discussed. We note that in this problem the
one-dimensional soliton is always unstable to transverse perturbations.

It should be remarked that:

(1) In most of these cases either a multiple scale or a more standard stability
analysis (e.g., the method or the method of Zakharov and Rubenchik (1974))
can be used to obtain the result (see the exercises).

(ii) These ideas apply also to multidimensional SIT (see § 4.4 and Ablowitz
and Kodama (1979)), and to two-dimensional water wave packets in finite
depth. (Again the solitons are unstable to transverse perturbations; see
Ablowitz and Segur (1979).) Here, too, the soliton as well as the breather mode
is unstable to long transverse perturbations.
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EXERCISES

Section 3.1
1. Let C(k*/4) be an entire function of k. Show that (3.1.1) maps each
higher order mKdV
2

19 *
v,+C(—Z $—v2+vxj; dy u) v, =0,

into the corresponding higher order KdV

2 e}
u,+C(—zl—‘ 56;7—u +%ux L dy> u, =0,
where C(k?*/4) is the linearized phase speed in each case. (This can be done
in a variety of ways. An elegant one is due to A. Ramani, who uses the linear
integral equations (1.3.27) and (1.3.37), and identifies (K;+K,) in (1.3.27)
with X in (1.3.37).)

2. Clearly, one may pose any D(u) =0, then substituting in (3.1.2) deter-
mines E(6) =0, which maps into D{(u)=0 by (3.1.2). Conversely, suppose
E(6)=0 is linear with a given dispersion relation, w(k), i.e., a generalization
of (3.1.3). What is D(u)=0?

3. Consider

(M+v) -
2/, ’

Mty _ ju—-v\ ., a gy 1[ u—v) JZ ,
(559,550 -l (55) )

where a is constant and A = A ((u —v)/2) satisfies

A" +2aAr =0,
Rund (1976) proposed these relations as a BT from
(4
4
to itself. The latter equation is of interest because if we set u, = ¢, then

G+ ad by + Py =0,

which has no solitons and only three polynomial conservation laws. Show that
the proposed BT is not a BT.

4. Let

u+ (ux)4 tUy =0

Vx =C eB(u)+ux[B’(u)V+a(u)],
Vi=c2e® W+ u[B'u)V +a(u)],

where a, 3 are arbitrary functions and ¢, ¢, are constant.



262 CHAPTER 3

(a) Show that this is not a BT.

(b) Show that it is a point transformation; i.e., v = V(x, t, u(x, t)). Find V
explicitly.

5. (a) The scattering problem for the sine-Gordon equation is (from 1.2.17
and 1.2.18)

. a
Vi — i{v1 = qUa, v, ==01+- 0,
¢ ¢
% c a
Vax — U2 = Iy, U2, = — 01—~ 7 V2.
4 4

Find D(u)=0 and E(v)=0. What is the relation between D(u)=0 and the
sine-Gordon equation?

(b) Define V =uv1/v;, U=q=~-r. Show that the scattering problem also
gives a BT between D(U)=0 and E(V)=0. Derive (3.1.7) from this BT.

6. Zakharov (1974) writes the Boussinesq equation as
w=A,  A=u+u’ i)
The appropriate scattering problem is

U + (e + i3 2 AN +(1+2u)4, = AY,
i) = Yy + S0t

Show that this a Biacklund transformation.
7. Show that the scattering problem for the three-wave interaction (§ 2.1)
is a Backlund transformation.

8. (a) Find a Backlund transformation between the fifth order KdV and
fifth order mKdV equations.
(b) Find a BT between the fifth order KdV equation and itselif.

Section 3.2

1. Show that the BT between KdV and itself (3.1.19, 20) may be put in the
form of (3.2.5) with N = 1. Thus, this BT is also a pseudopotential.

2. (a) Show that

v=—2—2

is a BT from (3.2.6) to itself, with an arbitrary parameter (A).

(b) Find the general traveling wave solution of (3.2.6) by assuming u =
u(x —ct).

(c¢) Use this traveling wave solution in the BT to find a second exact solution
of (3.2.6). Does it represent two solitons in any sense?
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(d) This BT may be deduced from the Cole-Hopf transformation (3.1.2) as
follows. (i) If @ satisfies the heat equation and u is related to 8 through (3.1.2),
then u satisfies (3.2.6). (ii) ¥ = 6, also satisfies the heat equation. (iii) If V is
related to ¢ through (3.1.2), then V also satisfies (3.2.6). (iv) The relation
between V and u is in (a) (M. Kruskal, private communication).

3. Find a matrix representation of a solution of (3.2.19). Construct the linear
pseudopotential. Is it a BT?

4. (a) Show that (3.2.20) has a pseudopotential if and only if (3.2.21) has
a nontrivial solution. Show that the pseudopoential is trivial if « =y =0.
(b) Show that the only solution of (3.2.21) with N=1hasa =y=0.

(c) Equation (3.2.20) has no apparent conservation laws. To what does an
Abelian solution of (3.2.21) correspond?

5. Suppose that in (3.2.30) g has the Jordan canonical form

A 1 0
0 x 1 0
0 0 A

1
\ 0 A
and only one eigenvector, v,. Let (v, -, v.) be an orthonormal basis such
that
a1V, = AUn »
@1Vn-1 = AUp -1+ Upy
Q102 =AUp—2+Vp-1, E€tC.

(a) Show that (¢, Um+1, ' -+, Un) SPans an invariant subspace of a4, for each
m=1,++,n Show that two commuting matrices have the same invariant
subspaces.

(b) Show that v,, the eigenvector of g;, corresponds to a conservation law
involving (i, u,, * **, up-1):), that v,_; corresponds to a conservation law
involving (v, U, ty, * * *, Up—132 ), ELC.

(c) Show thatevery Abelian Lie algebra corresponds to a set of conservation
laws for the original problem, and that these may or may not be trivial.

6. Show that
U+ Unny + ), =0
has a pseudopotential depending on (u, u,, u.,) if and only if
flu)y=co+ciu +cqu’
(Wahlquist and Estabrook (1975}, (1976)).
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7. Prove that (3.2.21) has no non-Abelian solutions. Taking «, B, v, 8 as
N x N constant matrices, choose a coordinate system for g that puts « in
Jordan canonical form.

(a) Suppose « is diagonal. Show from (3.2.21a) that @ =0. Show that the
resulting Lie algebra is Abelian.

(b) Therefore assume that a cannot be diagonalized. Suppose & has only
one eigenvalue (1), and one eigenvector. Compute the trace of (3.2.21a) and
show that A = 0. Hence

@i =1, a; =0 otherwise.
Show from (3.2.21a) that
Yi,i = 0 lf i> j,

yii=i+M forsomeM, i=1,---,N.

Compute the trace of (3.2.21d) and show that

M=——
2

Show from (3.2.21d) that

N ~1)
2

Bis1,i = >0, i=1,--+,N—1.

In (3.2.21b) call Q =[a, 8]+[B, ¥]— . Compute ¥, (Q);1,; in (3.2.21b) and
show that there is a contradiction for N > 1.

(¢) The only alternative is that & has more than one but less than N
eigenvectors. Thus, a has two or more Jordan blocks along its diagonal, with
zero elsewhere. These may be arranged so that the upper left block is the
largest. Compute the partial trace of (3.2.21a) within each block, and show
that every eigenvalue of oo must vanish. y may be partitioned into the same
size blocks as a, but its off-diagonal blocks (which need not be square) need
not vanish. Show from (3.2.21a) that the diagonal blocks of v have the same
form as in (b), and that each off-diagonal block is upper triangular. The rest
of the proof parallels that in (b), except that one must also show from (3.2.21d)
that each off-diagonal block of v has only zeros dlong its own diagonal. Again
define R=[a, B]—# from (3.2.21d). Then ¥, (R);+1,; in (3.2.21d) leads to a
contradiction unless N =1, as before.

(d) Conclude that (3.2.21) has no solution at all unless « is diagonalizable,
and in that case (3.2.21) has only an Abelian solution,



OTHER PERSPECTIVES 265
8. Consider

2
U+ U Uy — Ugnx = Uxx

(a) Show that the equation has bounded traveling wave solutions (u =
f(x—ct)) on —0<x <00, but that none of these are periodic. Sketch the
aperiodic solutions.

(b) A more delicate question is whether the equation has bounded traveling
wave solutions that do not oscillate.

(c) Corones and Testa (1976) showed that the equation has a non-Abelian
pseudopotential. They did not determine whether the pseudopotential yields
a BT or a scattering problem, or whether the solutions in (a) interact like
solitons, or whether the problem can be solved exactly. Does it have a
pseudopotential?

Section 3.3

1. Investigate the phase shift of the two-soliton solution for the mKdV
equation. Do the same for the sine-Gordon equation and the nonlinear
Schrodinger equation.

2. Use the Bicklund transformation in bilinear form (3.3.72) to generate a
two-soliton (3.3.76) solution from a one-soliton solution (3.3.74).

3. Use the soliton permutation formula and the first few soliton solutions
to evaluate the arbitrary constant C in (3.3.86).

4. Use (3.3.87) to evaluate the eigenfunctions ¢ from the first two soliton
solutions.

Section 3.4

1. Show that (3.4.25) along with either the KdV equation (3.4.1) or the
limiting form of the Béacklund transformation (3.4.26) yield the same rational
solutions.

2. What is the difference between the rational solutions of the self-similar
form of the KdV equation obtained by setting u = (3t) **w(z), z = x/(31)'"®
and the full class of rational solutions of the KdV equation.

3. Obtain the next rational solution for the Boussinesq equation (3.4.34)
(corresponding to F3) and to the mKdV equation (3.4.43) with nonzero
background (corresponding to Fs, Ga).

Section 3.5

1. Investigate the structure of a two-soliton solution to (3.5.1). What is the
phase shift of interaction? What would it be for an N-soliton solution?

2. Show how to obtain (3.5.38) from (3.5.37).
3. Verify that (3.5.39) indeed yields (3.5.41) as § >0 and (3.5.42) as § » 0.
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4. Given (3.5.48), suppose we take k; - 0. Show that unless §k ~ 7 we have
a trivial result.

5. In what sense is (3.5.63) a Riemann-Hilbert problem? How may it be
viewed as a scattering problem?

Section 3.6

1. In what sense is the result that {3.6.8) with LF=0, L,,L, given in
(3.6.12), (3.6.16) more general than the inverse scattering results of Chapter
1? In what sense do we get less information?

2. Show that the “‘factorized” equation (3.6.51) yields the Gel’fand—Levitan
equations (3.6.53).

3. Let M,, M, be given by (3.6.61). Show that [M;, M,]=0 indeed yields
the Kadomtsev—Petviashvili equations (3.6.63),

4. When does the resonant solution described by Miles (19775) arise in the
soliton representation given in (3.6.68)?

Section 3.7

1. (a) Show that f=2z/2 is an exact solution of (3.7.1c). What is the
corresponding solution of (3.7.1a)?

(b) Setf(z)=2/2+ g(z). What equation does g(z) satisfy? Show that g itself
is an integrating factor, and integrate the equation once. The second order
ODE is equation XXXIV on Ince’s list (1956, Chapt. 14). Show that his
“solution” of this equation is Miura’s (1968) transformation.

2. A “‘partial proof” of the Painlevé conjecture is sketched below (3.7.5a).
In what sense is this proof partial?

3. Burgers’ equation,

Up+ Uty = Uy,

is linearized exactly by the Cole-Hopf transformation (cf. § 3.1, 3.2). Show
that it has both a traveling wave solution and a similarity solution. Show that
in either case, the ODE can be integrated once, and the first-order ODE is a
generalized Riccati equation (3.7.3), and therefore is of P-type.

4. Fisher’s equation,
U= U=~ U+ Uy,
has no pseudopotential (cf. § 3.2). What ODE is satisfied by its traveling wave
solution, u = u(x —ct)? Show that it is not of P-type unless ¢> =%,
For these special values of ¢, Ablowitz and Zeppetella (1979) integrated the

ODE explicitly, and found what are apparently the only solutions of the
equation known in closed form.

5. Generalized KdV equations are

U+ u"u, g, =0.
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What family of ODE’s do the traveling waves satisfy? For what n are these of
P-type? (Compare this result with that in Exercise 6, § 3.2.)

6. (a) What is the self-similar form of (3.7.10)? Show that this ODE has a
movable logarithmic branch point. This shows that the linear integral equation
in IST cannot give directly the solution of the sine-Gordon equation.

(b) Show that the movable branch point disappears either by differentiation
or by the exponential transformation below (3.7.11). Recall from (1.2.18) that
the IST formulation actually gives u,, rather than u. This example shows that
if the movable critical point is simple enough, it can be removed by a suitable
transformation.

7. There is strong evidence that the ‘“‘double sine-Gordon equation,”
Uy, =Sin U+ Asin2u

cannot be solved by IST (cf. § 4.4). Find its similarity solution. The ODE has
movable logarithmic branch points, just as the sine-Gordon equation does.
Show that after an exponential transformation, the ODE still has movable
critical points.

8. Mikhailov (1980) showed that

Ug=ae“+be ™

could be solved by IST. Show that the self-similar form of the equation is not
compatible with (3.7.4), but can be put in this form by an exponential
transformation. Show that this equation is of P-type. (This ODE is essentially
P, butis not on Ince’s list! This shows the danger of using that list superficially.
The equations on it are “canonical,” and some other equations equivalent to
them are not mentioned. Therefore we recommend actually finding the sin-
gular point structure for ODE’s not on the list.)

9. Zakharov (1981) has reported numerical experiments that suggest that

3
Usx —Un=1U

may have special properties. Find its self-similar solutions. Show that the ODE
is not of P-type.

10. The “Boussinesq equations’ (note the plural)

h,+(uh), =0,

H
u,+ uu, + gh, +§-hx,, =0

describe the evolution of long water waves that travel in two directions (cf.
Whitham (1974). Find the traveling wave solutions, and eliminate u. Show
that the equation for h is not of P-type.
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11. Consider
i+ ¢xx - ¢vy - 2|¢'2¢ =0,

which governs the evolution of packets of deep water waves without surface
tension (cf., § 4.3). Show that this equation has an exact reduction to (3.7.26).
Can it be solved by IST?

12. The Kadomtsev-Petviashvili equation,
(U +6uu, + Upyr ) +30u,, =0, o=z%1,

can be solved by IST (cf. § 2.1). Show the following:
(a) The y-independent solutions satisfy KdV.
(b) The traveling waves u(x —ct, y) satisfy the Boussinesq equation.
(c) By setting ¢ = 0, this gives the steady solutions.
(d) A similarity variable is

z=030"x+ 0(31)_4/3y2.

Show that the ODE obtained for F(z) can be integrated once. Multiply by F,
and show that (F>) satisfies P; (Redekopp (1980)).
(e) A “modified K-P”’ equation is

2
(U, —'61) Ut vxxx)x +0'vyy = 07

which may be thought of as a (2+1)-dimensional analogue of the mKdV
equation {cf. § 4.1). What ODE is satisfied by the self-similar solutions of the
time-independent problem? Show that this ODE is not of P-type.

13. Here we show that the Painlevé conjecture must be modified from its
original formulation by Ablowitz, Ramani and Segur (1978). The Benjamin—
Ono equation

u+ uu, + H(u,,) =0,
where H is the Hilbert transform, seems to be solvable by IST (cf. § 3.5, 4.1).
A reduction to a system of ODE’s is obtained by finding its rational solutions,
as discussed in § 3.5. In this way we obtain Calogero-Moser systems such as

2 o 2
cimx)” T amx)
Alternatively we may view these ODE’s as nonlinear evolution equations
solvable by a variant of IST. However, the solution of Calogero-Moser systems
does not rely on a linear integral equation like (3.7.5a).
(a) Show that these ODE’s have movable algebraic branch points; i.e., as
t=> 1.

%
X1 =

X~ —t)"?,  xa~ =14 10)"2

(b) Obtain the same result from the general solution of these ODE's given
in § 3.5. This shows the importance of an exact reduction to an ODE in a
variable related to the inherent linear integral equation.
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(c) The difficulty here cannot be blamed on the fact that the B-O equation
is not a PDE. Show that (3.5.36), the ODE’s obtained by seeking rational
solutions of the KdV equatien, also exhibit movable algebraic branch points.

(d) More trivially, the reduction of (3.7.1a) to (3.7.1c) may be written as

ulx, ) =g)f(z), =z=

_*
3t

The ODE for f(z) is (3.7.1c), and is of P-type. Show that the ODE for g(¢) is
not of P-type. Note again that (¢) plays no role in the linear integral equation
for KdV.

(e} Note, however, that in all the above cases the relevant equations may be

transformed to Painlevé type. Such transformations must be allowed in the
conjecture.

Section 3.8
1. (a) Show that, if we set y =tanh (6 — 68'”), then (3.8.10) can be written

A 4
fav=%_ G+ (1 _ ) V=
A==y g+ (1212 40 = F
where £ is given by
A 2y 12 1+ ©
po_2y 1 2y log 1*y.0 a6
3nl+y 39 B1- ~y aT

(b) Taking into account that Lv=0is a Legendre equation, show that
= P3(y)=15y(1~y?)is the only proper solution. Then by using the variation
of constant method, i.e.,

4"(y) = Ay)P3(y),

obtain the equations for B(y) =dA/dy:
_ 2
4B 2(1-4y%)

B=G,
dy  y(1-y?)
2y 1-y 2y 1 1+y
- + ]
457 y(1—y? 457 y(—-y?F Ei-y
2 39 1

15 8T y(1-y)*
(c) Since this is just a first order ordinary differential equation, obtain the
solution

3 a9 1+y
A1) _ nog
q 61;[ 1+ +2(1+'y )(1 y)(2 ylog1 )

1+ 1+
+{(1-y )(1-——-ylog1 y) log——-—l_;}].
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2. Consider a prototype perturbed NLS equation in the form
§9) ig+ qxx +2q°q* = —ieyq.
(a) Show the unperturbed soliton solution is given by

qo=n sech n(6—6") exp [i£(8 - 6*) +i(a -],

where
] a6
A Y-
or d
do 2 2 do
—=n"+¢, — =),
s M tE P

Here, ¢ 7, 8'” and o' are arbitrary functions of the long time scale T = et.
(b) Assume that the quasi-stationary solution of (3.1.67) takes the form

q=4(6, T, ) exp [i£(6 — 6*) +i(a ~a')].
Substituting this into (1), show
—n°4 +des+24°G* = eF(q),
F(q)=~ivd - igr +(0—6)erd — (869 +of
Assume that § can be expanded by
48, T, e) =40, T)+ 46, T)+- - -,
is the leading order solution

4d”=n sech n(6 -6

).

where §°

Show that, at order &, we have
“7121?(1)4"‘1‘90) +4([1\(0))2[1\(1)+2(q~(0))2[i(1)* =ﬁ(1),

where FOY=F@E®) and hence setting 4 =¢"+ii'”, where ¢ and
n,i/m are real-valued functions, obtain the system of equations

L“z(l)E _n2$(l)+$(olo) +6(‘»1\(0))2("b‘(1) =Re [Fv(l)]’

M(Z(l) = _n2'1}‘(1)+ “(61; + 2(4(0))2'/;(1) =Im [ﬁ-(l)]'
_(c) By noting that the operators L and M are self-adjoint and LgP =o,
M4© =0, show that the conditions for solvability are given by the secularity

conditions

> o]

j 4 Re[FM)d6 =0,

[« o
J' 4 Im[F®) ds =0.

—0Q0
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Use these conditions to obtain the evolution equations

T4 1 an

—=0 d ——=-2v,

o ¢ LT Y

which show that the amplitude of the soliton is decreasing (y > 0) but the
velocity is constant. Then obtain the solutions

6= ~51—(ge‘;” +aPH1-(0-6) tanh n(6 - 6"} sech n(6 -6,
n

d;m - g(e _ 0(0)){6(10) +y(8 - 0(0))} sech 1 (6 — 6(0))
(the expansions must be modified for sufficiently large |8 —6'”| in a manner
similar to those for KdV). Here we have two arbitrary parameters 6 and o©
which provide the shift of the location and phase of the soliton. For the initial
value problem, show that we must take the orthogonality conditions

[“ 4960 a0=0. [ 469 do=o,

which give

aT

Show that these conditions may be obtained by using the following relations
{modified conserved quantities) in a similar way as in the KdV case:

“ =-2 * dx,
2 qq™ dx ey . qq™ dx

o

d <«
ZI (qxq*-qfq)dx=-2svj (a:9* —q%q) dx.

3. Consider the multidimensional NLS equation (sce Zakharov and
Rubenchik (1974))
i+ e +2lq/’ g = e%aq,, .
(a) Show that the unperturbed soliton solution is given by
q@ = GO (x)e M+,
q“”(x) = A sech A (x + 69).
(b) Let T=¢t, o =0T, y), 6 =0T, y), and find

ig:+ qux +2|q°q = €%aq,, ~ cigr.
Calling

iA2(1+a (@)

a=4(x)e ,
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show that

—Azﬁ + Gx +2|‘ﬂqu =eA 20'(#)‘?‘ —iedr

+e’A (q‘yy +2iA zo'(yO)qu +iA zayqu —A 4(0'()10))2‘?)’

and hence, expanding § = §”+ edM+- - -, show that we have

Y 2@(0) + q«(O) + 2[4(0)]24«(0) — 0
with the above soliton solution. Show that at O(¢)

2 a(l) A1) A(ON2 401 A(0 A A . A
-A d +qxx +4(q ) 4 )+2(q( ))2q(1)*=A20'(1(~))q(0)—lq(£).

(c) Split this equation into real and imaginary parts via §'"’ = ¢‘" + iy and
find

A0 _ a0 A _ (D)
Loyy=—47 =-67'4, =Fp,
— 12 (0 a0) _ (1)

Li¢p,=A"or§ =Fy,

where Ly, L, are the self-adjoint operators

2

d R
LOEEP+ 2G9)* -2,

d
L1.=.d——2+6(q‘°’)2—,\2.
X

(d) Noting that Lodo=0, L4 =0, find the compatibility conditions

J §OF dx =0,

—00

J GOF " dx =0,

—00

and verify that ¢,, ¢, are given by
oL
by =— TT x4,
1 09 .0
=—=A —
153 or ax q
(e) Show that at O(e?) if ém =P +iy®. Then ¢», ¥, satisfy

(2) 2 0,1 (1) 2 _{(0)a(0) 2 _(0)a(0) (D) (D A0 _ p(2)
Lo =A%y =T +20r"0,'4, tar oyq —4¢ ¢ '§ =Fg,

{2) 2 (O, (1) 1) A(0) 4, (0042 24(0)
Li¢“=A"or7d '+¢ +ady, —ar’(c,’)§

_2((¢(1))2_(w(l))Z)q\(O)_4&(0)(((#(1))2+ (d/(l))2) = F(12).
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(f) Show that the compatibility conditions give
f 4% (-7 +ar’ayy)q?) dx =0,
o —4al 20'(,,0),) =0
and
f 45T +aqy)) dx =0,
or
4r’a
+—

0‘%3

6% =0.

Hence, regardless of the sign of «, we have that the NLS equation is unstable
to transverse perturbations. As we have mentioned it turns out that when
a =—1 the equation (3.8.46) has a focusing singularity (see, for example,
Zakharov and Synakh (1976)).

4. In this example we show that via a slightly different analysis the resuit in
Exercise 3 above may be obtained.

(a) First linearize the equation in Exercise 3 by letting g = ¢'” +4¢'", |¢'”|»
lg"], and find

i+ +4lg g+ 24 % = ag.
(b) Define
q"” =2 sech Ax e =§(x) 7,
4V =) +iblx) ™" ™ sin ky,
and show that ¢, ¢ satisfy
(Lo+ak®)y = —Q¢,
(Li+ak®e =Qy,

where Lo, L, are given in Exercise 3.
(¢) Expand, in a long limit k>0

Q=kn(l)+k‘2n(2)+_ e

6= +kpP+. .-
G=v kO
Then we have at O(1):
Loy'” =0,

L =0,
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and take the neutrally stable solutions
VO = A4,
6@ =A"4®
(+, — refer to the parity of the solutions) at O(k):
LotV =-0V¢@=FP,
L¢P =a®y®=FD,
Show that we have the solutions

1 _1Aa1 —AO)
‘!’() Q()A (

lﬂ(l)A _A(O)

m_
¢ " 2A and

(d) Show that the compatibility conditions

j §OF dx =0,
—o0

f 4 °Fy” dx =0,

—00
are automatically satisfied when n = 1. However show that at O(k?) we have
Lop® =—-QP¢® _qy@_qWg® = @
Lid@ =024 qp@+ VgV = F@

Show that the compatibility conditions now give

" J’w 4O dJH_QmJ‘ﬂo 496D dx =0

—c0
or
QM2 =422
and
(=] -]
A A 1
a J qi0)¢(0) dx _n(l) j (O)w( )dx 0
o0 -0
or
(2 4_ 2
Q =3aA ,

which agrees with the result of Exercise 3.



Chapter 4

Applications

In this chapter we consider certain completely integrable equations as models
of physical phenomena. The equations that arise as physical models typically
do so in many physical systems, but almost always as a result of the same kind
of assumptions. For each of these equations we will concentrate primarily on
two or three physical problems in order to demonstrate in some detail the
“‘typical derivation” of that equation. Other applications of the same equation
usually can be worked out analogously. A consequence of this approach is that
we have omitted some important applications, but a comprehensive survey of
all nonlinear phenomena in physics is not possibie here. Discussions of other
applications may be found in Karpman (1975), Yajima and Kakutani (1975),
Makhankov (1978) and Yajima and Ichikawa (1979).

Many of these derivations follow a more or less standard pattern, in which
one is interested in relatively small deviations of a certain type from some
equilibrium state of a physical system. To leading order, this amounts simply
to linearizing the problem about the equilibrium state. One hopes to develop
an asymptotic expansion in this way, but usually secular terms arise when the
expansion is carried to some higher order. The method of multiple time scales
{cf. Cole (1968)) is then used to suppress secular terms, in order to extend the
range of validity of the expansion. This is the most common physical meaning
of the nonlinear evolution equations that we have been studying: they are the
consequence of suppressing secular terms in a formally asymptotic expansion.

The fact that these equations play this particular role has some consequences
that are useful in relating soliton theories to physical phenomena.

(i) The evolution equations are fully nonlinear, and their solutions are not
necessarily small. Even so, solutions that are order one represent relatively
small deviations from the equilibrium state in the physical problem.

(i) What one gains ordinarily by solving these nonlinear evolution
equations is not primarily the ability to discuss large deviations from the
equilibrium state, but rather the ability to discuss relatively small deviations
over a long time scale.

275
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(iii) The nonlinear evolution equations covers the next time scale beyond
that of the appropriate linear problem. In interpreting observations of physical
phenomena, there is no need to mention solitons unless the time scale of the
observations exceeds that of the linear problem.

(iv) The solutions of these completely integrable equations exhibit no
stochastic behavior. The corresponding conclusion about the physical system
is restricted to relatively small deviations from equilibrium, and to the
appropriate time scales. Stochastic behavior of the same physical system may
still occur for large deviations from equilibrium, or over longer time scales.

One other general comment is germane before we discuss specific examples.
The world we inhabit has 3 (space) + 1 (time) dimensions, whereas most of the
equations we have been studying have (1 + 1) dimensions. In what sense can
these equations model physical phenomena? Depending on the particular
application, one may find that the linearized problem admits wave propagation
in (1+1), 2+1) or (3+1) dimensions. There is no difficulty in the first case;
the nonlinear evolution equation describes a phenomenon that is intrinsically
(1+1)-dimensional. In the other two cases, these equations arise only after the
solutions have been restricted from (2+1) or (3+1) down to (1+1)
dimensions. Then two interpretations are possible.

(i) The equation in (1+ 1) dimensions is a (nontrivial) toy problem, whose
solution may provide insight into some of the phenomena that occur in the
higher dimensional problem. There is no intention to compare any solutions
of the equation directly with physical observations.

(i1) The restriction to (1 + 1) dimensions has physical meaning. There are
realistic circumstances under which the solution of the higher dimensional
problem might evolve in this restricted manner, at least approximately. This
interpretation is possible only if the (1+ 1)-dimensional solutions are stable
with respect to perturbations in the other dimensions. Otherwise this lower
dimensional evolution is theoretically possible but is unlikely to occur.

All of these possibilities occur in the applications we will discuss.

4.1. KdV problems and their cousins. The prototype here is the Kor-
teweg—de Vries equation

4.1.1) U+ 6uu, + Uy =0,

but several other exactly solvable equations arise under variations of the
simplifying assumptions. These include the modified KdV equation

4.1.2) U+ 60U U, + Uy =0, o =%£1,
the Benjamin—-Ono equation

(4.1.3) u+2unx + Hlu, 1= 0,
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where H is the Hilbert transform,

Hin-LfT 0

o VX
and the Kadomtsev—Petviashvili equation

4.1.4) (4, +6uu, + OUerr)x + thyy =0,

Each of these equations arises as the condition required to eliminate secular
terms in a formally asymptotic, small amplitude expansion. What distinguishes
these equations from those in §§ 4.2 and 4.3 is that these equations arise in
problems that are nondispersive at leading order, so that the lowest order
approximation is the wave equation

2
¢‘r‘r =c ¢xx-

Ordinarily this occurs in the long wave limit, but there are exceptions.

The general nature of the derivation we now present was recognized by
several people, including Benney (1966), Gardner and Su (1969), Karpman
(1975). The method was formalized by Taniuti, Wei, et al. (e.g., (1968)) and
is called the reductive perturbation method by them. A variety of applications
beyond those discussed here may be found in the references cited in Karpman
(1975), Yajima and Kakutani (1975), Makhankov (1978) and Yajima and
Ichikawa (1979).

4.1.a. Water waves. The problem of long water waves dates back to the
early experimental work of Russell (1838), (1844) and the (conflicting) theory
of Airy (1845). In fact, the original objective of Korteweg and de Vries (1895)
was to provide an alternative theory to Airy’s that was in closer agreement
with the observations of Russell. Extensive expositions of this subject have
been given by Lamb (1932), Stoker (1957), Wehausen and Laitone (1960),
Whitham (1974) and Miles (1980), but from slightly different perspectives
from that presented here.

The classical problem of water waves is to find the irrotational motion of an
inviscid, incompressible, homogeneous fluid with density p, subject to a
constant gravitational force g. The fluid rests on a horizontal and impermeable
bed of infinite extent at z = —h, and has a free surface at z = {(x, y, t}, where
there is a finite surface tension T. The surface tension is unimportant for many
applications, and one may set T = 0 without essential loss. We carry it here
because its inclusion is important in some circumstances.

The fluid has a velocity potential ¢ which satisfies

(4.1.5) Vi =0, —h<z<{(x,y,0)

(irrotational motion of an incompressible fluid). It is subject to boundary
conditions on the bottom (z = —h)

(4.1.6) &, =0 (impermeable bed),
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and along the free surface (z ={)

De_

4.1.7
{ a) Dr

s+ dly =&, {kinematic condition),

{xx(l +£§)+ny(1 +{3)_2§xy§x£y
(1+3+£3)%2

(4.1.7b) 4 +%[v¢|2 =T

(dynamic condition).

Boundary conditions in (x, y} and initial conditions are also required. If the
waves in question are isolated, then [V¢| and ¢ should vanish as (x*+y?) > .
In other problems, periodic boundary conditions in x and in y may be relevant.

We may linearize (4.1.5-7) about [V¢|=0, ¢ =0, and seek solutions of the
linearized equations proportional to exp {i(kx + my —wf)} (see, e.g., Lamb
(1932, § 228)). The result is the linearized dispersion relation

(4.1.8) w® = (g +«°T) tanh «h,

where «*=k>+m?>. (These concepts from linear theory are discussed in the
Appendix.) From this one computes the group velocity and shows that the
linearized problem is dispersive at most wave numbers, but not at x =0 (i.e.,
long waves), where it is only weakly dispersive. This is an essential point in the
derivation of the KdV equation; we focus our attention on those waves for
which the linearized problem is only weakly dispersive. For many problems this
occurs at k = 0.

To derive KdV, we assume that

{A) The motion is strictly two-dimensional, m =0,

(B) The relevant Jength scale in the x-direction is much longer than the fluid
depth,

(kh)*« 1.

(C) Wave amplitudes are small,

l(lmax
=—«1,
T Th

(D) These last two effects approximately balance,
(kh)*=O(e).

Note. Under these additional assumptions, (4.1.5-7) reduce to a simplified
model, which will turn out to be (4.1.1). The model is consistent if its solution
satisfies these assumptions for >0 whenever the initial data satisfied them.
To be practical, its solution also should approximately satisfy these assump-
tions whenever the initial data approximately satisfied them. The fact that a
model is derived in an apparently rational manner does not guarantee that it
is either consistent or practical.



APPLICATIONS 279

Note. Assumption (A) may be weakened It is necessary only that the waves
be nearly one-dimensional, so that (m/ k)*« 1. We could replace (A) with
2

[«

and still derive (4.1.1); but if we assumed

() -0

instead, the same derivation would lead to (4.1.4).

Note. Assumption (D) is an example of Kruskal's (1963) “principle of
maximal balance”’, which states that in a perturbation expansion involving two
or more small parameters a scaling which reduces the problem as little as
possible is of interest.

The assumptions (A)-(D) suggest the following dimensionless variables

(marked™):
LY DI 421
z h, X Sh, 11 A t,

4.1.9 _
(4.19) ¢ =hveghd*, — ¢=ehi*.

If ¢ is analytic af z = —h, it has a convergent power series expansion
¢ =hVegh T (z*+1)"¢} (x*, ¥).
n=0
Rayleigh (1876) observed that for long waves this expansion is also asymptotic.
Substituting it into (4.1.5) and equating powers of z* yields
£ yor
(n+2)(n+1) a(x*)”
From (4.1.6) and (4.1.10), ¢%..1 =0. Thus

(4.1.10) briz=—

(4.1.11) ¢= thhe[¢o———(z +1)2a(¢‘; (*+1)“a("1‘)’ ]

No approximations have been made to this point.
To leading order, the conditions at the free surface can be put in the form

a* o oo

o ax* ox * = 0le),
(4.1.12) ad> a{*

a 0

o ax* | ox* = 0le).
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To solve (4.1.12), we assume

967 _
ox*
Anticipating the secular terms that will arise at O(e), we also introduce a
slower time variable (cf. Cole (1968)),

4.1.13) F=lotelrde e, +euyt

(4.1.14a) T =et¥,
so that

] ad 9
(4.1.14b) — =t

ar* ar*  oar

Now (4.1.12) becomes simply the linear wave equation for ({, uo); the general
solution is
fo=flx*—t*; m)+g(x*+1*; 7),

(4.1.15)
uo=fx*—t*, r)—gx*+1*; 7).

This may also be written in terms of the (linear) characteristic coordinates

@4.1.16) r=x*—r* =[£(x —Vght), I=x*+r1* =1/—E-(x +Vgh).

Thus, on a short time scale (t* = O(1)}, arbitrary initial data split into right and
left running waves. Solitons cannot be distinguished on this time scale, because
every solution consists of a superposition of (two) waves of permanent form.
There is no interaction because the nonlinear terms are too weak to exert any
influence this quickly.
At the next order, (4.1.12) becomes
81, dur _ [ago 1 6%uo ]

at*  ox* or 5 (Hodo) = 6 ax*

ouy 6{1 auo d Uo 1 6 Uo AB3£O
Pyt et R vyl (el I~ rpri o I
ar*  ax* ar  dx*\2/ 24x™ ot ax

(4.1.17)

where T = T/gh? is the dimensionless surface tension. These equations may
be integrated rather easily by using characteristic coordinates (4.1.16). The
solution so obtained contains terms which grow linearly in /, and others which
grow linearly in r. These terms are secular; they render the expansion in
{(4.1.13) nonuniform. We eliminate them by forcing the coeflicients of /, r in
these terms to vanish;

2 f+3f f+(3 f)3—3=0,
4.1.18)

238,308, (L f)—§=o.
ar al
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Thus, the left and right running waves each evolve according to their own
KdV equations, which describe how the two sets of waves each interact with
themselves over a long time scale (v = et* = O(1)).

For an air-water interface, (5— T)>0if h>0.5cm. Usually T« 3 and we
may neglect T altogether, Then the dimensional surface displacement due to
a single soliton becomes

a

2= e see [ L V(1255
(4.119)  Z(x,1)=Zea” sech’ | x:tx/gh(l-i— el .

Note that:
(i) Our arbitrary choice of £ drops out, because only the combination (ea?)
appears.
(ii) A soliton raises the free surface, regardless of its direction of propa-
gation.
(1iii) The speed of every soliton exceeds @
(iv) To leading order, the speed of a soliton with amplitude a is ¢ =
v g{h + a). This relation was obtained empirically by Russell (1838).
{(v) For thin sheets of water T> 3, and the conclusions in (ii) and (iii) must
be reversed.
The interaction between the left and right running waves also may be found
by integrating (4.1.17):
!

(4.1.20) 44, r;7)= [G,g(l)—éfg(lo)]f fdr+[8,f(r)=a,f(ro}] JI gdl

o

+2[g (1)~ g U)W f(r) = f(ro)],

with a similar expression for u,. To prevent these terms from becoming secular,
we also require that

@121) Fhlagt | [ rar

<00,

1)

gLMﬂWJgW

These conditions assure that the interaction between the left and right waves
is both weak and localized. For the KdV model to be consistent (4.1.21) must
hold for all time (7) if the initial data for (4.1.18) satisfied them.

Under the assumptions (A)-(D), we now have replaced (4.1.5-7) with a
simpler problem whose solution formally approximates that of (4.1.5-7) to
O(e?). This is the sense in which the KdV equation models long water waves of
moderate amplitude. Before comparing the predictions of this model with
experimental data, some comments on the derivation may be in order.

(i) The “KdV model” of water waves actually consists of the linear wave
equation (4.1.12) on a short time scaie and two KdV equations (4.1.18) on a
longer time scale. The model is intended to be valid asymptotically as £ =0,
and it is important that both (4.1.12) and (4.1.18) remain nontrivial in the limit



282 CHAPTER 4

e - 0. As pointed out by Kruskal (1975), the KdV model is preferable in this
respect to alternative models of long water waves of moderate amplitude, such
as the Boussinesq equation

(4.1.22) Ui = Uge + E[(U) g + Ugrrx 1+ O(£).

In the limit ¢ » 0, (4.1.22) reduces to (4.1.12) and (4.1.18).

(ii) Inthe derivation given here, 7 represents a slow time scale, and a solution
of KdV at fixed t corresponds to a snapshot of a water wave. But x* and ¢*
are somewhat interchangeable in light of (4.1.16), and we could have intro-
duced a slow space scale, y, instead of 7. We would still get two KdV equations,
but now a KdV solution at fixed y would correspond to the signature of a water
wave as it passed a probe at a fixed location. Most wave measurements are
made this way.

(iii) This derivation is formal, and does not actually prove that the solutions
of KdV are asymptotic to those of (4.1.5-7). No such proof is available. In fact,
it was proved only recently that (4.1.5-7) admits solitary waves with angles of
the water surface up to #/6, i.e., up to the limiting case of Stokes (Amick
and Toland (1979)).

(iv) The fluid is assumed here to be inviscid, and the model admits no
dissipation. But water has a finite viscosity, and one may estimate a dissipative
time scale based on either laminar or turbulent boundary layers (e.g., Keulegan
(1948)). The validity of the KdV model requires that the dissipative time scale
greatly exceed the KdV time scale (7 = O(1)).

(v) The original equations of motion, (4.1.5-7), are Galilean invariant. The
KdV equations maintain this invariance if we interpret f (or g) as a horizontal
velocity, because of (4.1.15b). Then the transformation

T=71, r>r—cr, f>f+c

leaves (4.1.18a) invariant.

(vi) This derivation suggests that irrotationality is fundamental to derivation
of KdV. This is false, as shown by Benney (1966); see also Benjamin (1966).

(vii) The dynamic condition at the free surface (4.1.7b) states that the
pressure must vanish there. This is only approximate for most water waves. A
more precise statement is that the pressure must match to the pressure of the
air above; i.e., the surface wave is actually an internal wave. This subtle point
is usually neglected because the ratio of air to water densities is approximately
107, However, if the waves were very long (kh « 107%) this effect would
become important, and the appropriate model would be (4.1.3), rather than
(4.1.1). Similar considerations apply to the rotation of the earth and its
curvature.

The KdV equation was tested as a model of water waves by Zabusky and
Galvin (1971), Hammack and Segur (1974), (1978) and Weidman and Max-
worthy (1978); the original experimental work of Russell (1838), (1845) is still
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F1G. 4.1. Schematic diagram of wave maker. (Hammack and Segur (1974)).

worth consideration as well. An extensive comparison was made by Hammack
and Segur, whose work we now discuss. These experiments were conducted in
a wave tank 31.6 m long, 61 cm deep and 39.4 cm wide. As shown schemati-
cally in Fig. 4.1, the wave generator consisted of a rectangular piston located
in the tank bed adjacent to the upstream end wall of the tank. The piston
spanned the tank width, and was 61 cm long for the experiments we will
discuss. The time history of its vertical displacement was prescribed for each
experiment.

Wave measurements were made during each experiment at several positions
down the tank using parallel-wire resistance gauges. In the first set of experi-
ments (1974) the fluid depth h was 5 ¢cm, and the waves were measured at
x/h =0, 20, 180 and 400, where x =0 at the downstream edge of the piston.
In the second set (1978) h = 10 cm, and waves were measured at x/h =0, 50,
100, 150 and 200.

Figure 4.2 shows the wave generated simply by raising the piston. The piston
motion was fast enough that the shape of the wave at x/h = 0 is effectively the
shape of the piston (because of the reflecting wall at the upstream end of the
piston, the wave at x = 0 was actually twice as long as the piston and half as
high as its displacement).

On ashort time scale, according to (4.1.15), this wave should simply translate
with speed Vgh gh. The wave measured at x/k =20 (Fig. 4.2b) fits this descrip-
tion approximately; its shape is basically that of the wave at x = 0. (The front
of the wave is to the left in these figures, and a wave which translates with
speed \/Ez shows no horizontal displacement in succeeding frames).

That solitons emerge on a long time scale may be seen in Fig. 4.2c, d.
Solving the Schrodinger eigenvalue problem (1.3.33) with the wave measured
at x =0 as the potential yields 3 discrete eigenvalues, representing 3 solitons.
These correspond to the 3 positive, more or less permanent waves seen at
x/h =180 and x/h = 400. According to (4.1.19), these waves all should move
to the left in these figures, since their speeds all exceed Jgh gh. That they do not
is a measure of the effect of viscosity in these experiments.

Even so, we assert that these waves are solitons on the basis of their shapes.
The entire profile of a single soliton is determined from (4.1.19) once its
amplitude is known. The peak amplitudes of the first two waves in Fig. 4.2d
were measured, and the dots in that figure represent evaluations of (4.1.19)
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F1G. 4.2. Evolution of a long, positive water wave into 3 KdV solitons. h =5 cm. —, measured
profiles; « « «, soliton prafiles computed using (4.1.19). (a) x/h =0, (b} x/ % =20, (c) x/h = 180, (d)
x/h =400. (Hammack and Segur (1974)).

based on those amplitudes. The agreement with the measured wave shapes is
striking.

The results shown in Fig. 4.2 suggest the following picture of long water
waves of moderate amplitude.

(i) There is a short (linear) time scale, during which the left and right
running waves separate from each other.

(ii) There is a long (KdV) time scale, during which the right (or left) running
waves evolve into N solitons plus radiation.

(iii) There is an even longer viscous time scale, during which the energy in
these solitons is gradually dissipated. Because the KdV time scale is shorter,
however, the solitons continually readjust their shapes and speeds as they lose
energy, so that locally, as in Fig. 4.2d, they look and act like solitons,

Note that the mean water level is positive in the oscillatory waves in Fig.
4.2¢,d. Recall from § 1.7 that the mean of the oscillatory waves in the long
time KdV solution is negative (cf. (1.7.51)). The discrepancy is a viscous effect,
and may be explained as follows. The solitons slowly lose energy due to viscous
effects, but the total mass of the waves is conserved. Therefore, as mass is
forced out of the solitons, it builds a ‘“‘shelf”” behind them, which raises the
mean water level there. This is analogous to the shelf discussed in § 3.8.
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Several other experiments involving solitons were also made in this series.
In some experiments the initial wave amplitudes were very small and the
solitons had not yet emerged by x/h =400. In every experiment in which the
number of solitons observed at x/h = 400 was unambiguous, it agreed with the
number predicted by using the initial data for that experiment as the potential
for the Schrddinger eigenvalue problem and counting the number of discrete
eigenvalues (i.e., the number of solitons). The amplitude of the leading soliton
at x/h =400 also was predicted with reasonable accuracy in two steps: (i) by
using the eigenvalue problem to determine its (inviscid) amplitude; (ii) by using
a formula due to Keulegan (1948) to determine the viscous decay of a solitary
wave of this amplitude as it propagates over 400 depths. More details may be
found in Hammack and Segur (1974).

The piston displacement in Fig. 4.3 was exactly reversed from that of Fig.
4.2. If the wave evolution were linear, then each wave record in Fig. 4.3 would
be the reverse of the corresponding record in Fig. 4.2. This is approximately
the case for the first two records, which are measured on the short, linear time
scale. On a longer time scale, however, the wave records are much different.
An entirely negative initial wave, such as that in Fig. 4.3a can produce no
solitons; all of the energy must go to the continuous spectrum. Fig. 4.3 shows
a representative example of the radiation part of the KdV solution.
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F1G. 4.3. Evolution of a long, negative water wave into oscillatory waves without solitons.
h =5 cm. —, measured profiles. (a) x/h =0, (b) x/h = 20, (c) x/h = 180, (d) x/ h = 400. (Hammack
and Segur (1974)).
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A more detailed test of how well the KdV model predicts this radiation may
be made in Fig. 4.4, which shows a larger amplitude wave in somewhat deeper
water. Recall from § 1.7 that the asymptotic solution of (4.1.1) without solitons
consists of four regions.

(i) For x » (31)'"*, the solution is exponentially small.
(ii) For |x|=0((3 )*?) the solution is approximately self-similar, and
approaches the special solution

X +xp

6t

(iii) There is a relatively thin collisionless shock layer near —x =
[O0((30)!*(log 3£)**™")], 1 »p =0.

(iv) For (—x)>» (31)"3(log 31)*/**?, the solution consists of decaying oscilla-
tions. These oscillations form into wave groups, with nodes given by the zeros
of the reflection coefficient, p(k). The wavenumbers within each group are
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FIG. 4.4, Evolution of a long, negative water wave into oscillatory waves, with clearly defined
wave groups. The initial amplitude is larger than in Fig. 4.3. h = 10 cm. —, measured profiles; -,
trajectory of wave group, based on average measured wave frequency and linearized dispersion
relation (4.1.8). (a) x/h =0, (b) x/h =50, (c) x/h =100, (d) x/h = 150, () x/h = 200. (Hammack
and Segur (1978)).
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fixed, and the group travels with the group velocity of the linearized problem
evaluated at the dominant wavenumber of the group.

Certainly this description is in qualitative agreement with the wave records
shown in Fig. 4.4. A quantitative comparison of regions (i) and (ii} is shown in
Fig. 4.5, where the leading portion of the wave record in Fig. 4.4e is compared
with the asymptotic KdV solution evaluated at the appropriate time. For
comparison, the asymptotic solution of the linearized equation, (A.1.49), with
the same initial data is also plotted. In this experiment, the KdV prediction of
this leading wave is surprisingly accurate. Moreover, there is evidence that the
agreement is even closer when corrections for the finite viscosity of the fluid are
made (Hammack and Segur {1978)).

The KdV prediction of the oscillatory region is not as accurate in this
experiment, largely because the waves generated in this region are not long in
the sense of our original assumption (B), p. 278. In other words, the initial data
consisted primarily of long waves, but the long waves generated short waves,
and their evolution is not modeled well by the KdV equation. Even so, the
qualitative picture from the KdV equation is correct. Wave groups are clearly
identifiable in Fig. 4.4b, ¢, d and a detailed analysis of these records shows
that the dominant wavenumbers remain essentially unchanged as the waves
evolve. Moreover, the trajectories plotted in Fig. 4.4, which clearly coincide
with the observed trajectories of the wave groups, actually were obtained by
evaluating the linearized group velocity, (4.1.8), at the wave frequencies
measured.
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FI1G. 4.5. Theoretical and experimental profiles for wave front at x/h =200 in Fig. 4.4. —,
measured profile; — —, linear asymptotic theory (A.1.58); ——— -, KdV. asymptotic theory (1.7.41-
45) (Hammack and Segur (1978)).



288 CHAPTER 4

The fact that realistic initial data for (4.1.5-7) usually contain some high
frequency waves raises the question of whether the presence of these short
waves might invalidate the KdV model. That is, if the evolution of the long
waves changes significantly due to the presence of short waves, and if the KdV
model is valid only when all short waves are absent, then the KdV equation
would not be a practical model of (4.1.5-7). The results of a series of
experiments designed to test this possibility are shown in Fig. 4.6. In three
separate experiments (each shown vertically in this figure), the piston was
displaced upward with the same mean motion, but with increasing amounts of
superposed high frequency motion. The first experiment was qualitatively like
that in Fig. 4.2; the initial wave was roughly the shape of the piston, and
evolved into four separate solitons. The early wave records of the other two
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F1G. 4.6. Time-displacement histories of three piston motions, and the water waves they generate.
h =5 cm. (a) Mean piston motion, (b), (c) mean motion with superposed oscillation. N represents the
number of discrete eigenvalues obtained in each experiment by using the measured wave profiles at
x/h =0 in the scattering problem (1.3.33). (Hammack and Segur (1974)).
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experiments look different because the long and short waves have not yet
separated. However, small amplitude water waves are strongly dispersive (cf.
4.1.8), and by x/h = 180 (i.e., the KdV time-scale), the long and short waves
are physically separated. The solitons that emerge at x/h =400 are indistin-
guishable in the different experiments.

To summarize, the KdV equation is part of a model of how two-dimensional
long water waves of moderate amplitude evolve over a relatively long time
scale. It predicts the evolution of the long waves fairly well, especially if its
predictions are corrected to account for viscous effects. It predicts the evolution
of short waves incorrectly, but the presence of these short waves does not
seriously impair the accuracy of the model for the long waves, because of the
dispersive nature of water waves.

Several alternatives arise when the water waves are not truly two-
dimensional (cf. Miles (1980).) One possibility is that the waves are nearly
two-dimensional. In this case (4.1.18) should be replaced with

(4.1.23) Qf, 43+ G Tfor)r + fan =0,

where n =¢y/h. Here is a summary of what is known about the solution of
{4.1.23).
(i} Every solution of {4.1.18) also solves (4.1.23),

(ii) Based on the results of Kadomtsev and Petviashvili (1970), one-
dlmensmnal solitons are unstable with respect to long transverse perturbations
if G- T)< 0 (i.e., very thin sheets of water), but not in the usual case, where
3-T)>0. The experimental results in Figs. 4.2 and 4.6 indicate that solitons
are not unstable with respect to short transverse perturbations, either.

Gii) If T<} {the usual case), (4.1.23) has N-soliton solutions, with the
solitons interacting obliquely (3.3.90, 91). The interaction of two oblique
solitons, which is stationary in the appropriate coordinate system, is shown in
Fig. 4.7a.

This kind of interaction is very suggestive of the ocean waves shown in Fig.
4.7b. These waves were photographed off the coast of Oregon. According to
the photographer, the water was about 3 meter deep where the interaction
occurred. The figure shows that the two waves each belong to periodic wave
trains (presumably coming in from deep water), but each wave is 50 long
relative to the (locally) shallow water depth that the waves may be considered
solitary. No more quantitative information is available about these waves, but
even so the similarity between this interaction and that predicted by (4.1.23)
is striking.

(w) Surface tension dominates gravity for very thin sheets of water, where
T4 3. Here one-dimensional solitons are unstable, but “lump”’ solutions of
(4.1.23) exist; cf. § 3.4. These (2+ 1)-dimensional analogues of solitons have
not yet been observed experimentally.
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*Y

FI1G. 4.7a. Sketch of two-soliton solution_of Kadomisev-Petviashvili equation from (3.3.91). In

thizs syrznmem'c case, ky= ki, py=—p>>~3k,. This pattern moves in the x-direction with speed
(ki+py).

(v) If T>3% (dominant surface tension), Zakharov and Manakov (1979)
have solved (4.1.23) exactly by a generalization of IST. They require boundary
conditions restrictive enough that lumps are excluded a priori. The asymptotic
(1 -» o) behavior of the solution with these boundary conditions was given by
Manakov, Santini and Takhtadzhyan (1980).

4.1.b. Internal waves. The internal oscillations due to gravity of a stably
stratified fluid are known as internal waves. Both the oceans and the atmos-
phere usually are stratified, and they support rich spectra of these waves (e.g.,
Phillips (1977)). In fact, the waves at the air-water interface that we have just
discussed may be thought of as an extreme case of internal waves (caused by an
extremely large density gradient at the interface).



FiG. 4.7b. Oblique interaction of two shallow water waves. ( Photograph courtesy of T. Toedtemeier )
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Under appropriate circumstances, long internal waves of moderate ampli-
tude evolve according to the KdV equation, just as surface waves do. However,
the KdV equation does not play the ubiquitous role for internal waves that it
does for surface waves; depending on circumstances, long internal waves might
evolve according to the mKdV equation (4.1.2), the Benjamin—-Ono equation
(4.1.3) or a model intermediate between KdV and (4.1.3). In this subsection,
we analyze one fairly simple (two-layer) model of internal waves in order to
see how these various equations arise, and in what sense they model the
evolution of long internal waves.

Consider two incompressible, immiscible fluids, with densities p; <p, and
de hy, hy (H = hy + h3), as shown in Fig. 4.8, The lower, heavier fluid rests

v p=0
i, =
* P

# L LT EFE

+. 4.8. Two-layer configuration. The surface waves have their maximum displacements at the
fro urface; the internal waves have theirs at the interface.

o a horizontal impermeable bed, while the upper fluid is bounded above by
a . ze surface. Both fluids are subject to a vertical gravitational force. We will
neglect surface tension, both at the fluid interface and at the free surface. We
also neglect the earth’s rotation (but see Gibbon, James and Moroz (1979)).
If we assume that each fluid is also irrotational, then each has a velocity
potential (3, ¢2) that satisfies the Laplace equation in its own domain. The
appropriate boundary conditions are as follows: at the bottom (z = —H), the
vertical velocity must vanish; at the interface (z = —h; +n(x, y, t)), the vertical
velocity and pressure are continuous; at the free surface (z ={(x, y, 1)), the
conditions are those in (4.1.7), with T =0; as x*+y’ > 00, we require that
(Vé1, Voo, ¢, 1) all vanish. Then, once initial conditions are given (at ¢ =0),
we may ask for the subsequent evolution of n(x, y, 1), {(x, y, 1), ¢1(x, ¥, 2, 1)
and ¢o(x, y, z, t) for ¢ >0. We will concentrate primarily on two-dimensional
motion (3, =0).
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We begin by linearizing the problem, and finding the linearized dispersion
refation. This is given by Lamb (1932, § 231). Let

(4.1.24) a=22"P

P2
Then
w”[1+(1—A) tanh kh, tanh kh,]— w’gk[tanh kh, + tanh kh,]

(4.1.25)
+Ag’k? tanh khy tanh kh, = 0.
The following points are of interest.
(i) For each k, (4.1.25) is a quartic equation for w(k), whereas the
linearized dispersion relation for the surface wave (4.1.8) is quadratic.

(i1) (4.1.25)reducesto (4.1.8) with T=0ifA=0,0rif h,=0,0rif h; =0, or
if A=1 (note that A~ 1 can be interpreted either as p; > 0 or as p, > ),

(iii) For A small enough, one may show from a comparison of { (surface) and
n (interface) that, for fixed &, the larger (in magnitude) pair of roots of (4.1.25)
represent two waves whose maximum amplitudes occur at the free surface.
These two modes are called surface waves, and reduce to the waves in a
homogeneous fluid if A->0.

(iv) The smalier (in magnitude) pair of roots of (4.1.25) represent two waves
whose maximum amplitudes occur at the interface if A is small enough. These
two modes are called internal waves, and disappear if A=0. Our primary
interest here is in the long time evolution of the internal waves.

(v) For either the surface waves or the internal waves,

w’=0(k? askhy, khy~>0,
dw Fw

—> — < >0
ok 0, pye: 0 fork y

w’=0(k)) askhy, khy->oo0,
From these results it follows that long internal waves travel faster than other
internal waves, but that there are both faster and slower surface waves (in terms
of group velocity).

Next we want to solve (4.1.25) in the long wave limit. However, as noted by
Benjamin (1967) (see also Davis and Acrivos (1967) and Lamb (1932, § 231)),
(4.1.25) has several limits that might qualify as ‘‘the long wave limit”. Each of
these possibilities is physically meaningful.

(i) If the waves in question are longer than all vertical depths, then kh;,
kh,, kH « 1, In this limit, (4.1.25) reduces to

4.1.27) (%)4~gH(%)2+g2 Ahyhy = O(K),

(4.1.26)

and all four roots have the form

(4.1.28) w~Ck+ak® forkH«1.
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This case is analogous to the surface wave problem that we have already
discussed. An initial disturbance of small amplitude consisting only of long
waves (in the sense that kH « 1), splits into two surface waves and two internal
waves on a short (linear and nondispersive) time scale (see Lamb (1932,
§§ 231-234)). If all four wave speeds are distinct, then the four waves separate
in space on this short time scale, and each interacts only with itself on the
next (nonlinear and dispersive) time scale. As we will show below, the
consequence of (4.1.28) is that the governing equation on the long time scale
is either the KdV (4.1.1) or the mKdV (4.1.2) equation.

(ii) If h; < h,, then the waves in question may be long in comparison with
the thin layer (kh;« 1) but still short in comparison with the total depth
(kH »1). This “‘long wave limit” often is relevant for oceanic internal waves.
For example, the depth of the main seasonal thermocline is typically 50~-100 m
in summer, whereas the depth of the ocean may be several thousand meters.
As discussed in detail by Benjamin (1967), in this limit (4.1.25) reduces to

w’=glk|  (short surface waves)
and

2
w

(4.1.29) (E> _gAh,=O0(klhy)  (long internal waves).

As before, an initial disturbance of small amplitude breaks into four linear
wave modes (two surface, two internal) on a short time scale. On the next time
scale, each of the internal waves is governed by the Benjamin-Ono equation
(4.1.3); see aiso Ono (1975) and Ablowitz and Segur (1980). We repeat that
(4.1.3) appears to be solvable by some version of IST, although the theory is
incomplete at this time.

(iii) Another possibility is that khy« 1, kH = O(1). In this version of the
“long wave limit,” Joseph (1977) and Kubota, Ko and Dobbs (1978) have
derived (3.5.39), an equation intermediate between (4.1.1) and (4.1.3). This
intermediate equation contains an arbitrary parameter (which is effectively
kH); it reduces to (4.1.1) if kH -0 and to (4.1.3) if kH - 0. It also is exactly
solvable (see § 3.5).

Now let us return to the case in which kH « 1. For simplicity, we also require
A« 1 (in the ocean, typically A<0.02). From (4.1.27), the linear long wave
speeds are

C? = gH (surface waves),

(%)
k c? =8 Ahih;
! H
Because A« 1, these speeds are distinct. Hence, if the initial disturbance is of
finite extent and consists only of long waves, then the surface and internal
waves separate on the linear time scale.

(internal waves).
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To follow the internal waves on the next time scale, we define

_l(ﬁ)m ~ x-Ci
7'—6 H s X (hlhz)l/z;
(4.1.30)
PV A
2hiha Nis

where 7; is the dimensional deflection of the interface due to the internal wave
mode with speed C,. Then one can show that this internal wave evolves
according to the KdV equation

(4.1.31) fr +6ffx + fox = 0.

Because a soliton is an intrinsically positive solution of (4.1.31), it follows from
(4.1.30) that an internal soliton is always a wave in which the thin layer thickens.
That is, the interface deflects downward if the upper layer is smaller and
upward if the lower layer is smaller. These internal solitons were first discussed
by Keulegan (1953).

An example of such an internal soliton is shown in Fig. 4.9, which was
generated in the same wave tank used in Figs. 4.1-4.6, but with a density-
stratified fluid. The figure shows both the initial internal wave and the wave to
which it evolves. As in Fig. 4.2, the dots mark the shape of the exact,
one-soliton solution of (4.1.31) with the measured peak amplitude. For more
details, see Segur and Hammack (1981). Similar experiments were done by
Koop and Butler (1981).

As with surface waves, it is necessary to correct for viscous dissipation in
order to compare this theory directly with data. It turns out that this dissipation
is stronger for long internal waves than it is for long surface waves. The reason
is that in addition to all of the viscous boundary layers that form for surface
waves, internal waves also have a boundary layer at the interface, where the
velocity shear is the greatest. In fact, this additional boundary layer is often the
most important energy sink in the problem.

There is no conceptual difficulty in generalizing Keulegan's (1948) theory
to include this extra boundary layer (Leone (1974)). This generalized theory,
coupled with the inviscid KdV model, then predicts the evolution of long
internal wave solitons (Leone and Segur (1981)).

Note from (4.1.30) that f vanishes if the two layers have equal depth and
their density difference is small. In this special configuration, the problem
attains a symmetry such that the coefficient of the nonlinear term vanishes. In
this case, the scaling implicit in assumption (D), p. 278, is not appropriate, and
KdV is not the correct asymptotic equation. The correct scaling here is

kh = O(e),
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Fi1G. 4.9. Evolution of a long internal wave from its initial shape into two solitons.——, measured

profile; « « o, KdV soliton.

and the asymptotic equation is the mKdV equation, (4.1.2), which governs the
evolution of the wave on the next time scale (¢%r = O(1)). Typically, the mKdV
equation arises when w (k) ~ Cok + ak” in the long wave limit, but the problem
has a symmetry that makes positive and negative waves dynamically indistin-
guishable, as they are here when hy = h,.

One additional anomaly may be mentioned here. When the appropriate
one-dimensional equation is mKdV because of some symmetry in the problem,
then nearly one-dimensional waves are governed not by (4.1.4) but by

4.1.32) (u, + au2ux +bttgxe)x +uyy =0,

where a, b are constants. As noted in § 3.7, this equation lacks the Painlevé
property. Presumably it lacks all of the features that make these equations
special: solitons, extra conservation laws, complete integrability, etc.

Finally, we note one more variation on the equations governing the evol-
ution of long internal waves of moderate amplitude. Long internal waves can
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couple resonantly with a packet of short surface waves whose group velocity
matches the internal wave speed. The resultis not (4.1.1, 2 or 3) but a coupled
pair of nonlinear evolution equations (Grimshaw (1975), Djordjevic and
Redekopp (1977), Ma (1978), Ma and Redekopp (1979)). Because of this
coupling, long internal waves sometimes may be observed in the form of
resonantly excited surface waves. Descriptions of field observations of this
phenomenon are discussed by Phillips (1974) and by Osborne and Burch
(1980).

4.1.c. Rossby waves. In the atmosphere of a rotating planet, a fluid
particle is endowed with a certain rotation rate, determined by its latitude. It
follows that its motion in the north-south direction is inhibited by conservation
of angular momentum, just as gravity inhibits the vertical motion of a density-
stratified fluid. The large scale atmospheric waves caused by the variation of
rotation rate with latitude are known as Rossby waves (Rossby (1939)).

As one might suspect, there is an analogy between internal waves and
Rossby waves under appropriate assumptions. Because the KdV equation
models internal waves, one might suspect that a KdV model of Rossby waves
could be constructed as well. This was demonstrated by Benney (1966) and by
Long (1964); see also Miles (1980) and the references cited therein. Under
the simplest assumptions (long waves, incompressible fluid, 8-plane approxi-
mation, etc.}, the derivation of the KdV equation as a model of Rossby waves
in the presence of a steady east-west zonal flow follows the relatively standard
pattern given by Benney (1966), to which the reader is referred for more
details. This particular application of the KdV equation warrants special
attention, however, because of the conjecture of Maxworthy and Redekopp
(1976) that Jupiter’s Great Red Spot might be a solitary Rossby wave.

Figure 4.10 (see insert following page 310) shows a photo of the planet
Jupiter, taken during the recent Voyager project. The cloud patterns show
that the atmospheric motion on Jupiter is dominated by a number of east-west
zonal currents, corresponding to the jet streams in our own atmosphere.
Several oval-shaped spots also may be seen, including the prominent Great
Red Spot in the southern hemisphere. The Great Red Spot has been seen at
approximately this latitude for hundreds of years, it is known to migrate
slowly to the west, and to maintain its integrity despite interactions with other
atmospheric objects. A number of models have been proposed over the years
to explain this intriguing feature of the Jovian atmosphere, including the
model of the Red Spot as a solitary wave.

Following a recent version of this model described by Redekopp and
Weidman (1978), we begin with the quasigeostrophic form of the potential
vorticity equation for an incompressible fluid (Pedlosky (1971)):

(4.1.33)
{8, + U 8,) + edr, (9, — e d)Hu 02 +90+ 8. (K* 3N +(8—U"y, =0.



298 CHAPTER 4

Here (x,y, z) represent the (east, north, vertical) directions, and we have
written the total horizontal stream function ¥ as

Vo3, 2, 0= | Uln)dn+evin 2,0

in terms of a zonal shear flow and a perturbation. Moreover, we have used the
B-plane approximation, so that the Coriolis parameter is approximated by

(4.1.34) f=2Qsin 6+ By.
Also,

_ZQSineolz
(4.1.35) K(z)= NG d

where N(z) is the Brunt-Viisila frequency and /, d are characteristic length
scales in the north-south and vertical directions, respectively. K compares the
effects of rotation and density variation (i.e., centrifugal and gravitational
forces). Finally,

represents the ratio of length scales in the north-south and east-west directions.
In the linear (¢ » 0), long wave (u - 0) limit, ¢ has the form

(4136) ‘[’=2An(x_cnt)¢n(y)pn(z)y

where ¢, is the end result of two eigenvalue problems:
(K?p.) +kap.=0, Pa(0) = pa(1) =0,

B__U"
U-c,

4.1.37)

¢=09 (bn(ys):(bn(YN):O.

Here the atmosphere is assumed to be confined between horizontal, rigid lids
(at z =0, 1), and the zonal shear flow lies between ys and yx. From (4.1.37),
wave propagation is possible only in the east-west direction, i.e., this problem
is intrinsically (1 + 1)-dimensional, so the question of transverse stability does
not arise here.

If the various modes in (4.1.36) separate on a short time scale, then one may
derive an evolution equation to describe how an individual mode interacts with
itself on a longer timescale. As in the previous derivations, this is done by
eliminating secular terms that arise at higher order in the expansion. Depend-
ing on the nature and existence of a stable density stratification, characterized
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FiG. 4.11. Streamline patterns for a Rossby wave soliton in a homogeneous atmosphere. The
assumed background velocity profile is shown on the left. (Redekopp and Weidman (1978)).

by N(z), either KdV or mKdV is possible for a given mode. Coupled evolution
equations also are possible if two or more modes have nearly equal linear phase
speeds. Unfortunately, so little is known about any details of the Jovian
atmosphere that the model cannot be made very precise or tested quantita-
tively at this time.

Figure 4.11 shows a horizontal streamline pattern corresponding to a single
soliton in a coordinate system traveling with the wave, for a homogeneous
atmosphere and an assumed zonal shear flow. The shape of the recirculating
region is tantalizingly similar to that of the Great Red Spot, shown in Fig. 4.10.
The region just above the recirculating region in Fig. 4.11 corresponds to the
Hollow, which is observed to persist just north of the Red Spot. However, we
reiterate that this comparison should be considered only suggestive at this time.

A separate test of the soliton model of the Red Spot and Hollow is that the
combination should interact with other waves as a soliton. As pointed out by
Maxworthy and Redekopp (1976), there was another large disturbance in the
southern hemisphere, known as the South Tropical Disturbance, that first
appeared early in this century and lasted for several decades. These two
disturbances had different propagation speeds, and went through each other
about 9 times during the lifetime of the South Tropical Disturbance. One
interaction was described in detail by Peek (1958):

During the six weeks which would have been required for the p end of the Disturbance to
pass from one end of the Hollow to the other, - - - there was no sign whatever of any
encroachment upon the region; instead, within a few days of its arrival at the f end of the
Hollow, a facsimile of the p end of the Disturbance was seen - - - to be forming at the other
end of the Hollow, ' - -:. The new development - -+ proved to be a true p end of the
Disturbance which drew away from the Red Spot at approximately the same rate (at which
it had approached), - - . Thus its passage through - - - the Red Spot, which would have taken
3 months at its normal rate of progress, must have been accomplished in a matter of fourteen
days.

Maxworthy and Redekopp (1976) interpret this interaction as that of two
solitons, complete with the required phase shift! A more detailed analysis of
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some of these interactions is given by Maxworthy, Redekopp and Weidman
(1978).

For the sake of simplicity, several technical but important aspects of this
model have been glossed over in this presentation. One of these is that the
amplitude of the Great Red Spot is not small; i.e., ¢ = O(1) in (4.1.33), so the
e-expansion used here must be considered purely formal. Another is that the
Red Spot has lasted so long that any viable model of it must include some
mechanism by which the wave extracts energy from the zonal shear flow at a
rate sufficient to balance the loss of energy through dissipation. Discussion of
these and other points may be found in Maxworthy and Redekopp (1976),
Redekopp (1977), Redekopp and Weidman (1978), Maxworthy, Redekopp
and Weidman (1978).

4.2. Three-wave interactions. The resonant interaction of three waves is
perhaps the simplest nonlinear interaction of waves that are dispersive in the
linear limit. Ordinarily, these equations arise in the study of a dispersive system
in the weakly nonlinear limit. The system should have two ingredients.

(i) At the lowest order in a small amplitude expansion, one obtains the
linearized dispersion relation w(k). It must admit a resonant triad, i.e., three
linear waves that satisfy a resonance condition:

(421) ki+k:+k;=0, w1 +wrtws=0.

(We assume in this section that w(k) = —w(—Kk); otherwise (4.2.1) is incom-
plete.)

(ii) At nextorder in this expansion, quadratic interactions must occur. Then
secular terms may arise at this order unless the slowly varying amplitudes of
these three waves satisfy

3,a1+(Cy - V)a; = iyiataf,

4.2.2) 3.a,+(Cy - V)ay = iyaXaf,

3,a3+ (Cs - V)as =iysataj,

where C; is the linearized group velocity evaluated at k;. If the original system
is conservative, then (v, v», ya) are real and y1v.v>=0.

The general nature of these equations was noted explicitly by Benney and
Newell (1967) among others, although special cases had been derived earlier.
Some of the contexts in which these resonant triads arise, along with the
appropriate references, may be found in Davidson (1972), Kaup (1976b) and
Phillips (1974).

A special case of (4.2.2) that has received a good deal of attention occurs
when the complex wave amplitudes depend on only one independent variable.
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These are unmodulated, uniformly evolving wavetrains, and (4.2.2) reduces to

, di=iyiaia%,  d2=iy:aiaf,
(4.2.2") e
az=1rysdi14asz,
where either d; =9,a; or a; = ¢;0,a;. Just as (4.2.2) can be solved exactly by
IST, (4.2.2") can be solved exactly in terms of elliptic functions (Ball (1964),
Bretherton (1964)).

4.2.a. Nonlinear optics. An ideal dielectric medium may be thought of as
one in which the electrons in each molecule are tightly bound to the nucleus.
Applying an electric field to such a medium does not create a current, but
rather displaces each bound electron by some finite amount. The macroscopic
effect, obtained by summing over all the displacements in a unit volume, is the
polarization, P.

The relation between the polarization and the electric field is one of the
constitutive relations that defines the medium. In the simplest case, the relation
is linear,

(4.2.3) P, = x;E;;

xi; is the (linear) susceptibility of the material. For isotropic materials, y;;
reduces to a scalar. A simple generalization of (4.2.3) is to consider the field
to be a plane wave with frequency w, and to allow yx;; to depend on w.

This model was adequate for most problems in optics prior to the invention
of the laser. However, lasers are capable of producing such high field intensities
that nonlinear corrections to the susceptibility become important. ‘‘Nonlinear
optics”” usually denotes the study of phenomena caused by the nonlinear
corrections to the susceptibility of a dielectric material. It is among the most
active areas in applied physics, and our discussion of it necessarily will be
incomplete. The discussion which follows is based on those in Akhmanov and
Khokhlov (1972), Whitham (1974) and Yariv (1975); see also Kleinman
(1972).

Consider an ideal dielectric medium that is nonmagnetic and homogeneous.
Maxwell’s equations (in MKS units) are

(4.2.4a) VxH=4D, VXE=-4B,
(4.2.4b) V:-D=0, V:-B=0,
where
1
(4.2.4¢) DE)= sE+P, B = uoH,
HoC

and c is the speed of light in vacuo. These may be combined to

1
(4.2.5) ;56?E+;1.06,2P+V><V><E=0.
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The electron displacement, Z, in the lossless medium may be modeled as a
forced anharmonic oscillator:

(4.2.6) mZ,+V,U(Z)=1qE

where m is the effective mass of the oscillator, U denotes its potential energy,
I(r) is directed along the electric dipole moment of the oscillation, g is the
charge on an electron, and E denotes the local field strength. In the simplest
case, every molecule is identical and

4.2.7) P=NqZ,

where N is the number of such oscillators per unit volume, The final result is
that P satisfies
Nq?® Q2

(4.2.8) 3P+V,V(P)=——E=—E,
m MoC

where V includes both the sum over the individual potential energies and the
difference between the local and macroscopic fields. Once V is specified,
(4.2.5) and (4.2.8), along with boundary and initial conditions, determine the
field. Note that both the nonlinearity and the anisotropy of the material are
related to V(P).

Many lossless dielectric materials are isotropic in the limit of weak fields,
and (4.2.8) may be approximated by

2
(42.9) a%P, + 0)(2)}), + dijkPij ~ ;‘Q‘:EE;, i= 1, 2, 3.
0

From symmetry considerations in (4.2.9), dijx = di;. Yariv (1975) gives a list
of values of (d;;) for several crystals. For crystalline quartz, dq1; # 0, and all
three interacting polarization vectors are parallel. For ammonium dihydrogen
phosphate (ADP) and potassium dihydrogen phosphate (KDP), d;; = 0 unless
all of the subscripts are different; i.e., P, and P; excite P,, etc. (These two
crystals are also anisotropic in the linear limit.)

If the material is isotropic, or is crystalline with a center of symmetry, then
d; =0 and the first nonlinear effect comes at the next order:

QZ
(4.2.10) 3P+ WP, + P PPy ~;—-C—in, i=1,2,3.
0

For such a material there are no resonant triads, but resonant quartets become
important.

In the linear limit, the solution of (4.2.5, 9) may be represented by transverse
plane waves:

4.2.11) E=Eye” P=Pye®, 8=k -x—wi
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with k- Eq=0. The result of this substitution is the linearized dispersion
relation

0¥
(4.2.12) k=0’ ——5—,
W —wp

which is sketched in Fig. 4.12. Where the initial value problem has been
relevant, we have specified dispersion relations in the form w (k). For optical
experiments it is more natural to consider k(w); i.e., w is given and k is
determined by the physics. Moreover, it is also standard in this field to define
the index of refraction of the medium,

(4.2.13) n=k<,
w
and write the dispersion relation as (#”=n - n)
2
(4.2.14) n=1- f 5.
@ —wWop

Clearly this linear lossless model is inadequate for w near wg, where the
frequency of the applied field nearly matches the (linearized) atomic frequency

Fi1G. 4.12. Linearizeg dispe[sion relation (4.2.12) for isotropic dielectric material. A, (—B) and C
form a resonant triad: A +(~B)+C =0.
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of the medium. We consider this resonant case more carefully in § 4.4. Here
we consider only the nonresonant case.

We now illustrate in Fig. 4.12 a graphical method to find the resonant triads
admitted by a linearized dispersion relation such as (4.2.12). This procedure
has been discovered several times (e.g., Ziman (1960), Ball (1964)). First,
pick any point A on one of the branches of the dispersion curve. Then
reproduce all branches of the dispersion relation, with the origin translated
from O to A. In Fig. 4.12, this is shown with dashed lines. Each intersection of a
dashed and a solid curve (e.g., the point B) represents a second wave that can
participate with A in a resonant triad. From B, draw a vector parallel and equal
to AO. By construction, this vector ends on a dispersion curve, at C. Therefore,
the points A, B and C all lie on a dispersion curve, and therefore all represent
solutions of (4.2.12). Moreover, it is evident that OA+OC= 0B, so that the
waves represented by (A, —B, C) also satisfy (4.2.1).

The triads obtained in this way are one-dimensional (k;, ka, ks are collinear).
More generally, if ki, k2, and k5 are only coplanar, the solutions of (4.2.12) lie
on surfaces obtained by rotating Fig. 4.12 about the w-axis. However, the
geometric method just described to find resonant triads still applies in the
higher dimensional problem.

If the dielectric material in question remains anisotropic in the linear limit,
the dispersion relation necessarily is higher dimensional. Again, the geometric
method applies, although it is apparent that it can become rather involved.

Next, let us find a weakly nonlinear solution of (4.2.5,9). An appropriate
measure of nonlinearity is

1

£ = max 7
0

from (4.2.9), the field is weakly nonlinear if £ « 1. We seek a solution in the
form

E(x, 1, e)=¢Ei(x, 1, &)+ e°E,+ O(e?),

(4.2.15a) 2
P(X, t, €)= ePi+e P2+‘O(83)1
where
N
E = 21 {A,.(y, 7) exp (i8,.) + A} exp (—i6,.)},
(4.2.15b) "

T=¢€l, Y=¢€X, On=Ku X—oml

Some interpretive statements follow.
(i) In laboratory situations, where the incoming waves are controlled
precisely, representing the field by a discrete set of N waves is quite realistic.
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However, if the incoming waves contain two waves of a resonant triad, then
the third wave of the triad should be included in E; as well. It may have zero
amplitude initially.

(ii) Time and space reverse their usual roles in this problem. One imposes
an electric field at the boundary of the material for all time, and this field
evolves in space as it progresses through the medium. Possible slow modula-
tions of the incoming wave packet are specified by variations of A, with respect
to 7.

(iii) The notion of ‘‘slow” modulations should be placed in context here.
The period of a wave emitted from a ruby laser is about 2x 10™"* seconds. In
order to achieve higher field intensities, laser beams often are pulsed (Q-
switched) with an on-time so short it may be measured in picoseconds (i.e.,
107 "% sec). Each such pulse contains about a thousand waves, and may be
considered a slow modulation!

At the lowest order in the expansion in (4.2.15) we simply reproduce the
solution of the linear problem,

N 02
L —5 55 {An exp(i0,) + A7, exp (—if,)},
m=1 MoC (wo_wm)

where (k.., wn,) are related by (4.2.12).

Let us suppose that this linearized solution contains a single resonant triad,
in which (k, ) satisfy (4.2.1), and that the field vectors have the constant
orientation required by d;;. For example, in a quartz crystal (d,; # 0) we may
take

P,=

A, =va,ly, 1), m=1,2,3,

where v is a constant unit vector and each a,, is a scalar. This solution at the
lowest order generates secular terms at the next order unless the three resonant
waves interact over a long space scale according to

3,ay+(c;* Vy)a, =iy.a¥a¥,
(4.2.163) a‘ra2+ (c2 . Vy)az = i'YZanik’

ok %
d.a3+(c3* Vy)as =iysaiaz,

where
3w ]
¢ 'V = b T
(4.2.16b) T Adklewdy
Q dijkwi

N S C 1 + w2 (= )1 Ly (03— 03)
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Because djx =0 and (w1, w2, w3) cannot all have the same sign (from (4.2.1)),
v1, Y2, ¥3) cannot either. Thus, we have the decaying instability discussed in
§2.1.

Second harmonic generation is a special case of a resonant triad in which
w3 = w1, w2 = —2w;. Furthermore, we may identify a; with a,, and scale the
equations to

8,a;+(¢1+ V,)a, =iafa¥,
(4.2.17) )
d.az+ (2 V,)ar=-2i(af)".

Then the second harmonic (a,) is generated by the fundamental (a,), even if
it vanished initially. This special case has received a great deal of experimental
attention in nonlinear optics. It happens to be a singular limit in the IST
formulation (see Kaup (1978)).

Let us now restrict our attention to the steady one-dimensional problem,
where all three waves propagate along one axis; i.e., (kj, ks, k3) are parallel
and (A1, A,, A;) are oriented in accord with di.. We may denote the significant
spatial coordinate by (y). Then (4.2.16) reduce to coupled ordinary differential
equations:

. I‘Yx P
ar=—daszdasz,

C1
7
(4.2.18) a2=—c—a§‘:a’1",
2
. i73 % %
ay=—aiaj,
C3

where d =d,(a).
Two integrals of these equations, sometimes known as the Manley—Rowe
relations, are

alaf cilasf’
Y1 Y2

= const.,
(4.2.19)

c1|a1|2 _ c3|a3|2
Y1 Y3

= const.

Conservation of energy follows from these:

3 Lla|?
(4.2.20) Y E’-};a—’l—= const.,

j=1 W

where we have used (4.2.16b), (4.2.12) and (4.2.1). Thus the total energy of
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the incoming waves is shared by the three interacting waves. These relations
also have a quantum-mechanical interpretation, discussed by Akhmanov and
Khokhlov (1972). Ball (1964) noted that the complete solution of (4.2.18) may
be given in terms of elliptic functions.

What about the experimental evidence? The field of nonlinear optics may
be said to have started with the experimental demonstration of second har-
monic generation by Franken, Hill, Peters and Weinreich (1961).

They focused a ‘‘steady’ ruby laser beam (0.6943 um) on the front surface
of a quartz crystal, and detected radiation emitted from the back surface at
twice the frequency of the incoming beam, i.e., blue light at 0.347 um. (In this
context, a pulse whose duration exceeds 10™° sec may be considered steady.)
The fraction of power converted to the second harmonic in this steady,
one-dimensional experiment was only about 10™°, More recent experiments
which are much more sophisticated are capable of converting a significant
fraction of the total power to the second harmonic. A striking demonstration
of this effect is shown in Fig. 4.13 (see insert following page 310). Further
discussion may be found in Yariv (1975) or in Kletnman (1972).

It should be noted that this experiment has a very practical consequence.
One obtains in this way a source of coherent light at twice the frequency of a
ruby laser; i.e., one may build a ‘“blue laser.”” Obviously, for this application
it is desirable to convert as much of the power as possible to the harmonic
mode.

This is one application of a three-wave interaction in nonlinear optics. In
fact, several rather clever applications of (4.2.1) have been made in this field,
and are discussed by Akhmanov and Khokhlov (1972) and by Yariv (1975). We
mention only two here.

(i) Parametric oscillation occurs when a laser beam at a high frequency
{—w3) is used to “pump”’ up the amplitudes of two lower frequency signals at
w1, w2 (w1 + w2 = —w3) in a resonator. The nonlinear interaction must be strong
enough that the waves at w;, w> receive energy at least as fast as they lose it
to imperfect mirrors, etc. The practical benefit here is that, although w; is fixed
by the resonant transition frequencies of the laser that produced it, w; and w-
are defined only by (4.2.1) and the linear dispersion relation of the medium.
Thus, at some cost in efficiency, one gains the ability to ‘‘tune” the frequencies
(w1, wy) of the pumped waves over a fairly large range. That is, one obtains a
source of coherent light with a variable frequency.

(ii} Frequency-up conversion refers to an interaction in which an optical
signal at a low frequency w; is pumped by a strong laser beam at w, to produce
a signal at a high frequency (—ws;=wi+w,). The practical value of this
conversion is that it permits one to detect infrared radiation, for which existing
detectors are limited, by converting the signal up towards the visible part of
the spectrum where much better detectors are available.
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For all of these applications, we should reiterate that even if the problem
were one-dimensional, (4.2.18) is appropriate only if the incoming beams are
steady. If the beams consist of sufficiently short pulses, then (4.2.16) is the
appropriate model.

4.2.b. Internal waves. One of the fundamental goals of physical
oceanography is to explain the dynamic origins of the spectra of internal waves
measured in the oceans, such as those discussed by Garrett and Munk (1972),
(1975). One aspect of this problem is to explain how internal waves are
generated ab initio. Another is to explain how energy is transferred among the
various internal wave modes. Resonant triads are thought to play a role in both
of these processes, but here we discuss only the first (see also Phillips (1974),
Watson, West and Cohen (1976), McComas and Bretherton (1977) and Olbers
and Herterich (1979)).

One possible mechanism for generating internal waves is a resonant triad
involving a combination of surface and internal waves. In particular, if the
surface wave(s) are originally energetic and the internal wave(s) originally
quiescent, then this triad may initiate internal wave motion.

The simple two-layer system discussed in §4.1 admits resonant triads
involving surface and internal waves (Ball (1964)). For simplicity, therefore,
we will use this system to analyze the interaction. However, the reader shouid
note that this system admits only one set of internal waves in addition to surface
waves. Therefore, it can demonstrate how energy is transferred into the first
internal wave mode, but not how the energy is transferred from this mode to
other internal waves. This limitation is important if the system is to be used to
study ocean waves.

The particular configuration in question was shown in Fig. 4.8. The linear-
ized dispersion relation for waves in this system was given in (4.1.25); see Fig.
4.14. Using the geometric method of Ball (1964) (see also Segur (1980)), it is

-2
h
o/

kh

FIG. 4.14. Linearized dispersion relation for two layer system, (4.1.25). hy =2 in the case drawn.
Two resonant triads are shown, one involving two surface waves and the other involving two internal
waves.
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easy to show that (4.1.25) admits several resonant triads, involving either two
surface waves and one internal wave, or two internal waves and one surface
wave,

Next, it is necessary to show that the interaction coefficients in (4.2.2) do
not vanish. This calculation may be done in several ways, one of which is a
standard application of the method of multiple time scales (see, e.g., Thorpe
(1966), Joyce (1974)). In order to avoid some of the rather tedious algebra
that one encounters by this approach, Simmons (1969) devised a variational
method, which is computationally more efficient. Other derivations may be
found in the references cited in Phillips (1974). Typically, these derivations
involve uniform wave trains, so that the evolution equations are (4.2.2") rather
than (4.2.2). It is a straightforward extension of the analysis to include both
spatial and temporal modulations, however. What is important for this dis-
cussion is that the interaction coefficients for resonant triads in the two-layer
model do not vanish identically.

What are the consequences of these triads? For simplicity, consider first the
case of spatially uniform wave trains. By renumbering the linearized wave
modes, the kinematic condition (4.2.1) may be rewritten as

(4221) ki+k,=k,, w1t wr = ws,

with w; > 0. Hasselmann (1967) noted that for a conservative system without
spatial variation, (4.2.2a) may be written as

d.a,=ia3aj,

(4.2.22) d,as=ia¥a¥,
d.as=—lata¥;

i.e., the negative interaction coefficient in (4.2.22) is associated with the highest
frequency in (4.2.21). This association is independent of the details of the
interaction coeflicients, provided only that they do not vanish. Now consider
a uniform wavetrain of frequency w3 and dimensionless amplitude a; (of order
unity). If a; and a> are infinitesimal initially, then for early times (4.2.22)
implies that a; is constant, and that

(4.2.23) ala;~|asla, i=1,2.

Thus, the infinitesimal modes grow exponentially at the expense of a3, i.e., a;
is nonlinearly unstable with respect to perturbations in the triad defined by
(4.2.21). (Bear in mind, however, that this instability is a short term effect; the
general solution of (4.2.22) is periodic.)

When the resonant triads associated with the two-layer system are numbered
to fit (4.2.21) with @ >0, w; always is a surface wave (see, e.g., Fig. 4.14).
Because the interaction coefficients do not vanish, it follows from Hassel-
mann’s theorem that surface waves in a two-fluid system are unstable. The
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initial growth rate of the instability is proportional to the amplitude, |as|, from
(4.2.23). We should note that this growth rate is faster than the growth rate of
the Benjamin-Feir instability, which is proportional to |as|* (cf. § 4.3).

What is the experimental evidence of this instability? Lewis, Lake and Ko
(1974) regard (4.2.22) as a stability problem, and are concerned only with the
early growth of an internal wave mode at the expense of two forced surface
waves. Their perturbation solution of (4.2.22) for early times predicts their
observed results (growth rate, etc.) relatively well, but the experiment stops
before the periodic nature of the solution becomes apparent.

Joyce (1974) also studied the growth of an internal wave at the expense of
two surface waves. Viscous damping was comparable to the nonlinear growth
in his experiments, so linear damping terms were added to (4.2.22). One of
the primary objectives of his experiments was to observe a transient approach
to a steady state, in which energy is continually fed to the surface waves at the
same rate that it is dissipated by all three waves. Clearly, the periodic solutions
of (4.2.22) have no bearing on these experiments.

McEwan (1971) noted that when linear damping terms are added to (4.2.22),
there is 2 minimum amplitude of a,, below which the instability disappears.
He also demonstrated this amplitude cutoff experimentally (see also McEwan,
Mander and Smith (1972)).

Note that all of these experiments examine modulations of uniform wave
trains in time or space; i.e., they relate to (4.2.2), rather than (4.2.2). Note
also that the exact periodic solutions of (4.2.2') were not observed in these
experiments, either because of the short duration of the experiment because
of strong damping effects that were omitted from (4.2.2").

Now let us consider resonant triads of wave packets, modulated both in time
and space, so that the governing equation is (4.2.2). This model is undoubtedly
more relevant for interacting ocean waves. Because the kinematic condition
(4.2.21) does not depend on the group velocities of the waves, three resonant
wave packets (of finite spatial extent) can separate in space. In fact, they
ordinarily do (cf. § 2.1). Thus, out of all the resonant triads admitted by the
linearized dispersion relation (4.1.25), special attention should be given to any
in which the group velocities also match, because their effective interaction
time is longer.

There is a family of such triads admitted by (4.1.25) in which k, represents
a long internal wave and k., k3 represent short surface waves, with k; =
(k3—kz)« k3. By (4.2.21),

w3~ w2 . ﬂ
k3 - k2 k1 ’
For (k3 — k) sufficiently small, the left side of (4.2.24) is the group velocity of

a surface wave at k3(=~k,). The right side is the phase velocity of the internal
wave. But because the internal wave is long, this is also its group velocity. Thus

(4.2.24)
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FiG. 4.10. Jupiter. The Great Red Spot is the large oval-shaped swirl below the equator.
Hollow lies just north of it. (Courtesy of NASA)



F1G. 4.13. Optical demonstration of second harmonic generation: an incoming beam of red light
generaies on outgoing beam of blue light in a crvstal of ammonium dihvdrogen phosphate (Photo -
graph courtesy of R. W. Terhune).
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the long internal wave and the short surface wave propagate together. This
is sometimes known as a long wave-short wave interaction (Gargett and
Hughes (1972), Phillips (1974), Benney (1977), Rizk and Ko (1978), Ma and
Redekopp (1979)).

Finally, we should note that we have considered no background shear in this
discussion. Cairns (1979) and Craik and Adam (1979) demonstrated that if
the equilibrium configuration consists of a stably stratified fluid with shear (i.e.,
a horizontal velocity, U(z), with U’'(z) #0) then the interaction coefficients
all may have the same sign. This is the “‘explosive instability,” previously
known only in plasmas (cf. Davidson (1972), Sugaya, Sugawa and Nomoto
(1977)). In this case the three resonant waves extract energy from the back-
ground to produce a singularity in a finite time (in this approximation).

4.2.c. Resonant quartets. We have seen that resonant triads often rep-
resent the first nonlinear corrections to a linear theory in a small amplitude
limit. The governing equations, (4.2.2) or (4.2.2), are required to suppress
secular terms at O(e°). However, if no secular terms arise at this order, then
these equations need not be satisfied, and the first nontrivial nonlinear correc-
tion arises at O{g°). In nonlinear optics, this occurs if the dielectric is isotropic
or is crystalline with a center of symmetry. In internal and surface waves, this
occurs if one considers only interactions among different waves in the same
vertical mode. In particular, surface waves in a homogeneous fluid admit no
resonant triads (Phillips (1960)).

Resonant quartets arise at the next order if the appropriate interaction
coefficients do not vanish. The resonance condition, corresponding to (4.2.1),
is

(4225) k]+k2+k3+k4=0, w1+w2+w3+w4=0,

where w, = w(k;) from the linearized dispersion relation. Because we have
assumed that w (k) = —w(—k), {(4.2.25) always has solutions of the form

(4226) k[ = —kz, k3 = —k4.

Thus resonant quartets always are admitted by the dispersion relation. (This
holds even if w(k)+w(—k)#0.)

For réesonant triads, the appropriate slow variables are {£x, 7). Because
resonant quartets arise at the next order, their slow variables are (e7x, ezt);
the nonlinear coupling is weaker, and the evolution is slower. The governing
equations are:

(4.2.27)

4

. * .
8:am + (€ Vam =i ¥ Bopmapay +i ¥ Ymgsasalal,
p=1 gr.sEm
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where m =1, 2, 3,4 and ¢,, is the linearized group velocity, evaluated at k,,
(e.g., see Benney and Newell (1967)).

They also noted that, if (4.2.26) are the only solutions of (4.2.25), then the
last sum in (4.2.27) vanishes and the simplified equations may be solved in
closed form:

(4.2.28)

am(xa 7’) =fm(x"-cm7) €Xp l{ J:) Z 6mp!fp(x_cm?'+(cm _CP)T)!z dT},
P

where a,,(x, 0) = f,,(x) are the initial complex amplitudes. We are aware of no
other general results about (4.2.27). In particular, the question of whether
(4.2.27) is completely integrable seems to be open.

A quite different picture of four-wave interactions has been developed by
Hasselmann (1962), (19634, b) in the context of surface waves; see also Hassel-
mann et al. (1973), West, Thomson and Watson (1974) and Willebrand (1975%).
Whereas the effects of randomness are assumed to be weak relative to the
effects of nonlinearity in deriving (4.2.27), exactly the opposite is true in the
model of Hasselmann et al. The result is not (4.2.27), but a Boltzmann -type
transport equation. Presumably the solutions of these two models do not agree;
their basic assumptions are different. What is needed is a careful discussion of
the regions of validity of each model. To our knowledge, this has not yet been
given.

4.3. The nonlinear Schrodinger equation and generalizations. We saw in
§ 4.2 that one basic derivation can lead to the equations for either three-wave
or four-wave (or higher) interactions, depending on details of the problem.
The (cubic) nonlinear Schrédinger equation

(4.3.1) i+ +20|0fY =0, o==1.

also follows from this kind of derivation in a linearly dispersive system; it
corresponds to a different balance of terms.

We may make this assertion more explicit. To leading order, let some
physical quantity be composed of N plane waves, with N complex scalar
amplitudes, a;. Asshown in § 4.2, the equations for resonant triads or quartets
arise if the N envelopes vary slowly in time and space so that

(8, +¢; - V)a; ~ nonlinear terms,

where ¢; is the group velocity of the ith wave. A different balance is achieved
if the nonlinear terms are much weaker than this, so that

(6, +¢; V)a,' ~0.

Now each wave packet travels with its own group velocity and without
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interaction on this time scale. If none of the group velocities coincide, and if
each wave packet is localized, then the packets separate in space. Therefore,
the nonlinear interactions that occur on the next time scale can involve only
the interactions of each wave packet with itself, In {1+ 1) dimensions, (4.3.1)
often is the governing equation on this next time scale. Subject to some
restrictions, this conclusion also applies if the initial data were generated by a
localized disturbance, rather than consisting of N plane waves.

The reader may have noticed in § 4.2 that if a linearized group velocity
admits one resonant triad, it usually admits several (e.g., see Figs. 4.12 and
4.14). Additional justification is required to select a single “‘dominant” triad,
whose governing equations are (4.2.2). There is no corresponding difficulty
with (4.3.1) so long as no two linear group velocities coincide. In this case, only
self-interactions are included because all other wave packets have dispersed
away on an earlier time scale. However, because of transverse instabilities, the
(1+1)-dimensional nature of {4.3.1) limits its physical relevance, as we shall
see.

4.3.a. Nonlinear optics. Consider an isotropic dielectric material whose
index of refraction exhibits a nonlinear correction in the presence of a
moderately strong electric field:

4.3.2) e [ED =5~ ng(a)+ nafw) B

For definiteness, we take rny>0. Akhmanov, Khokhlov and Sukhorukov
(1972} discuss several mechanisms that contribute to such a nonlinear correc-
tion, and give appropriate references; see also Yariv {1975) and Karpman
(1975). Among these mechanisms are the following.

(i) The ‘“‘orientational (or high frequency) Kerr effect’” refers to the ten-
dency for anisotropic molecules in a liquid to align themselves with a strong
electric field. Naturally, the medium becomes anisotropic in the presence of
the field. This effect often produces the dominant contribution to n,.

(ii) “Electrostriction” refers to the compression of a dielectric material by
an applied field. The compression then changes the refractive index. This is
usually the dominant effect in a liquid with isotropic molecules, in gases and
in isotropic solids.

(iii) If the medium absorbs any of the light, the absorbed energy heats the
material and expands it. Landauer (1967) has shown that n, >0 in the absence
of absorption. We will see that n, > 0 corresponds to self-focusing and n, <0
to self-defocusing. Thus, self-defocusing can be realized only by mechanisms
involving light absorption.

Whatever the mechanism, (4.3.2) assumes that the response of the medium
is quasistatic for each frequency and quasilocal. Akhmanov, Khokhlov and
Sukhorukov (1972) note that electrostriction and thermal effects are usually



314 CHAPTER 4

nonlocal, and that the latter are often nonstatic as well. We present next the
simplest derivation of (4.3.1), which assumes the validity of (4.3.2). However,
some nonlocal effects also can be included, as will be seen in the discussion of
water waves (§ 4.3b).

In the simplest case, a steady plane wave at a fixed frequency traveling in
the x;-direction shines on the dielectric medium. The complex amplitude of
the field may vary slowly in space, but not in time (by hypothesis). From (4.3.2),
an appropriate measure of the nonlinearity is

na|E[*

o

2
£ =max

x,t

b4

we assume £ « 1. It is consistent with (4.3.2) to assume

(4.3.3) poc’P=(n*—1)E~ (ni—1+2n,n,JEP)E,
so that (4.2.5) becomes
(4.3.4) c 2 9H(nd+2non,|EE}+ VXV XE ~0.

Introduce slow space scales,
4.3.5) Y1 =EX1, Y2=&Xa, Y3=EX3, X =€ X1
To leading order (O(e)), the electric field take the form
(4.3.6) E = ée{y(y; x) exp {ikx, — iwt}+ (*)}+ O(e?),

where ¢ is a unit vector orthogonal to k, and w(k) is given by the linear
dispersion relation (i.e., by no(w), (4.2.14)). If we omit unnecessary
homogeneous terms at the next order, we obtain

W _

4.3.7
( ) 9y,

i.e., no modulation of the wave occurs in the direction of propagation over
distances that are O(¢ %)
Secular terms arise at O(e>) unless

(4.3.8) 2ik . + Vi +2w’ndc 7 sgn (m)lu Py =0,

where V3 = 32, + 42, is the transverse Laplacian operator. Equation (4.3.8) was
derived by Kelley (1965), and in a different form by Talanov (1965). In the
steady problem under consideration, the shape of the incoming beam is
specified by ¢(y2, y3; x =0). Then (4.3.8), along with boundary conditions in
(y2, v3), determines its spatial evolution as it propagates across the dielectric
medium in the x,-direction.

Note that (4.3.8) is e-independent, as are (4.3.7) and (4.2.14). Thus, these
equations do not degenerate in the limit ¢ > 0. This is a desirable feature,
inasmuch as they were derived as part of an asymptotic expansion in small &.
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We will discuss two experimental configurations. In the less conventional
one, the incoming beam is modulated in only one transverse direction; say

w_
dy3

In this case (4.3.8) describes evolution in (1+1) dimensions. It may be
rescaled to (4.3.1), and we may apply the results of inverse scattering theory (cf.
Chapter 1). In particular, if ¢ -0 rapidly as |y,|» o and if #,>0, then an
incoming beam of sufficient strength will “self-focus” into N solitons plus some
residual radiation (associated with the continuous spectrum). In this context,
the solitons are seen as N straight lines (in the (y», x)-plane) along which the
intensity of the beam becomes constant as y - 0. These solitons are sometimes
called “waveguides,”’ and the parameter that usually gives the speed of the
soliton gives the direction of propagation of the waveguide in this setting. The
phenomenon is sometimes referred to as “‘self-trapping’ to distinguish it from
the more violent self-focusing that occurs in (2 + 1) dimensions.

The notion of a self-trapped waveguide in a dielectric material is rather
enticing, since the beam suffers no dispersion (or diffraction, as it is called in
this context). Unfortunately, these (1 + 1)-dimensional waveguides are unstable
with respect to long transverse perturbations {i.e., in the ys-direction), as
discussed in § 3.8. Presumably this instability is the reason for the lack of
experimental evidence about them.

It may be appropriate to note here that the corresponding envelope solitons
in water waves also are unstable to long transverse perturbations. Even so,
they have been produced experimentally without undue difficulty; a wave
record of one is shown in Fig. 4.16. The trick is to use relatively narrow wave
tanks, so that the unstable transverse modes are excluded by the geometry. In
principle, the same concept could be exploited to produce stable, self-trapped
waveguides in dielectric media. However, we are aware of no experimental
work along these lines.

We now consider the more conventional configuration associated with
(4.3.8) in which the incoming beam has an approximately circular cross
section. A fundamental question of interest is whether (4.3.8) can be solved
by IST in (2 + 1) dimensions. Apparently the answer is negative: at least (4.3.8)
does not have the Painlevé property (cf. § 3.7). To see this, note that the ansatz

r=/\(y2+y2)1/2,
4.3.9) e .
U(yz, y3; X)=A[20 ngc |7 R(r) exp (%kl)

provides an exact reduction of (4.3.8) to the ordinary differential equation

1
(4.3.10) R"+~R'+sgn(n))R>~R=0.
r



316 CHAPTER 4

This equation has severe movable logarithmic singularities, so it is not of
P-type. Based on the conjecture in § 3.7, therefore, we do not expect (4.3.8)
to be solvable by IST, or to have a complete set of action-angle variables, or
to show recurrence, etc.

Another fundamental question regards the nature of self-focusing in (2+1)
dimensions. Zakharov and Synakh (1976) proved that a class of solutions of
(4.3.8) with n;>0 must focus in a finite time; see § 3.8 for the proof. The
existence of a blowup type of singularity in the solution of (4.3.8) indicates
only the breakdown of the perturbation expansion that led to (4.3.8) as the
approximate governing equation. It does not necessarily correspond to a
singularity in the original (unperturbed) problem. However, the precise nature
of the singularity in (4.3.8) may be used to guide the separate analysis that is
required in this region. Estimates of the strength of the singularity have been
made by Kelley (1965) and by Zakharov and Synakh (1976). Neither of these
seems to be satisfactory, as discussed by Ablowitz and Segur (1979). The
precise nature of the self-focusing singularity in the solution of (4.3.8) should
be regarded as open at this time.

Akhmanov, Khokhlov and Sukhorukov (1972) discuss many of the experi-
mental observations of self-focusing in (2+ 1) dimensions. In some cases the
focused beam was so intense that the material was physically damaged. As
noted by Yariv (1975), the “phenomenon is of great concern to experimen-
talists working with very high power laser pulses since such damage can occur
within the laser source itself.”

Up to this point, we have considered only steady incoming beams. This
restriction is physically undesirable because the high intensities required for
(4.3.2) often are produced by Q-switched lasers with short or ultrashort pulses.
It is also unnecessary. To remove it, we may define a slow time scale

(4.3.11) T=¢tl

in addition to the scales in (4.3.5), and generalize (4.3.6) so that ¢ = ¢(y, 7; x).
Then at O(¢?) (4.3.7) must be replaced by

(4.3.12) (@, +18,)0 =0.

where ¢; is the one-dimensional linearized group velocity; i.e., the pulse
propagates without distortion at the linearized group velocity of the carrier
wave. At the next order, (4.3.8) becomes

(43.13)  2ik o +a 02+ V20 + 2w nic ? sgn (n)Ywy =0,

where a = —k(8*k)/(dw?) and n =t1—7vy;/c,. Here the evolution occurs in
(3+1) dimensions, but is qualitatively similar to that in (24 1) dimensions.
Equation (4.3.13) does not have the Painlevé property, and presumably cannot
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be solved by IST. The existence of a self-focusing singularity was proved by
Zakharov and Synakh (1976) and by Glassey (1977) for « > 0. The nature of
the singularity seems to be less delicate in this case, and Zakharov and Synakh
(1976) reasoned that as y = %,

(4.3.14) b~Fx=-x)""

4.3.b. Water waves. The nonlinear Schrédinger equation models the evol-
ution of a one-dimensional packet of surface waves on sufficiently deep water.
Various derivations have been given by Zakharov (1968), Benney and Roskes
{1969), Hasimoto and Ono (1972), Davey and Stewartson (1974), Yuen and
Lake (1975), Freeman and Davey (1975), Djordjevic and Redekopp (1977),
see also Ablowitz and Segur (1979), Yuen and Lake (1980).

There are two significant differences between the problem of water waves
and the nonlinear optics problems that we have discussed. The first is that in
water of finite depth, the oscillatory waves induce a mean flow, which is a
nonlocal effect. (Nonlocal effects also may arise in optical problems, but they
were omitted from our earlier discussion.) The second difference is the
interpretation of the equation, and the boundary conditions attached to it.
Here are some of the contexts in which (4.3.1) or generalizations of it in 2+ 1)
dimensions arise.

(i) Waves at a single frequency may be produced by an oscillating paddle
at one end of a long wave tank. The evolution of these waves is very similar
to the evolution of the EM-waves discussed above.

(ii) A localized storm at sea generates a wide spectrum of waves, which
propagate away from the source region in all horizontal directions. If the
propagating waves have small amplitudes and encounter no wind away from
the source region, then because of their dispersive nature they eventually sort
themselves into nearly one-dimensional packets of nearly monochromatic
waves. If the scales are chosen properly, a generalization of (4.3.1) in (2+1)
dimensions governs the long time evolution of each of these packets. If the
packet is sufficiently localized, it is appropriate to require that the waves vanish
far from the center of the packet.

(iii) Nearly monochromatic, nearly one-dimensional waves could cover a
broad range of the sea as a result of a steady wind of long duration and fetch.
The same generalization of (4.3.1) in (2+1) dimensions can govern
the evolution of these waves after the wind stops. In this case, periodic bound-
ary conditions in the horizontal directions would be appropriate (but see
Exercise 5).

Whatever the cirumstances, we are interested in a solution of (4.1.5)-(4.1.7)
that consists primarily of a small amplitude, nearly monochromatic, nearly
one-dimensional wave train. This wave train travels in the x-direction with an
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identifiable (mean) wavenumber, k = (k, /). Denote by a the characteristic
amplitude of the disturbance and by 8k the characteristic variation in k. The
nonlinear Schrodinger equation in (24 1) dimensions is the consequence of
assuming (with x> = k>+/%);

(i) small amplitudes,

(4.3.152) e=ka<l;
(ii) slowly varying modulations,
é
(4.3.15b) l« 1;
K

(iii) nearly one-dimensional waves,

(4.3.15¢) IL‘« 1;
K
{iv) balance of all three effects,
(4.3.15d) ok = Oe),
K
(4.3.15¢) H = O(e).

The dimensionless depth, kA, can be finite or infinite, but to avoid the shallow
water limit (and KdV), we need

(4.3.16) (kh)? > e.

In this limit, the solution of the lowest order (linear) problem is
cosh k(z +h)
cosh kh

where (*) denotes complex conjugate,
(4.3.17b) 0 =kx—w(k)

and w(k) is given by (4.1.8). To go to higher order, we introduce slow
(dimensional) variables (again, using the method of multiple scales),

(4318) X1=§&x, y1=©&y, I =El, t2=821,

(4.3.17a) ¢ ~e( [A exp(i0)+(*)]+const.)

and expand ¢ and {:

o hk(z+h
¢~6{¢(x1, Yis t1,t2)+c—os(_:gs"};('zkh—)[A(xlay1ytht2) exp (i0) + *)]}+O(e ),

4.3.19 . . i
@319l exp (18)+ (N OED),  Fn=—




APPLICATIONS 319

These expansions must be carried out to O(sg). The variations allowed in A
r~eﬂect the fact that this is a wave packet, rather than a uniform wave train, and
@ provides a mean motion generated by the packet. In what follow§ we shall
only discuss the secular effects that the higher order terms have on ®, and A;
details can be found in Benney and Roskes (1969}, Davey and Stewartson
(1974) or Djordjevic and Redekopp (1977).
At the next order of approximation, a secular condition requires that the
wave packet travel with its linear group velocity,
aA
(4.3.20) P +C, (k)
1
where C, = dw/dx. On this same time scale, @ satisfies a forced wave equation,
Fd {2® i P
78 t-=
ot1 Bx, a)/]

(4.3.21) } kwBy ~— IAI2

where

kC, 2
=8 _c
B - sech kh+1 ,

2

., k°T .
T=—=(kh)’T.
g
The solution of (4.3.21) changes dramatically, depending on whether or not
(4.3.22) gh>C2

If the ratio C,/ Vgh is interpreted as the “Mach number” of the wave packet,
then (4,3.22) is the condition for “‘subsonic” flow. In this case, if A has compact
support, then ® has a forced component that travels with speed C, (i.e,, it
satisfies (4.3.20)), and a free component that radiates outward with speed
Vgh, and is O(17""?) as 1, . Hence with (4.3.22), as 1, >0, we find that
d satisfies both (4.3.20) and

23 23
q) 8 (D kw [i] ~ 09
4.3.23 — = Al
( ) 8x1 d f gh ax oxs Al
where
&G
gh ’

along with the boundary condition that & vanishes as (x3+ y}) - co. These are
the boundary conditions prescribed by Davey and Stewartson (1974), and they
are correct without surface tension.

If the effects of surface tension are strong enough, (4.3.22) fails and the flow
is “supersonic.” Now, even if A has compact support, & and its derivatives are
nonzero along ‘“Mach lines” that emanate from the support of A. In the limit
t»o, ® satisfies both (4.3.20,23) as before. However, the appropriate
boundary conditions for (4.3.23) now are that & and its derivatives vanish
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ahead of the support of A(e.g., as x;- ), and no conditions as x, - —.
Hence, in general, we can not expect that global integrals involving & will
converge.

The limit #; = o is of interest because the nonlinear Schrodinger equation
appears when one eliminates secular terms on the next time scale, t = O(s ~°).
Carrying this out, and putting the result in dimensionless form, we define

E=ck(x—Cyt), n = eky,
(4.3.24) r=e(gk)"",
A=k*(gk) V?A, ®=k*gk) D,
and find that A and @ satisfy

(4.3.25a) iA, +AAge+ pAn, = x|APA + 1A D,,
(43.25b) a(b&: +<I),,,, = "B(IA' )f,
where

2
o =tanh kh, T=kT, k =V + 12

0’ =gho(1+T)=0,

W= gk.
Vw
2 ——
A_K (BKZ)
- 2&)0 ’
8w
2 —
e (612)_«_Cs>0
k= Zwo —2w0= ’
1-d)9-c)+T2- o N7 -0?)
320 xm(2)
4320 x= (4w > -T(3-07) +80°
2.8
—2(1- cr)(1+T)—3 ;}

. C, .
xl=1.+f‘zj(1—az><1+r)zo,

(gh—C3)
gh ’
(2 \[<Ceyq_ 2y, 2 }
B—(wokh){ w (1-e )+1+T =0,
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In the above formulae, all functions are evaluated at [ =0, since we are
considering our underlying wave train to be propagating purely in the x-
direction.

The coupled pair of equations (4.3.25) describe the evolution of the complex
wave amplitude A and the mean flow (V&) induced by it. If the wave packet
is local, it is appropriate to require that A vanishes as £ ?+ 5% 00, As discussed
above, the appropriate boundary conditions for ¢ depend on the sign of «.

The character of the solution of (4.3.25) depends fundamentaily on the signs
of the coefficients in the equations. Fig. 4.15 is a map of parameter space,

x<h

4 —
x>0, x <0,
v>0 v <0
A<O A>0
3 F a>0,v<0
E
a<0,v>0
D
2 -
v>0
Iv<0 B R
A v 0
v<0
0 1 | 1 1 | ¢ J
o} 25 .5 B 4 1.0 1.25 1.5

T =x2T /g

F1G. 4.15. Map of parameter space for packets of oscillatory water waves, showing where the
coefficients in (4.3.25) change sign. The dynamics of wave evolution is different in each region.
Self-focusing is possible in region F. (Ablowitz and Segur (1979)).

showing where these signs change. Each boundary line corresponds to a simple
zero of a coefficient, as shown, except for the two curves bounding region F.
These two curves denote singularities of ». In a neighborhood of each of these
two curves phenomena occur on a shorter time scale than the O(s7*) scale
required elsewhere; cf. Djordjevic and Redekopp {1977).

This completes the derivation of the governing equations (4.3.27). However,
two additional comments may help to place these equations in context before
discussing their consequences.
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(i) Recent work by Longuet-Higgins (1975), Cokelet (1977) and others has
clarified some of the dynamics of water waves that are very close to breaking.
There is apparently no overlap between their work and (4.3.25); they are
concerned with large amplitude waves, whereas (4.3.25) describes waves of
small amplitude.

{(ii) Zakharov's (1972) equations of plasma physics are very closely related
to (4.3.21, 25a). In (1+ 1) dimensions, we may identify the oscillatory water
wave with a high frequency Langmuir wave in the plasma, and identify &, with
the ion density. Then (4.3.21) describes the ion-acoustic mode, with the
right-hand side representing the ponderomotive force, while (4.3.25a) with
x = 0 describes the evolution of the Langmuir wave.

Now let us consider the solvability of (4.3.25) in various limiting cases. First,
in the deep water limit (kh - o©) the mean flow vanishes and (4.3.25) reduce
to the nonlinear Schrodinger equation in (2 + 1) dimensions,

(4.3.27) A, + AoAg + oAy = Xl ALPA,

where

wo (1—-6T 3T
=]

" 8w 1+7
o =2(1+37),
4o

_wo 8+ T +272
Xo = g Q21+ T)

The appropriate boundary conditions for localized initial data are that A
vanishes as £+ 17 - 00,

As discussed above, this equation does not have the Painlevé property, and
presumably cannot be solved by IST. Moreover, with periodic boundary
conditions we do not expect to observe recurrence over arbitrarily long times.
Yuen and Ferguson (1978) report approximate recurrence of a numerically
integrated solution of (4.3.27) over a relatively short time. We expect that
integration over a longer time scale will show that this recurrence is only
approximately valid for short times. Subsequent work by Martin and Yuen
(1980) seems to be consistent with this expectation.

In region F of Fig. 4.15 (i.e., sufficiently strong surface tension in sufficiently
deep water), (4.3.27) has solutions that focus in a finite time, just as (4.3.8)
does. Focusing is not limited to waves in infinitely deep water; solutions of
(4.3.25) may also focus in region F. The phenomenon has not yet been
observed in water waves, as it has been in optics. More details may be found
in Ablowitz and Segur (1979).
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The situation is much different in the shallow water limit of (4.3.25); i.e.,
kh - 0, but £ « (kh)*. In this limit we obtain, after rescaling,

A ~0AL+ A, =clA’A+AD,,

(4.3.28) 5
O-q)xx +cbyy = —Z(IA| )xv

where o =sgn (3 — T). These equations are of IST type, and explicit N-soliton
solutions have been found (Ablowitz and Haberman (1975a), Anker and
Freeman (1978)). Lump-type envelope hole solitons have been found by
Satsuma and Ablowitz (1979). Thus, the solutions of (4.3.25) apparently are
well behaved in the shallow water limit, but may be badly behaved in
sufficiently deep water.

Finally let us restrict (4.3.25) to (1+1) dimensions. As noted by Ablowitz
and Segur (1979) and by Hui and Hamilton (1979), many such restrictions are
possible, corresponding to different directions in which modulations of the
wave envelope are permitted. However, the only experimental evidence
available is for waves that are modulated in the direction of wave propagation,
so we consider only this case. If 8, = 0 in (4.3.25), the second equation may be
integrated once, and the first equation becomes

(4.3.29) A+ AAg = v]|AlPA,

with A, v defined by (4.3.26). Initial data can be created experimentally by
modulating (in time) the stroke of an oscillating paddle at one end of a
one-dimensional wave tank. If Av >0, as it is in regions A, B and E of Fig.
4.15, there are no solitons. Arbitrary initial data that vanish as |£| > o and are
smooth evolve into a field of radiation that decays as Y 2; see § 1.7.
Envelope solitons are possible in regions C, D and F, where Av <0. The
one-soliton solution of (4.3.29) is
1/2

(43.30) A=a sech {a(& —2b7)} exp {ibé+ir(a” = b7)7).

14
(Recall from (4.3.19) that the shape of the free surface is proportional to
[A exp (i8) —(*)].) Fig. 4.16 shows the experimental measurements of such a
wave at two downstream locations in a wave tank. We have superposed on
these measurements the soliton solution of (4.3.29) with the appropriate peak
amplitude at each location. Note that the wave amplitude has decreased in the
second measurement, an indication of viscous effects. Even so, because the
viscous time scale is longer than that in (4.3.29), the wave readjusts its shape
to appear locally like a soliton.

Recall from § 1.1 that solitons are defined in terms of their ability to retain
their identities despite interactions. Yuen and Lake (1975) gave an interesting
experimental demonstration of this property, shown in Fig. 4.17. The first
column shows an envelope soliton propagating without change over 9.15 m.
The second column shows another wave at a somewhat different carrier-wave
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FIG. 4.16. Measured displacement of water surface showing evolution of envelope soliton at
two downstream locations. h=1m, kh=4.0, o =1HZ, T=1.0x 1074 ,
of surface displacement; ---~, theoretical envelope shape; k{=kasech(z), z=
{ag/w](u/SA)”z(Cg! —x). {2) 6 m downstream of wave maker, ka =0.132, (b) 30 m downstream of
wave maker, ka =0.116. (Ablowitz and Segur (1979)).

frequency. This wave is not a soliton, and some evolution of the wave packet
is evident as it propagates over the same distance. The last column shows the
interaction of these two wave packets. Even though the interaction is compli-
cated, the final waveform measured is essentially a juxtaposition of the two
waves recorded earlier; i.e., the waves regained their separate identities after
the interaction.

Lake, Yuen, Rungaldier and Ferguson (1977) also consider (4.3.29) with
periodic boundary conditions. Here the theory predicts recurrence, which they
observe experimentally. They also relate the recurrence time to the initial
(Benjamin—Feir) instability of the Stokes wave train at this frequency. Yuen
and Lake (1980) give a more complete description of this work.
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F1G. 4.17. One water wave pulse overtaking and passing through another wave pulse. Left-hand
trace: first pulse alone, wg=1.5 HZ, initial (ka@)yax =0.10, 6-cycle pulse. Center trace: second
pulse alone, wg=3 HZ, initial (ka)y.x=0.2, 12-cycle pulse which disintegrates into two solitons.
Right-hand traces: interaction of the two pulses. (Yuen and Lake (1975)).

Every solution of (4.3.29) is also a solution of (4.3.25), of course, but the
solitons are unstable with respect to long transverse perturbations, as discussed
in § 3.8. The solitons shown in Figs. 4.16, 4.17 happened to be measured in
relatively narrow tanks, which excluded the destabilizing modes. Thus, these
same experiments could not have been run successfully in significantly wider
tanks! Experimental evidence of this instability may be seen by comparing the
waves in Figs. 4.16 and 4.18, both measured by Hammack (1979). The initial
and ambient conditions for these two waves were nearly identical, except that
Fig. 4.16 was recorded in a relatively narrow tank (86.4 cm wide), whereas
Fig. 4.18 was recorded in a wider tank (244 cm). In particular, the wide tank
admitted the destabilizing transverse modes that were excluded in the narrow
tank. The unstable nature of the envelope soliton is evident in Fig. 4.18.

In summary, (4.3.25) governs the evolution of localized packets of oscilla-
tory water waves of relatively small amplitude in (2 + 1) dimensions. When the
equations are restricted to (1+ 1) dimensions they can be solved exactly by
IST. This theory predicts with reasonable accuracy the experimental observa-
tions of waves that are also constrained to (1+1) dimensions. However,
because of the instability of the solitons to long transverse perturbations,
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FI1G. 4.18. Evolution of water wave packe! in a wide tank, showing the transverse instability that
was absent in Fig. 4.16. (Courtesy of J. L. Hammack).

neither the theory nor the experiments in (1+1) dimensions can be used to
predict the evolution of the waves in (2 + 1) dimensions. No adequate theory
in (2+1) dimensions is available at this time.

4.4. Equations of the sine-Gordon type. The sine-Gordon equation in
(1+ 1) dimensions may be written as

(4.4.1a) Prx — Py =sin ¢
or as
(4.4.1b) d,. =sin @,

depending on the underlying coordinate system. Like the other equations we
have studied in this chapter, it arises in a wide variety of applications; Scott,
Chu and McLaughlin (1973) list several of these, with extensive references.
We will see that in the sharp line limit of self-induced transparency, the
equation arises when one eliminates secular terms in a perturbation expansion
involving small amplitudes. Gibbon, James and Moroz (1979) have shown that
a similar perturbation analysis of baroclinic instability of a rotating, two-layer
fluid system also leads to (4.4.1). This seems to be the ““typical’”” derivation of
(4.4.1). It corresponds to those given in §§ 4.1, 4.2 and 4.3 in the sense that
the evolution equation is a secular condition of a perturbation expansion
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carried to higher order. However, there are other applications, such as the
description of pseudospherical surfaces in differential geometry and the pro-
pagation of magnetic flux in an infinitely long Josephson junction, in which the
sine-Gordon equation appears without a perturbation scheme. The applica-
tions presented here have been chosen primarily to indicate the diversity of
the phenomena described by the sine-Gordon equation.

4.4.a. Differential geometry. We begin with the earliest application known
of the sine-Gordon equation. Equation (4.4.1) describes two-dimensional
surfaces of constant negative curvature. In this case the model is exact, and the
problem of interest has (1 + 1) dimensions, so {4.4.1) is not a restriction of a
higher dimensional problem. The important work of Backlund on trans-
formations of surfaces (see §3.1) was motivated by this application. The
presentation given here, which assumes some knowledge of differential
geometry, summarizes the more extensive discussion in Eisenhart (1909).

Consider a smooth two-dimensional surface embedded in a three-
dimensional Euclidean space. Let y' (i = 1, 2, 3) denote orthogonal Cartesian
coordinates in the three-dimensional space, and let «* (a = 1, 2) denote some
intrinsic coordinates on the surface. Three equations of the form

yi =yi(u1’ UZ)

define the surface. Let r(y') denote the position vector of a point P on the
surface relative to the coordinate system of the enveloping space. If P is
displaced infinitesimally to a new position on the surface, the position vector
is changed by

dr= b du®
ou

(summation over repeated indices is implied in this section).
The element of arc length is defined by the first fundamental quadratic form,

(4.4.2) I=dr-dr=g.;du® du”,
where
Lo or
Bap ou” ou®

is the covariant metric tensor of the surface. Similarly, let i denote the unit
normal vector to the surface at P. When P is displaced infinitesimally, f
changes by




328 CHAPTER 4

The second fundamental quadratic form is
(4.4.3) I1=—di - dr = hos du® du®;

h,g is the extrinsic curvature tensor. Any smooth curve on the surface through
a point P has aradius of curvature (in Euclidean space) at that point. By varying
the direction of the curve through P, one finds a maximum (p;) and a minimum
(p2) radius of curvature, corresponding to the two principal directions at P,
these directions are orthogonal to each other. The total {or Gaussian) curvature
of the surface at P is

1

(4.4.4) =——
pP1p2

The surface has negative-total curvature (K <0) at a point if the principal radii
of curvature lie on opposite sides of the tangent plane at P. The bell of a
trumpet, a saddle, and an ordinary potato chip all are examples of surfaces
with negative curvature.

Let (A', A?) denote the unit tangent vector to a curve C that passes through
P. C is an asymptotic line if

(4.4.5) hagA AP =0

along C. There are two real, distinct asymptotic lines through a point on a
surface if and only if the total curvature is negative there. If the entire surface
has negative curvature, we may use the system of asymptotic lines to define
the intrinsic coordinates on the surface.

Consider a surface of constant negative curvature (K = -1/ a?) with intrinsic
coordinates defined by its asymptotic lines. By a suitable choice of scales, the
first fundamental quadratic form may be written as

(4.4.6) I=a*(du*+2 cos ¢ du dv + dv?),

where ¢ denotes the angle between the asymptotic lines. In terms of these
coordinates, the equation of Gauss becomes the sine-Gordon equation

(The equation of Gauss is a compatibility condition that an arbitrary tensor
h.z must satisfy to be the extrinsic curvature tensor of a surface.) Thus every
solution of this equation defines a surface of constant negative curvature
-1/ a?), with its first fundamental form defined by (4.4.6). These surfaces are
called pseudospherical. Some special cases are discussed by Eisenhart (1909,
§§ 116, 117).
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This application is our first example of an equation solvable by IST that
arises as an exact model. No asymptotic expansion is even suggested in this
derivation. Thus, the question arises as to whether the sine-Gordon equation
is different from the other equations soivable by IST in some fundamental
way. The answer is negative. Sasaki (19794,b) showed that every equation of
the form (1.5.16) describes surfaces with constant negative curvature.
Different equations of this class simply represent different metrics. That the
sine-Gordon equation, rather than the mKdV equation, should be associated
with this geometric property is a matter of history, not mathematics.

It is natural to ask what equation(s) define pseudospherical surfaces in 3 or
more dimensions, to obtain a generalization of (4.4.1) to higher dimensions.
Recent work along these lines has been reported in a sequence of papers; see
Chern and Terng (1980), Terng (1980), Tenenblat (1980). Whether the
generalized sine-Gordon equation that they obtain can be solved by IST is
unknown.

4.4.b. Self-induced transparency (SIT). Recall from § 4.2 that the linear
index of refraction (i.e., the linearized dispersion relation) of an ideal dielectric
material is singular at any resonant atomic frequency of the medium. Self-
induced transparency is one of a variety of phenomena that may occur when
a dielectric material is irradiated by an electric field at a frequency near a
resonant frequency of the medium.

The phenomenon was discovered by McCall and Hahn (1965), (1967),
{1969), (1970). By now there 1s an extensive literature on the subject; we
mention specifically the papers by McCall and Hahn (1969), Lamb (1971),
Slusherand Gibbs (1972), Courtens (1972) and Kaup (1977a), all of which were
more or less reviews of the subject at the time they were written.

We begin with a physical description of self-induced transparency. In the
simplest version of SIT, the dielectric material consists of two-level atoms, each
of which has a ground state and an excited state. We assume that these two
states cannot be further subdivided in terms of angular momentum,; i.e., there
is no level degeneracy. Further, the atoms are in their ground state initially;
i.e., the medium is an artenuator rather than an amplifier. The incident electric
field is tuned to the resonant frequency of these atoms, and excites the
irradiated atoms. This transfer of energy from the electric field to the medium
is usually irreversible, and it eventually depletes the energy of an electric pulse.
The rate of energy absorption by the medium is given by Beer’s law (1852).

SIT occurs when a sufficiently strong and very short incident pulse is properly
shaped (in time) so that the front of the pulse loses energy (coherently) to the
medium, which stores it for a time before returning it (coherently) to the back
of the pulse. For a such a special pulse, the medium is left in its ground state,
there is no net energy transfer, and the pulse propagates with a fixed reduced
speed through the medium, which has become effectively transparent. This is
self-induced transparency.
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Next we give the governing (Maxwell-Bloch) equations. Maxwell’s
equations in an ideal dielectric material reduce to

1
(4.4.7) -?aﬁ}nmﬁP+VxVxE=0

In this equation, P represents the total polarization of the material, due to both
resonant and nonresonant dipoles. (For example, McCall and Hahn’s experi-
ments were conducted in ruby, in which only the very small fraction of Cr**
ions resonate. The ‘“‘host medium”, Al,O4, is nonresonant.) In this discussion
of SIT, it will be convenient to let P represent only the polarization due to
resonant or nearly resonant dipoles. This interpretation is permissible if we let
¢ denote the phase speed of light in the medium when the (nearly) resonant
dipoles are removed. Thus for ruby, ¢ now denotes the phase speed of light
in Al,Os, and P now represents the polarization due only to the Cr*? ions.

In SIT problems, the resonant dipoles are assumed to be so sparsely
distributed that they interact with the imposed electric field, but not with each
other. Under these circumstances, we let p(x, t; w) represent the polarization
of an individual two-level dipole with transition frequency w, and let (x, t; )
represent the difference in normalized population densities between the
excited and ground states. Thus, |7|=1 and 7 =~1 if all the dipoles with
frequency w reside in the ground state (as they do as t - —00, by assumption).
Lamb (1971) has shown from quantum mechanical considerations that p, 7
and E are related by Bloch-type equations

2
(4.4.8a] ¢9,2p-§-a;2p=—-l(2w/z )Eﬁ,
3\ 4
. 2
(4.4.8b) om = (—)E - ap,
w

where £ is Planck’s constant and 4 is the dipole matrix element for such a
transition;
#=0(qr),

where g is the charge on an electron and 7 is the average radius of the dipole.
In the (1 + 1)-dimensional problem, the factor of () should be omitted from
(4.4.8a). Note that, if we neglect the right-hand side of (4.4.8b), then (4.4.8a)
is equivalent to the linearized version of (4.2.6).

Various slow relaxation and damping terms may be included in (4.4.8) as
well (e.g., see Slusher and Gibbs (1972})). We omit them from this presentation,
but we must then accept that our model will fail if individual dipoles remain
excited for times comparable to these relaxation times: for Rb vapor, the
shortest of these times is about 3 x 10™% sec (Slusher and Gibbs (1972)).

The medium is said to be inhomogeneously broadened if the transition
frequencies of the resonant dipoles are not identical, but merely clustered
about the resonant frequency, w,. This broadening of the spectral line is due
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to Doppler frequency shifts in gases, and due to static crystalline electric and
magnetic fields in solids (McCall and Hahn (1969)). In any case, we require

(44.9) |(:) '(J)()[« wo

for approximate resonance. Then if there are Ny (= constant) resonant dipoles
per unit volume, the total polarization is

]

(4.4.10) P=N0I p(x, 1, 0)g(w) do = No (p),

where g{w) is the probability density, representing the inhomogeneous broad-
ening, normalized so that

Jgdw=1.

Equations (4.4.7, 8, 10) are sometimes known as the Maxwell-Bloch equations
without damping.

An essential ingredient of SIT is that the resonant dipoles are so sparsely
distributed that their total polarization is weak, i.e.,

(4.4.11) » 1o 87P|

1
'c—z ’E

in (4.4.7), so that backscattering may be neglected in that equation. Eilbeck
(1972) showed that an appropriate measure of this sparseness is

=Noﬁ2C2/~Lo<<

4.4.12 82

1,

which may be interpreted as a ratio of energies. 6 is the small parameter
required to derive the SIT equations from the Maxwell-Bloch equations.

Like all of the dynamical models previously discussed, the SIT equations
arise in the limit of weak but finite fields. In this case, we require

|E|=o(5%“39).

Thus, we assume that the electric field takes the form of a weak transverse
wave at frequency wo, with a slowly varying envelope, traveling in the x-
direction. In the (1 +1)-dimensional problem we have

(4.4.13a) E~%9[53{5(X, ) e +E* e )+ 8%E,],

where
6= kox —wol, XY= 8k0x, 7 = Swot.

We treat here the case of a linearly polarized field, but no essential changes
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are required for circular polarization. It is consistent with (4.4.7, 8, 10) to take

(4.4.13b) w = we(l +28a),
(4.4.13c¢) n~n0lx, 7; @) +n,
(4,413d) p"""“l{p(X,T a) elO i-n-/2+p* -16+m‘/2}+ﬁ 5[),
224
(4.4.13¢) P=5""520p).
ﬁ

Then, at leading order, (4.4.7) yields

2
(4.4.14) ki="3

so that the wavenumber of the carrier wave is determined by the host medium,
with the resonant atoms absent. At the next order, secular terms arise (in
i E1) unless

(4.4.15) ‘ZE SE ={(p).
X

Similarly, removal of secular terms in (4.4.8) yields
(4.4.16a) 8.p + 2iap = En,
(4.4.16b) 3,m = —HEp*+E*p).
In terms of a characteristic coordinate
x=x, T=71-x
we obtain the SIT equations in the form given by Lamb (1973):
E, ={p),
(4.4.17) pr+2ap = En,
nr =—3(Ep*+E*p).

The appropriate initial-boundary conditions are that for all x>0, E>0 as
T-»x0,p->0,n->—1as T > -0, and that E(y =0, T) is given and vanishes
rapidly as T - £00. Aspects of these equations were analyzed by Eilbeck,
Gibbon, Caudrey and Bullough (1973).

The sine-Gordon equation is a special case of (4.4.17) that arises in the sharp
line limit, in which inhomogeneous broadening is neglected. In this limit,

glw)=8(w—wo)
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in (4.4.10) and (4.4.17) becomes
E, =p,
(4.4.18) pr =En,
nr = —3(Ep* + E*p).

The last two of these give

(4.4.19) n’+|pl =1,

which suggests the substitution

(4.4.20a) n =Cos 6, p =exp (i) sin 8.
Then it follows that, if E has constant phase initially,
(4.4.20b) W =const, E=exp(iY)ord,
and

(4.4.21) fxr =sin 6.

However, both (4.4.21) and (4.4.17) may be solved by IST, so that there is no
compelling reason to restrict our attention to (4.4.21).

Following the important work of Lamb (1973), Ablowitz, Kaup and Newell
(1974) considered the scattering problem,

6T1)1 + i{vl = %Evz,
(4.4.22a) .
102 — ifv, = —35E ¥y,
along with the “time’’ dependence,
a,v1 = Avy + Buy,
(4.4.22b)
axvz = Cl)l —sz.
Integrability of (4.4.22) requires
Ar=3EC+E*B),
(4.4.23) Br+2i¢(B=3E,~ AE,
Cr—2i{C =—3E¥ - AE*,

corresponding to (1.2.8). By comparing these equations to (4.4,17), they noted
that a solution of (4.4.23) is

i \N_ [T a0 Tialg
Alx, T; 5)—4<g_a>-4£w——-—-g_a dw(a),

B= —Zi<2-—%>’ C=-B*.

(4.4.24)
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It follows that (4.4.17) may be solved by IST, although some generalizations
of the method are required for this problem. Aspects of the solution are
discussed in detail by Lamb (1973), Ablowitz, Kaup and Newell (1974) and
Kaup (1977a). Here are some of the main points.

(1) A soliton is often referred to in the literature as a “27-pulse”. The
electric field envelope for an isolated soliton is given by

(4.4.25a) E(x, TY=4¢ exp (—i¢) sech o,
where { = {, +i¢; is the discrete eigenvalue for this soliton,
(4.4.25b) U =Qx —2T + o,
(4.4.25¢) & =Qx ~2{T + ¢y,
and

1
(4.425d) Q+i=-3 J_w ng%‘“f%.

This reduces to the solution first found by McCall and Hahn (1967) if g(w) is
symmetric about w, and ¢, = 0. The dimensional speed of propagation of a
2a-pulse is

A
(4.4.26) v=c(1+ 2{‘) ,
so that the pulse always travels slower than the speed of light in the host
medium. The resulting delay in travel time across an attenuator is a principal
means of identifying SIT experimentally (Patel (1970)).
(2) A “Om-pulse” is the analogue of a breather. The electric field envelope
in this case is given by

£, cosh ¢ sin ¢ + ¢; sinh ¢ cos ¢

(4.4.27) B o g+ o5 b

where ¢, ¢ are given by (4.4.25). These have special practical interest because
there are corresponding solutions in the presence of level degeneracy (see
Lamb {(1971) and Kaup and Scacca (1980)).

(3) As discussed in detail in § A.2, the linearized version of (4.4.17) has no
dispersion relation, and exhibits Landau-type damping. Correspondingly, the
solution of (4.4.17) related to the continuous spectrum does not decay alge-
braically, as described in § 1.7, but exhibits (exponential) Landau-type damp-
ing as well. As shown by Ablowitz, Kaup and Newell (1974), the decay rate
of p(x, T;«) is proportional to g(wo[l+28a]). Thus, all modes damp
exponentially if and only if g(w)>0. The decay rate in Beer’s law is usually
based on g(wo).
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(4) According to (1.3.16), there are no discrete eigenvalues, and therefore

no self-induced transparency if

%j |E| dT =0.904.
Kaup (1977) discussed the relation of this result to McCall and Hahn’s {1969)
famous area theorem; see also Hmurcik and Kaup (1979).

(5) An arbitrary initial pulse of sufficient strength will break up into a finite
number of 2#7-pulses and Os-pulses, plus radiation (or “‘ringing”’) that usually
decays exponentially. Gibbs and Slusher (1970) demonstrated this behavior
experimentally, as shown in Fig. 4.19. The left figure shows the results of a
series of experiments in which the intensity of the initial pulse was varied. As
shown, the final pulses show absorption as in (a), reshaping into a 27-pulse as
in (c), and breakup into two or three 2#-pulses as in (d), (e).

[
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F16.4.19. Evolution of optical pulses of different intensities in a nearly resonant medium, showing
theirinput (- - +) and output (——) shapes. The weak pulse in (a) is absorbed, whereas those in (c), (d)
and (e) demonstrate SIT. Computer generated output pulses are shown in (') through (€'). {Gibbs
and Slusher (1970)).

{6) The SIT equations, (4.4.17), contradict a great many general statements
one would like to make about problems solvable by IST. Specifically, we shouid
note that: (i) (4.4.17) has no linearized dispersion relation; (ii) except in special
cases the process being described is irreversible; (iii) there are infinitely many
local conservation laws, but (4.4.19) may be the only global constant of the
motion; (iv) the transmission coefficient, a(¢), is time dependent, and therefore
does not generate action-type variables. These statements are all related, of
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course. In particular, they all require some inhomogeneous broadening
(g(w) # 6 (w —wo)). Even so, they show what an anomalous problem SIT is.

This completes our discussion of the (1+ 1) dimensional problem without
damping or level degeneracy. As usual, in (3+1) dimensions the question
arises of whether the 2mw-pulses and Om-pulses are stable to transverse per-
turbations, Kodama and Ablowitz (1980), (1981) have shown that both kinds
of pulses are unstable. This lateral instability had been observed experi-
mentally by McCall and Hahn (1969), who described it in terms of ‘“‘puise
stripping;”’ see also numerical work by Mattar and Newstein (1977). Even so,
Slusher and Gibbs (1972) report that apertures at the beginning and end of
the attenuator can be used effectively to control the instability in practice.

The problem of level degeneracy seems to be more serious. For most
attenuators, suitable transitions show level degeneracy at one level or the other
(or both). Lamb (1971) gives an extensive discussion of this problem. For our
purposes it is sufficient to note that in the sharp-line limit (g{w) = 8(w — wo)),
(4.4.20) must be replaced by

(4.4.28) 8, =sin @+ A sin 24

in the simplest case with level degeneracy. It is straightforward to show that
the self-similar solution of this equation does not have the Painlevé property,
and presumably cannot be solved by IST. Dodd, Bullough and Duckworth
(1975) reached this same conclusion, because (4.4.28) does not have a
Backlund transformation of a certain type. Numerical experiments by
Ablowitz, Kruskal and Ladik (1979) confirm that two solitary wave solutions
of (4.4.28) generate radiation during their interaction for 0 <A < c0, although
the radiation may be very weak under some conditions. Salamo, Gibbs and
Churchill (1974) emphasize the weakness of the radiation on the basis of their
experiments on sodium vapor, and Bullough and Caudrey (1978) also note the
weakness of the radiation in their numerical experiments. The situation seems
to be that (4.4.28) and its generalization to include inhomogeneous broadening
are well approximated by exactly solvable problems. This property may be
sufficient for practical applications. However, there is no reason to expect that
either of these problems can be solved exactly by IST, or that they exhibit true
self-induced transparency in the general sense.

4.4.c. General relativity. One of the most exciting potential applications
of IST is that it may provide a new class of nontrivial solutions of Einstein's
equations of general relativity. The significant advances in this direction have
been made by Maison (1978), Belinskii and Zakharov (1978), and Harrison
(1978); see also Maison (1979) and Neugebauer (1979). Because of the
preliminary nature of their results, we will only outline the main points. We
expect that this discussion soon will be obsolete.,
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In four-dimensional space-time, both Maison (1978) and Belinskii and
Zakharov (1978) use the convention in which the metric takes the form

—ds* = gij dx'dx’,

where g;; has signature (—++ +). Maison is interested in a model of a steady
rotating star (with no angular dependence), so he assumes

(4.4.29a) ds®*=Aydx'dx' ~h(dz®+dr*), ij=1,2,

where both A; and # depend only on (z,r), and det A <0. Belinskii and
Zakharov have cosmological questions in mind, and assume

(4.4.29b) ds>=Aydx'dx’ —h(dz*+df*), ij=1,2,

where both A; and & depend on (z, 1), and det A <0, However, one of these
can be changed into the other by a complex change of variables, and their
analyses are quite similar up to a point. In either case, we define

(4.4.30) 2= —det A>0.

Einstein’s equations in a vacuum are that the Ricci tensor should vanish,
(4.4.31) R;=0.
For (4.4.29a), one component of (4.4.31) amounts to the (2x2) matrix
equation,
(4.4.32) 3'(rA 1 ar) =0,

where i =3,4 and x*>=2z, x*=r. We will omit the equations for h that are
implicit in (4.4.31), because they may be integrated by quadratures once A is
known.

Maison introduces new coordinates

(4.4.33) E=z+ir, &=z —ir,
and notes that the trace of (4.4.32) becomes
(4.4,.34) Teer =0,

which is trivially integrated. Up to this point, there is no essential difference
between the work of Maison and that of Belinskii and Zakharov. Their works
diverge beyond this point.

Maison defines new variables, o (real) and A (complex), and shows that
(4.4.32) can be written as (4.4.34) plus

28p0+7 'nA*cosa+ 7 lreA =0,

(4.4.35) 2AF+7 rpAcosa+7 17, A% =0,

*

. o (A
a§£*+lA|zsma—Re{T lrg(—) sin a} =0,
A £
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which are the equations to be solved. These may be viewed as a generalization
of the (Euclidean) sine-Gordon equation, to which they reduce if r=A =1,

Maison then postulates a (2x2) scattering problem, and shows that its
compatibility condition is (4.4.35). This is the crucial first step in solving these
equations by IST. Moreover, if 7= A =1, his scattering problem reduces to
the Euclidean version of (1.2.7) for the usual sine-Gordon equation.

The nature of his scattering problem is elliptic (rather than hyperbolic), and
it prevents him from applying the usual IST formalism to solve (4.4.35). Even
50, the scattering problem can be viewed as a Bicklund transformation, as
discussed in § 3.1. In fact, it led Harrison (1978) to a Biacklund transformation
for the Ernst equations, which are essentially equivalent to (4.4.32).

Next, we compare these results to those obtained by Belinskii and Zakharov
(1978). They also find a scattering problem, whose integrability conditions are
equations corresponding to (4.4.35). Their scattering problem seems to be
much different from that of Maison, however. In fact, it seems to be a new
kind of scattering problem altogether, inasmuch as it involves differentiation
with respect to the eigenvalue. Even so, they use it to construct explicitly one-
and two-soliton solutions by the method of reduction to a Riemann-Hilbert
problem. They remark that the stationary solution of Kerr can be obtained
from their solitons by a complex transformation.

4.5. Quantum field theory. Zabusky and Kruskal (1965) originally inven-
ted the word ‘‘soliton” to describe nonlinear waves that interact like particles.
By now, solitons have become well-defined mathematical objects, and one can
reverse this comparison. Here we discuss some of the work that indicates the
extent to which physical particles can be described by solitons. This question
has been the focus of a great deal of recent research in quantum field theory.
The brief description given here is intended primarily as a guide to some of
this literature.

Quantum field theory differs in several respects from the other applications
we have discussed. One difference is that in many cases the equations with
solitons (sine-Gordon, nonlinear Schrddinger, etc.) are not approximations of
a larger set of governing equations. Rather, the soliton-equations are taken as
models of the governing equations. More precisely, in many aspects of quan-
tum field theory there are no ‘“‘governing equations;” there are only principles
of symmetry (such as Galilean or Lorentz invariance), and any dynamic model
that satisfies these principles is considered legitimate. Consequently, there has
been a good deal of interest in the quantized version of the nonlinear Schrodin-
ger equation,

4.5.1a) i, =~ —ald|'p,
and the sine-Gordon equation

(4.5.1b) Uox — Uy =m>sin u;
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(4.5.1a) is the simplest (nontrivial) infinite dimensional nonlinear Hamiltonian
system that is completely integrable, while (4.5.1b) is the simplest completely
integrable, nonlinear relativistic Hamiltonian system.

As always, the equations that have been solved are (1+1)-dimensional.
Quantum results in (1+ 1) dimensions have physical meaning in some aspects
of solid state physics, but none in high energy physics. Physically relevant
models of elementary particles have (3+1) dimensions. Thus, most of the
results obtained by quantizing equations like those in (4.5.1) should be
considered suggestive of what might happen in more dimensions.

As discussed in § 1.6, most of the equations solvable by IST can be viewed
as infinite dimensional Hamiltonian systems that are completely integrabie.
This viewpoint of the classical (i.e., nonquantum) equations is quite natural for
the purpose of quantization. Thus the Hamiltonians for (4.5.1a,b) are

(4‘5.2a) HNLS =—i J‘_OO {¢f¢x _% ¢*¢*¢¢} dX9
(4.5.2b) HSG=J- {%(ui +p3)+m*(1—cos u)} dx,

respectively. In these two cases the conjugate variables are (¢, ¢*) and (u, p).
Hamilton’s equations and Poisson brackets were defined in (1.6.22) and
(1.6.29), respectively, and we should note that Hamilton’s equations also may
be written in terms of these Poisson brackets as

(4.5.3) q.=—(H, q), p.=—(H, p).

What does it mean to quantize these equations? First, it means that there is
a Hilbert space %, and the conjugate variables of the classical theory are now
to be interpreted as operators which act on . Second, the Poisson brackets
are to be replaced with “‘equal time commutation relations”’,

(4.5.4a) [6(x, 1), &*(y, )]=8(x —y),
(4.5.4b) [p(x, 0, uly, D]=8(x-y),
respectively, where £ =1 and
{a, b]=ab — ba.
More precisely, (4.5.4) means that for any two elements of # (denoted by
a, B),
(@, [P, q1B) = (e, 8(x —y)B),

where (-, -) is the inner product on . In fact, all operator equations are to be
interpreted in this way. Third, the dynamical equations, which now define the
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evolution of operators, have the form
(455) p.= _[H, P], qr=—[H’ CI],
rather than (4.5.3).

There are some rather delicate questions in this process. One of them is to
define # explicitly in such a way that all of the quantities in the theory are
meaningful. This question is sometimes considered pedantic, but Oxford’s
(1979) result that only a few of the infinite set of motion constants for (4.5.1a)
exist in the quantized version suggests that the question should be taken
seriously.

Another delicate question relates to factor ordering in the quantum prob-
lem. Thacker and Wilkinson (1979) used (4.5.2a) as the quantized Hamiltonian
corresponding to (4.5.1a), whereas Kaup (1975) used

(4.5.6) H=-i[|ot6.-56%04%) ax

These are equivalent in the classical problem, but not in the quantum problem
because ¢ and ¢* no longer commute. In fact, their final results differ,
presumably because of differences in their ordering of factors.

Discrepancies such as this indicate that a complete solution of the quantum
problem is not obvious, even when the classical problem is well understood.
Historically, quantization of these completely integrable problems has pro-
ceeded in steps of increasing sophistication. The first step (i.e., the lowest level
of approximation) is called quasiclassical. For the nonlinear Schrodinger
equation, this consists of transforming the classical probiem to its action-angle
variables (see § 1.6), and then quantizing these variables (Kaup (1975), Kulish,
Manakov and Faddeev (1976)). As noted by the latter authors, there is no
guarantee a priori that transforming and then quantizing is the same as
quantizing and then transforming. However, in this case the results obtained
by quasiclassical quantization are equivalent (up to factor ordering) to those
obtained by using the Bethe ansatz (1931) to solve the fully quantized problem,
as had been done by Lieb and Lininger (1963), Berezin, Pokhil and Finkel'berg
(1964), and McGuire (1964). In other words, in this case the quasiclassical
approximation gives results that happen to be exact. (The works of Thacker
{1978) and Oxford (1979) are also of interest here.)

For the sine-Gordon equation, quasiclassical (or semi-classical) quantization
is somewhat more complicated. Even so, ingenious methods were developed
by Dashen, Hasslacher and Neveu (1974), (1975) and by Korepin and Faddeev
(1975) to take explicit solutions of the classical problem and to calculate
quantum corrections to them. We should emphasize that these results do not
rely on the usual perturbation theory used in this field, which corresponds
roughly to a small amplitude expansion in the classical problem. Dashen et al.
also applied their methods to solutions of other models, including the Gross—
Neveu model.
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The second level of refinement has been to develop a fully quantized version
of IST completely parallel to that developed in Chapter 1, but in which all
functions (potentials, eigenfunctions, scattering data) are replaced by
operators. When this version is completed, the classical problem will be used
only as a guide. All variables will be quantum mechanical. Recent work on
several quantum models along these lines has been reported by Sklyanin and
Faddeev (1978), Sklyanin (1979), Thacker and Wilkinson (1979), Bergknoff
and Thacker (1979), Honerkamp, Weber and Wiesler (1981) and Takhtadzhyan
(1981). Some of this work relies heavily on the important contributions of
Baxter (1972). At this time it appears that a fully quantized version of the
direct scattering problem is available for several quantum models, including
those in (4.5.2). The inverse scattering problem has not yet been quantized.

How to quantize solitons is a question that is being answered now, and a
comprehensive review of the subject will likely be given in the next few years.
Our objective here has been simply to identify some of the important work in
the subject. In addition to the papers already mentioned, we should also note:

(i) the introductory articles of Flaschka and McLaughlin, Hasslacher and
Neveu, Campbell, Noll, and Sutherland in the Conference Proceedings edited
by Flaschka and McLaughlin (1978);

(i) the article by Rebbi (1979) in Scientific American (in this article, we
interpret “‘solitary wave’ where the author writes “‘soliton™);

(iii) the survey of integrable quantum systems by Ruijsenaars (1980), which
contains an extensive bibliography;

(iv) the application of the usual perturbation theory to quantum solitons
{e.g., Callan and Gross (1975)); and

(v) the work of Korepin, Kulish and Sokolov in the Proceedings edited by
Zakharov and Manakov (1981).

EXERCISES

Section 4.1

Physical applications of these completely integrable, long wave models are
virtually endless, and each application requires a new description of the
physical problem, the terminology, the relevant physical questions, etc. All of
the exercises given here are related to one application, chosen because it is
common to almost everyone’s experience: the transverse vibrations of a
stretched string, such as a guitar string or a telephone cord. Background
material may be found in Love (1944), Fung (1965) or Mott (1973).

1. Consider an infinitesimal element of a stretched string, whose unde-
formed cross section is uniform, as in Fig. 4.20.

(a) Justify

2

Iw a3
—=—(Tsina+F cos a),
p8t2 ax( )
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Fix+8x) Fix+8x)

\ neutrol line

of string

3M(x+8x)

T(x)

F1G. 4.20
where p is the (constant) linear density of the material and
aw
— =tan a.
dx

(b) Show that, if rotary inertia may be neglected,

dx cosa

(c) The Euler-Lagrange hypothesis is

EI 3
M =—=—FEI— (sin a),
R ax ( )
where E is Young’s modulus, I is the moment of inertia of the cross section
about an axis on the neutral line, and R is the radius of curvature of the neutral
axis. Combine these to obtain
* ow @ { . . 3
— — =1 T sin @ — EI cos” a—sin a}.
pat2 ax  oax’ ax*
What is the physical meaning of each term in this equation?

(d) Let T denote the constant tension of the undeflected string. Justify

rer(14(3)) ol(3))

where u is 2 nonnegative empirical constant. Under what conditions may
variations in T be neglected? (Here it is convenient to consider both longi-
tudinal and transverse modes.)

2. The motion of the string is determined by the equation in (c) in Exercise
1 along with those in (a) and (d). Based on these equations, what constitutes
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a long wave? What is a small amplitude wave? Derive the dimensionless
equation

tu _ o

af?  af?

{ (1-2¢%u%)-8° A2]+O( 84, 8%,

where ¢ is a measure of small amplitudes and § a measure of long waves. Show
that 8 = O(¢) results in minimal simplification of the equation. In the linear limit
(e = 0), this equation was derived by Mott (1973) in a much different way. We
consider three possible boundary conditions for this equation.

A. A guitar string may be considered clamped at two points, a distance L
apart, The wavelength of the disturbance, A, typically is O(L).

B. The string is clamped at two points a distance L apart, but L » A.

C. The string is being wound under tension from one spool onto the other.
The distance between the spools is L, and the speed of the string is V.

3. Take 6 = ¢ in the equation in Exercise 2. Expand
u= u0+62u1+£4u2+- T

(a) Show that the general solution of the leading order equation is
uo(®, H=f(—)+g(£+1).

{b) Show that for boundary conditions A and B in Exercise 2, f and g each
are periodic with period 2L8(T/EI )2, and that

35fdf=o=§)gdf.

(¢) Show that for boundary conditions C, the periods of f and g are

2A/11 £ v}, where
T 1/2 p 1/2
A=Lofz) o e=v()
Lé IS, v=V T

Show that, if V2> T/p, then one of these periods is smaller than A, and that
arbitrary initial data cannot be prescribed over the length of the string. What
is the physical meanmg of this contradiction? Which of the assumptions is
invalid when VZ> T/ p?

4. Show that if V*< T/p secular terms arise at O(e?) in the solution of the
equation in Exercise 2 unless

f 6(C )f 6f fr frrr_ ’

g +6(Cylg + 68 g+gu=0,
where
1+ v

_1-of ,
éf(é;f)dé Cg—' 2A§g(l,7)dl.
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Show that both C; and C, are constants of the motion for these equations, so
that the evolution equations for the left and right running waves are effectively
uncoupled. What is the physical reason that the transverse vibrations of a string
are modeled by mKdV, whereas the longitudinal vibrations are modeled by
KdV? If the string had a round cross section, would you expect the torsional
vibrations to be modeled by KdV or mKdV?

5. (a) Show that each of the equations in Exercise 4 has a periodic solution
of the form f = bk cn{b(r+ Ur); k}, where b is arbitrary and cn (6; k) is the
Jacobian elliptic function (cf. Byrd and Friedman (1971)). Write this solution
in dimensional terms for w,.

(b) If a guitar string were given the appropriate initial deflection with no
momentum, then f=g initially, and this solution represents the nonlinear
motion of the string. Let wg denote the frequency of the string in the linear
limit. Show that the nonlinear frequency is given by

ool E- o))

where K(k), E(k) are the complete elliptic integrals of the first and second
kinds. Thus, there are two contributions to the frequency shift. The first term
represents the change in speed of the right running wave due to the presence
of the left running wave. It always reduces the frequency of the string. The
second term is due to the self-interaction of the right running wave, and reduces
the frequency only if k>>3.

(c) This solution also can be interpreted in terms of boundary condition C
in Exercise 2. If V2< T/p all long infinitesimal waves travel faster than the
string speed. How big must the finite amplitude wave in (a) be for its speed to
match the string speed? What are the physical implications of this possibility?
Is the asymptotic expansion valid for a wave this big?

6. Under condition B in Exercise 2, we may solve the mKdV equation on
(—00, ). Show that in this case, the solution that evolves from appropriate
initial conditions consists of N solitons, ordered by amplitude (with the biggest
one in back), preceded by a train of dispersive waves.

7. Here are estimates of the scales required to observe solitons experi-
mentally (g = 0 in Exercise 4).

(a) To produce at least one soliton, we must violate (1.7.1) more than
marginally. In dimensional terms,

T 1/2
-w(z)] |
[( ®) £l
is probably adequate.

(b) The largest soliton separates from the infinitesimal waves with a speed
that does not exceed (2| flmax)*. If the initial dimensionless length of the wave

ow

—|dx>2
ax
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18 X, the time required for the soliton to emerge is on the order of

A

A
(2| flmax)”

If the wave is to remain in the test section during this time, the ratio of test
section length L to initial wave length A must satisfy

L 2 ( max)

Al
Note that the linearized wave speed, v m, does not enter here.
(c) Consider a nylon E-string for a guitar. Suppose T ~0.1 YA, where Y
is the yield strength. For nylon, E/ Y ~ 50. For an E-string, I/ A ~(0.018 cm).
Thus, long waves satisfy

T

ow -2

ax

E T
Al» 103; e (0.4 cm)?,

and waves longer than 2 cm should qualify in practice. If we balance

=50
™" 2 max)
so that the maximum slope is about 3, then the solitons should appear about
1 m away. The wave speed here is about 2 m/sec, so the whole experiment
takes only a fraction of a second.

(d) A more accessible demonstration might be possible if the nylon string
were replaced by a long telephone cord or a long “‘Slinky”. In either case, the
displacements are larger and the speeds are slower.

ow
0x

Section 4.2
1. (a) In experimental situations, (4.2.1a) should be replaced by
kl + kz + k3 =K,
when 8 = |k|/|ks| is small. How is (4.2.16) modified if § = O(e)? If § » £? If
S«e?
(b) How do these results change in a one-dimensional problem?
2. Addto E; in (4.2.15) two more waves with frequencies (w4, ws) such that

ki+ks+ks=0, w3+ wstws=0,

in addition to (4.2.1).

(a) If no other resonances exist among these waves, they interact in two
triads, each involving w;. How must (4.2.16) be modified? If the A; are
y-independent, the interaction is described by 5 complex ordinary differential
equations. Do they have the Painlevé property? (Warning: this is a long
calculation )
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(b) Define a sixth wave by
k6 = k1 - k5.

Show that if this wave is resonantly coupled, i.e., if ws = w; — ws, then each of
the 6 waves interacts in two triads. What are the governing equations in this
case? Ablowitzand Haberman (1975b) showed thatin (1 + 1) dimensions, these
equations are of IST type. They did not perform the inverse scattering analysis
for the 4 X 4 scattering problem that results.

3. (a) In an imperfect dielectric medium, an applied electric field produces
a weak current in addition to the polarization. Show that (4.2.5) becomes

%a?mnoafm—c‘%a,mwvxVE=0,

where o is the (small) conductivity of the medium. Suppose this current is the
only loss in the system, and that o = O(e). How are (4.2.16) modified?

(b) Consider a uniform wave train in such a medium, along with two or more
weak parasitic waves capable of forming a resonant triad, as in Exercise 2.
What effect does the current have on the instability?

4. Express {(4.2.20) in terms of (E x H), the flux of electromagnetic energy
density.

5. What is the period of the waves in (4.2,18)? Estimate from this an optimal
crystal size, to convert as much power as possible into the second harmonic
from an incoming (fundamental) wave. This size is actually an upper bound,
because other small effects also limit the size of the crystal. See Yariv (1975)
for some of these considerations.

6. (a) Solve (4.1.25) for w> explicitly in the limit A; > c0. Show that the
larger pair of roots (for the surface waves) are independent of the densities in
this limit.

(b) Denote the three wavenumbers in (4.2.24) by k, =8k, k, =(1-8)k,
k3= k. Show that for h; = 00, the triad in (4.2.24) occurs where 4Akh, =1.

(c) Let h; - oo as well. Find explicitly the wavenumber and frequencies for
a triad involving two surface and one internal waves, and another involving
one surface and two internal waves.

Section 4.3

1. An alternative to hypothesizing (4.3.2) is to approximate (4.2.8) with the
first nonlinear correction for an isotropic medium,

QZ
33P+w§P+d|P|"P~?E,

and to couple this with (4.2.5).
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(a) Show that if the wave amplitude is time independent, then this derivation
also leads to (4.3.2). Find n, explicitly in terms of d, O, (0’ ~wi), ¢* and no.
(b) Derive (4.3.8) from (4.2.5) and the equation for P above.

2. Justify the statements following (4.3.13).

{a) Finda (3+ 1)-dimensional generalization of (4.3.9) that reduces (4.3.13)
to an ordinary differential equation. Show that this ODE is not P-type.

(b) Based on (4.2.12), for what range of w is & = —k(azk/aw"') >0?

{c) Show that (4.3.13) admits a self-focusing singularity if a >0 and n,>0.
What can you conclude if a <07?

3. The deep water approximation in water waves amounts to letting kA - 0.

{a) Show that, if kh > 1, the error introduced into the linear solution (i.e.,
(4.3.19)) by this approximation is of exponential order in kh. On this basis it
is often asserted that effects of finite depth can be ignored as soon as the fluid
depth exceeds the wavelength, because the oscillatory wave no longer ““feels”
the bottom.

(b) Show that as h >0, V&= O(h™"), so that the (nonlinearly) induced
mean flow decays algebraically rather than exponentially in this limit.

(c) Take T=0in {(4.3.26) and consider a one-dimensional water wave with
a period of 1 second and a maximum free-surface slope of (0.1). What is the
wavelength of this wave if it is propagating in an ocean whose total depth is
3 km? Estimate the mean flow induced by this wave at the sea floor. Armi
(1977) uses 4 cm/sec as a “‘typical” value of a bottom current. Is the induced
mean flow significant in the deep ocean? What if the same wave were
propagating over the continental shelf, where the total depth might be 200 m?

4. Stokes (1847) noted that oscillatory water waves induce a second order
(in £) ““drift velocity”, Thus individual fluid particles experience a slow mean
motion in the direction of the group velocity of the waves (see Phillips (1977,
p. 43) for details).

(a) Show that the mean motion related to @ in (4.3.25) is in the opposite
direction, and should be subtracted from the drift velocity of Stokes.

(b) Any steady, inviscid theory of water waves in finite depth is ambiguous
with regard to the total mass transport due to the waves, because the equations
admit an arbitrary, uniform, horizontal, mean flow that can be superposed on
the motion. One way to remove this ambiguity is by considering the fluid to
be slightly viscous; see Liu and Davis (1977) for a review of work along these
lines. An alternative is to solve (4.3.23) for a localized wave packet that
vanishes as (x3 + yf)-» 00, and require no motion at 00, Show that this method
makes the inviscid mass transport unambiguous. Find the total mass transport.

5. The local nature of the wave amplitude (A) was used to reduce (4.3.21)
to (4.3.23). If A is periodic in (x;, y;), show that this reduction follows only by
assuming that ® also satisfies (4.3.20). If this assumption is not made, what
replaces (4.3.25)?
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6. The experiment shown in Fig. 4.17 fully demonstrates the interaction of
solitons only if the two carrier wave frequencies are close enough that the
interaction of the two wave packets occurs on a long enough (¢t ~ 1) time scale.
Based on the measured waves, define an appropriate £ and estimate the time
scale of the interaction. To what extent does this experiment confirm the
theory?

7. (a) In (1+1)dimensions, we may define the mass of a localized wave by

oo

M=PJ {dx,

—00

where p is the fluid density. Define the horizontal momentum and the total
(potential + kinetic) energy of the wave in the same way. These three quantities
are conserved exactly by (4.1.5-7).

(b) Using the expansions required to derive (4.3.25), expand the mass,
horizontal momentum, and energy to Ofe %). Show that

M=¢cli+e’L+e L+ O(e%),

where I, I,, I3 are proportional to the first three conservation laws for (4.3.29).
What are the corresponding expansions of the horizontal momentum and
energy? This gives some insight into the question of why (4.3.29) has infinitely
many constants of the motion: they are the coefficients in an asymptotic
expansion of an exactly conserved quantity, such as M. It leaves open the
question of why other approximate equations have only a finite number of such
constants.

Section 4.4

1. Pseudospherical surfaces.

(a) Every solution of the sine-Gordon equation defines a (family of)
pseudospherical surfaces. ¢ denotes the angle between the asymptotic lines,
which coalesce if ¢ = nm. But they must be distinct if the total curvature is
negative, so lines on which ¢ = n= are singular lines of the surface. According
to a theorem of Hilbert, every pseudospherical surface contains at least one
singular line; this is a consequence of the Gauss-Bonnet theorem.

(b) A vast array of solutions of the sine-Gordon equation are now available,
including the explicit soliton solutions (or “kinks”, as they are called for
(4.4.1)). Each such solution defines a pseudospherical surface, pieced together
on its singular lines. It might be interesting to build geometric objects that
correspond to one kink, two kinks, a kink-antikink pair, a breather, etc.

2. SIT has a simple mechanical analogue, due to McCall and Hahn. Con-
sider a set of ideal, identical pendula, well separated and hanging in a line just
above a horizontal plane.
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{(a) If a ball whose mass exceeds that of a pendulum (m, > m,) rolls along
the plane, it imparts some of its momentum to each pendulum it strikes, until
it eventually loses all of its momentum to the medium (of pendula). Show that
the velocity of the ball after the nth collision is V, = V,exp (—an), where
a =log ((my + mp)/(mp —myp)). This is the analogue of Beer’s law.

(b) If the mass of the ball equals the mass of a pendulum, and if its initial
velocity is sufficient to swing a pendulum all the way around, show that the
ball gives all of its momentum to a pendulum, waits while the pendulum swings
around once, regains all of its momentum when the pendulum returns to its
original position, and then travels with its original speed to the next pendulum.
This is the analogue of SIT. What is the minimum initial velocity required for
SIT? What is the average velocity of the ball if this minimal velocity is
exceeded? What if the initial velocity is met exactly? What happens if the initial
velocity is too small?

{c) What happens if the mass of the pendulum exceeds that of the bali?

(d) These results assume that the ball and pendula are point masses. What
happens if both have finite diameters?

3. Show from (4.4.8) that for any electric field,

wZﬁZ
of o + B + 277} =0,

What is the physical meaning of this identity? Show from this relation that
Ipl=O(4).

4. Show that any other terms added to those in (4.4.13) are nonsecular, and
do not change (4.4.14, 15, 16).

5. (a) Show that increasing the amplitude of a 27-pulse in SIT increases its
dimensional speed of propagation.

(b} A realization of (4.4.10) may be obtained by assuming

ol T
gl T (w~w0)2+1'2'

Compute the speed of a 27-pulse explicitly in this case.
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Appendix

Linear Problems

A.1l. Fourier transforms. The objective of this section is to outline the use
of Fourier transform methods for solving certain linear equations, and to
demonstrate the method with several examples. More precisely, the method
outlined is separation of variables, the end result of which is a representation
of the solution in terms of its Fourier transform. The method also may be
described as looking for ‘‘normal modes,” or for “solutions in the form
€™ * 7™ This approach is not necessarily equivalent to taking a Fourier—
Laplace transform, and we shall discuss the difference between these two
approaches in the next section.

The simplest types of evolution equation for which Fourier transform
methods are useful have the following form:

(A.l.l) U, =F(u, uxa uxxy v ')5

where F is linear in its arguments, homogeneous and with constant coefficients.
It is desired to solve (A.1.1) for —oo < x <0, >0, subject to the constraints
that u vanish as |x| > oo, and that as # > 0, u(x, 1) U(x), a prescribed function
(*‘initial data™).

Even within the context of linear evolution equations, Fourier transform
methods apply to a wider class of problems than (A.1.1). We may consider
equations involving more than one time derivative or, more generally,
replacing the scalar, i, in (A.1.1) with a vector (u1, us, - -+, ux), and making
appropriate changes in F. Or the equation may be of interest only in a finite
interval, a <x < b, perhaps with periodic boundary conditions. Some of the
possible generalizations are explored in the example problems and in the
exercises at the end of the chapter.

Here are the basic steps in the method.

1. Does the problem have a unique solution?

351
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Useful information often can be obtained by looking for a few “‘conservation
laws,” i.e., relationships of the form

(A.1.2) —a—T+iF=O,
ot ox

where T and F may depend on x, ¢, u and its derivatives. In many cases, the
equation itself is in this form. Other conservation laws sometimes can be
obtained by multiplying the equation by some function (e.g., 4, u,, etc.) and
integrating by parts. In any case, if the boundary conditions require that F
vanish as |x|- 00, and if [ T'dx is defined (at ¢ =0), then this integral is time
independent. Of particular value is any conservation law such that T is positive
definite; i.e.,

(A.1.3) Tz0and T=0 = u=0.

Then [ Tdx may define a norm for a particular space of functions, and the
uniqueness of the solution (within this particular set of functions) follows
directly from the conservation law. In these cases, we shall identify | T dx as
an “energy integral” of the system, whether or not it represents any physical
energy. Moreover, this energy integral need not be related to the Hamiltonian
of the system, if one exists. (Friedrichs (1958) made extensive use of “‘energy
methods” to establish the uniqueness of solutions of symmetric, positive
systems of differential equations. Closely related methods may be used to
establish the stability of a finite difference scheme, as discussed by Richtmeyer
and Morton (1967). The concept is particularly appropriate for the equations
solvable by IST, because often one of the exactly conserved quantities may be
identified as an energy.)

Not all problems have energy integrals, and in some cases the function space
is not large enough for the application in mind. In these cases, the question of
uniqueness must be answered by other means.

2. Is there a dispersion relation?

Substitute a trial solution of the form

(A.1.4) u(x, t)~ A exp (ikx — iwt)

into the differential equation. Here k is real, and » is some complex number.
For this method to work, the differential equation must reduce to

(A.1.5) D(w, k)A exp (ikx —iwt) =0,

for all (x, ¢). The exponential (or even its real or imaginary part) does not vanish
for all (x, #), and A = 0 represents only a trivial solution. It follows that (A.1.4)
satisfies the partial differential equation nontrivially only if » and k are related
through the dispersion relation

(A.1.6) D(w, k)=0.
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There are several variants of this step.
(i) If the problem is defined on a <x <b, rather than —c0<x <00, k
typically is restricted to a countable set of real values.
(it} For an nth order system of equations, replace (A.1.4) with

(A.1.7) vi{x, 1)~ A exp (ikx —iwt).
Then (A.1.5) becomes
_l\_LIA exp (ikx —iwt) =0,
where M is an n X n matrix. The dispersion relation is defined by
(A.1.8) det (M)=0.

(iii) For a differential-difference equation (discrete in space, continuous in
time), replace (A.1.4) with

(A.1.9) u, (1)~ Az" exp (—iwt),

where 7 is a complex number on the unit circle and # is an integer. (The analogy
with (A.1.4) is more apparent if we set z =exp (if), with # real.) Then the
dispersion relation takes the form

(A.1.10) D(w, z)=0.

(iv) For a finite difference scheme (discrete in space and time), replace
(A.1.4) with

(A.1.11) uy ~AQ"z",

where z lies on the unit circle, Q is a complex number, and m, n are integers.
The dispersion relation has the form

(A.1.12) D, z)=0.

In numerical analysis, () is often called the amplification factor, following von
Neumann’s (1944) work on stability of difference schemes.

Now we return to the continuous problem, and (A.1.6).

3. Are the normal modes complete?

Solve (A.1.6) for w(k). For each k, the number of solutions should equal
the order (in ¢-derivatives) of the differential equation. At any fixed ¢, each
[k, w(k)]in (A.1.4) represents one ‘“‘mode” in a Fourier integral (or sum), and
a sum over the modes represents a (formal) solution of the differential
equations. The sum is taken over all real k& (for —co <x <o0):

@

(A.1.13) u(x, t)=§};j Alk) exp (ikx — iwt) dk,

unless further restrictions on k already have been imposed. The method is
successful if the sum is general enough to represent arbitrary initial conditions
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on u, u, etc., at t =0. {(Here ‘““arbitrary’” means arbitrary in some space such
as L,, the space of square-integrable functions.)

We say that the above method fails either if there is no dispersion relation
(i.e., for fixed k, w is unrestricted), or if the set of normal modes is not complete
and so cannot represent the initial data. Some examples are given in the next
section.

When the method works, one obtains an integral representation of the
solution. The sense in which this *“*solution” actually solves the equation is
sometimes delicate, and will be discussed in the context of the examples.

4. What is the character of the solution?

The real advantage of Fourier transforms lies here. Once we have deter-
mined that we have the general solution of the initial value problem, much of
the relevant information in the problem can be obtained directly from the
dispersion relation.

The growth rate of any particular mode is given by Im (w).

(i) If Im (w)>0 for some real & (i.e., for one of the possible modes of the
system), this mode grows exponentially in time, and the problem is unstable.
The most unstable mode is the one that maximizes Im (w), if one exists. Unless
the initial amplitude of this mode were exactly zero, it would dominate the
solution after a sufficiently long time. If the initial data in the problem were
known only to within a certain tolerance (which might depend on a method of
measurement, for example), one would expect to observe predominantly the
most unstable mode eventually, regardless of the initial conditions.

(ii) If Im (w)- © in any limit (e.g., k » 00), there is no bound on the growth
rate and the problem is ill-posed (in the sense of Hadamard). Here any
uncertainty in the initial data precludes virtually all predictions about the
solution for 1> 0. If a model of a physical problem is ill-posed, it may not be
properly formulated.

(iii) If Im (w)<O0 for all real k, the problem is asymptotically stable (or
dissipative), because every mode decays exponentially for > 0. After a long
enough time, the predominant mode is the one that maximizes Im (w), except
for very special initial conditions.

(iv) If the solution of (A.1.1) can be represented in the form (A.1.13) with
w(k) uniquely defined, then its energy integral is [|u|> dx. By Parseval’s
relation, we have

, 1
f M dx=5- J |A(K)[? exp {2 Im (w(k))t} dk.

Thus the problem has a time-independent energy integral only if Im (w)=0
for real k; i.e., the dispersion relation is real. Then the dominant feature of the
solution is neither exponential decay nor growth, but wave propagation. Most
of the problems discussed in this book, when linearized, fit this description.
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(v) By way of comparison, a finite difference scheme is unstable if || > 1
for some z on the unit circle, and stable if [z| =1 |Q = 1. A real dispersion
relation corresponds to |z|=1=>(Q|=1.

These definitions are consistent with the theory of ordinary differential
equations (e.g., Birkhoff and Rota (1969)). The connection may be seen by
writing the solution of (A.1.1) in the form

1 :
ulx, 1) =Zr-j ik, t) ™ dk;

then i (k, 1) formally satisfies the ordinary differential equation

%ﬁ = —jw(k)d,
whose stability is determined by Im (w).

5. What is the long time behavior of the solution in problems with real
dispersion relations?

For a problem on 2 finite interval in one spatial dimension, a representative
solution has the form

(A.1.14) ulx,ty= 3% A, exp (ik.x —iwgt).

Here the {k,} depend on the length of the interval, w, = w(k,) on the dispersion
relation, and {4, } on the initial data; k, and w, are real, and we assume that
w, is uniquely defined. Then an energy integral is given by

(A.1.15) JIuF dx =Y |A,l%,

provided the sum exists.

On intuitive grounds, one feels that if a fixed amount of energy is confined
to a finite interval in modes that cannot transfer energy among themselves,
then there ought to be no asymptotic (z > o) state. This notion is correct;
instead of tending to an asymptotic state, the system almost returns to its initial
conditions after a finite time (‘‘Poincaré recurrence’’).

The validity of this assertion may be seen by approximating the solution in
(A.1.14) to any desired accuracy by a finite set of modes:

N
un(x, )= % A, exp (i8,), 8, =k.x —wut.
-N

It is not difficult to show (e.g., see Arnold (1978)) that this partial sum
corresponds to the solution of a Hamiltonian system with (2N + 1) degrees of
freedom. (The Hamiltonian is H =i ¥ y|A.|’w., the action variables are
|A.|* and the angle variables are if,.) Then Liouville’s theorem regarding
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conservation of volume in phase space states that there can be no asymptotic
state, and Poincaré’s recurrence theorem states that almost every initial state
recurs in a finite time.

On an infinite interval, a typical solution is

(A.1.16) u(x, t)=%'|- A(k) exp (ikx — iwt) dk,

and again w(k) is real. Approximate evaluation of such integrals is a subject
in itself. We present here only the basic ideas; for a more thorough exposition,
the reader may consult the texts by Copson (1965), Olver (1974) or Bleistein
and Handlesman (1975). These problems also have fixed amounts of energy,
but because the energy can spread over an infinite interval, asymptotic states
are possible. For each mode (or ““wave”’), points of constant phase travel with
the phase velocity,

w
(A.1.17) k)=,

If every wave has the same phase velocity, (i.e., w = cok), the solution at any
time ¢ > 0 is simply the initial function, translated through space by an amount
Col:

(A.1.18) u(x, t) =%j A(k)exp (ik(x —cot)) dk = u(x —cot, 0).

The problem is dispersive if

d*w

(A.1.19) Ek—i#_o,

Here different waves have different phase speeds, and the behavior of the
solution depends on how the waves reinforce or interfere with each other. The
important propagation velocity here is the group velocity,

(A.1.20) dw
‘ celk)=—.
dk

The significance of this velocity is that after a sufficiently long time, each wave
number k dominates the solution in a region defined by
(A.1.21) x ~cglk)t+o(r).

The precise form of the solution in this region may be found by evaluating
(A.1.16) by either of two related methods, stationary phase or steepest
descents.

Some partial differential equations admit self-similar solutions in the form

(A.1.22) ulx, t)= t"’f(fq),
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where p and g are constant, and f satisfies an ordinary differential equation.
(Said differently, the equation is invariant under the transformation

T,: t->bt, x->b%, u-5b""y

where b is a scalar. The set of all such transformations {7, form a group; e.g.,
see Hall {1959).) These solutions often lie outside the function space of interest
(e.g., they need not be square-integrable in x). Nevertheless, in many prob-
lems, the asymptotic (f- o0) solution becomes approximately self-similar
locally, but is modulated by a “‘slowly varying” function that depends on the
initial data. The advantages of this representation, when it is available, are
that: (i) it clearly identifies what part of the solution is controlled by the
differential equation, and what is controlled by the initial conditions; (i1} it may
be uniformly valid in x (as ¢—0), even if the representation obtained by
stationary phase is not.

This completes the outline of the method. Next, we demonstrate its applica-
tion in some example problems.

Example 1. The Schrodinger equation

(A.1.23) ith + 4., =0, —o<x <, >0,
{A.1.24) >0 as x>0,
(A.1.25) Ulx, 1=0)=W(x) withjqqr!zdx:l.

In quantum mechanics, ¥(x, ¢) represents the {(complex) wave function of a

free particle, |¢|*(x, 1) represents the probability density at time ¢ of locating

the particle at position x, and | |¥|*> dx =1 allows this interpretation at ¢ =0.
A conservation law of interest is

(A.1.26) i)+ (¥ — %) = 0,

obtained by multiplying (A.1.23) by ¢* (the complex conjugate of ¢) and
subtracting the complex conjugate of the resulting equation. Integrating
{A.1.26) in x yields the time-independent ‘‘energy integral”,

(A.1.27) f @] dx =1.

This integral identifies L, as a natural space for the problem, and this meshes
nicely with the probabilistic interpretation. Next we prove that the problem
cannot have two different solutions in L,. Suppose that there are two such
solutions in L,. Then their difference, A(x, 1), is in L,, satisfies (A.1.23, 24)
and vanishes identically at r = 0. It follows that

(A.1.28) f AP dx =0

for all time, so that A(x, f) must be the zero function.
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To find the dispersion relation, let

(A.1.29) ¢ ~ o exp (tkx —iwt),
and find
(A.1.30) w(k) = k>

Here o is real for real k, as we anticipate from the existence of the energy
integral.

Some notation is necessary before reconstructing the solution of the prob-
lem. If ¢ (x) is in L,, we define its Fourier transform by

@©

(A.1.31) $(k)=J & (x) e ™ dx.

—Q0

Then the inverse Fourier transform is

(A.1.32) ¢(x)=2if Sk) ™ dk.

We use this convention throughout the book. Now sum over the modes in
(A.1.29) to obtain the formal solution of (A.1.23-25),

x

(A.1.33) Pin )= J W(k) ™ g,
27 )

where ‘i’(k) is the Fourier transform of the initial data.

In what sense does this integral solve the problem? Certainly it reproduces
W(x) at t =0, by construction. If ¥ is absolutely integrable on —co<x <00
(i.e., an element of L;), then the integral satisfies (A.1.24) by the Riemann~
Lebesgue lemma (this famous theorem is in most books on real analysis, such
as Hewitt and Stromberg (1969)). If ¥ converges rapidly enough as |k| > to
permit two differentiations under the integral sign, then the integral also
satisfies (A.1.23), and is a (pointwise) solution of the problem.

If either ¢(x) or its derivative is discontinuous, differentiation under the
integral is not permitted. An alternative procedure may be used if W(k) can be
continued analytically into the complex k-plane. In the simplest case, the
contour of k-integration may be rotated from the real axis through an angle
(—96), 0< & < /2, without encountering any singularities of ‘i’(k) in the finite
plane, as shown in Fig. A.1. We also need that (k) - 0 rapidly as |k|- 0 in
the sectors through which the contour is deformed. Under these circumstances,
integration along the deformed contour gives the same value as integration
along the original contour, by Cauchy’s integral theorem. But under the
transformation

k>re™®, r real, O<6§g,
(A.1.34)

e " >exp (rzt cos (;—T+26)) exp (—irzt sin (g +26)),
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k - plane
/originol contour
*
E3
\ deformed
contour
sing. of ¥ (k)

Fi1G. A.1. Contours of integration for (A.1.32).

and for ¢ >0 the integral converges exponentially fast as |r| » 00, It follows that
even though ¢ (x) might have been discontinuous, the solution of (A.1.23) that
evolves from it for >0 is not only continuous, but infinitely differentiable!
This shows the smoothing effect of the Schrodinger operator. A specific
example is examined in Exercise 1.

If ¥ permits neither differentiation under the integral nor continuation into
the complex plane, consideration of ‘“weak solutions’’ becomes necessary (see
Lax (1954) or (1973)). However, one or the other of the methods discussed
ordinarily is adequate for applications. To summarize, we have found that the
problem has at most one solution in L,, and that (A.1.33) is a representation
of it. It remains to describe the asymptotic behavior of the solution as ¢ » c0.
To do so, note that (A.1.33) has the form

Pr(k) e ™" dk
(A.1.35a) j (k) e ’

where
(A.1.35b) ¢(k>=k§—w<k>=k’;‘—k2,

if we hold (x/t) fixed as t » ¢©. The intuitive notion behind Kelvin's method of
stationary phase (cf. Copson (1965)) is the following, This integral represents
a superposition of infinitely many wavetrains, but for sufficiently large ¢ the
phases of wave trains represented by k and (k + 8k ) will be very different unless
@¢'(k) vanishes. Thus, one expects destructive interference from most of the
wave trains, and that the dominant contributions to the the integral should
come from small neighborhoods of points where ¢'(k) vanishes (i.e., where
the phase ¢ (k)¢ is stationary). Following this reasoning, we would expect a
particular wavenumber & to dominate the solution where

(A.1.36) ¢'(k)=§~2k =it‘—cg(k)=o.
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This shows the significance of the group velocity: as ¢ - 0, each wavenumber
k dominates the solution in a region described approximately by (A.1.36).

Thus, (k — 8k) dominates along one straight line in (x, t)-space, and (k + 8k)
along a slightly different straight line, It follows that the (time-independent)
contribution to the energy integral from the packet of wavenumbers between
them,

1 k+58k .

— J | dk,

27 Jy-sk

is spread over a region of space that is increasing linearly in time, This suggests
that |i|* should decrease at 1~ (to maintain the invariance of { |¢{® dx), so that

(A.1.37) l¢|=O0(t™%) ast->o0.

This heuristic argument turns out to be correct provided ¢"(k)# 0. If ¢"(k) =0,
the trajectories of (k+8k) separate more slowly, and the decay rate is
correspondingly slower than the rate given by (A.1.37).

The method of stationary phase provides explicit formulas for the dominant
behavior of ¢, but the easiest way to justify these formulas is to use Debye’s
method of steepest descents (cf. Copson (1965)). For a fixed value of (x/t), this
consists of extending (k) into the complex k-plane, and deforming the path of
k-integration so as to:

(i) pass through a zero of ¢'(k);
(i) keep the real part of ¢ (k) constant along the path;

(iii) maximize the imaginary part of ¢ (k) at the zero of ¢'(k).

This can get rather complicated, but for (A.1.35) the only zero of ¢'(k) lies
at k =(x/2t), and the entire deformed path is defined by

—im/4

X
k=—+re
2t ’

—00 < r<co, With this change of variables, {A.1.33) becomes

1 X 2 T © af X —in/4 —r2t
(A.1.38) y(x, t)—-;ﬂ-_exp(zt(i;) —1(4)) Lo Y +re ) e dr,
where again we have assumed that the rotation does not encounter any
singularities of 0 (but see Exercise 2). If ¥ is well behaved, the dominant
contribution to the integral as - comes from the neighborhood of r=90.
Thus, we expand ¥ina Taylor series about k = (x/2¢), and evaluate each of
the resulting integrals. The result is

ot wti= e (o(2) - (3)[013)

As anticipated by the previous discussion, the role of the group velocity

"I‘,(Zn)(x/zt)]
1 @iny'nt 4

i ™18
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(k = x/2t)is apparent, and the amplitude decays as ¢ V2 ¥ is sufficiently well
behaved, (A.1.39) is uniformly valid for all (x/¢) as t = o0,
The final point in the discussion of this problem is to relate (A.1.39) to a
“slowly varying similarity solution” of (A.1.23). To this end, we look for a
special solution of (A.1.23) in the form

_ X
v, )=t"f(m), =n= et

and find that ¢ =3, and that f(m; p) satisfies

(A.1.40) "—-2’-nf'— if =0.

Under the transformation z = in2/4, f can be identified with the confluent
hypergeometric function, but for our purposes it is sufficient to observe that
one solution of (A.1.40) for p =73 is

(A.1.41) fln:2)=Aem/4 =40

3

where A is constant. Thus, as ¢ > oo, the solution of (A.1.23-25) tends to a
solution that is locally self-similar, but modulated by a slowly varying function
(i.e., A is now to be thought of as a slowly varying function) that depends on the
initial conditions:

ix2 1 (X
(A.1.42) bix, )~[1 7 e" /“‘"][m e '”/“\y(i—t)].
Example 2: The heat equation
T, =«T,,, —o<x <0, Kk, t>0,
(A.1.43) T-0 as|x|->o,

T(x,t=0)= Tolx).

If To(x) is real, T can be interpreted (for example) as the temperature in a long
tube containing a monatomic gas with no mean motion. The tube should have
insulated sides, with no variation across it. This temperature is measured
relative to some reference temperature, T >0, so that (T + T) is the absolute
temperature. The heat flux is (—« 7).
The equation is already in the form of a conservation law,
9

b
(A.1.44) EJ‘ Tdx =«T,

b

3
a

which states that any change in the average temperature in an interval is due
to a net heat flux across the ends of the interval.

The temperature of the gas measures the (random) kinetic energy of the
molecules, and (A.1.44) is the remnant of the law of conservation of energy
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in (A.1.43). However, T need not be positive, and (A.1.44) is not useful in
establishing uniqueness.

The appropriate “energy integral,” which does rot represent the physical
energy, is obtained by multiplying (A.1.43) by T and integrating by parts:
13
2 ot

b

b b
(A.1.45) I T dx = kT, T —j (T.)? dx.

a

This is not a conservation law (j T? dx is not conserved), but it still can be used
to show uniqueness. If Ty(x) € L,, then [, T dx exists initially and is positive
definite. Then (A.1.45) shows that this integral does not grow if the boundary
terms vanish, so that the solution remains in L, for /> 0. As in the previous
problem, uniqueness is established by computing | A dx, for the difference of
two solutions that evolve from the same initial data and showing from (A.1.45)
that it remains zero for >0,
The dispersion relation for (A.1.43) is

(A.1.46) w= —iKk?',

Thus, Im (w) =0, and the problem is asymptotically stable; this is consistent
with (A.1.45) on (—o0, 00), which shows that the energy integral must decrease
in time from any finite positive value. In fact, Im (w) =0 only for k = 0; the
fact that w = 0 for £ =0 is simply a restatement of (A.1.44), that

Tk =0)=j Tdx

is time independent.
The solution of (A.1.43) 1s

1 (% . :
(A.1.47) T(x, t)=_2_;J Tolk) o Kk ks dk,

where To(—k) =T (k), because Ty(x) is real. There is no difficulty establish-
ing the validity of (A.1.47); differentiation under the integral (any number of
times) is permitted for 1> 0.

As t - 00, the dominant contribution to (A.1.47) comes from the neighbor-
hood of k = 0, where Im (w) = 0. If To(k) is analytic there, we may expand it
in a Taylor series about k =0, and evaluate the separate integrals. Using the
identities

14(0) =j To(x) dx,

i (0) =J xTolx) dx, etc.
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we obtain

To(£) d 2
T(x, 1) ~j2———-—-(;jt)1/2§ ex (—ﬁ)
ST de  x x( x2)+,,_

le -
Wrikt) 2(2xt)'? P\ ae

(A.1.48)

Again, we observe that the solution tends to a seif-similar form as ¢ > o0. There
is no slow modulation in this case, because all of the contributions come from
the neighborhood of k = 0.

Example 3: The linearized Korteweg—de Vries equation

U+ Uge, =0, —o<x <0, >0
(A.1.49) u-0 as |x|»oo,
u(x, 0)=U(x).

The original discovery of IST followed the discovery by Miura (1968) of an
explicit transformation between the Korteweg-deVries (KdV) equation

w,tuu, U, =0,
and the modified KdV equation
0+ 020, + Ve = 0.

In the limit of small amplitudes both of these reduce to (A.1.49). Other
applications of (A.1.49) are discussed in the exercises.

If U(x)is real, u remains real for 1 > 0. We consider only real solutions here.
The energy integral in this problem is | u® dx, which is time independent. Thus
L, is an appropriate space, and the solution of (A.1.49) isunique in L,. Because
{ u® dx is time independent, we expect a real dispersion relation and substitut-
ing exp (ikx — iwt) into (A.1.49) confirms this:

(A.1.50) w=—-k’.

The (formal) Fourier transform solution of the problem is
1 2 tkx +ik3t
(A.1.51) u(x, z)=5—J U(k) e™ " dk,
™

where U (k)= U *(k) because U(x) is real. The sense in which this actually
solves (A.1.49) may be seen, for example, in Cohen (1979), who made no
assumptions about the behavior of U(k) except on the real k-axis.

In evaluating (A.1.51) as ¢ » 00, we restrict our attention to cases in which
U(k) can be continued off of the real k-axis and in which the deformed
k-contours do not encounter any singularities of U (k). Then the asymptotic



364 APPENDIX

evaluation of (A.1.51) is closely related to the evaluation of the Airy function,
_ O L ik?
(A.1.52) Ai (n)=—J exp(tkn +—) dk,
27 J-wo 3

discussed at length by Copson (1965). The Airy function is plotted in Fig. A.2.

Ai(n)

WAWA /\K
VAVE VA

F1G. A.2. The Airy function, Ai(n).

The points of stationary phase in (A.1.51) occur where
Zy3k%=0,
t
and different results obtain for
§<0, f> 0, |x|=o(t) ast—>co.

For x/t <0, there are two real stationary points, at k = +|x/(37)|"/?; the path
of steepest descents must touch both of these points, as shown in Fig. A.3.

N

F1G. A.3. Steepest descents path for x/t <0 in (A.1.51).

Near these points, the contour is described locally by

1/2

iw/4
+re=™

(A.1.53) k=x

3t

from which one may obtain the dominant term in the large z-expansion of
(A.1.51). For t » oo with fixed x/t <0,

A X
+—+¢l=
% ¢(t)}’

+ .

b4

o/t X
(A154)  ulx ) (m)l/z‘sx/t‘lucos{ 2|3t
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where

1/2

o]0

3¢

)}

Note that the decay rate (in x) of u as x/¢—> —oo is faster than the apparent
(—3) power, because U also decays.

For x/t >0, there are no real stationary points. The dominant contribution
as ¢~ o0 is obtained by lifting the contour up to the stationary point in the
upper k-plane,

X 1/2
=i{—) +I
k l(3t) ’

and expanding U near the stationary point. Thus, as 1> <0, x/1 >0,
1 x 1/2 3/2

(A.1.55) u(x,t)~WU( (3) >exp(—2<3%) z).

Both (A.1.54) and (A.1.55) break down as x/¢ - 0. To examine the behavior
in this region it is convenient to change variables in (A.1.51):

X
(A.1.56) s=k(30'"?, =T
so that
. 3

(A.1.57) u(x, t) =§;—(§;)-,—75J U(ZS—I;T?) exp (zsn+ 2 ) ds.

Then Taylor-expanding Unears=0 yields the asymptotic expansion for u in
this region as ¢t - % in terms of the Airy function and its derivative:

(A.1.58)  u(x, N~ (3072 0(0) Ai () - 36y Y307(0) Ai'(n) + O((3) 7).
Using the asymptotic properties of Ai (7), one can show that (A.1.58) matches
smoothly to (A.1.55) as n » +00, and to (A.1.54) as n > —0.

Thus the solution of (A.1.49) decays as "/ for fixed x/t <0, as r~/> near
x/t =0, and exponentially fast for fixed x/¢ > 0. Chester, Friedman and Ursell

(1957) showed how to derive an alternative representation of the asymptotic
solutton that is uniformly valid in (x/¢). The result is

Uk)+ z?(—k)]

u(x,r)~(3t>‘”3Ai(n>[ .

(A.1.59)

+(307 Av (] O( A(lk")],
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where
1/2

X —X
=Gy k= (?F)

This replaces the separate expansions in (A.1.54, 55, 58). It is worth noting
that both

u=038""Ai(n) and u=031)" Al (n)

are self-similar solutions of (A.1.49), and that (A.1.59) is in the form of a
“slowly varying similarity solution,” where the modulation depends on the
initial data, through U.

Example 4: The Klein-Gordon equation

Urr —uxx +u =0, —-0< X <00, T>0,
(A.1.60)
u->0 as |X|»>w,

u(X, T=0), ur(X, T =0) both given and real. The Klein-Gordon equation
arises in various contexts in relativistic quantum mechanics (cf. Morse and
Feshbach (1963)). Our main interest in it lies in the fact that it is the linearized
version of the sine-Gordon equation, although the converse of this statement
is probably more accurate historically.

This problem is hyperbolic, and the method of characteristics can be used
to advantage. Thus, we define characteristic coordinates (in terms of the
original “laboratory coordinates’’),

T+X X-T
A.1.61 = =
( ) X 5 t 5
and (A.1.60) becomes
(A.1.62) U = U, x—t>0.

The theory of hyperbolic equations is too broad for us to develop here in
any serious way. The classical text by Courant and Freidrichs (1948) is among
the best references on the subject for our purposes. Two of the important
consequences of the hyperbolic nature of (A.1.60) are the following:

li) Any disturbance propagates outward along the characteristics emanat-
ing from it. It follows that if the initial data for (A.1.60) have compact support
(in laboratory coordinates), the solution of (A.1.60) has compact support for
any finite 7. We will restrict our discussion here to these cases.

(ii) Discontinuities in u« or its derivatives propagate along characteristics.
The transformation from (A.1.60) to (A.1.62) applies only where the second
derivatives of u are defined.
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The energy integral in this case is more complicated than in previous
problems:

o0

a oo
(A.1.63) 5?[ (ur+ux+u?)dx=2uxur| =0.

—0 —oo

Thus, it is not sufficient that u € L,; we need that ur and ux € L, as well. If the
initial conditions lie in this slightly smaller space, then (A.1.63) assures that
the solution remains there for T > 0. Further, there is at most one solution to
the problem in this space. On the other hand, (A.1.63) also implies that if the
initial conditions do not lie in this space, whatever solution evolves from them
will remain outside the space for all T. (Note that this problem differs from the
heat equation in this respect.) The reason is that if the integral ever exists
then from (A.1.63) its time derivative must vanish for all time.

The dispersion relation for (A.1.60) is obtained by substituting u~
exp (ikX —iQT):

(A.1.64) Q' =x2+1.

The dispersion relation is real, as suggested by (A.1.63). For each real «, there
are two roots of (A.1.64), because the problem is second order in time. Thus,
there are three speeds of interest in this problem:

(i) discontinuities in i or its derivatives propagate along the characteristics
with speed 1 (“the speed of light™);

(ii) for a given «, the phase speed is

Q K+ 1|
—1= z1;
K K
(iii) for a given «, the group speed is
dQ K l
—|= |7 =1
dx VeZ+1

The Fourier transform solution of the problem is

1 s /T
u(X, T)=2—JA(K)e'“X*‘ T dic
ki
(A.1.65) .
+_JB(K)eixX~iVK2+leK.
21

If u and uy are real at T =0, then for all real T the second integral in (A.1.65)
is the complex conjugate of the first. If the initial data has a finite energy
integral, then

(A.1.66) lf(1+xz)(|A|2+|B[2) dK=J. (W +uk+u%) dx <co,
2
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The solution does not become smoother in time, and a classical solution exists
for all X (T>0) only if uxx and urx are defined everywhere at T =0;
otherwise, the solutions are ‘“weak.” In particular « has continuous second
derivatives if

(A.1.67) I(1+K2)(5A|+|B]) dk <o,
by the Riemann-Lebesgue lemma.

To find the long time behavior of u, we must find the points of stationary
phase in (A.1.65). For fixed X/ T, these occur in the first integral where

X K X
(A.1.68 —= - > K==,
) T 7 Tx
Using the stationary phase formula, as T - o for fixed |X/T|<1,
1 T X
PR SV
WD G N X

(A.1.69) '
X exp (i«/Tz—Xz+l—:{—) +(*).

Thus, the asymptotic solution inside the light cone consists of oscillations,
whose amplitude decays as T~ '2. Qutside the light cone u vanishes identically
if it had compact support initially.

The behavior of u along the light cone (X/T = +1) is of particular interest
because this function provides the “initial data™ if (A.1.62) is to be solved as
an initial value problem. This can be determined from (A.1.69) if A(x) has a
limit as « » =00, which we now assume. If A also satisfies (A.1.66), then

«?A(k)=0(1) as«k->=x0.

Then it follows from (A.1.68, 69) that as [X/T|=>1, T»1,

Jul~ 2 A Gl 2m) 2= (1),
x|

Thus, assuming only that the initial data have a finite energy integral and that
A(x) has a limit as « » +00, it follows that the solution of (A.1.60) must decay
along any characteristic as T -» 00, even if this solution is only a weak solution.
The solution is a classical solution if (A.1.67) also holds, and then the decay
rate is faster.

Finally, let us rewrite (A.1.65) in terms of the characteristic coordinates.
This is done conveniently by changing the variable of integration. Let
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and use />0 for the first integral and { <0 for the second. Then (A.1.65)
becomes

(A.1.70) u=——L:d@jup@x—§)@;

where

() { K+ AGE-¢), (>0,
M1+HBGEC -, (<0

Clearly, (A.1.70) has the form of the Fourier transform solution of (A.1.62).
It is also clear that the integral has no meaning for ¢ 0 unless

(A.1.71) A(0)=0,

At first sight, this additional restriction on the “initial data” (i.e., along the
characteristic ¢t =0) may seem unnatural. However, if the initial data in
laboratory coordinates satisfies (A.1.67), so that the transformation to charac-
teristic coordinates is defined everywhere, then (A.1.71) is guaranteed. Kaup
and Newell (1978¢) discuss the analogue of (A.1.71) for the sine-Gordon
equation.

Example 5: Discrete problems.

A semidiscrete version of (A.1.23-25) is

_Idil!/n('r) = (I[’H_l(f) + l/ln_l(T) - 2'1’)1 (7)!
T

(A.1.72)
n=0,+1,£2,--, T>0,

Yn»0 asin|»00, 7>0,

. (r=0)=V, givenwith ¥ |¥, > =1.

h=-—0oC

Here i, (r) is the nth function of time in an infinite sequence of such functions.
In this example, the subscript (-), denotes a spatial index, rather than
differentiation.

Alternatively, a finite difference scheme (Crank-Nicolson) for (A.1.23-25)
is

_il/-":H “(//:‘: ¢;T++11 +III.T-+11 -2yt +l//:."+1 +in 24
At 2h* 2h* ’

(A.1.73)
Yyn >0 as|n|>©, ¢,=W¥, givenwith ¥ |V, =1.

" =—00
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Superscripts denote the discrete time index, rather than exponents. (A.1.73)
is a viable scheme to compute (numerically) an approximate solution of
(A.1.23-25). We could also attribute meaning to (A.1.72), or we could simply
think of it as a problem intermediate between (A.1.23) and (A.1.73).

The analyses of (A.1.72) and (A.1.73) are similar, and are analogous to the
Fourier transform methods already discussed. We concentrate here on
(A.1.72), leaving (A.1.73) for an exercise. The first step is to find the “energy
integral” for (A.1.72), by multiplying it by ¥ () and subtracting the complex
conjugate of the resulting equation. In the sum over n, some of the terms form
telescoping series, so that

(A.1.74) : ln(mP=0,
which is analogous to (A.1.27). This identifies /,, the set of square-summable
sequences, as an appropriate space for the problem. Uniqueness of the solution
in /5 also follows from (A.1.74).

The dispersion relation for (A.1.72) is obtained by substituting (A.1.9) into
(A.1.72). The result is

2
(A.1.75) 1
z
which is real if |z| = 1. Again, the real dispersion relation is consistent with the
existence of a time-independent energy integral.
The next step is to mimic the Fourier transform. In the simplest case, we
may suppose that

=<}

(A.1.76) T || < 0.

m=—o

Then the function

(A.1.77) $(2)=L hmz™"

is defined for complex z on the unit circle; this is the analogue of the Fourier
n—1

transform. The inverse transform comes from multiplying (A.1.77) by 2",
and integrating around the unit circle:

L A n—1 _L —m+n—1
T § Y(z)z" dz = 5 § )'% Umz dz.

The order of integration and summation here may be interchanged, because
of (A.1.76) and the fact that the integral is over continuous func-
tions on a finite interval. After we apply Cauchy’s integral theorem, the



LINEAR PROBLEMS 371
result is the inversion formula for (A.1.77);
1 ~ _
(A.1.78) U, =—~,§ d(z)z" ! dz.
2mi
Now we may construct the “Fourier transform’’ solution of (A.1.72):
) 1 o _ .
(A.1.79a) L{;n(r)=2——1§\lf(z)exp (i((z-1Yz7'0)2"  dg,
i
where the integral is taken around the unit circle, and
(A.1.79b) V(i)=Y ¥,z ™

An alternative representation is obtained by substituting

z=¢e"  W(2)=T¥(0),
so that (A.1.79a) becomes

2
(A.1.80) U (1) =—1— J‘ W(0) exp {ind + 2ir(cos 6 — 1)} db.
271‘ 0

In obtaining the solution of (A.1.72), we have considered n to be a discrete
variable, taking on only integer values. The solution, however, is defined for
any real n, even though we may be more interested in integer values. This slight
change in viewpoint allows us to evaluate (A.1.80) as 7> by the usual
asymptotic methods. Thus, we consider (n/7) to be an arbitrary, fixed constant,
with 7 large. The phase in (A.1.80) is

ms(o; 5) = [30 +2(cos §— 1)]7’,
t T
and the stationary points occur where
(A.1.81) Z-2sine.
T

Thus, (A.1.81) defines the group velocity corresponding to the dispersion
relation (A.1.75). It is important to note that the group velocity for (A.1.72)
is bounded. This identifies a qualitative difference between (A.1.72) and
(A.1.23). In the continuous problem, the group velocity is given by (A.1.36),
and arbitrarily large wavenumbers travel arbitrarily fast. The effect of the
spatial discretization in (A.1.72) is to bound the maximum wavenumber, which
in turn bounds the group velocity, as shown in (A.1.81).
At the stationary points of ¢ (8),

¢"(8)=-2cos 0;

this does not vanish except at # = #/2 and 37/2, corresponding to n/7=+2
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and -2, respectively. At these two exceptional points, ¢"(6) does not vanish.
This information allows us to find the dominant behavior of the solution as
700, with (n/7) fixed. Here are the major results.

(i) If |n|« 27, the solution oscillates with an amplitude that decays as 7~
The behavior of the solution of (A.1.72) in this region is qualitatively similar
to that of (A.1.23).

(ii) If |n|» 27, the integral has no stationary points, and the solution decays
faster than 7~ . If the initial data had compact support, the decay rate would be
exponential in this region. As we have discussed, this relatively quiet region
exists because very high wavenumbers (in x) are excluded from the solution of
(A.1.72).

(iii) Near n = =27, there is a wavefront that has no counterpart in the
continuous problem. The solution decays only as ™'/ near the wavefront,
which becomes the dominant feature of the solution as 7 - .

In light of the qualitative difference between the asymptotic solutions of
(A.1.23) and (A.1.72), it may be worthwhile to reconsider in what sense they
approximate each other. We begin with (A.1.23), on —c0<x <00, Identify
uniformly spaced points by

172

x,=nh
for some constant A « 1. Then
_32_‘11 _ it 1 =24
ax*l, W’
and (A.1.23) becomes

(A.1.82) +O0(h*),

_.i _¢n+1+‘//n—1_2‘~,’n
(A.1.83) ldtd’n - h2

This may be approximated by (A.1.72) until the neglected terms in (A.1.83)
produce a cumulative effect that is significant. Based on (A.1.83}, the time for
the breakdown of (A.1.72) as an approximation to (A.1.23) may be estimated
by

+O(h?).

t=0(h™).

Thus, (A.1.72) approximates {A.1.23) only for a limited time. From this
standpoint it is not so surprising that their asymptotic (¢ - c0) behaviors are
different. There are two limits, (¢ > o) and (k - 0); they do not commute for
all space (n).

Even so, it is worth asking where we should look in the solution of (A.1.23)
to find the wavefront that appears in the solution of (A.1.72). To align (A.1.83)
with (A.1.72), set

t
W

T =
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and neglect the higher order terms. The wave front occurs where

n=x=+2r;
ie.,
oy 2 o k=i
h h h

Comparing with (A.1.36) shows that this trajectory corresponds to a
wavenumber

(A.1.84) k

i

S

There are two possibilities.

(i) The initial data for (A.1.23) contained no information at such a high
wavenumber, There is no important contradiction between the solutions of
(A.1.23) and (A.1.72) because the slowly decaying wavefront occurs where
the amplitude vanishes.

(ii) The initial data for (A.1.23) contain significant information at this
wavenumber (and beyond). Then (A.1.82) is a lousy approximation, the
neglected terms apparently become important relatively quickly and the
asymptotic solutions become valid after (A.1.72) has ceased to approximate
(A.1.23).

In this problem, we have come face to face with an approximation which has
a limited range of validity in time. This sort of difficulty also surfaces in Chapter
4, where we discuss physical applications of evolution equations.

This completes our description of the “method of Fourier transforms” for
solving linear evolution equations with constant coefficients. The method has
the advantages that it is straightforward to apply, and that the qualitative
behavior of the solution for sufficiently large time is determined directly from
the dispersion relation. Its disadvantage is that it is not as general as some other
methods, such as Fourier-Laplace transforms. However, in a problem where
this method fails, it must fail in one or the other (or both) of two ways:

(i) there is no dispersion relation;

(ii) the set of Fourier modes is incomplete.

In the next section, we consider some problems for which this method fails.
Phase mixing, algebraically growing modes and Landau damping are common
features of these problems, and the linearized limit of the problem of self-
induced transparency (SIT) is an example. With the exception of this problem,
however, the material in § A.2 does not relate directly to IST or to problems
solvable thereby.

A.2. Failure of the Fourier transform method. We consider next some
problems in which this method fails. Frequently, the failure is dramatic: there
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is no dispersion relation, and a continuous range of w’s is permitted for each
fixed k. In contrast to problems which have dispersion relations, the solutions
of these problems can exhibit exponential decay (in time) even though w is
necessarily real for real k. The phenomenon of “Landau damping”™ in plasma
physics is an example of this decay.

Example 1. A model of kinetic theory in one dimension.

d%f(f) =—a Lo Ulxigix, 1) dx, t>0,
98

og
+o—= t —0o<xy <o, >0,
PR Ux)f(1), x

(A.2.1)
glx,t)»0 as x->—-o0,

Ulx), f(0), g(x,0)=G(x) given and real,
Ulx), G(x)e L,.

This problem was proposed by Ramanathan and Sandri (1969) as a simple
model to test the validity of hypotheses used in the derivation of the kinetic
theory of gases. In that context, f corresponds to the departure from equilib-
rium of a one-particle distribution function, and g to the departure from
equilibrium of a two-particle correlation function. Both v and a are positive
constants, with a « 1. The integral term models two-body interactions, but
three-body and higher interactions are neglected. We will analyze (A.2.1) in
some detail, because it is a prototype of a number of linear problems that have
no dispersion relations.

A time-independent energy integral for (A.2.1) is easily found:

+c0

(A.2.2) 2"; [f2+ a J g’ dx] =—avg’

—a0

x=—00

except that only one boundary condition (as x - —o0) is available for g.
However, if U(x) and G(x) have compact support, then one may show g{(x, ¢)
has compact support for all time, so that the right side of (A.2.2) vanishes. For
the remainder of the discussion, we assume that U(x) and G(x) decay fast
enough that the right side of (A.2.2) vanishes for all time. Then g remains in
L, for all time, and (A.2.1) has at most one solution with ge L,.

Thus, (A.2.1) has a time-independent energy integral, but this does not
prevent f from decaying to zero at an exponential rate as {-» o0, provided g
grows correspondingly. In fact, if U (x) is symmetric and G (x) is antisymmetric
in x, then (A.2.1) is strictly time reversible; i.e., it is invariant under the
transformation

{A.2.3) t>—~t, x->—x, g->—g

Even so, f can decay as t » 00; time reversibility only means that it also decays
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as t -» —o0. (This behavior contrasts strongly with solutions of the heat equation,
which also exhibit exponential decay, but are time irreversible.)

We now show that the method of Fourier transforms fails for (A.2.1),
because the problem has no dispersion relation. Some care is required in
applying the usual ansatz because of the integral term in the equations. Take
the Fourier transform (in x) of the equations, making use of the fact that g and
U are in L,, to obtain

af «a fa
(A.2.42) 2= ZﬂJU( K)§(k, 1) dk,
(A.2.4b) j7g<k, )+ ikug k, 1) = U (k)f(9).

Next, assume that, for each mode,
f~Flwye ™,  gk,0)~g(k w)e ™"
More precisely,

(A28 f0= [ flwle ™ do, k@)= [ il @)™ du

where f and ¢ are to be interpreted as generalized functions, in order that the
integrals be defined (e.g., see Lighthill (1958)). Then (A.2.4) becomes

(A.2.6a) ~fwf'(w)=——"—f U(-k)g(k, ») dk,
27
(A.2.6b) (—iw + ikv)g (k, w) = Uk)f(w).

If we eliminate f from (A.2.6), multiply the resulting equation by g, use the
reality of U(x) and integrate over all real &, the result is
2

(A2.7) -wzj|g‘;2 dk+wvjk|g'|2dk+a JU(—k)g"(k,w)dk =0.

This is a quadratic equation for w, with real coefficients. Its discriminant is
positive, so (A.2.7) has two real roots. Thus, if k is real, @ must be real, which
is consistent with the existence of the energy integral, (A.2.2). However,
(A.2.7) does not yield a dispersion relation or demonstrate its absence,
because g is still free.

Now, we solve (A.2.6b) for §. The (formal) general solution (cf. Lighthill
(1958)) is

_U(k)f(w)

(A.2.8) Bl w)= 1

+iC(w)d (kv — w).

In the first term, we take only the principal part of the singular function; in the
second term, § is the Dirac delta function and C(w) is arbitrary. Special cases
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are C{w)= 70U (w/v)f(w), which correspond to specifying contours over or
under the singularity in the complex w-plane. Substituting (A.2.8) into
(A.2.6a) yields

(A.2.9) [w+2 f'g) kl‘) dk]f( )— (——)C(m)—

But this merely fixes C(w) in terms of f(cu); it does not fix w(k). This is the
important distinction between (A.2.1) and the problem discussed in the
preceding section: for each fixed k in (A.2.1), all real w’s are possible; there
is no dispersion relation. (This distinction was clearly identified by van
Kampen (1955) for the linearized Vlasov equations.)

Some readers may feel uneasy that generalized functions have suddenly
appeared, although they had not been mentioned before. In fact, they have
been lurking in the background all along, but it was not necessary to acknow-
ledge them before. To see this explicitly, consider a variation of (A.2.1) that
does have a dispersion relation:

d
= 10)==a [ gx, 1) dx = ~ag(0, ),
(A.2.10)

g5 0+ v="g(x )= VRSO,

Proceeding as before from (A.2.10) we obtain

(A.2.11a) —iwf(w) = —ag(0, w),
(A.2.11b) itkv — w)§(k, @) = U(k)f(w).

The second of these again gives (A.2.8) at k =0,

500, w)=i U(O)f(“’)+ic(w)6(—w).

However, when we substitute this into (A.2.11a) and multiply by w, the result
is
(A.2.12) [w?—aU(0))f(w)=0.

Because f(w) is arbitrary, (A.2.12) defines w?. Thus, generalized functions
appear in this problem as well, but it still has a well-defined dispersion relation.

To this point, all we have shown is that the method of Fourier transforms
fails for (A.2.1), because there is no dispersion relation. Fourier-Laplace
transforms provide another approach that often succeeds when Fourier trans-
form methods fail. Next we will use Fourier-Laplace transforms to solve
(A.2.1).
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Solve (A.2.4b) for £(k, t}, in terms of f(¢), and then Fourier transform back
to g(x, #). The result is

(A.2.13) g6 0= [ Ule=ole=m)ftr) dr + Gz —u0)
0
Then (A.2.1) reduces to a single equation for f:

(A.2.14) g{= —CYJ”f(T)K(U(f—T)) d‘T"a’I Ux)G(x —vt) dx,
Q -0

where
(A.2.15) K(y)=J‘ U(x—-y)U(x)dx=iJ’ |0 k) ™ dk.
—c0 217 -0

(Because K {y) is even, certain signs are arbitrary in the subsequent analysis.
The final result does not depend on this choice of signs, so we simply make a
choice and use it consistently.)

We restrict our attention to cases in which G(x)=0 (no pairwise correlation
of particles at ¢t =0). Then (A.2.14) reduces to

(A.2.16) —-=—aJ (DK (v(t—1)) dr
dt o

For a special family of potentials, (A.2.16) can be solved in closed form (see

Exercise 1). Here we are interested in general features, which do not require

special assumptions about U{x). The Laplace transform of (A.2.16) yields

O k) }
+ dk 0, R >0,
{pese [ @) =10, Re(p)
after we interchange the order of two integrals. The inverse transform gives
the formal solution of (A.2.16):

(A.2.17) f()—f( )J {p+2ﬂj'p'fl’kv dk} e dp,

where the Bromwich contour C is taken upward along a vertical line to the
right of all singularities of the integrand in the complex p-plane. These
singularities are the solutions of

0o 0|2
(A.2.18 +_"‘_J L
) P ) rike %0

Next we evaluate (A.2.17), and see how Landau damping appears. It is not
difficult to see that the only solutions of (A.2.18) are purely imaginary. If we
set p = iw, this merely states that w must be real for real k, as we found from
(A.2.7). However, some care must be exercised in moving the Bromwich



378 APPENDIX

k-plone
Lk -i *
r o [r\'/
a) Original contour with b) Equivalent contour with ¢) Equivalent contour with
Re (p)>0. Re (p)>0. Re(p)=0.

F1G. A.4. Contours for integration in (A 2,18).

contour over to the imaginary axis of the p-plane. (This extra care was precisely
the difference between Vlasov’s (1945) and Landau’s (1946) treatment of
Vlasov’s equations of a collisionless plasma.) If Re (p) >0, the k-integral in
(A.2.18) is along a contour that goes under the apparent singularity at k = ip/v,
as shown in Fig. A.4a. By Cauchy’s theorem, the k-integral is unchanged if
its contour is deformed as in Fig. A.4b. Now if we let Re (p)—> 0, as in Fig.
A.4c, this contour still goes under the singularity. But now k need not be real,
and o may become complex as well. Hence, (A.2.18) becomes (with p = iw)

o (10K elUe/o)
(A.2.19) +2m, kv dk + 20 =0,
where
o&) [ T2 T o)
(A.2.20) f P dx _—?—T)H-m . dx+£ . dx]

is the principal-value integral. Solving (A.2.19) recursively, and keeping only
the O(«) terms, gives the approximate solution
w = w,+ iw;,

(A.2.21) —i|0(0)|2—i(j Ulx) d )2>0
2. @ = =5 x)dx) =0,

o, =0(a).

Finally, we substitute back into (A.2.17) to get the dominant behavior of f, as
t—>00,

2

(A.2.22a) £(6)~ £(0) exp[ —%(I de) t}.

This can also be written as

(A.2.22b) FO~fOexp{-S [ K(y)ay 4
0

which corresponds to Bogolyubov’s (1962) formula for the decay to equilib-
rium of a nonequilibrium distribution of particles.
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It follows from (A.2.22) that there are two possibilities. If | I/ dx =0, then
to lowest order in « there is neither damping nor growth of f(z). The asymptotic
behavior of the solution of (A.2.1) requires a more accurate solution of
(A.2.19) than that given by.(A.2.21). To leading order in a, f is constant as is
[ g% dx as t» 0.

If { Udx #0, then f decays to zero at an exponential rate as ¢ - o (or as
t > —00). One might question whether it is appropriate to call this ‘‘damping,”
but certainly zero is the only stable equilibrium point for f.

Given f(t) (approximately), g(x,t) may be found (approximately) from
(A.2.13), For large time, if { Udx #0,

[= o}

g(x’ t)"’f(()) ’L U(x—v[+v,r)e*‘r/r0 dr

(A.2.23) o
=1f(0) ¥ U™ (x—vt)(vto)",
n=0

where

Thus g(x, t) tends toward a solitary wave of permanent form, traveling with
speed v, and with af g° dx = 2(0). The shape of the wave depends on details
of Ul(x).

In summary, if

(A.2.24) G(x)=0, U(x)=U(-x), J‘ Udx #0,

then (A.2.1) allows time reversal and has a time-independent energy integral.
However, there is no dispersion relation, and as - 00 {or £ - —0), energy is
transferred from f° to f g% dx at an exponential rate. The only stable configur-
ation of the system is f = 0, with g in the form of a solitary wave of permanent
form.

Example 2. Self-induced transparency (linear limit).

The phenomenon of self-induced transparency is discussed in detail in
Chapter 4. The equations are

A, +2iak =eN
(A.2.25) N, ==3(e*A +er%) x>0, —0<7r<00.
£x=(A)

Here ¢ (x, 7) is the (complex) envelope of the electric field, A (x, 7, «) represents
the (complex) induced polarization, N(x, 7, a) is the (real) normalized popula-
tion inversion, and

[s o}

(A.2.26a) (/\)EJ- gla)A(x, 1, @) da,



380 APPENDIX

where g(a) represents the inhomogeneous broadening of the medium. We
assume that g is a real, nonnegative function normalized by

(A.2.26b) J gda =1.

The usual laboratory experiment is conducted as an initial value problem in
x; x = 0is where the EM wave first enters the resonant medium. The appropri-
ate initial-boundary data for (A.2.25) are

A->0, N>-1 asr-»—00, forallx>0,

(A.2.27)
e(x=0,7) given, I le (0, 7)] dr < o0,

It is important to remember that (x, 7) reverse their usual roles in this problem:
x is timelike, 7 is spacelike.

The nonlinear problem, (A.2.25), has a time-independent energy integral;
at every x,

0
— (M*+NH=0.
oT

Then the boundary conditions (r - —c0) show that for all (x, 7, a)
(A.2.28) A*+NZ=1.

If the electric field imposed at x =0 is weak, then an approximate solution
can be obtained by linearizing (A.2.25) about its unperturbed state at + = —co.
Thus, for §« 1,

e(x,)~8E(x,7;8)+- -+,
(A.2.29) Alx, t,a)~8A(x, r,a;8)+ - -,
Nx, t,a)~=-1+8Ny(x, 7, a; 8)+ -+,

and the linearized equations are

A +2iaA=—E, —o<r<o, x>0,
EX = (A)’
(A.2.30) Nu=0,

AE->Q ast->-00,
E(0,7) given, E(0,7)>0 asr->-.

Notice that the linearized equations involve fewer unknowns than the original
problem, and that the constraint of a time-independent energy integral,
(A.2.28), is lost in the linearization.

With the ansatz

(A9 E) -~ (Aa -é) e ikx—iwr’
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(A.2.30) become
(—iw +2ia)A = —E,
(A.2.31) N e
ikE =(A).

From these equations, one can deduce that
(A.2.32) 2k{a XY+ ka (X)) = [(X).

For fixed, real w (remember to reverse (x, 7)}, this is a linear equation for &
with real coefficients. Thus, k£ must be real if @ is real, but we cannot deduce
a dispersion relation from (A.2.32), since A is still unknown.

As before, we may solve (A.2.31) for A:

iE

x—w

(A.2.33)

A= ; +iCk, )8 (2a —w),

where the first term on the right is interpreted in the sense of principal part,
and C(k, w) is arbitrary. Therefore,

(A.2.34)

>+§ Clk, w)g(%)) = ikE.

- - 1
(Ay= iE<
20 —w
This equation determines C{k, w} in terms of E; no restriction is imposed on
(k, w). Thus, (A.2.30) has no dispersion relation, and we must solve these
equations by other means.

Analysis of the linearized equations is simplified somewhat if we also assume
(A.2.35) E(0,7)=0, 7<0;

i.e., the imposed electric field was not turned on until +=0. Then it is

straightforward to show that both A and E vanish identically for all x > 0, » <0.

This permits the boundary condition at 7 = —0 to be imposed instead at r = 0.
It is convenient to eliminate A from (A.2.30):

T

(A.2.36) Ax, 7 00) = — J E(x, 7) exp {2ia(T = 1)} dT,

0

and

oo

w=[Agda=-[ B T) [ _gla)exp2ia(T 7)) dadT.

The interchange of integrals is justified for finite = if E is bounded, because
geL,. Define

(A.2.37) G(m)= j gla) e ™ da,
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which is related to the Fourier transform of g. Then (A.2.30) reduces to
(A.2.38) E/(x, 'r)=—J' E(x, T)G(r—T) dT, x>0, >0,

0

Some insight may be obtained by studying one type of inhomogeneous
broadening:

(A.2.39) gla)=2 1 a>0.

b 7
Ta‘+a’

In the limit a -0, g becomes a delta function and we say that there is no
broadening. For any a, (A.2.38) now implies

(A.2.40) E,,=—E-2aE,, x>0, 7>0.
This equation has a dispersion relation:
wk =-1-2iak
or
- 2ia
2. k= + .
(A.24D) ®’+(2a)’ w’+Qa)

Thus, (A.2.30) does not have a dispersion relation, but if we eliminate A, then
the resulting equation (A.2.40) does! Im (k)>0 for any a >0, so (A.2.40) is
stable; every Fourier mode decays (in x) to zero at an exponential rate. In the
limit a = 0, (A.2.40) becomes the Klein—-Gordon equation, (A.1.62), with no
damping. Even for a >0, (A.2.40) is still hyperbolic, and discontinuities will
propagate along the characteristics. The damping is too weak to smooth the
discontinuities.
An exact solution of (A.2.40) is

e 2Vxr), >0, x>0,

(A.2.42) E(x, )=
0, <0, x>0,

where Jy(r) is the Bessel function of order zero. This solution is attained by
abruptly turning on E(0, 7) at 7 =0, then turning it off exponentially slowly.
The discontinuity at 7 =0 propagates to all x >0. Elsewhere the solution
decays as x>0, or as 7->90. The induced polarization, A, is much more
complicated. It is evident from (A.2.36) that at any fixed x, A is excited by the
cumulative effect of E. Once excited, however, A(x, 7) remains excited as 7 -» 00
even though E vanishes. Thus, E tends to zero as 7 » c0; A has no limit. This
feature, that different parts of the solution behave much differently, is common
in problems without dispersion relations.

We now return to the general case, (A.2.38). It turns out that after A has
been eliminated, (A.2.38) has a dispersion relation for any acceptable broad-
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ening, g(«). To see this, take its Laplace transform in 7:
(A.2.43) E.tx,p)=—Ex,p)G(p).
G(p) is analytic for Re (p)>0, and has an explicit representation:
A {C))
op=| S
(p) —oo 21(1/ +p

Note that for Re(p) >0, the path of a-integration goes under the apparent
singularity at o = ip/2. Solving (A.2.43) and transforming back, we get

. 1 . .
{A.2.44a) E(x,1)= T J E@, p)exp {pr—G(p)x} dp,
mJe

where C denotes the Bromwich contour. E(0, p) can have no singularities for
Re (p)> 0, because E(0, 7) vanishes as r - o0. Thus, we may push the contour
in (A.2.44a) to the imaginary axis and set p = jw, provided we also deform the
contour of a-integration to stay under the singularity. The result is

(A.2.44b) E(x, T)=2LJ E(0, ~iw) exp {—in—é(—iw)x}dw.
-

This dispersion relation is

(A.2.45) kiw)= ,-g;(_iw):J gla) o
U

20 —w

where the contour is taken under the singularity. in particular,
ks w
(A.2.46) Im (k)=§g(§>.

(i) Because g(«) is nonnegative, there are no unstable modes.

(i) If g(e)>0, as in (A.2.39), all modes damp. HEI2 dr—-»0 as x>,
E{x, r) may or may not also decay pointwise as x - c0, as we have seen in
(A.2.42).

(ii1) If g(a) =0, some modes damp, while others are neutral. The asymptotic
(x - o0) behavior of E is determined by the undamped, dispersive modes.

This completes our discussion of the linearized equations of self-induced
transparency. We saw in Chapter 4 that in the nonlinear problem, the part of
the solution related to the continuous spectrum behaves qualitatively like this
linearized solution. The behavior of the solitons, of course, is different.

There are a number of other linear problems of physical significance that
have no dispersion relation. Two of these are discussed in Exercises 2 and 5.
As we have mentioned, even if a linear problem has a dispersion relation, the
method of Fourier transforms fails if the set of modes is not complete. We shall
not discuss this aspect of the problem here. However, examples of this are
examined in Exercises 6 and 7.
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EXERCISES

Section A.1

1. (a) Find the Fourier transform representation of the solution of Example
1, (A.1,23-25), that evolves from

a |x‘<_1_.
V2° a®’
Y(x)=
0, lx|>i;
a2

i.e., a particle is known to be somewhere in an interval of width 2/a°.

(b) Show that differentiation under the integral sign is permitted after the
contour is rotated.

(¢} Ast-> 00, where are the most likely regions in which to find the particle?

2. Solve Example 1 with the real initial conditions
W(x)=ae *¥,

Evaluate the Fourier integral as ¢ -0 by the method of steepest descents.
Show that in addition to the termsAgiven in (A.1.39), there may be a contribu-
tion from one of the poles of ¥{k), depending on (x/f). How do these
additional contributions affect the asymptotic behavior of ? What do they
mean in the context of the probabilistic interpretation of this problem?

3. Solve

T, =T,y x>0, >0, x>0,
T=0 atx=0,
T->0 asx->co,

1, <L,

T(x,t=0)={0’ > L

For any ¢>0, the maximum temperature in x must satisfy 7, =0. Find an
approximate formula for the location of the maximum, %(¢), as ¢ - 0. When
does this formula become valid? Does %(¢) remain within [0, L]? Why not?
How does the maximum temperature depend on time (as 1-»c0)? Compare
these results with the behavior on the infinite interval. Does the motion of %(f)
constitute a wave?

4. Show that the solution of
U+ cu, +auy, =0, —0<x <, (>0,

is equivalent to the solution of (A.1.49) by making a Galilean change of
variables.
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5. The first order differential equation
u+cu, =0
may be approximated by the difference equation

u ’-—u C l ' Cl ‘
n n m+1 m+1 m m
—— 4 U, —Up- +——l U1 U1 |= O,

where the subscripts and superscripts denote indices.
m+1

(a) Multiply the difference equation by (4, * +u, ) and sum over 1. Show
that

T =T ()
This is the “‘energy integral” for the difference equation. What is the energy
integral for the differential equation?

(b) What are the dispersion relations for the differential equation and the
difference scheme?

{c) This approximation introduces no numerical diffusion (i.e., || = 1), but
is known to produce phase errors. By expanding each term of the difference
equation in a Taylor series (i.€., unsy = u, +du/dx| h+- - +)about u* show
that the solution of the difference equation is approximated better by the
solution of the equation in Exercise 4 than it is by the solution of the first order
equation in Exercise 5. Find o in Exercise 4 in terms of (A, At, ¢). For given
initial data, estimate the time beyond which the solutions of the two equations
differ significantly (this requires that you define “‘significantly”). For further
discussion of these phase errors, see Orszag and Israeli (1974) and the
references cited there.

6. (a) Find the energy integral of
Uy =c2uxx_£2uxxxx’ —0<x <00, t>0.

(b) For some appropriate choice of initial data, show that the Fourier
transform solution splits into two parts, and that in terms of either the group
velocity or the phase velocity, one of these is ‘“left-going’* and the other is
“right-going.”

{c) For small ¢, show that either of these may be approximated by the
problem in Exercise 4, and therefore by (A.1.49). What is required for ¢ to
be “‘small”? (Note that this can be answered in a variety of ways, but all of
them involve the initial conditions.) Find the range of validity in (x, ¢) of this
approximate solution. Reconstruct the entire solution of the problem in (a) in
terms of these two approximate solutions. Discuss qualitatively how the
solution changes if the initial conditions contain significant short wave oscil-
lations.
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7. (a) The linearized “Boussinesq equation” is
U = Co gy + € 2 Urrs, —0<x <00, t>0.

Show that this problem is ill-posed. How does this difficulty appear when you
look for an energy integral? The dispersion relation for the linearized problem
of water waves is

w® = gk tanh kh.

Show that this dispersion relation corresponds to a problem that is well-posed,
and that the ill-posed problem above comes from taking only two terms in the
small k-expansion of tanh kA. Show that the approximation

2,

2
Uy = C Uy, T+ (?) Upxx

is as accurate for small k, and is well-posed. Does it have an energy integral?
2 2
(b) Uyy = C Upy + € Uprrx

is the linearized and time-independent version of the Kadomtsev-Petviashvili
equation (see § 2.1). Suppose u(x, y) is periodic in x with period L <2m¢/c.
Show that the problem is well-posed if we specify u(x, 0) and u(x, Y), Y #0.

8. (a) Show that, if we change a sign in (A.1.60),

Urr —Uxx = U,

the energy integral ceases to be positive definite, even though it is stiil
conserved. Show that this equation is unstable as an initial value problem.
What is the maximum growth rate?

(b) Show that

T
—_— N,(VT?-X?), T’zX?
wx, 7= T )
0, T*<X?,
is an exact (similarity) solution of (A.1.60). To what initial conditions does this
solution correspond? Does it have a finite energy integral?

9. Solve (A.1.72) with initial conditions corresponding to those in Exercise
1. Find explicitly the dominant terms in the asymptotic solution. Where is the
wavefront? How do the two solutions compare behind the wavefront?

10. (a) Show that the energy integral for (A.1.73) is

A D W 4

n=-—ao n=-oo

(b) Find the dispersion relation for (A.1.73). Show that |z|=1|Q|=1.
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(c) Construct the ‘“‘Fourier transform” solution of this equation, analogous
to (A.1.80). In what sense does it satisfy the equation?

(d) Show that the group velocity is bounded in this formulation. What is
the maximum group velocity?

(e) What is the asymptotic behavior of the solution as m - c0? How does it
compare with the asymptotic solutions of (A.1.23) and (A.1.72)?

{f) Show that if (A.1.73) is replaced with the explicit scheme,

LT e g e~ 20
At h’ ’

then both the phase and group velocities are bounded.
11, The linearized Toda lattice is

dz
;i—t_f d)n(t) = ¢n+1 +¢n—1 —2¢n~

(a) Is there an energy integral?

(b) Find the dispersion relation. Is it real for |z] = 1?

(c) Construct the “Fourier transform” solution that evolves from appropri-
ate initial data.

{d) What is the long time behavior of the solution? Compare this with the
solution of the wave equation, u, = u,,.

Section A.2.
1. (a) If U(x) in (A.2.1) is real, show that:
i) Ux)z0=2>K(y)=0;
(i) K(-y)=Kly);
(i) |K(y)|=K(0).
(Hint: use the Fourier representation of K(y).)
(b) Compute K (y) if

Ux)=Ae ™, a>0.

Show that if G(x)=0, then (A.2.16) is equivalent to a third order ordinary
differential equation, and that all three roots of the characteristic equation are
negative if « is small enough.

Find an approximate solution for f, and show that the asymptotic decay rate
is a special case of (A.2.22).

(c) What is the asymptotic shape of g(x, 1)? The fact that g(x, ¢) is localized
in x means that particles become uncorrelated when their separation distance
increases beyond the effective width of g. The fact that this model has this
property, even though three-body interactions were neglected, is of some
importance in statistical mechanics {Kritz, Ramanathan and Sandri (1970)).

(d) What is the consequence of G(x)#0 in (A.2.1)?
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2. The Weisskopf-Wigner (1930) model for the radioactive decay of an
unstable particle, when restricted to one dimension, is

d

= [v@wesnax, >0,
‘ﬂ.,}_@—(]
lat Y (x)x (1), —0<xy <0, >0,

¢=0 as x>0,
U{x) given, real, U(x)e L,N Ly,
x(0), ¢(x, 0) given,  y(x,0)€ L,

It has been analyzed from different viewpoints by Wellner (1960), and by Boldt
and Sandri (1964). It can be analyzed along exactly the same lines as (A.2.1).
(a) Show that an energy integral of this problem is

IO+ j e, OF dx.

(b) By taking a Fourier transform and eliminating x{w), show that w satisfies
a quadratic equation with real coefficients if k£ is real, and that it ailways has
two roots; (i.e., real k =>real w).
(c) Show that this problem has no dispersion relation.
(d) Solve for ¢(x, t) in terms of x(¢). Show that if ¢(x,0)=0, then x(?)
satisfies
dx

Et—— —L K(t—7)x(7) dr,

where
1 A e
K(y)=——j D)0 (~k) e~ dk.
27

(e) Solve this integrodifferential equation by Laplace transforms. Show that
the only singularities in the inverse transform occur on the imaginary axis.

(f) Find the asymptotic decay rate of y(¢) as t-» . Are there potentials
U(x) for which there is no decay? What is the asymptotic behavior of ¢(x, 1)?

(g) What happens as > —c0?

3. The linearized ‘“Benjamin-Ono”’ equation is

ou 9 1f°° 1
—t—— 1) dy =0.
at axZﬂ_ _my_x u(y’ )dy 0

(a) Find its energy integral.



LINEAR PROBLEMS 389

(b) Show that this integrodifferential equation has the dispersion relation
w+klk|=0.
{c) More generally, show that any integrodifferential equation of the form

ou [© ou
o + j-_wK(x y)ay dy=0
has a dispersion relation (Whitham (1974, Chapt. 11)).
(d) Show that the integral term in (A.2.10) is in the form of a convolution.
4. Sketch the level curves of the E-field in (A.2.42), for a >0 and for a =0.
What can you say about the behavior of A?
5. The linearized Vlasov’s equations of a collisionless plasma in one dimen-
sion are

frrofot (= £1-15)15—0,
m dv
Ex=—(41re)‘[fdv, —wo<x,v<0, t>0,

f=>0 as|x|>c0.

(Note that all integrals are from —o© to +00.) Here {F(v)+f(x, v, t} is the
velocity distribution function of electrons, with |f]« F. F is necessarily non-
negative, but f can have either sign. [ F dv = n, the number of electrons in the
equilibrium configuration. E(x, t) is the averaged (perturbation) electric field
strength. e and m are the charge and mass of a single electron, respectively.

(a) The linearized equations have infinitely many conservation laws. Show
that

(J f du) + ( J vf dv) =9 {conservation of perturbed charge.},
(J‘ v’f du) +(J. v’f dv) =0 (conservation of perturbed kinetic energy),

2
EutwpEr, =0,

where ¢ = | E dx, w) = 4wne*/m. (See Kruskal and Oberman (1965) and Case
(1965) for the infinite set of motion constants.)

Note that none of these is positive definite. The last equation states that
oscillates with the plasma frequency, w,. ¢ is somewhat analogous to | Tdx in
the heat equation.

{b) Look for solutions of the form

1/2
f d_. gA ikx—imt
E -~ dv e :
E
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Show that
2

ko [ 18 do—k* [ vlgP v+ o -0,

dF\'"?
— ¢ d
J- ( dv) gav
so that w must be real if k is real.
(c) Show that there is no dispersion relation (van Kampen (1955)).
(d) Find the Fourier-Laplace transform solution of the problem. Show that
the rightmost singularity in the complex p-plane is found by solving

_4me’ [ (dF/dv)(v)
m J vtoelk

k* dv=0,

for k >0 and p = iw. Landau’s (1946) approximate solution of this equation is
w = w, + iw;, where

4 2 -1
2 Ame ][gi_lf'(v){v+ﬂ'] dp =0,

m dv k
w; [ d°F w) ! dF; o,
kfz;f“”{”z} dv =7 -%).

6. (a) Find the Fourier series solution of

G+ ey = udyy, O<x<L, t>0
(0,1 =1, ¢<0, u>0
&(L,t) =0,

L
é(x,0) given and real, withj &2 dx < 0.
0
(b) Find the corresponding Fourier integral solution, obtained by letting
L - 0. Construct an example to show that at + =0, this ‘“‘solution” cannot
represent arbitrary (real) initial data e L,(0, ). Show that the Fourier integral
does represent the true solution if the initial data satisfy both

e o] [+ o]
J‘ Id’l elclx/(2y.) dx<00, JV |¢|2 elclx/u dx <.
0 0

(c) This is an example in which one obtains an incomplete set of modes by
separating variables. Using a Laplace transform, find the general solution of
the problem for initial data that satisfy both

oo

J. || dx <o and J | dx <o,
0

(¢]



LINEAR PROBLEMS 391

7. The linear stability of two-dimensional inviscid, plane Couette flow, first
analyzed correctly by Case (1960), is a famous example of a problem in which
the modes obtained by separating variables are incomplete. In that problem,
the unperturbed velocity field is given by

uO(ny> f)=)’, O<Y<1,
Vo~ 0.
The equations for smalj deviations from this state are
0 0 8
bu,
at 0x ax
av a I3}
oo, o
at 0x oy
Ju ov
— =
dx dy

subject to the boundary conditions that
viy=0=v(y=1)=0.
Look for solutions of this set in the form
B(x, y, 1)~ p(y)e™ ™™,

where (k, ) are constant. Reduce the differential equations to
52
(~w+ ky)[—%—kzv] = 0.
ay

Show that this equation has no noutrivial solutions with continuous derivatives
that satisfy the boundary conditions at y =0, y =1. Thus, this set of normal
modes 1s empty, and certainly is not complete. Case (1960) calls this the
“careless treatment.” He goes on to solve the complete linearized problem
by taking a Fourier transform in x and a Laplace transform in ¢ The reader
is referred to the original paper for details.
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Exponential lattice. See Toda lattice.
Extrinsic curvature tensor, 329

Factor ordering, 341

Fast variable, 251
Fermi-Pasta—Ulam problem, 3
Fifth order KdV, 86

Finite band potential, 134
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Finite perturbation, 137, 233

Focusing singularity, 256-258, 273, 316,
317

Fourier analysis, 48

Fourier integral solution of linear problem,
30, 353, 358, 362, 363, 367, 371

Fourier transform. 25, 26, 46, 48, 91, 103,
157, 211, 351, 354, 358, 363, 367-377,
382-387, 391

Fourier-Laplace transform, 351, 373, 376,
390

Fredholm alternative, 24

Fredholm determinant, 190

Fredholm integral equation, 24

Frequency-up conversion, 307

Functional (Fréchet) derivative, 58

Galilean invariant, 282, 339

Gauss—Bonnet theorem, 348

Gel’fand-Levitan-Marchenko equation
(GLF), 22, 23, 26, 32, 38, 99, 110, 190,
217- 232, 236, 250, 266

General evolution equation, 42-52, 86

General evolution operator, 42-51

Generalized function, 275

Goursat problem, 20

Great primary wave of translation, 2

Great Red Spot of Jupiter, 297-300

Green’s function, 250

Green’s identity, 251, 260

Green’s theorem, 257

Group theory, 152, 357

Group velocity, 75, 78, 356, 360, 371, 387

Guitar string, 344-346

Hamiltonian equation, 114

Hamiltonian operator, 152, 153

Hamiltonian system, 53, 58-65, 88, 89, 157,
205, 340, 355, 356

Hasselmann's theorem, 309

Heat equation, 263, 154, 361-363, 375

Hermitian operator, 12, 20, 32, 44

Higher nonlinear KdV, 252-261

Higher NLS, 252-261

Higher order KdV, 86, 138, 217

Higher order mKdV, 12, 13, 217

Higher order NLS, 12, 217

Hilbert space (L.) 339, 354, 357, 359, 363,
374, 375, 390

Hilbert transform, 26, 204, 211, 277

INDEX

Hill’s equation, 136
Hirota’s method, 34, 40, 171-191
Hyperelliptic function, 134, 139, 153

Ill-posed problem, 354, 386

Index of refraction, 303, 313, 329

Inhomogeneous broadening, 330-333, 336,
379, 380, 382

Initial data, 68, 69, 75, 76, 79, 80, 90, 353,
358, 368, 369, 373, 390

Integrability 58, 65, 89, 157, 162, 164, 171,
296, 338

Integral representation for eigenfunctions,
20

Intermediate long wave equation, 203, 211,
212

Internal wave, 282, 290, 292-297, 308-312,
346

Invariant of the motion, 206

See also conserved quantity.,

Inverse scattering, 15-28, 48, 49, 52, 151-
157, 161, 163, 170, 172, 188, 234-239,
243, 248-250, 259, 265-268, 294, 306-
311, 315-317, 322-324

See also Periodic inverse scattering.

Inverse scattering transform (IST), 1, 7, 8,

9, 36, 46, 48, 151, 152
and bilinear forms, 188

Involution, 64, 65, 89

Ion-acoustic waves, 97, 190

Ising model, 248

Isospectral flow, 200, 206

Isotropic dielectric material, 303-314

Jacobian elliptic function. See elliptic func-
tion.

Josephson junction, 327

Jost function, 15, 99, 124, 132, 217

Kadomtsev-Petviashvili equation (K-P),
113, 134, 188, 191, 197, 199, 200, 228,
229, 231, 259, 266, 268, 277, 289, 290,
386

Kerr effect, 314

Kerr solution in relativity, 339

Kinetic theory in one dimension, 374

Kink, 35, 36, 349

Korteweg-deVries equation (KdV), 3-14,
30, 34, 38-43, 46, 47, 52, 56, 58, 64, 67,
68, 79-86, 91, 117, 134, 138, 142, 144,
146, 148, 149, 153-163, 166, 172-174,
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179, 184, 185, 188, 191, 194, 196, 199,
203, 209, 211-217, 223, 233, 246, 249-
262, 26S5-271, 276, 278, 281-289, 292-
299, 318, 344, 363
with perturbations, 250-253
Kovalevskaya, 240

L.. See Hilbert space.
Landau damping, 334, 373, 374, 377
Langmuir wave, 97, 322
Laser, 302, 305-308, 316, 317
Laurent series, 241, 243, 247
Lax’s method, 9, 14, 239
Legendre equation, 269
Level degeneracy, 329, 334, 336
Lie algebra, 163, 167-171
Abelian, 168-170, 263, 264
non-Abelian, 168
Lie-Bicklund transformation, 156
Light cone, 91
Linearized dispersion relation, 179
Liouville’s theorem, 135, 139, 155
Local conservation, 105
Long wave, 279, 287-289, 292-297, 343-345
Long wave~short wave interaction, 77, 311
Lump solution, 113, 191, 197, 198, 232,
289
Linear pseudopotential, 165, 169-171, 263

Main spectrum, 13, 136, 137

Manley—Rowe relation, 306, 307

Mapping of functions, 66, 67, 86

Mass of a wave, 348

Mathematical induction, 172, 178

Maxwell-Bloch equation, 331, 341

Maxwell’s equation, 302, 330

Metric tensor of a surface, 320, 338

Miura’s transformation, 6, 7, 52, 79, 84,
86, 153, 160, 215, 266, 363

Modified Korteweg-deVries equation
(mKdV), 6, 7, 8, 9, 13, 21, 52, 75-79,
84-86, 121, 153, 155, 163, 175, 179, 181,
191, 197, 201, 215, 217, 219, 227, 262,
265, 276, 292-296, 299, 329, 344, 363

Modulated multiperiodic solution, 148

Moment of inertia, 258

Momenta, generalized, 59, 66

Monochromatic wave, 90, 318

Monodromy, 135, 240, 248, 249
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Monodromy coefficient, 40, 41, 42

Monodromy matrix, 135

Motion of poles. See N-body problem.

Multidimensional scattering problem, 110-
114

Multidimensional  Schraodinger
(eigenvalue) problem, 114

Multiple scales method, 250-261

scattering

N-band potential, 134, 146, 148, 150, 152
N-body Hamiltonian system, 205, 210
N-body problem, 203-217
N-soliton solution, 34, 38, 40, 41, 42, 151,
159, 172-175, 179-192, 195, 197, 211,
212, 239, 265, 289, 323
Natural stability, 123
Neumann series, 17, 100
Non-Abelian pseudopotential,
170, 171, 265
Nondispersive problem, 107
Nonlinear Fourier analysis, 45-51
Nonlinear instability, 109
Nonlinear ladder network, 183
Noalinear optics, 301-308, 311-318, 329-
336
Nonlinear Schridinger equation (NLS), 8,
9, 12, 28, 32, 33, 46, 134, 181, 182, 217,
238, 242, 243, 256-260, 265, 270-273,
312-326, 338, 340
differential-difference form, 120, 131
in two dimensions, 258, 260, 271
with dissipation, 256, 270, 274
See also Higher NLS, Higher order
NLS. Schridinger equation.
Normalizing coefficient, 27-31, 106, 133

151, 163,

Orthogonality condition, 43-45, 48-52, 271,
273,274
See also secular condition.

Painlevé conjecture, 152, 236, 243, 266,
268, 293

Painlevé function, 203

Painlevé property, 151, 234-239, 296, 315-
317, 322

Painlevé transcendent, 152, 197, 228, 233,
236, 238, 240, 243, 248

Parametric oscillation, 307

Parseval's relation, 25



424

Partial difference equation, 115, 122, 124,
151
nonlinear Schrodinger, 123, 131
Partial differential equation (PDE), 151,
153, 157, 161-163, 179, 233-239, 243,
250, 269, 352, 356
Periodic boundary condition, 134-148, 324
Periodic inverse scattering, 138-142
Periodic multiple wave solution, 190
Permutability theorem, 159
Permutation relation, 184, 187, 265
Perturbation, 250-261, 327, 341, 342
See also Finite perturbation.
Phase shift, 5, 40, 41, 75, 198, 199, 265,
299, 300
of solitons, 40-42, 86
Piston, 283, 285, 288
Poincaré recurrence. See Recurrence.
Poisson bracket, 60, 64, 86, 87, 339
Polarization, 301, 331, 332, 347, 379, 382
Pole, 239, 244, 247, 248
movable, 241, 243
Pole expansion, 203-216
See also N-body problem.
Potential, 66, 158, 166, 170, 277, 292, 341
See also Finite band potential, Reson-
ance potential,
Projection operator, 26
Prolongation structure, 161, 162
Pseudopotential, 152, 161-171, 262, 263,
265
See also Non-Abelian pseudopotential,
Nonlinear pseudopotential.
Pseudospherical surface, 328, 329, 338
P-type, 235-243, 250, 266-268, 316
Pulse:
27, 334-336, 349, 350
Or, 334-336
dark, See Envelope hole soliton.

Quadratic forms, fundamental, 328, 329
Quadratic interaction, 301
See also Three-wave interaction equa-
tion, Resonant triad.
Quantization, 149, 340, 341
Quantum field theory, 248, 338
Quartic resonance, 96

Radiation, 68, 75, 83, 337
Random wave, 312
Rational exponential soliton, 233
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Rational solution, 191-202, 265
Recurrence, 4, 150, 316, 355, 356
Recurrence time, 150
Recursion relation, 246
Reflection coefficient, 27-30, 38, 51, 52, 79,

83, 91, 109, 132, 133, 286
Reflectionless potential, 38
Relativity, 337
Resonance, 241, 242, 300, 301

See also Quartic resonance.

Resonant atomic frequency, 303, 329
Resonant interaction, 96, 190
Resonant quartet, 302, 303, 311-313
Resonant triad, 152, 190, 300-314, 346, 347
Reversible shock, 6
Riccati equation, 7, 235, 266
Ricci tensor, 337
Riemann-Hilbert problem, 25, 26, 99, 266,

338

differential, 216, 266

Riemann- Lebesgue lemma, 358, 368
Riemann surface, 142, 144, 147
Riemann theta function, 147
Rossby wave, 297-300
Ruby, 305, 307, 330

Scattering data, 16, 20, 25, 28-32, 48, 49,
53, 57, 61, 65, 66, 70-75, 85, 88, 342

Scattering matrix, 99

Scattering theory, 15

Schrodinger equation, 7, 9-13, 15, 26-28,
31, 33, 38, 46, 51-53, 58, 59, 68, 75, 89,
115, 134, 139, 216, 221, 357

See also Nonlinear Schridinger equa-
tion.

Second harmonic generation, 306-308
Secular term, 72, 251, 275, 280, 281, 299,
305, 314, 319, 320, 326, 332, 337, 343

Secularity condition, 251, 252

Szlf-adjoint, 272

Self-dual network equation, 121, 131

Self-focusing singularity. See Focusing sin-
gularity.

Self-induced transparency (SIT), 260, 329-
337, 348, 349, 379, 383

mechanical analogue of, 349

Self-modal interaction, 96

Self-self interaction, 96

Self-similar equation, 217, 227, 228, 238,
240, 245, 246, 249, 265, 267, 268, 286,
336, 357, 363, 365, 366
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Self-similar solution, 152, 232-250
Semi-infinite problem, 28
Shelf, 252-256, 284
Similarity equation, 40, 196, 203
Similarity solution, 69, 197, 233, 236, 238,
266, 356, 357, 365, 386
Sine-Gordon equation, 8, 9, 13, 34, 35, 38,
90, 134, 149, 155, 159, 170, 181, 190,
217, 237, 238, 262, 265, 267, 326-338,
348, 366
Singular equation, 26, 203
Singular-point analysis, 237, 240-243
Singularities for solitons, 33, 34
Singularities of an ODE:
fixed, 234, 235, 239
movable, 234, 235, 239, 240
Slinky, 345
Slow variable, 251
Solitary wave, 2, 5, 6, 238, 250, 251, 254-
259, 282, 297, 336, 341, 379
Soliton, 67, 68, 74, 75, 79, 80, 83, 86, 89,
90, 91, 151, 152, 156, 159, 160, 161,
167, 171, 172, 174, 175, 179-191, 238,
250-255, 259-262, 265, 266, 269, 270,
275, 276, 281-286, 290, 295, 296, 315,
317, 318, 323-326, 334, 338, 341, 344,
349, 383
definition, 6
Soliton perturbation, 250-261
Soliton phase shift formula, 174, 175
Soliton resonance, 189, 232, 266
Soliton stability, 259
See also Transverse stability.
Soliton superposition (permutation) for-
mula, 187, 188, 265
Soliton wave, 36, 38, 41
Southern Tropical Disturbance, 299, 300
Spectral band, 146
See aiso Unstable band.
Spectrum, 159, 161, 307, 308, 317
See also Auxiliary spectrum, Continu-
ous spectrum, Eigenvalue, Main
spectrum.
Square well, 28
Squared eigenfunction, 42-52
Stationary phase, 356, 357, 359, 364, 368,
371
Steepest descents, 356, 364, 384
Stochastic, 67, 276
Stokes multiplier, 249
Stratified fluid, 203, 211
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Surface tension, 260, 268, 277, 280, 289-
292, 319, 322
Susceptibility, 301, 302

Thermal conductivity, 3

Three-wave interaction equation, 94, 95,
99, 105, 110, 111, 233, 300, 308

Time dependence, 159, 334

Time scale, 275, 276, 294-299, 309, 313,
316, 319-323, 348

Toda lattice (exponential lattice), 114-117,
121, 132, 133, 148, 149, 183, 209, 387

Torus, 147

Trace formula, 56, 57, 70

Transverse perturbation, 250, 259, 260,
273, 289, 299, 315-318, 325, 336

Transverse stability, 250-261

Triad resonance, 96, 190

Truncation error, 123

Turning point, 244

Two-dimensional
190

Two-dimensional water wave, 260

Two-wave Interaction equation, 95

sine-Gordon equation,

Unstable band, 136, 137, 139, 142, 144,
145-147, 197
Unstable solution, 355

Volterra integral equation, 17, 100, 139
Volterra operator, 229

Water wave, 260, 267, 268, 277, 281-289,
314, 315, 317, 321, 322, 325, 347
‘Wave equation, 277, 319
linear, 280, 281
Wave front, 287, 372, 386
Wave guide, 317, 318
Wave measurement, 282, 283
Wave packet, 90, 260, 297, 305, 310-314,
317, 319, 321, 324, 325, 327, 347-349
Wave tank, 283, 295, 315, 317, 323, 326
Weierstrass P function, 210
Sce also Elliptic function.
WKB, WKBJ, 71, 101, 255
Wronskian, 65, 87

Zakharov-Shabat scattering problem, 8-14,
28, 32, 42-52, 117, 124, 163, 255
Zero of a(k), 126, 148
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