
I. Simple linear oscillators

A. Definitions and Background

Oscillators are a basic element in any measurement system and, in particular, are the core element
in any clocks. By definition, an oscillator is a device that produces a signal that varies sinusoidally
as a function of time, so that if s is the signal and t is time, we have s(t) = s0 cos(ωt +φ0), where
s0 and φ0 are constants, and ω = f/2π is the angular frequency and f is the usual frequency,
measured in Hz or s−1. The signal can be a mechanical signal. Examples are the oscillations of a
pendulum or a tuning fork. Typical frequencies for a pendulum clock are on the order of 1 Hz, while
typical frequencies for a tuning fork are on the order of 500 Hz. The signal can be an electrical
signal. Typical frequencies in this case range from a few kilohertz to hundreds of MHz. The signals
can come from crystal vibrations. Quartz crystal oscillators, which are the workhorse of most
timekeeping systems, oscillate at frequencies from a few kHz to tens of MHz. The best oscillators
use atomic transitions. When an atom or molecule gives up energy, it emits a pure electromagnetic
wave. The oscillations in this case are at much higher frequencies. For cesium atoms, which are
the basis of modern-day atomic clocks, the frequency is close to 10×109 Hz or 10 GHz. Optical
transitions occur at frequencies that are up to 100,000 times higher. Clocks are currently being
developed at NIST that use a lattice of Yb atoms and that have an oscillation frequency of about
500×1012 Hz or 500 THz.

Operation at higher frequency is important because clocks are made by counting the number of
zero crossings. A larger number of zero-crossings per second makes it possible to develop more
accurate clocks.

Strictly speaking, an oscillator does not have to produce a sinusoidal signal. It is sufficient for
the signal to repeat periodically, so that s(t +T ) = s(t), and in fact real oscillators do not produce
strictly sinusoidal signals. Some nonlinearity is always present. However, it is a remarkable fact of
nature that any oscillator, when it operates at a sufficiently low amplitude, will become sinusoidal.
Moreover, any real oscillator will not operate with an absolutely constant amplitude s0 and phase
φ0. There are always noise sources that make these quantities fluctuate (vary around its average
value) or drift (walk away from its initial value). We will characterize these effects later.

B. Second-Order Linear Oscillators

The simplest model of a mechanical oscillator is a mass on a spring oscillating around a fixed
equilibrium value x0 = 0, as shown in Fig. I.1.a. The force that the mass m experiences is given by
F =−kx, where x is the distance away from the equilibrium value and k is the spring constant. In
this case, Newton’s force law tells us that F = ma, where a is the acceleration or

m
d2x
dt2 =−kx. (I.1)

Equation I.1 is a second-order linear differential equation with constant coefficients. It will be
useful in the future to rewrite this equation as two first-order equations. If we define the velocity
v = dx/dt, we find that Eq. (I.1) becomes

dx
dt

= v,
dv
dt

=− k
m

x. (I.2)
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Figure I.1: Second-order linear oscillators. (a) Mechanical oscillator. A mass on a spring. (b) Electrical
oscillator. An LC (inductor-capacitor) circuit.

The solution to Eq. (I.2) can be written in a number of different ways, each of which has its uses.
One way to write the solution is

x(t) = x0 cos(ωt +φ0), v(t) =−ωx0 sin(ωt +φ0), (I.3)

where ω = (k/m)1/2. The constants x0 and φ0 are determined by the initial conditions of the
oscillator, or, in other words, the state that the oscillator is in at the point in time that we pick to
be the origin, t = 0. We see that xi ≡ x(t = 0) = x0 cosφ and vi ≡ v(t = 0) = −ωx0 sinφ , so that
x0 = (x2

i + v2
i /ω2)1/2 and φ0 = tan−1(−vi/ωxi). Another way to write the solution is

x(t) = xc cosωt− xs sinωt, v(t) =−ωxc sinωt−ωxs cosωt, (I.4)

where xc = acosφ and xs = asinφ . A third way to write to write this solution is

x(t) =
1
2

x̃exp(iωt)+
1
2

x̃∗ exp(−iωt), v(t) =
i
2

ω x̃exp(iωt)− i
2

ω x̃∗ exp(−iωt). (I.5)

where i ≡
√
−1. The constant x̃ is a complex number, so that x̃ = x̃1 + ix̃2, where both x̃1 and

x̃2 are real. We have x̃∗ = x̃1− ix̃2 is the complex conjugate of x̃, and we note that exp(±iωt) =
cosωt ± isinωt. It follows that x̃1 = xc and x̃2 = xs, so that x̃ = xc + ixs = x0 exp(iφ0). It might
seem as though the use of complex numbers unnecessarily complicates things, but, in fact, their use
greatly simplifies the mathematical discussions. The phase of the complex number x̃ corresponds
to the phase offset in the real displacement x(t).

A point on notation: Engineers typically use j =
√
−1, instead of i. Mathematicians and physi-

cists typically use i. In optical engineering, both notations can be found.
The simplest model of an electrical oscillator is an LC circuit, shown in Fig. I.1.b. In this case,

we find that
dV (t)

dt
=

1
C

I(t),
dI(t)

dt
=−1

L
V (t), (I.6)

where L is the inductance and C is the capacitance. This equation is once again a linear second
order differential equation. Mathematically, it is identical to the mechanical oscillator, even though
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the physical system is completely different. Same equations; same solutions! So, we can just write
down the solution,

V (t) =
1
2

Ṽ exp(iωt)+ c.c., I(t) =
i

2Z0
Ṽ exp(iωt)+ c.c, (I.7)

where c.c. is short for complex conjugate, ω = 1/(LC)1/2, Z0 = (L/C)1/2 is the characteristic
impedance of the circuit, and Ṽ = Ṽ1 + iṼ2 is determined by the initial conditions. We have Ṽ1 =
V (t = 0) and Ṽ2 =−I(t = 0)Z0.

C. Visualizing the Solutions

In order to understand these solutions, it is useful to plot them. We will use MATLAB for this
purpose. MATLAB is a high-level programming language that has embedded in it many special
functions and routines that are necessary for engineering and physics. It also has numerous routines
for plotting. UMBC has a license; so, it is available to all UMBC students for free.

When plotting solutions, it is necessary to pick a normalization for the quantities since comput-
ers work with non-dimensional quantities. It is possible to normalize with respect to the standard
SI (Système International) units. The SI units are the basic units in terms of which all other units
are defined [s = second, kg = kilogram, m = meter, A = ampere, K = kelvin, mol = mole, cd =
candela]. However, it is usually better to work in units that correspond to the physical system. In
normalizing time, we are typically interested in times that are short compared to a second; so, we
might use units of ms (milliseconds, 10−3 s), µs (microseconds, 10−6 s), ns (nanoseconds, 10−9 s),
or ps (picoseconds, 10−12 s). In normalizing frequencies, we are typically interested in frequencies
that are bigger than 1 Hz; so, we might use units of kHz (kilohertz, 103 Hz), MHz (megahertz,
106 Hz), GHz (gigahertz, 109 Hz), or THz (terahertz, 1012 Hz).

In a typical laboratory experiment with a mass on a spring, the mass might equal 10 grams or
10−2 kg in standard SI units. The spring might have a spring constant of 10 N/m. In this case,
the radial frequency is given by ω = [10/10−2]1/2 = 31.3 s−1, so the usual frequency is given
by f = ω/2π = 5.03 Hz, which means that the weight will oscillate about five times per second.
Hence, normalizing with respect to the second makes sense. A typical maximum length x0 might
be on the order of 1 cm (10−2 m), so that normalizing lengths with respect to 1 cm makes sense.
In this case, we find that the maximum velocity is given by ωx0 = 0.316 m/s.

If we consider a typical laboratory experiment with an LC circuit, the capacitor might have a
capacitance of 100 pF (10−10 F = 10−10 s4A2kg−1m−2) and the inductor might have an inductance
of 1 mH (10−3 H = 10−3 s−2A−2kg m2). In this case, we find that ω = 3.16× 106 s−1, so that
f = 503 kHz or f = 0.503 MHz. So, it makes sense to work in units of kHz or perhaps MHz. In
10 µs, there are about five oscillations. If the amplitude of the voltage is 1 V, then the characteristic
impedance is given by Z0 = (10−3/10−10)1/2 ohms = 3.16×103 Ω = 3.16 kΩ. The amplitude of
the current is then given by I0 = 0.316 mA or 316 µA.

Figure I.2.a shows plots of the voltage and current as a function of time for five periods. Fig-
ure I.2.b shows phase plots in which both the current and voltage are plotted as time varies. Phase
plots are useful as they show qualitative features of the evolution that time plots don’t reveal, and
we will use them many times. We see that the phase plots close in on themselves, which corre-
sponds to the pattern repeating periodically, as is required for a good oscillator. Here, we show
three different cases, corresponding to V0 = 0.5, 0.7, and 0.9. The curves are elliptical in shape
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Figure I.2: Plots of the voltage and current (a) as a function of time and (b) as phase plots.

because the oscillator energy is constant. The energy of the mechanical oscillator is given by

U =
1
2

mv2 +
1
2

kx2, (I.8)

and the energy of the electrical oscillator is given by

U =
1
2

LI2 +
1

2C
V 2. (I.9)
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Figure I.3: Parallel RLC circuit.

D. Damped-Driven Oscillators

In reality, all physical systems are damped. In the case of the mechanical oscillators, our equations
become

dx
dt

= v,
dv
dt

=−αv− k
m

x, (I.10)

For the electrical oscillator, if we consider the RLC circuit that we show in Fig. I.3, we find

dV
dt

=
1
C

I,
dI
dt

=− 1
RC

I− 1
L

V, (I.11)

where R is the resistance. Loss in this circuit is reduced when the resistance is large so that there is
little current flow through the resistor. Focusing on the electrical oscillator, we find that Eq. (I.11)
has the general solution

V (t) =
1
2

Ṽ+ exp(λ+t)+
1
2

Ṽ− exp(λ−t), I(t) =
λ+

2
Ṽ+ exp(λ+t)+

λ−
2

Ṽ− exp(λ−t), (I.12)

where

λ± =− 1
2RC
±

[(
1

2RC

)2

− 1
LC

]1/2

. (I.13)

We see that if (1/2RC)2 > 1/LC, then both λ+ and λ− are real, while if 1/LC > (1/2RC)2, then
λ+ and λ− are complex conjugate numbers. For oscillators, we are interested in the second case,
where the damping is small. In this case, we find λ+ = iω− γ , where

ω =

[
1

LC
−
(

1
2RC

)2
]1/2

=
1

(LC)1/2

[
1− 1

8
L

R2C
+ · · ·

]1/2

' 1
(LC)1/2 , (I.14)

where we have written a Taylor expansion for ω , and we have just kept the lowest-order term. We
find γ = 1/2RC. In this limit, we may write

V (t) =
1
2

Ṽ exp[(iω− γ)t]+ c.c., I(t) =
i

2Z
Ṽ exp[(iω− γ)t]+ c.c., (I.15)

where 1/Z = (ω + iγ)C. Hence, the voltage and current are no longer exactly π/2 out of phase.
Writing the voltage and current explicitly as real quantities, we find
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Figure I.4: Phase plots of driven-damped oscillators. (a) The damped oscillator without driving. The phase
trajectory tends to zero. (b) The driven oscillator with a single driving frequency and two different initial
conditions. The trajectory in both cases tends toward the driven solution, shown in blue.

V (t) =V0 cos(ωt +φ0)exp(−γ t),

I(t) =−V0

Z0
sin(ωt +φ0 +φoff)exp(−γ t),

(I.16)

where V0 and φ0 are two constants determined by the initial conditions, and φoff = tan−1(γ/ω)
Returning to the oscillator circuit that we considered in Sec. I.C and setting the resistance R

equal to 50 kΩ, V0 = 1 V, and φ0 = 0, we show the evolution in Fig. I.4.a. The resistance causes
the voltage and current to spiral into the origin, ultimately damping away completely.
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Figure I.5: RLC circuit with a current source.

D.1. A single frequency driver

This “death spiral” is of course unacceptable in real oscillators, and it must be compensated by
a source of energy that makes up for the loss. So, for example, in the RLC circuit that we are
considering, we can add a current source, as shown in Fig. I.5. Writing the time derivative of the
current source J(t) as J′(t), we find that the equations that govern the voltage and current become

dV
dt
− 1

C
I = 0,

dI
dt

+
1

RC
I +

1
L

V = J′. (I.17)

Equation (I.17) is referred to as an inhomegeneous linear equation because of the driving term, as
opposed to Eqs. (I.1), (I.2), (I.6), (I.10), and (I.11), all of which are homogeneous linear equations.
The term J′ is referred to as the inhomogeneous term.

We begin by considering the case where the driver is a pure oscillating signal, so that

J = J0 cos(ωt +φ0) =
1
2

J̃ exp(iωt)+ c.c., (I.18)

where J0 and φ0 are constants, and J̃ = J0 exp(iφ0) is a complex constant. We will denote the
resonant frequency of the oscillator as ω r = (1/LC)1/2. The driven solution is referred to as a
particular solution.

It is useful to choose the time origin so that φ0 = 0, in which case J̃ = J0 is purely real. Because
our equations are linear, we can find the solutions for V (t) and I(t) by just setting J(t)= J̃ exp(iωt),
so that J′ = iω J̃ exp(iωt) and then taking the real part at the end. That turns out to be the simplest
approach mathematically. There will be an initial transient that damps out, after which both I(t)
and V (t) will be proportional to exp(iωt). Writing I(t) = Ĩ exp(iωt) and V (t) = Ṽ exp(iωt), we
find

Ṽ =
iω
C

J̃
ω2

r −ω2 +2iωγ
=

iω
C

ω2
r −ω2−2iωγ

(ω2
r −ω2)2 +4ω2γ2 J̃,

Ĩ =− ω2J̃
ω2

r −ω2 +2iωγ
=−ω2(ω2

r −ω2−2iωγ)

(ω2
r −ω2)2 +4ω2γ2 J̃.

(I.19)
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We then find that the real driven solutions, VD(t) and ID(t) are given by

VD(t) =
ω

ω r
Z0J0AD cos(ωt +φD) =

ω

ω r
Z0J0AD [cosφD cosωt− sinφD sinωt]

=VDc cosωt−VDs sinωt,

ID(t) =−
ω2

ω2
r

J0AD sin(ωt +φD) =−
ω2

ω2
r

J0AD [sinφD cosωt + cosφD sinωt] ,

− ω

ω r

1
Z0

(VDs cosωt +VDc sinωt) ,

(I.20)

AD =
ω2

r

[(ω2
r −ω2)2 +4ω2γ2]

1/2 ,

sinφD =
ω2

r −ω2

[(ω2
r −ω2)2 +4ω2γ2]

1/2 , cosφD =
2ωγ

[(ω2
r −ω2)2 +4ω2γ2]

1/2 ,

VDc = AD cosφD, VDs = AD sinφD.

(I.21)

We now rewrite the transient solution in Eq. (I.16) in the form

VT(t) =V0 cos(ωosct +φ0)exp(−γt) = [Vc cosωosct−Vs sinωosct]exp(−γt),

IT(t) =−
ωosc

ω r

1
Z0

[(
Vc−

γ

ωosc
Vs

)
sinωosct +

(
Vs +

γ

ωosc
Vc

)
cosωosct

]
exp(−γ t),

(I.22)

where ωosc = (ω2
r − γ2)1/2 is the natural frequency of the oscillator, Vc =V0 cosφ0, Vs =V0 sinφ0,

and we note that sinφoff = γ/ω r, cosφoff = ωosc/ω r. Rewriting Eq. (I.16), makes it easy to express
the total current in terms of the initial conditions. The total voltage and current are given by V (t) =
VD(t)+VT(t) and I(t) = ID(t)+ IT(t). Writing Vc and Vs in terms of the initial conditions, we find

Vc =V (t = 0)−VDc, Vs =−
ω r

ωosc
[Z0I(t = 0)−VDs]−

γ

ωosc
Vc. (I.23)

In Fig. I.4.b, we show the transient evolution of the the voltage V (t) vs. the current I(t) when the
driving current J0 = 10 µA, and we set ω = ω r. We show two cases. In both cases, the initial
current is 0; in the first case, the initial voltage is 0 V, and in the second case, the initial voltage is
1 V. While in both cases, the transient evolution ultimately approaches the driven oscillation, the
approach is slow once the trajectory nears the final trajectory, shown in blue. This slow approach
is not desirable in practice, and we will show later that it is possible to use nonlinearity to force a
faster approach to the final oscillating state.

A point that may appear surprising at first is that the current oscillations are much larger than the
driving current. However, most of the current oscillates back and forth between the inductor and
the capacitor; a relatively small amount of drive current is needed to compensate for the loss in the
resistor. The ratio of the ω r/γ in our illustration (' 30) is relatively small, and our oscillator is in
fact a poor oscillator! We chose this small value in order to be able to illustrate the damping and
transient effects. In fact, any useful oscillator will have ratios that are many orders of magnitude
higher. Some loss is however essential. In order to use the oscillator, we must be able to measure the
voltage, and that is done by having a load, which implies resistance and some loss. The same holds
true for mechanical oscillators, where the displacement must be measured, or atomic oscillators,

8



where emission from a higher energy state to a lower energy state is accompanied by radiation
and energy loss. In the case of our electrical oscillator, the energy dissipation Udiss during one
oscillation period, once the transient oscillations have ended, is given by

Udiss =
∫ 2π/ω

0
[V 2(t)/R]dt =

π

ωR
Z2

0J2
0

ω2

ω2
r

A2
D. (I.24)

The rate at which energy transfers to the load on average is

dŪ
dt

=
1

2R
Z2

0J2
0

ω2

ω2
r

A2
D. (I.25)

D.2. A broadband driver

In the solution that we just obtained, we assumed that the driver is itself a perfect oscillator with
an ideal sinusoidal variation in time. However, the purpose of an oscillator is to take an imperfect
driver that has many different driving frequencies and turn it into a nearly pure signal. If we now
consider a driver that consists of N different driving frequencies, we have

J(t) =
N

∑
n=1

Jn cos(ωnt +φn). (I.26)

If we have a broadband source, then we may assume that Jn = J0 is constant over the range of
frequencies that can couple efficiently to the oscillator. We then find that

dŪ
dt

=
1

2R
Z2

0J2
0

N

∑
n=1

ω2

ω2
r

A2
D(ωn). (I.27)

In the limit of practical interest, in which ω r/γ � 1, we can neglect the difference between ω and
ω r in Eq. (I.27), except for the term in the denominator in which (ω2

r −ω2) appears. Even this
term can be rewritten as (ω2

r −ω2)' 2ω r(ω r−ω). We now find that

A2
D(ω)' 1

4
ω2

r
(ω−ω r)2 + γ2 . (I.28)

We see that the A2
D falls to half its maximum value when ∆ω ≡ ω−ω r = γ .

In Fig. I.6, we show a2 = 4A2
Dγ2/ω2

r vs. x = (ω−ω r)/γ in both a linear and a log-log plot. We
see that both a2 and x are normalized. They are unitless, so that we obtain a figure that is the same
for any oscillator, independent of the values of ω r and γ . In Fig. I.6.a, we see that the function
tends to zero as x→±∞, which implies that the oscillator is doing what it should; it is filtering the
broadband driver. In Fig. I.6.b, we see that the curve has a slope of 0 when 0 < x < 1 and a slope
of −2 when 1 < x < ∞. The slope of −2 is characteristic of a polynomial falloff proportional to
|ω−ω r|−2 and is something that can be looked for experimentally. With real oscillators, there will
be a noise floor that cuts off the continued falloff ∝ |ω−ω r|−2.

It is usual to characterize oscillators using their linewidths or quality factors. The linewidth is
the bandwidth between the two points where the response of the oscillator falls to half its maxi-
mum value, referred to as the full width at half maximum (FWHM) value. In the case that we are
considering, we find that the FWHM linewidth is given by γ/π since it is usual to use the standard
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(a)

(b)

Figure I.6: (a) Linear and (b) log-log plots of 4A2
Dγ2/ω2

r vs. (ω−ω r)/γ . In (a) we illustrate the FWHM
width in the angular frequency. In (b) we show the characteristic slopes of 4A2

Dγ2/ω2
r when 0≤ x < 1 and

−2 when x > 1 in a log-log plot.

frequency, rather than the angular frequency when quoting linewidths. The quality factor (Q) is de-
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fined in two different ways that are not exactly equivalent. The first is Q = f/∆ f , where ∆ f is the
FWHM linewidth and f is the resonant frequency. For the linear oscillator, we find that Q=ω r/2γ .
Another way to define Q is

Q = 2π× energy stored
energy dissipated per cycle

. (I.29)

For the electrical oscillator that we considered, the energy stored is given by Ustored = (L/2)I2
max =

(1/2C)V 2
max, where Imax is the maximum current flowing through the inductor, Vmax is the maxi-

mum voltage at the capacitor, and we note that the stored energy oscillates back and forth between
the two. From Eq. (I.20), we see that (L/2)I2

max = (L/2)J2
0 A2

D. From Eq. (I.24), we see that in the
limit of interest to us (ω 'ω r), Udiss = (2π/ω r)(L/2RC)J2

0 A2
D. Recalling that γ = 1/2RC, we find

that Q = 2π(Ustored/Udiss) = 2γ/ω r, which is the same result that we obtained with our previous
definition. These two definitions are equivalent for any linear oscillator with a single oscillation
frequency, regardless of whether the oscillator is electrical or mechanical.

E. Matrix Representations: Eigenvalues and Eigenvectors

To find the oscillation frequencies in Eq. (I.3), (I.7), and (I.14), we can use a simple algebraic
approach. To find Ṽ and Ĩ in Eq. (I.19), we can also use a simple algebraic approach in which we
first eliminate one of the variables, solve for the second, and substitute to find the first. However,
this ad hoc approach no longer works well when we consider more complex system. Instead, it is
better to use the methods of linear algebra in which we use matrix representations.

We begin by defining a 2×1 column vector

u =

[
u1
u2

]
, (I.30)

where u1 = x and u2 = v for the mechanical oscillator, and u1 = V and u2 = I for the electrical
oscillator. We can now write the equations that govern the oscillator as

du
dt

= Au, (I.31)

where

A=

[
A11 A12
A21 A22

]
(I.32)

is a 2×2 matrix. The rule for multiplying a 2×2 matrix and 2×1 column vector is

v = Au↔ vm =
2

∑
n=1

Amnun, (I.33)

where v is also a 2× 1 column vector. For the mechanical driven-damped oscillator, we have
A11 = 0, A12 = 1, A21 = −k/m, and A22 = −α . For the electrical oscillator, we have A11 = 0,
A12 = 1/C, A21 =−1/L, A22 =−1/RC.

To find the oscillation frequencies, we search for solutions that have the form du/dt = λu since
we know that the solution of (almost) any linear ordinary differential equation is composed of
the sum of functions that vary exponentially in time. (The small caveat is that in some cases,
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Figure I.7: Schematic illustration of (a) non-independent and (b) independent eigenvalue equations. When
the equations are not independent, they define lines that lie on top of each other, shown as a red-blue dashed
line. When the equations are independent, they define lines that only meet at ũ1 = ũ2 = 0.

the exponentials have to multiplied by polynomials in time.) Writing u = ũexp(λ t), Eq. (I.31)
becomes

λ ũ = Aũ or (A−λ I)ũ = 0, (I.34)

where I is the identity matrix, whose elements are given by I11 = 1, I12 = 0, I21 = 0, and I22 = 1.
This equation is an eigenvalue equation. Eigenvalue equations play an important role in almost
every area of science and engineering; so, there are many textbooks that describe their properties,
as well as computational implementations that solve these equations. We will take advantage of
the MATLAB implementations. We see that one solution to Eq. (I.34) is the trivial solution ũ = 0.
In order for there to be non-trivial solutions, the two equations that make up the matrix equation
(A11−λ )ũ1 +A12ũ2 = 0 and A12ũ1 +(A22−λ )ũ2 = 0 must be effectively the same equation. If
we plot ũ2 vs. ũ1, we see that both equations correspond to lines that pass through zero. Either
the slopes on the same, in which case they corresponds to the same line, as shown in Fig. I.7.a,
or the slopes are different, shown in Fig. I.7.b, in which case the only solution is ũ1 = ũ2 = 0.
In the former case, we say that the equations are not independent. More generally, we can also
say that the determinant of the matrix A− λ I = 0, which is written det(A− λ I) = 0. For large
dimensional systems, the eigenvalues and the oscillating frequencies are still determined by the
condition det(A−λ I) = 0. We will give a general definition of the determinant later. The deter-
minant of any 2× 2 matrix B is given by B11B22−B12B21 and for our eigenvalue equation that
implies (A11−λ )(A22−λ )−A12A21 = 0 or λ 2−λ (A11 +A22)+(A11A22−A12A21) = 0. We thus
obtain a quadratic equation for λ . Substituting in the expressions for either the mechanical or elec-
trical oscillator, we can obtain the same expressions for the complex oscillation frequencies that
we obtained before. More generally, these values of λ are referred to as eigenvalues

Once we have found the eigenvalues, we can find corresponding values of ũ that solve these
equations. These are referred to as eigenvectors. For each eigenvalue, we can use either of the
two rows of the eigenvalue equation. If we consider for example the electrical oscillator without
damping, we find that eigenvectors are given by

e+ =

[
1

i/Z0

]
, e− =

[
1

−i/Z0

]
, (I.35)

corresponding respectively to the eigenvalues λ+ = iω r and λ− = −iω r. Since the equations are
linear, any eigenvector when multiplied by a constant is also an eigenvector. These correspond
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to all the points on the line that we show schematically in Fig. I.8.a. So, the general solution of
Eq. (I.31) becomes

u =
1
2

ũ+e+ exp(iω rt)+
1
2

ũ−e− exp(−iω rt), (I.36)

where ũ+ and ũ− are complex constants that depend on the initial conditions. At t = 0, we see that

u(t = 0) =
[
V (t = 0)
I(t = 0)

]
=

[
(1/2)(ũ++ ũ−)
(i/2Z0)(ũ+− ũ−)

]
, (I.37)

from which we conclude ũ+ = V (t = 0)− iZ0I(t = 0) and ũ− = V (t = 0)+ iZ0I(t = 0). We see
that ũ+ and ũ− are complex conjugates, which ensures u is real at all times. Comparing Eq. (I.37)
to Eq. (I.7), we see that Ṽ = ũ+. This solution is consistent with our earlier results. So, we have
learned nothing new. However, this approach is the best approach to use when considering higher-
dimensional oscillators.

To solve the driven-damped oscillator equations use matrix methods, we first rewrite Eq. (I.17)
in the form

du
dt
−Au = D, (I.38)

where

A=

[
0 1/C
−1/L 1/RC

]
, D =

[
0
J′

]
. (I.39)

We assume that our driver D is at a single frequency, so that D = D̃exp(iωt), where D̃ is a known
constant vector, and we search for solutions in the form u = ũexp(iωt), where ũ is an unknown
constant vector. Writing out these vectors, we have

D̃ =

[
0

iω J̃

]
and ũ =

[
Ṽ
Ĩ

]
. (I.40)

Equation (I.38) now becomes
Bũ = D̃, (I.41)

where B= iω I−A. To solve Eq. (I.41), we may use the inverse of B, written as B−1. This matrix
satisfies the relation B−1B= BB−1 = I. It then follows that

ũ = B−1D̃. (I.42)

In general, it is not efficient to solve matrix equations using the inverse when the system of equa-
tions becomes large. It is better to use Gauss-Jordan elimination. However, this approach works
well for the second-order system that we are considering here. The inverse of a matrix B is given
by

B−1 =
1

det(B)

[
B22 −B12
−B12 B11

]
, (I.43)

which becomes explicitly in this case

B−1 =
1

[iω (iω−1/RC)+1/LC]

[
iω +1/RC 1/C
−1/L iω

]
. (I.44)

Operating with B−1 on D̃ and using the relations 1/RC = 2γ , 1/LC = ω2
r , we obtain Eq. (I.19).
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Figure I. 8: MATLAB output for the cases considered in Fig. I.4. (a) The eigenvalues and eigenvectors
for the damped oscillations, shown in Fig. I.4.a. (b) The driven voltage and current solutions shown in
Fig. I.4.b.
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Due to the importance of linear algebra in a wide variety of applications, MATLAB has imple-
mented a powerful set of algorithms to solve eigenvalue problems and linear systems of equations.
For the numerical examples that we presented in Fig. I.4, we have C = 10−10, L = 10−3, and
R = 5×104 in appropriate SI units. Explicitly, we then have

A=

[
0 1010

−103 −2×105ω

]
. (I.45)

In general, it is not good computational practice to use numbers with large exponents. It is better to
use quantities that are all on the order of one by appropriately renormalizing quantities. If we use
microseconds instead of seconds and we use milliamperes instead of amperes, our matrix becomes

A=

[
0 10
−1−0.2

]
. (I.46)

and we see that none of the quantities differs too much from one. This sort of dimensional analysis
also gives us an immediate feel for the rough value that quantities will have. Frequencies will be on
the order a megahertz, voltages will be on the order of one volt, and currents will be on the order
of milliamperes. That is consistent with the results that we already plotted in Fig. I.2.

To find the eigenvalues and eigenvectors, we may use MATLAB’s eig routine. The command
[E,L] = eig(A) produces the eigenvalues λ± = −0.1± 3.1607i, which are the diagonal ele-
ments of the matrix L. We show the output in Fig. I.6.a. This command also produces the eigen-
vectors e± = [0.9535,−.0095±0.3014]t , where t denotes the transpose, so that

[0.9535,−.0095±0.3014]t =
[

0.9535
−.0095±0.3014

]
.

The eigenvectors appear as the columns of the matrix E = [e+,e−]. MATLAB uses the l2 norm for
eigenvectors in which the sum of the absolute squares equals 1. In order to put the eigenvectors in
the form where the first element of e+ and e− both equal 1.0, we divide E by E11, which yields
e± = [1.0,−0.01± 0.3161i]. We infer that γ = 0.1 µs−1 and ωosc = 3.1607 µs−1, corresponding
to an oscillation frequency of 0.503 MHz or 503 kHz, which is what we found earlier. We infer as
well that i/Z = (i/Z0)(ωosc/ω r + iγ/ω r) = −0.01+ 0.3161i kΩ−1, so that Z0 = |Z| = 3.162 kΩ,
which is again consistent with our earlier result.

To find ũ = [Ṽ , Ĩ]t for the case driven solution that we considered in Fig. I.4, we first recall
that ω = ω r =

√
10 = 3.1623 µs−1 in the case that we considered. We also recall that iω J̃ =

i
√

10×0.01 mA-µs−1. Hence, we find

B=

[
i
√

10 −10
1 i
√

10+0.2

]
, D̃ =

[
0

i0.01
√

10

]
. (I.47)

To find ũ = [Ṽ , Ĩ]t , we use the MATLAB command u = B\D. This command uses Gauss-Jordan
elimination to solve for ũ. We show the results in Fig. I.6.b. We find Ṽ = 0.5 V and Ĩ = 0.1581i mA,
which equals 158 µA. These results are consistent with our prior results.

Exercises
These exercises combine investigative exercises that require you to do some on-line research (I),

mathematical or computational exercises that require you to verify the steps in the calculations of
this section or extend them (M), and experimental exercises that require you to build something to
test the ideas in this section (E).
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1. (I) The most commonly used oscillators are quartz crystal oscillators. What is their operating
principle? What is its operating frequency range? What are typical quality factors?

2. (I) Rubidium and sapphire crystal oscillators are alternatives to quartz crystal oscillators.
What are their advantages and disadvantages?

3. (I) The best oscillators are based on atomic transitions. Cesium transitions are the basis of
modern-day atomic clocks. There is increasing interest in using transitions of an ytterbium
lattice, and future clocks are likely to based on these transitions. What are the operating
frequencies and linewidths of these oscillators? What are the corresponding quality factors?

4. (M) For the mechanical oscillator that is described in Sec. I.C, modify the code
OscillatorI2 (part b) to make a phase plot of x vs. v for five cases where the maxi-
mum excursion ranges between 1 cm and 4 cm. Calculate the energy that is stored in the
oscillator for each of these cases.

5. (M) Verify Eq. (I.5) by substitution into the governing equation, Eq. (1.2), and relate x̃ and ṽ
to the initial conditions.

6. (I and M) If we consider hydrogen-iodide (HI), which is a diatomic molecule, the hydrogen
atom will vibrate in the potential well of the iodine atom. While a real understanding of the
molecule must use quantum mechanics, a basic understanding can be obtained by treating
the hydrogen atom as a simple second-order oscillator. The frequency of vibration can be
calculated from the wavenumber of the emissions, which is 2230 cm−1 and the approximate
magnitude of the oscillations can be calculated from the dimension of the molecule, which is
161 pm. The mass of the hydrogen atom is close to 1 atomic unit. Calculate the frequency of
vibration of the hydrogen atom and its mass in SI units. Use that information to calculate the
effective spring constant. Suppose that the energy stored in the vibrational motion is given by
h f , where h is Planck’s constant and f is the oscillation frequency, how large an excursion
is the hydrogen atom making and how does that compare to the size of the molecule?

7. (M) Derive Eq. (I.11) using Kirchhoff’s current law for the circuit of Fig. I.3.

8. (M) Verify Eqs. (I.12–I.16) by substitution into the governing equation, Eq. (I.11).

9. (M) Derive equivalent expressions to Eqs. (I.12-I.16) for the mechanical oscillator, described
by Eq. (1.10). For the example parameters of Sec. I.C, what damping rate α would corre-
spond to γ/ω r = 1/100, 1/10

√
10, and 1/10? Modify OscillatorI4 (part a) to make

phase plots for each of these cases.

10. (M) Verify Eqs. (1.19–1.23) by substitution into the governing equation, Eq. (I.17).

11. (M) Modify OscillatorI4 (part b) to plot the driven oscillation for five driving frequen-
cies, equal to 0.25ω r, 0.5ω r, 1.0ω r, 1.5ω r, and 2.0ω r.

12. (M) Derive an expression for a mechanical oscillator that is equivalent to Eq. (I.17). What
corresponds physically to the driving current? Draw a corresponding picture.
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13. (M) The expression for A2
D that we derived, given in Eq. (I.28), is proportional to the

Lorentzian function,

fL(ω) =
1
π

γ

(ω−ω r)2 + γ2 .

(a) Show that
∫

∞

−∞
fL(ω)dω = 1.

(b) Use MATLAB to plot L(ω) vs. ω−ω r, assuming that γω r = 1/100, 1/10
√

10, and 1/10.

(c) We stated that the expression for AD in Eq. (I.28) is a good approximation to the ex-
act expression for AD in Eq. (I.21). Compare these expressions by plotting a(ω) =
(2γ/ω r)AD(ω) vs. x = (ω −ω r)/γ for both these expressions and for γ/ω r = 1/2,
1/10, and 1/100 on both linear and log-log plots, as in oscillatorI7. What are the slopes
in the log-log plots for 0 < x < 1 and 1 < x < ∞?

14. (M) For our example mechanical oscillator, with the value of α given by γ/ω r = 1/10, find
the matrix A that corresponds to Eq. (I.39). Find the eigenvalues and eigenfunctions of this
matrix using MATLAB. Show the MATLAB ouput. Assume you have a driving force with an
amplitude of 1 mN at the resonant frequency, find the matrix B, and use MATLAB to find
ũ = [x̃, ṽ]t . Show the MATLAB output. Write the real expressions x and v and use a modified
version of OscillatorI4 to draw a phase plot of the oscillation. How much energy is
stored in the oscillator?

15. (M and I) MATLAB can work with symbols as well as numbers. Use this capability to obtain
Eq. (I.24) and a symbolic expression for ũ. Compare to Eq. (I.19).

16. (E) Obtain a kit for a mechanical oscillator with springs and weights. Measure the oscilla-
tions as a function of time and compare to what is theoretically expected.

17. (E) Obtain a kit that will enable you to build an RLC oscillator. Measure the oscillations as a
function of time and compare to what is experimentally expected.

17



Additional Materials
% OscillatorI2
% This program plots the voltage and current in an LC
% LC circuit
% (a) as a function of time, (b) as a phase plot

% Lin = inductance (in mH)
% Cap = capacitance (in pF)
% Vamp = voltage amplitude (in volts)
% phi0 = phase offset

% Vplot = Voltage amplitudes for phase plot
% Nplot = number of phase plots

% Nosc = number of oscillations plotted
% Npoints = number of points in each period

% omega = radial oscillation frequency (in kHz)
% Iamp = current amplitude (in uA)

close all %this clears previous figures
Lin = 1, Cap = 100, Vamp = 1; phi0 = 0,
L = Lin*1e-3; C = Cap*1e-12; om = 1/sqrt(L*C);
Imp = sqrt(L/C); Ia = Vamp/Imp;
% fundamental quantities in SI units

omega = 1e-6*om, % convert frequency to MHz.
Iamp = 1e6*Ia, % convert current amplitude to uA
Nosc = 5, Npoints = 100, Ntot = Nosc*Npoints + 1;
% set the plotting parameters

Nt = 1:Ntot; time = 2*pi*(Nt-1)/Npoints;
tphys = time/omega; % physical time
% set up the time arrays

Voltage = Vamp*cos(time + phi0);
Current = -Iamp*sin(time + phi0);
% voltage and current as functions of time

subplot(2,1,1)
plot(tphys,Voltage,’linewidth’,3,’color’,’r’)
set(gca,’fontname’,’Times New Roman’,’fontsize’,20);
set(gca,’LineWidth’,1.5,’TickLength’,[0.025 0.025]);
title(’Voltage’,’fontname’,’Times New Roman’,’fontsize’,20)
xlabel(’time (\mus)’,’fontname’,’Times New Roman’,’fontsize’,20);
ylabel(’Voltage (V)’,’fontname’,’Times New Roman’,’fontsize’,20);
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axis tight;
xlim([0 10])
ylim([-1 1])
set(gcf, ’WindowStyle’, ’normal’);
set(gca, ’Unit’, ’inches’);
set(gca, ’TickLabelInterpreter’,’LaTeX’,...
’YTick’,[-1:1:1],’YTickLabel’,’$-1$’,’$0$’,’$1$’)
set(gcf, ’PaperPosition’,1.9*[0 0 4 3],’PaperSize’,1.9*[4 3])

subplot(2,1,2)
plot(tphys,.001*Current,’linewidth’,3,’color’,’r’)
set(gca,’fontname’,’Times New Roman’,’fontsize’,20);
set(gca,’LineWidth’,1.5,’TickLength’,[0.025 0.025]);
title(’Current’,’fontname’,’Times New Roman’,’fontsize’,20)
xlabel(’time (\mus)’,’fontname’,’Times New Roman’,’fontsize’,20);
ylabel(’Current (mA)’,’fontname’,’Times New Roman’,’fontsize’,20);
axis tight;
xlim([0 10])
ylim([-.500 .500])
set(gcf, ’WindowStyle’, ’normal’);
set(gca, ’Unit’, ’inches’);
set(gca, ’TickLabelInterpreter’,’LaTeX’,...
’YTick’,[-.500:.500:.500],’YTickLabel’,’$-0.5$’,’$0$’,’$0.5$’)
set(gcf, ’PaperPosition’,1.9*[0 0 4 3],’PaperSize’,1.9*[4 3])
saveas(gcf,’1.pdf’,’pdf’)

Vplot=[0.5 0.7 0.9], Nplot=3,
% Set the values for the phase plots
%figure
%axis square
close all
for Np=1:Nplot
Vpl=Vplot(Np)*Voltage(1:Ntot);
Ipl=.001*Vplot(Np)*Current(1:Ntot);
plot(Ipl,Vpl,’linewidth’,3)
hold on

end
hold off
annotation(’arrow’,’Position’,[0.739,0.5,0,0.005])
% text(150.0,0.8,’V 0=0.9’,’fontname’,’Times New
Roman’,’fontsize’,16)
annotation(’arrow’,’Position’,[0.689,0.5,0,0.005])
% text(85.0,0.7,’V 0=0.7’,’fontname’,’Times New
Roman’,’fontsize’,16)
annotation(’arrow’,’Position’,[0.640,0.5,0,0.005])
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% text(10.0,0.55,’V 0=0.5’,’fontname’,’Times New
Roman’,’fontsize’,16)
set(gca,’fontname’,’Times New Roman’,’fontsize’,20);
set(gca,’LineWidth’,1.5,’TickLength’,[0.025 0.025]);
title(’Phase plot: Voltage vs. Current’,’fontname’,’Times New
Roman’,’fontsize’,20)
xlabel(’Current (mA)’,’fontname’,’Times New Roman’,’fontsize’,20)
ylabel (’Voltage (V)’,’fontname’,’Times New Roman’,’fontsize’,20)
xlim([-.500 .500]) %define limits for x axis
ylim([-1 1]) %define limits for y axis
set(gcf, ’WindowStyle’, ’normal’);
set(gca, ’Unit’, ’inches’);
set(gca, ’TickLabelInterpreter’,’LaTeX’,...
’YTick’,[-1:.5:1],’YTickLabel’,’$-1$’,’$-0.5$’,’$0$’,’$0.5$’,’$1$’)

set(gca, ’TickLabelInterpreter’,’LaTeX’,...
’XTick’,[-.5:.25:.5],’XTickLabel’,’$-0.5$’,’$-0.25$’,’$0$’,’$0.25$’,
’$0.5$’) %define the ticks and use LaTeX interpreter to have real
minus signs
set(gcf, ’PaperPosition’,1.9*[0 0 4 3],’PaperSize’,1.9*[4 3])
%define the paper size and position
lgd = legend(’$V 0=0.5$ V’,’$V 0=0.7$ V’,’$V 0=0.9$ V’);
%add the legend
% legend(’Location’,’northwest’)
set(lgd,’interpreter’,’latex’,’FontSize’,17);
% set(lgd,’interpreter’,’latex’);
legend (’boxoff’); %turn the box around the elegend off
saveas(gcf,’2.pdf’,’pdf’) %save file as a .pdf file
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% OscillatorI4
% This routine calculates phase diagrams for the parallel
% RLC circuit
% (a) without a driving voltage, (b) with a driving voltage

% Lin = inductance (in mH)
% Cap = capacitance (in pF)
% Res = resistance (in kOhms)

% V0a = initial voltage amplitude, part (a) (in volts)
% I0a = initial current amplitude, part (a) (in uA)

% FreqRat = ratio of driving to resonant frequency,
% part (b)
% V0b = initial voltage amplitudes, part (b) (in volts)
% J0 = driving current amplitude, part (b) (in uA)

% Nosc = number of oscillations plotted
% Npoints = number of points in each period

% omega = natural oscillation frequency
% gamma = damping rate
% Imp = real impedance
% phoff = phase offset

% omr = resonant frequency
% gamRat = ratio of the damping and resonant frequencies
% omRat = ratio of the resonant and natural frequencies
% ADc = driving voltage amplitude;
% CDc = cosine (driving angle)
% SDc = sine (driving angle)
% VDc, VDs = in-phase and quadrature quadratures of
% the driving voltages

% [Current,Voltage] = current and voltage, part (a)

% Part (b):
% [CurD,VolD] = driven current and voltage
% [CurT1,VolT1] = transient current and voltage 1
% [CurT2,VolT2] = transient current and voltage 2

close all

Lin = 1, Cap = 100, Res = 50, V0a = 1,
FreqRat = 1.0, V0b = [0 1], J0 = 10,
% set initial values
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L = Lin*1e-3; C = Cap*1e-12; R = Res*1e3;
% convert to SI units
gamma = 1/(2*R*C); omega=((1/(L*C)) - gammaˆ2)ˆ(1/2);
% compute the damping coefficient and frequency
gam = gamma/omega; %compute the damping ratio
Imp = sqrt(L/C); phoff = atan(gamma/omega);
% calculate the impedance amplitude and phase offset
Ia = V0a/Imp; I0a = 1e6*Ia;
% compute the initial current amplitude (part a) in uA

Jb = J0*1e-6 %convert to SI units
omr = 1/sqrt(L*C); gamRat = gamma/omr;
omRat = omr/omega;
% compute the resonant frequency, damping ratio,
% and resonant to natural frequency ratio
% (part b)
ADc = 1/((1-FreqRatˆ2)ˆ2 + 4*FreqRatˆ2*gamRatˆ2)ˆ(1/2);
CDc = 2*FreqRat*gamRat*ADc; SDc = (1-FreqRatˆ2)*ADc;
VDc = FreqRat*Imp*Jb*ADc*CDc;
VDs = FreqRat*Imp*Jb*ADc*SDc;
% in-phase and quadrature components of the driven
% voltage
Vc1 = V0b(1) - VDc; Vc2 = V0b(2) - VDc;
Vs1 = omRat*VDs - gam*Vc1;
Vs2 = omRat*VDs - gam*Vc2;
% transient voltage and current amplitude coefficients

Nosc = 15, Npoints = 100, Ntot = Nosc*Npoints + 1;
% set the plotting parameters

Nt = 1:Ntot; time = 2*pi*(Nt-1)/Npoints;
% set up the time array

% Part (a): Compute and plot voltage and current
Voltage = V0a*cos(time).*exp(-gam*time);
Current = -I0a*sin(time + phoff).*exp(-gam*time);
% voltage and current as functions of time

plot(.001*Current,Voltage,’linewidth’,1,’color’,’r’)
% axis([-300,300,-1.0,1.0])
% title(’Phase plot: Voltage vs. Current’)
% xlabel(’Current (\muA)’)
% ylabel (’Voltage (V)’)
annotation(’arrow’,’Position’,[0.691,0.5,0,0.005])
set(gca,’fontname’,’Times New Roman’,’fontsize’,20);
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set(gca,’LineWidth’,1.5,’TickLength’,[0.025 0.025]);
title(’Phase plot: Voltage vs. Current’,’fontname’,’Times New
Roman’,’fontsize’,20)
xlabel(’Current (mA)’,’fontname’,’Times New Roman’,’fontsize’,20)
ylabel (’Voltage (V)’,’fontname’,’Times New Roman’,’fontsize’,20)
xlim([-.500 .500]) %define limits for x axis
ylim([-1 1]) %define limits for y axis
set(gcf, ’WindowStyle’, ’normal’);
set(gca, ’Unit’, ’inches’);
set(gca, ’TickLabelInterpreter’,’LaTeX’,...
’YTick’,[-1:.5:1],’YTickLabel’,’$-1$’,’$-0.5$’,’$0$’,’$0.5$’,’$1$’)

set(gca, ’TickLabelInterpreter’,’LaTeX’,...
’XTick’,[-.5:.25:.5],’XTickLabel’,’$-0.5$’,’$-0.25$’,’$0$’,’$0.25$’,
’$0.5$’) %define the ticks and use LaTeX interpreter to have real
minus signs
set(gcf, ’PaperPosition’,1.9*[0 0 4 3],’PaperSize’,1.9*[4 3])
%define the paper size and position
saveas(gcf,’3.pdf’,’pdf’) %save file as a .pdf file

% Part (b): Compute and plot the voltage and current
% evolution, starting from the given initial conditions.
% The initial current is assumed to equal zero.

FreqD = FreqRat*omRat; % driving frequency
VolD = VDc*cos(FreqD*time) - VDs*sin(FreqD*time);
CurD = -(1/(omRat*Imp))*(VDs*cos(FreqD*time)...
+ VDc*sin(FreqD*time)); CurD = CurD*1e6
VolT1 = (Vc1*cos(time) - Vs1*sin(time)).*exp(-gam*time);
CurT1 = -(1/(omRat*Imp))*((Vc1-gamRat*Vs1)*sin(time)...
+(Vs1+gamRat*Vc1)*cos(time)).*exp(-gam*time);
CurT1 = CurT1*1e6
VolT2 = (Vc2*cos(time) - Vs2*sin(time)).*exp(-gam*time);
CurT2 = -(1/(omRat*Imp))*((Vc2-gamRat*Vs2)*sin(time)...
+(Vs2+gamRat*Vc2)*cos(time)).*exp(-gam*time);
CurT2 = CurT2*1e6
VolT1 = VolT1 + VolD; CurT1 = CurT1 + CurD;
VolT2 = VolT2 + VolD; CurT2 = CurT2 + CurD;
close all
plot(.001*CurD,VolD,’LineWidth’,4)
hold on
plot(.001*CurT1,VolT1,’k’,.001*CurT2,VolT2)
set(gca,’fontname’,’Times New Roman’,’fontsize’,20);
set(gca,’LineWidth’,1.5,’TickLength’,[0.025 0.025]);
title(’Phase plot: Voltage vs. Current’,’fontname’,’Times New
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Roman’,’fontsize’,20)
xlabel(’Current (mA)’,’fontname’,’Times New Roman’,’fontsize’,20)
ylabel (’Voltage (V)’,’fontname’,’Times New Roman’,’fontsize’,20)
xlim([-.500 .500]) %define limits for x axis
ylim([-1 1]) %define limits for y axis
set(gcf, ’WindowStyle’, ’normal’);
set(gca, ’Unit’, ’inches’);
set(gca, ’TickLabelInterpreter’,’LaTeX’,...
’YTick’,[-1:.5:1],’YTickLabel’,’$-1$’,’$-0.5$’,’$0$’,’$0.5$’,’$1$’)

set(gca, ’TickLabelInterpreter’,’LaTeX’,...
’XTick’,[-.5:.25:.5],’XTickLabel’,’$-0.5$’,’$-0.25$’,’$0$’,’$0.25$’,
’$0.5$’) %define the ticks and use LaTeX interpreter to have real
minus signs
set(gcf, ’PaperPosition’,1.9*[0 0 4 3],’PaperSize’,1.9*[4 3])
%define the paper size and position
saveas(gcf,’4.pdf’,’pdf’) %save file as a .pdf file
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% OscillatorI6
% This program plots the FWHM of the Lorentz(ian) function as
% well as the Lorentz(ian) function for positive values in X in a
loglog plot.
% Where A Dˆ2 is the Eq. I.28 in the text
% Y = 4*A Dˆ2*gammaˆ2/omega rˆ2
% X = (omega-omega r)ˆ2/gammaˆ2

X = -10:.0001:10;
Y = 1./((X).ˆ2+1);
close all %this clears previous figures
plot(X,Y,’linewidth’,3,’color’,’r’)
set(gca,’fontname’,’Times New Roman’,’fontsize’,20);
set(gca,’LineWidth’,1.5,’TickLength’,[0.03 0.025]);
xlabel(’$(\omega-\rm\omega r)/\gamma$’,’Interpreter’,’LaTeX’,’fontname’,
’Times New Roman’,’fontsize’,20)
ylabel (’4\it A\rm Dˆ2 \gammaˆ2/\omega rˆ2’,’fontname’,’Times New
Roman’,’fontsize’,20)
xlim([-10 10]) %define limits for x axis
ylim([0 1.2]) %define limits for y axis
set(gcf, ’WindowStyle’, ’normal’); set(gca, ’Unit’,
’inches’); set(gca, ’TickLabelInterpreter’,’LaTeX’,...
’XTick’,[-10:5:10],’XTickLabel’,’$-10$’,’$-5$’,’$0$’,’$5$’,’$10$’)
set(gcf, ’PaperPosition’,1.9*[0 0 4 3],’PaperSize’,1.9*[4 3])
%define the paper size and position
annotation(’doublearrow’,[.48 .555],[.48 .48])
text(-.5,0.45,’2\gamma’,’fontname’,’Times New
Roman’,’fontsize’,20)
saveas(gcf,’6a.pdf’,’pdf’) %save file as 6a.pdf file

X = .01:.0001:100;
Y = 1./(X.ˆ2+1);
close all %this clears previous figures
loglog(X,Y,’linewidth’,3,’color’,’r’)
grid on
set(gca,’fontname’,’Times New Roman’,’fontsize’,20);
set(gca,’LineWidth’,1.5,’TickLength’,[0.03 0.025]);
xlabel(’$(\omega-\rm\omega r)/\gamma$’,’Interpreter’,’LaTeX’,’fontname’,
’Times New Roman’,’fontsize’,20)
ylabel (’4\it A\rm Dˆ2 \gammaˆ2/\omega rˆ2’,’fontname’,’Times New
Roman’,’fontsize’,20)
xlim([0.01 100]) %define limits for x axis
ylim([0.0001 10]) %define limits for y axis
set(gcf, ’WindowStyle’, ’normal’);
set(gca, ’Unit’, ’inches’);
set(gca, ’TickLabelInterpreter’,’LaTeX’,...
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’XTick’,[0.01 0.1 1 10 100])
set(gcf, ’PaperPosition’,1.9*[0 0 4 3],’PaperSize’,1.9*[4 3])
%define the paper size and position
% annotation(’doublearrow’,[.48 .555],[.48 .48])
% text(-.5,0.45,’2\gamma’,’fontname’,’Times New
Roman’,’fontsize’,20)
saveas(gcf,’6b.pdf’,’pdf’) %save file as a .pdf file
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