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1 The Fourier Transform

In FFTW the forward discrete Fourier transformu = FFTFFTW(ũ) of a vectoru = (u0, · · · ,uN−1)
is the vector̃u = (ũ0, · · · , ũN−1), where

un =
N−1

∑
n=0

ũmexp(
−2πinm

N
). (1)

The inverse Fourier transform is IFFTFFTW where

ũ =
1
N

IFFTFFTW(u). (2)

In OCS we use a version of what Curtis calls the the physics convention. Letu(t) be a function
in the time domain that respresents the complex electric field envelope of the light. Suppose that
u(t) is periodic with periodT. (In the codeT = TimeWindow.) We define the Fourier transform of
u(t) to beũ(ω), whereω is frequency in radians/second, by

ũ(ω) =
1
T

∫ T

0
u(t)exp(iωt)dt. (3)

So, by the Fourier inversion theorem,

u(t) =
T
2π

∫ Ω

0
ũ(ω)exp(−iωt)dt, (4)

where Ω
2π = FrequencyWindow in Hz. The reason we use these normalizations is that then|u(t)|2

and|u(ω)|2 both have units of Watts, W.

We now discretizeu(t) giving a lengthN vectoru and ũ(ω) giving a vectorũ. So if Ω
2π =

FrequencyWindow (in OCS) thenT Ω
2π = N and∆ν = ∆ω

2π = DeltaFreq (in OCS) which has units of
Hz.
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With this discretization

u = FFTFFTW(ũ) = IFFTOCS(ũ) (5)

where IFFTOCS is the method cfftw::IFFT in the OCS class cfftw. Similarly,

ũ =
1
N

IFFTFFTW(u) = FFTOCS(u) (6)

where FFTOCS is the method cfftw::FFT in the OCS class cfftw. With these definitions

FFTOCS◦ IFFTOCS= Id (7)

is the identity operator.

2 Energy, Average Power and Power Spectral Density

We have the following definitions and facts which are used in the OptSignal class in OCS.

Total Energy (in J = W.s)=
∫ T

0
|u(t)|2dt ≈ ∑

n
|un|2∆t (8)

and

Average Power (in W = J/s)=
1
T

∫ T

0
|u(t)|2dt ≈ 1

N ∑
n
|un|2 (9)

so that Total Energy = T Average Power. Given our definitions, Parsevals Theorem says that the
total energy is also ∫ T

0
|u(t)|2dt =

T2

2π

∫ Ω

0
|ũ(ω)|2dω (10)

so

Total Energy= T ∑
m
|ũm|2. (11)

Also by Parseval,

Average Power= ∑
m
|ũm|2. (12)

We define power spectral density to be avergae power in a bandwidth divided by the bandwidth
in Hz. So

PSDm =
1

∆ν2

∫ 2π(m+1)∆ν

2πm∆ν
|ũω)|2dω

2π
≈ |ũm|2

∆ν
(13)

in W/Hz. Then it is easy to check that

Average Power= ∑PSDm∆ν. (14)



3 NLS and the Symmetric Split-step Scheme

With the physics convention the NLS is

iuz − 1
2β′′utt − i

6β′′′uttt + γ|u|2u− iαu = 0. (15)

In the frequency domain the dispersion is done using a Taylor’s series expansion and so

ũ(z+ ∆z,ω) = ũ(z,ω)exp( i
2β′′ω2∆z+ i

6β′′′ω3∆z). (16)

Nonlinearity in the time domain is done as

u(z+ ∆z, t) = u(z, t)exp(iγ|u|2∆z). (17)

In OCS we use the symmetric split-step Fourier scheme. This means that for a step of size∆z
is performed as follows:

ũD1(ω) = ũ(z,ω)exp([ i
2β′′ω2 + i

6β′′′ω3]∆z
2 ) (18)

uD1(t) = IFFTOCS(ũD1(ω)) (19)

uNL(t) = uD1(t)exp(iγ|uD1(t)|2∆z) (20)

ũNL(ω) = FFTOCS(uNL(t)) (21)

ũ(z+ ∆z,ω) = ũNL(ω) exp([ i
2β′′ω2 + i

6β′′′ω3]∆z
2 ) (22)

u(z+ ∆z, t) = IFFTOCS(ũ(z+ ∆z,ω)). (23)

With this scheme, the local error isO(∆z3) and the global error isO(∆z2). For more details on
errors see the paper of Oleg Sinkin, Ron Holzlöhneret al. on the course web page, SplitStep.pdf.gz

In the OCS classesOptFiberLocalError andocsOptFiber instead of specifyingβ′′
in ps2/km andβ′′′ in ps3/km we specifyDispersionFiber in ps/(nm.km) andDispSlope-
Fiber in ps/(nm2.km). Of course the value ofDispersionFiber depends on a reference
wavelength. We can either specifyReferenceFreq or ReferenceWavelength by setting
the other value to 0.0. The formulae used to get theβ’s are given in the methodOptFiber-
LocalError::SetDispersion . (Also see Agrawal’s Optical Fiber Communications book.)
Note thatβ′′ = FstOrDispFiber andβ′′′ = SndOrDispFiber .

The nonlinear coefficientγ is computed from the input parametersNonLinIndexFiber in
m2/W andEffectAreaFiber in m2 using the formula

γ =
NonLinIndexFiber∗2∗π∗CenterFreq

EffectAreaFiber∗LightSpeed
. (24)

4 Step Size Selection Criteria in the classOptFiberLocalEr-
ror

For more details on step size selection criteria, see the paper of Oleg Sinkin, Ron Holzlöhneret al.
on the course web page, SplitStep.pdf.gz.



In OptFiberLocalError we have four step size selection options. The input parameter
TypeStepSizes can take the values LOCALERROR3RD = 1, LOCAL ERROR2ND = 2,
WALK OFF = 3, CONSTANT = 4.

No matter what method we use we always choose the last step in a particular fiber so that the
the total propagation length in that fiber is correct.

The rest of this section applies wheneverTypeSolver is either SCALARNLS or VEC-
TOR MANAKOV NO PMD. The option VECTORMANAKOV NO PMD should be used when
the PMD in the system is negligible, but you want to use a simulation with two orthogonal polar-
ization states to model the optical noise correctly when doing Monte Carlo simulations. The third
option forTypeSolver is VECTORMANAKOV PMD, which has not been carefully debugged
yet. (For PMD modeling, use the classOptFiber instead.)

4.1 CONSTANT method

In this method the step sizes are constant. The number of steps per fiber isNumStepsBetween-
Scatterings . (This variable name was chosen for the case when there is PMD. Hence the
funny name.)

4.2 WALK OFF method

The code uses a variant of the criterion for choosing∆z given in Oleg’s split step paper. We input
theWalkOffParameter and choose

∆z=
WalkOffParameter

|D1λ1−D2λ2|
(25)

whereD1 andD2 are the dispersions in ps/nm-km at wavelengthsλ1 andλ2. We chooseλ1, λ2 as
follows:

• WDM Case:λ1, λ2 are the central wavelengths of the edge channels

• Single Channel Case:λ1,2 correspond to frequenciesω1,2 = CenterFreq ± RootMean-
Square spectral width of signal.

4.3 LOCAL ERROR methods

See Oleg’s paper for the basic algorithm. Here we just talk about issues that are not mentioned in
the paper.

For this method you need to setRelativeErrorGoal , andDeltaZMax . Note thatMax-
PhaseChangeDeg is an old parameter that is not used any more.

The algorithm aims to keep the local error in the range 0.5∗RelativeErrorGoal <
LocalError < 2∗RelativeErrorGoal . To determine the initial step size in a given fiber
for the very first time through that fiber we take an initial guess ofDeltaZ = 0.5*DeltaZMax .
Note though that the algorithm may not actually take a step of that size. For subsequent passes



through the fiber we use the step size of the first step that was taken in the fiber last time we went
through it.

For LOCAL ERROR3RD for each step we keep the high-order solution given by Eq. (9) of
Oleg’s split step paper. For LOCALERROR2ND we keep the fine step solution, given by Eq. (8)
of Oleg’s split step paper.

5 Tests

5.1 Soliton Propagation

If we propagate a single sech pulseu(t) the power function|u(t)|2 should be constant inz but the
phase will evolve inz. Note that classical solitons only exist whenβ′′ < 0. We use the equation

iuz − 1
2β′′utt + γ|u|2u = 0 (26)

with β′′ =−0.1 ps2/km, γ = 2.2 W−1 km−1 and an initial pulse

u(z= 0, t) =

√
−β′′

γτ2 sech
( t

τ

)
(27)

where FWHM= 2log(1+
√

2)τ = 4.0 ps. The peak power isP0 = 8.8273789 mW. The dispersive
and nonlinear lengths are both equal to 51.493 km. The formula for the solution is

u(z, t) =

√
−β′′

γτ2 sech
( t

τ

)
exp

(
i
−β′′z
2τ2

)
. (28)

In Fig. 1, the optical power|u(t)|2 of the soliton is shown at 0 km and 500 km.

In Fig. 2 we propagate the initial pulse in Eq. (27) for 300 km including only dispersion in the
propagation model. The split-step method uses just 1 step since there is no nonlinearity.

In Fig. 3 we show the same pulse after 500 km of propagation through fiber which only has
dispersion. The result is not correct since the pulse is wider than theTimeWindow and so has
wrapped around on itself. To overcome this problem you would need to makeStringLength
andqtPoints both larger.

In Fig. 4, the real and imaginary parts ofu are shown at 10,000 km. The agreement between
theory and simulation is excellent. For this simulation we usedqtPoints = 4096,StringLength
= 4, BitRateChann = 40 GHz, and constant Step sizes with 50,000 steps. It is very important
that the peak power in the simulation and theory agree as accurately as possible. Likewise for the
FWHM.

5.2 Pure Third Order Dispersion

If we have no nonlinearity,β′′ = 0 andβ′′′ = 1 ps3/km for 100 km and an initial Gaussian pulse
with FWHM = 4 ps then the solution is shown in Fig. 5. The oscillations are in positive time as we
would expect.
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Figure 1: Soliton at 0 km and 500 km

5.3 Frequency shift invariance

We simulate the propagation of a Gaussian pulse atνch = 193400 GHz through 50 km of fiber with
D = 20 ps/nm-km. There is no dispersion slope or nonlinearity. We chooseqtPoints = 4096
andStringLength = 32 to giveFrequencyWindow = 1280 GHz.

We do two simulations. For the first we chooseCenterFreq = 193400 GHz and for the
secondCenterFreq = 193300 GHz. The outputs are shown in Fig 6. Both have the same shape
but the second is moved by∆t =−801.5 ps. This time shift is given by the formula

∆t = 2πβ′′z∆ν, (29)

where∆ν = νch−ν0 = +100 GHz andβ′′ =−25.513 ps2/km. In particular, the signs of the time
shifts are the same in the theory and with the NLS simulation. One way to derive the theoretical
time shift is to use the solution of the linear dispersive equation with a Gaussian initial condition
as one has in the Physics convention

u(z= 0, t) = exp(−t2
∗/2)exp(−i∆ν∗t∗) (30)

wheret∗ = t/τ0 and∆ν∗ = ∆ντ0 are unitless andτ0 is a measure of the pulsewidth. The solution
of the linear dispersive equation

iuz − 1
2β′′utt = 0 (31)

is

u(z, t) =
1√

1− iB∗(z)
exp

(
− (t∗+ i∆ν∗)2

2(1− iB∗(z)

)
exp(−∆ν2

∗/2), (32)
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Figure 2:

whereB∗(z) =
∫

β′′(w)dw/τ2
0 is the normalized accumulated dispersion. From Eq. (32) it is easy

to verify Eq. (29)

5.4 Tyco System

In Fig. 7 we plot the optical power versus time for propagation of a noise-free 32 bit PRBS through
the Tyco system. The input pulses have a peak power of 1 mW. The corresponding electrical eye
is shown in Fig. 9. Plots of optical power for an isolated pulse versus time at the end of each span
of the dispersion map are shown in Fig. 8. The initial pulse width (z= 0) is about 30 ps, and after
the pre-compensation it is about 200 ps. The final pulse width is about 22 ps.

I compared the Tyco system withβ′′′ = 0 in the Math and Physics conventions before the
electrical filter. The results are identical (I diff’ed the files) as one would expect. After consulting
with Ron, I changed a sign in ElecFilter::Bessel5 and ElecFilter::Bessel4, to ensure that, apart from
Ron’s time-centering time shift, the filters are causal. The eye diagram for the electrical filtered
Tyco system is shown in Fig. 9. Notice that the left side of the eye is steeper than the right side, as
one would expect for a causal filter. (Causality implies that if the signal is zero for all times less
thant0 then the filtered signal must be zero there too.)

I also checked that the clock recovery time,Q-factor and Eye Opening look correct, even
when the channel in question is not the central channel. In fact I checked that theQ-factor and Eye
Opening are invariant to shifts in the central frequency of the FreqWindow.
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Figure 3:
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Figure 4: Soliton
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Figure 5: Third order dispersion
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Figure 6: Frequency-shift invariance of the NLS



0 1 2 3

x 10
−9

0

5

10

x 10
−4

Time

O
pt

ic
al

 P
ow

er

Tyco system at 6000 km prior to receiver 

Figure 7:

0
2000

4000
6000

0

500

1000

1500

0.2

0.4

0.6

0.8

1

1.2

Distance, z [km]

Time, t [ps]

S
ig

na
l P

ow
er

, P
 [m

W
]

Figure 8:
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Figure 9: Tyco Sysytem Eye


