
Project: Numerical errors

GOALS

1. To characterize and understand numerical error in simulations of the nonlinear
Schrödinger equation and modifications of it.
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PROCEDURE
Consider the modification of the nonlinear Schrödinger equation given by
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which describes propagation through a medium with distributed Gaussian-shaped fil-
tering and distributed excess gain. This modification of the nonlinear Schrödinger
equation has been used to model pulse propagation in some mode-locked lasers. Equa-
tion (1) has an exact solution of the form
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1. In the above equation, assume that the filtering strength c is a known quantity,
and that the excess gain γ must be set to compensate for the loss due to filtering.
In the exact solution, it is possible to specify one of the parameters A0, τ , β, ψ,
or γ, and find the others in terms of it. How do A0, β, ψ, and γ depend on τ ,
and how does τ depend on the FWHM pulse width? What are the units of c,
and what does it really mean? Show your work.

2. Make a choice for c and τ in the above equation. Modify the OCS code to solve
this differential equation with an initial condition given by the above solution.
Make plots of the power and of the real part of the electric field versus distance
and time for the numerical solution. After, say, 1000 km of transmission, how
well does your pulse agree with the exact solution?

3. Use fixed z-steps in your code. Determine the mean-square error in the pulse
power as a function of distance for various choices for the z step after 1000 km
of transmission. Do the same thing for the mean-square error of the real part of
the pulse. Make plots of the error vs. ∆z for each, where ∆z is 62.5 m, 125 m,
250 m, 500 m, 1 km, 2 km, 4 km, 8 km, 16 km, and 32 km. How do these errors
scale with ∆z?

4. For a reasonable choice of ∆z, how does the error scale with the number of grid
points (qtPoints) you use to make up your pulse? Use values of qtPoints of 16,
32, 64, 128, 256, 512, 1024, 2048, and 4096. Make similar plots of the dependence
of error in the power and real part of q on the number of grid points you choose.

5. Input an unchirped sech pulse (i.e., β = 0) with the same FWHM pulse width
and peak power as you used previously. What happens to this pulse as a function
of distance and time for reasonable choices of qtPoints and ∆z? What is the
mean-square difference between this pulse and the sech pulse with the same initial
pulse width and peak power as a function of distance? How does the z variation
of this difference change if you double the width of your time domain and double
the points? Explain what has changed and why it changed.
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