
Receiver Modeling with OCS

John Zweck

April 1, 2003

In OCS applications a receiver for a WDM system typically consists of a tunable optical filter
from the classOptFilter , which is used by an instance of the optical demuxer classOptDe-
muxer , a Photodetector , an electric filter from the classElecFilter , and an instance of
theElecSignalStat class which is used to compute the statistics of the received current. In
the presence of optical noise we either use Monte Carlo simulations, the semi-analytical receiver
model of Winzer/Lima, or the generalizedχ2 receiver model as described in the thesis of Ronald
Holzlöhner.

1 Receiver model for Monte Carlo simulations

Code for the receiver in the case that Monte Carlo simulations are used can be found in the Tyco
function of MyApp.cc.

The major function calls are as follows:

1. OptFilter TunableFilter("TunableOptFilter.in",
Signal->GetTypeSimulation());

Constructs an instanceTunableFilter of anOptFilter . The main input parameters
are:

• $TypeOptFilter 1
1 = (Super)Gaussian is only real option right now.

• $OrderOptFilter 1
1 = Gaussian,n> 1 gives a SuperGaussian of ordern in a new version of the code you
don’t have yet.

• $FreqFWHMOptFilter 60e9
Full-width at half maximum in Hz of the power of the optical filter transfer function in
the frequency domain.

2. OptDemuxer oOptDemuxer(Signal, TunableFilter);
Constructor for anOptDemuxer .

1

3. SCSignal = new OptSignal(oOptDemuxer.ExtractChannel(0));
Constructs a single channel signalSCSignal by demuxing out the channel with physical
index 0 from the WDM (or single channel)Signal .

• If you specify the flagEvenlySpacedFreqsFlag = 0 in Signal.in then the
channel with wavelength given by$WavelengthChann1 will be demuxed.

• If you specify the flagEvenlySpacedFreqsFlag = 1 then the center channel at
Signal::CenterFreq will be demuxed.

To compute the statistics of the received current we need to know the inputBitString in
the channel to be demuxed. Among other things, the methodOptDemuxer::ExtractChannel(int
Index) makes sure that theBitString of the demuxed channel is correctly extracted
from that of the WDM signal.

4. Photodetector oPhotodetector("Photodetector.in",SCSignal,RNG);
oPhotodetector.DetectOptSignal();
These lines passSCSignal through a square-law photodetector. The data for the electrical
current is stored in an array of lengthqtPoints in thePhotodetector .

5. Although the data array used to store the electrical current iscplx -valued (so we can easily
take Fourier transforms), every method operating on the current always outputs areal -
valued current. In particular, as is the case with Bessel filtering, the current can become
negative.

6. We usually ignore detector noise and all other electrical noise in the receiver and we set the
photodetector responsivity to 1.1 Therefore you don’t need to pre-amplify the optical signal,
unless you want to ensure a fixed average received current.

7. oElecFilter = new ElecFilter(InDir + "ElecFilter.in",&oPhotodetector);

This line constructs anElecFilter object which acts on the data inoPhotodetec-
tor . The main parameters read in from"ElecFilter.in" are

• $TypeElecFilter 2 :
1 = Gaussian, 2 = Bessel, 3 = Measured, 4 = IntegrateAndDump
For Option 3 see documentation of the method
void ElecFilter::ReadMeasuredFilterData(void)
Use option 4 with caution; Read code to see exactly what it does.

• $OrderElecFilter : For a Bessel filter you can specify the order to be 4 or 5.2

• $f 3dB: The half-width at half maximum of the power spectrum of the filter. We
specify a half width because electric filters are usually centered at frequency 0 and are
one sided (low pass).

• $CenterFreqElecFilter : Set to 0 unless you have a good reason not to.
1The code in thePhotodetector to add shot noise has not been debugged or validated.
2At the moment because of a bug I think you also need to set OrderElecFilter to be 4 or 5 for a Gaussian filter, but

the value is meaningless in that case.

8. oElecFilter->FilterElecSignal();
This line does the filtering.

9. oElecSignalStat = new ElecSignalStat(SCSignal,&oPhotodetector);
Constructor for theElecSignalStat class. This class does not have any input parame-
ters!!

10. TheElecSignalStat class recovers the clock (see below) and computes the statistics of
the received current at the clock recovery time. This is all done when you call the method:
oElecSignalStat->GetSingleStringElecSignalStatConvolutingNEW(); .

11. You can write out an eye diagram using the method
oElecSignalStat->WriteFileEyeDiagram(Job+"Eye.dat"); . This method
is particularly useful when doing Monte Carlo simulations with a limited number (less than
100) random realizations of the system. With more random realizations the output eye di-
agram file gets very large. In that case I recommend collecting the eye data using aHis-
togram2D object (see below).

12. TheElecSignalStat class has manyGet... methods which you can then call to print
out statistics obtained using Monte Carlo simulations. For example:GetBit0 PowerMean();
GetBit1 PowerMean(); GetBit0 PowerStdDev(); GetBit1 PowerStdDev)();
GetElecTimeDomainSNR(); GetMinAmplitudeMargin(); GetQ Factor();
GetBitErrorRate(); 3 GetClockTime(); GetClockCurrent();

All the above is actually for a single realization in a Monte Carlo simulation. To accumulate
statistics of the system performance using many system realizations we do something like the
following.

1. At the start of the program we call all constructors of all objects used to model the system

2. for(int RealizationNumber = 1;
RealizationNumber <= Startup->GetNumMonteCarloExpts(); Realiza-
tionNumber++) Within this for loop you need to:

• Pass the optical signal through the fibers and amplifiers

• Pass the optical signal through the optical filter and photodetector to generate an elec-
trical signal

• Pass the electrical signal through the electrical filter

• Update the statistics. At the moment the way this is done is by calling the method
ElecSignalStat::AddSignalStringSampleConvoluting(); within the
for loop. However we have a bug in our clock recovery method. To get around this
bug you will need to add a new method toElecSignalStat called
AddSignalStringSampleNEW which is implemented as:

3Assuming Gaussian distributions of the received current

void ElecSignalStat::AddSignalStringSampleNEW(void)
{
ClockRecoveryTime = GetTargetTime();
oPhotodetector->TimeShiftSignal(-ClockRecoveryTime);
AddSignalStringSample();
}

Note that before entering thefor loop you should call the methodElecSignal-
Stat::Clear().

• If you are also collecting samples for a 2D contour plot of an eye diagram pdf you will
need to add a call toHistogram2D::UpdateEyeDiagram()

• Finally at the end of thefor loop you need to construct a fresh copy of the signal to be
passed trhough the system with the next random realization of the system parameters,
i.e., callOptSignal::RegenerateSignalString() .

3. Finally we need to output the statistics of the received current. To do this we first call
ElecSignalStat::GetElecSignalStat() and if you are computing a 2D contour
eye diagram you will also need to callHistogram2D::WriteHistogram(string
OutFileName) . Second, call any of theGet... functions decribed above.

1.1 SURGEON GENERAL’S WARNING

Using Monte Carlo simulations to accumulate statistics of the system performance by obtaining
many different random realizations of the system parameters is“an extremely bad method. It
should only be used when all alternative methods are worse.”(Sokal, 1997). Although it is easy
to understand and to code up, it converges slowly4 and does not necessarily help us gain a funda-
mental understanding of the system.

1.2 Clock recovery

In the code we use two different types of clock recovery.
For NRZ we useTypeClockRecovery = FREQ DOUBLING
For all other formats we useTypeClockRecovery = RZ SIGNAL FREQ. Ivan Lima and
John Zweck tried various different methods for recovering the clock. The ones that are used by
default in the code were found to work the best of the methods we tried.

The clock recovery is done in the methoddouble ElecSignalStat::GetTargetTime()
as follows. The simplistic idea is that the clock recovery time should be determined by the phase
of the electric current at the frequency given by the bit rate.

4The error in the average of a quantity that is computed using Monte Carlo converges to zero no faster thanC/
√

N,
whereN is the number of samples, andC is a problem dependent quantity. This fact follows from the Central Limit
Theorem in probability theory.

1. Callint ElecSignalStat::GetTargetFreqIndex() which returns the index (ar-
ray address) for the frequency in the power spectrum of the received electrical current that
corresponds to the bit rate.

2. CallPhaseTargetFreq = ComputePhaseTargetFreq() .
ForRZ SIGNAL FREQthis method returns the phase of the power spectrum of the received
electrical signal at the frequency given by the bit rate.
For NRZ signals the power at the bit rate is often small and can be dominated by noise. This
makes it hard to recover the clock. So instead forFREQDOUBLINGwe compute a new
current that is equal to square of the difference of the current and a replica of the current
that is delayed by half a bit period. If you start with a rectangular NRZ signal, the resulting
current is another rectangular signal which is non-zero in the half-bit slots immediately prior
to a transition from a mark to a space and from a space to a mark. This new signal looks
like an RZ signal and typically has a much stronger power at the frequency given by the bit
rate than the original NRZ signal did. We compute the phase of this current at the frequency
given by the bit rate and use that to help us reciver the clock.

3. Given the phase of the received current at the target frequency we can then compute the clock
recovery time using the methoddouble ElecSignalStat::GetTargetTime(void) .

4. Brian found that it is very important to compute this time as a continuous quantity. It isnot
enough to compute the discrete index of the array that gives electrical current as a function
of time — you won’t get enough accuracy by doing that. Instead we compute the continuous
clock recovery time and then shift the current in time by theTargetTime , so that the clock
time now lies on the discrete time grid. Note that Brian still has not completely incorporated
this improvement into the code.

1.3 Computing the statistics of the marks and spaces

To compute theQ-factor or the eye opening5 we need to compute the means and standard devia-
tions of the currents at clock recovery time as well as the maximum and minimum currents in the
marks and spaces at the clock recovery time.

Once we have the clock recovery time we can form an arrayBitIntensity that consists
of the received electrical currents at the clock recovery time in each of the bits.

To compute the statistics of the marks and spaces we need to know which entries of theBit-
Intensity array correspond to transmitted marks and which to transmitted spaces.6 Because we
know the originalBitString in the transmitter we just need to work out the offset between the
transmittedBitString array and the receivedBitIntensity array that would be required
to line theBitString up with theBitIntensity array. Ivan Lima devised the following

5In the code rather than computing the eye opening per-se we compute the minimum amplitude marginMinAmp-
Margin which is defined to be the difference of the currents in the lowest mark and highest space at the clock recovery
time. This is not necessarily the same as the eye opening, since you could imagine a situation in which some marks
got changed to spaces and vice versa. In that case the eye would still look open but theMinAmpMargin would be
negative!

6In an experiment a bit-error rate tester would work this out.

method to compute this offset. We do afor loop over all possible offsets and compute theQ-
factor for each offset. We then choose the offset that gives us the maximumQ-factor. We have
found that this method works very well.

Finally, we can now easily update the variables that are used to compute the statistics of the
marks and spaces. Note that in a Monte Carlo simulation, for each system realization we repeat
the entire proceedure above, and get a possibly different clock recovery time for each system
realization. Outside thefor loop for the Monte Carlo realizations we can call the methoddouble
ElecSignalStat::GetClockTime(void) which returns the average clock recovery time,
averaged over all Monte Carlo realizations.

2 Semi-analytical receiver model

The semi-analytical receiver model is based on work of Peter Winzeret al.. Winzer’s model has
been extended in several ways in a series of papers from our group by Ivan Lima, Aurenice Lima,
Yu Sun, Hua Jiao, John Zweck and Curtis Menyuk. The paper“Performance characterization
of chirped return-to-zero modulation format using an accurate receiver model”which will soon
appear in PTL explains the basic theory and gives references to Winzer’s work. You can find it
on the course web page. The inputs to this model are the noise-free signal, the noise spectral
density, and the shapes of the optical and electrical filters in the receiver. The output consists of the
means and standard deviations of the received electrical current at a user-specified timet. 7 The
main assumption of the model is that the optical noise is additive white Gaussian noise. For this
discussion let us assume that the signal is polarized and the noise is unpolarized.8 The statistics
can be used in various ways.

The statistics are computed analytically. No Monte Carlo simulations are required. Conse-
quently the method is much faster and much more accurate than Monte Carlo simulations of a
system in which the optical noise is additive white Gaussian.

To use the model as implemented in the OCS code you can do the following.

1. Pass the optical signalSignal through all elements of the system up to but not including
optical filter. Donot include noise in this simulation!!

2. ConstructOptFilter, Photodetector, ElecFilter , andElecSignalStat
objects as described above.

3. CallStats.SetOptElecFiltersForSemiAnalyticalStatistics
(&oOptFilter,&oElecFilter); , whereStats is the ElecSignalStat object con-
structed above.

4. Compute theTotalNoiseSpectralDensity at the receiver somehow. This is the sum
of the noise spectral densities in theX- andY-polarizations of the Jones space representation
of the signal.

7The model also computes theQ-factor from the OSNR, but I’m not focusing on that aspect here.
8The model can also deal with partially polarized noise.

5. To compute the mean received current at a timet = jj*Signal.GetDeltaTime() with
time indexint jj add the value ofreal(oPhotodetector.sfftPM.tPowerSignal[jj])
to Stats.GetMeanASE ASE(TotalNoiseSpectralDensity) .

6. Compute the time-independent quantity
double StdDev ASE ASE =
Stats.GetStdDevASE ASE(TotalNoiseSpectralDensity)

7. Compute the time-dependent quantity
StdDev Signal ASE[jj] = Stats.GetStdDevSignal ASE TimeIndex(jj,
0.5*TotalNoiseSpectralDensity,0.5*TotalNoiseSpectralDensity)

8. The standard deviation of the current at timet = is then given by
sqrt(sq(StdDev ASE ASE) + sq(StdDev Signal ASE[jj])) .

Using this receiver model I have computed semi-analytical eye diagrams for a long-haul trans-
mission system assuming that the noise is unpolarized additive white Gaussian white and that the
signal is polarized. The result is shown in Fig. 1. The agreement on a linear scale with the eye
in Fig. 2 obtained from Monte Carlo simulations with 10,000 realizations of a PRBS of length 32
in which noise is added just prior to the receiver is excellent. Even if we add noise at each of the
amplifiers which can then propagate and interact nonlinearly with the signal the agreement looks
very good on a linear scale, see Fig. 3.

0

1

2

3

4

5

0 20 40 60 80 100 120 140 160 180
0

0.2

0.4

0.6

0.8

1
Gaussian pdf Eye

0 10 20 30 40 50
0

0.02

0.04

0.06

0.08
MeanTime = 24 ps, TimingJitter = 4.153 ps

Timing Jitter pdf

0 0.2 0.4 0.6 0.8 1

x 10
−3

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014
Mean = 0.596 mV, OnesAmpJitter = 0.06468 mV

Figure 1: Semi-analytical eye

1

2

3

4

0 20 40 60 80 100 120 140 160 180
0

0.2

0.4

0.6

0.8

TJ30 DispType = 1, PreAmt = 1, PDC Index = 1, RT = 1, MC = 10000

100 120 140
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

TJ: Left = 4.144 ps
 Right = 4.259 ps

0.4 0.6 0.8
0

0.01

0.02

0.03

0.04

0.05

0.06

Ones: Mean = 0.591 mV,
RelAJ = 0.1132

0 0.1 0.2 0.3
0

0.1

0.2

0.3

0.4

Zeros: Mean = 0.01621 mV,
RelAJ = 0.01233

Figure 2: Monte Carlo with AWGN added just prior to receiver

0

0.5

1

1.5

2

2.5

3

3.5

0 20 40 60 80 100 120 140 160 180
0

0.2

0.4

0.6

0.8

TJ29 DispType = 1, PreAmt = 1, PDC Index = 1, RT = 1, MC = 1000

100 120 140
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

TJ: Left = 4.125 ps
 Right = 4.317 ps

0.4 0.6 0.8
0

0.01

0.02

0.03

0.04

0.05

0.06

Ones: Mean = 0.5892 mV,
RelAJ = 0.1135

0 0.1 0.2 0.3
0

0.1

0.2

0.3

0.4

Zeros: Mean = 0.01633 mV,
RelAJ = 0.01246

Figure 3: Monte Carlo with noise added in-line

