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Abstract

We studied the efficiency of different implementations of the split-step Fourier method for

solving the nonlinear Schrödinger equation that employ different step size selection criteria.

We compared the performance of the different implementations for a variety of pulse for-

mats and systems including higher-order solitons, collisions of soliton pulses, a single-channel

periodically-stationary dispersion-managed soliton system, and chirped return to zero systems

with single and multiple channels. We introduce a globally third-order accurate split-step

scheme, in which a bound on the local error is used to select the step size. In many cases, this

method is the most efficient when compared with commonly-used step size selection criteria,

and it is robust for a wide range of systems providing a system-independent rule for choosing

the step sizes. We find that a step-size selection method based on limiting the nonlinear phase

rotation of each step is not efficient for many optical fiber transmission systems, although it
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works well for solitons. We also tested a method that uses a logarithmic step size distribu-

tion to bound the amount of spurious four-wave mixing. This method is as efficient as other

second-order schemes in the single-channel dispersion-managed soliton system, while it is not

efficient in other cases including multi-channel simulations. We find that in most cases the

simple approach in which the step size is held constant is least efficient of all the methods. Fi-

nally, we implemented a method in which the step size is inversely proportional to the largest

group velocity difference between channels. This scheme performs best in multi-channel opti-

cal communications systems for the values of accuracy typically required in most transmission

simulations.

1 Introduction

The nonlinear Schrödinger equation, which can be written as

i
∂u
∂z

�
β��

2
∂2u
∂t2 � γ�u�2u � 0� (1)

has been shown to govern the propagation of light in a lossless optical fiber with second-order dis-

persion [1]. In (1),u is the complex field envelope,z is distance,β�� is the second-order dispersion,

andγ is the nonlinear coefficient. The quantityt � τ�z�vg is the retarded time, whereτ is physical

time andvg is the group velocity. Even though (1) does not provide a complete physical description

of a system, it is the basis for modeling optical fiber communications systems. Indeed, one can

modify the nonlinear Schrödinger equation (1) to incorporate the effects of fiber loss, third-order

dispersion, amplification, amplified spontaneous emission noise, and polarization mode dispersion

to obtain a more realistic model of optical fiber transmission [2]–[4]. Equation (1) withβ�� � 0

has a well-known analytical soliton solution with a set of remarkable properties, which gives deep

insight into the nature of the dispersive and nonlinear effects [5]. However, in almost all cases (1)

and its modifications cannot be solved analytically and one has to use numerical approaches. The

most commonly used numerical scheme for solving (1) is the split-step Fourier method, which

is convenient for its simplicity and flexibility in dealing with higher-order dispersion, the Raman
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effect, and filtering [2].

In this paper we focus on the split-step Fourier method. The efficiency of the split-step method

depends on both the time (or frequency) domain resolution and on the distribution of step sizes

along the fiber. In simulations of optical fiber transmission systems, the time and frequency res-

olutions are respectively determined by the bandwidth of the signal and the number of bits that

are to be propagated through the system. Consequently, the properties of the signal determine

the minimum required number of Fourier modes. Although the number of Fourier modes affects

the accuracy of the numerical solution, as we will discuss later, it does not change the qualitative

behavior of the spatial step size selection algorithm. In this paper, we focus on the accuracy and

efficiency of different spatial step size selection criteria.

A variety of step size selection criteria, most based on physical intuition, have been proposed

for optimizing the split-step method. The figure of merit for each criterion is the computational

cost for a given resulting global accuracy. Historically, in numerical methods used to solve (1) the

step-size distribution was optimized for simulating soliton propagation. However, this optimization

is not necessarily appropriate for modeling modern transmission systems, which often feature both

high and low dispersion and relatively small nonlinearity, by which we mean that the nonlinear

length scale is long compared to typical dispersion length scales.

The purpose of this paper is to implement an efficient, system-independent step-size selection

criterion for solving the nonlinear Schrödinger equation that is based on bounding the local error,

and to compare its performance to four commonly used step-size selection methods that are based

on physical intuition. In the first of these four methods, called thenonlinear phase rotation method,

the step size is chosen so that the phase change due to nonlinearity does not exceed a certain limit.

This method was designed with soliton propagation in mind. The second, thelogarithmic step size

method, is designed to efficiently suppress spurious four-wave mixing, by employing a logarithmic

distribution of the step sizes [6]. In the third method, thewalk-off method, the step size is chosen

to be inversely proportional to the product of the absolute value of dispersion and the spectral

bandwidth of the signal. The idea behind this criterion is to resolve the collisions between pulses

in different channels or at least to have a measure for the violation of this criterion. This method
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was designed for low power, multi-channel systems. In the fourth,the constant step size method,

the step sizes are kept constant along the whole transmission path.

Finally, we implement a method we call thelocal error method, in which the step size is

selected by bounding the relative local error of the step. In addition, in this method we obtain a

higher-order solution that is globally third-order accurate. The method is inspired by and closely

related to widely-used algorithms for adaptively controlling the step size in ordinary differential

equation solvers [7]. In particular, we have adopted the well-known techniques of step-doubling

to estimate the local error and linear extrapolation to obtain the higher-order solution. To the best

of our knowledge, although they are widely used in other fields, techniques such as these have

not been previously used in simulations of optical fiber transmission systems or even seriously

investigated. As is typically the case for higher-order schemes, our scheme has the advantage that

it is much more computationally efficient than a second-order scheme when the global accuracy is

high [7], [8]. On the other hand, it can be less efficient at low accuracy. This behavior is consistent

with the results of Fornberg and Driscoll [9], who compared split-step methods of order 2, 4, and

6 with several higher-order linear multistep methods. For a two-soliton collision, Fornberg and

Driscoll showed that for the global error range of 10�3–10�2, the second-order split-step scheme

is more efficient than the fourth- and sixth-order schemes. However, for global errors smaller than

10�4, the higher-order schemes become more efficient. We found similar qualitative behavior for

the second-order schemes and third-order local error method that we study here.

For typical realistic optical fiber transmission systems, we will demonstrate that the walk-off

method is the most efficient of the four methods in the range of accuracy of commercial interest.

Nevertheless, the local error method is still competitive in this accuracy range, and, moreover, it is

robust for a wide range of systems.

The remainder of the paper is organized as follows: First, we review the split-step method and

the error associated with it. Then we describe the five implementations of the split-step method.

Next, we discuss simulation results comparing the performance of these implementations. Finally,

the conclusion follows.
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2 Theory

2.1 Origin of the Split-Step Error

To estimate the local and global errors in the split-step Fourier method it is convenient to represent

(1) in the form

∂u�z� t�
∂z

� �D̂� N̂�u��u�z� t�� (2)

whereD̂ � �i�β���2�∂2�∂t2 is the dispersion operator and̂N�u� � iγ�u�2 is the nonlinear operator.

Although the following discussion is for the nonlinear Schrödinger equation (1), the arguments

and conclusions also apply to the modified versions of (1) that model realistic optical fiber trans-

mission systems and to general reaction-diffusion equations. In the symmetric split-step scheme,

the solution to (2) is approximated by

u�z�h� t� � exp
�h

2
D̂�

�
exp

�
hN̂

�
u
�

z�
h
2
� t
���

exp
�h

2
D̂
�
� (3)

Since the dispersion and nonlinear operators do not commute in general, the solution (3) is only

an approximation to the exact solution. An argument based on the Baker-Campbell-Hausdorff

formula shows that thelocal error, which is the error incurred in a single step of the symmetric

split-step scheme, has a leading order term which is of third order in the step sizeh, i.e., the error

is O�h3� [10]. When we state that an error isO�hm� we mean that it is bounded byChm, for some

constantC. Since the total number of steps in a fiber span is inversely proportional to the average

step size, theglobal error accumulated over a fiber span is second order in the step size, O�h2�.

Finding an optimal step size distribution depends on the particular optical transmission system.

We will review several criteria for choosing the step size in the split-step Fourier method, and we

will introduce a new criterion based on a measure of the local error.
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2.2 Nonlinear Phase Rotation Method

The nonlinear phase rotation method is a variable step size method that is designed for systems in

which nonlinearity plays a major role. For a step of sizeh, the effect of the nonlinear operatorN̂

is to increment the phase ofu by an amountφNL � γ�u�2h. If we impose an upper limitφmax
NL on the

nonlinear phase incrementφNL, we obtain the bound on the step size:

h�
φmax

NL

γ�u�2
� (4)

This criterion for selecting the step size was originally applied to simulate soliton propagation

and is widely used in optical fiber transmission simulators. However, as we will show later, this

approach is far from optimal for many modern communications systems.

2.3 Spurious Four-Wave Mixing and Logarithmic Step Size Distribution

An improper distribution of the step sizes may lead not only to a general reduction of accuracy,

but also to numerical artifacts. Forghieri [11] demonstrates that the power of the four-wave mixing

products can be greatly overestimated by a constant step size method, since four-wave mixing is a

resonance effect. To efficiently suppress this numerical artifact, Bosco,et al. [6] used a logarithmic

distribution of the step sizes to keep the spurious four-wave mixing components below a certain

level. For a fiber span of lengthL and loss coefficientΓ, the step size ofn-th step is given by

hn ��
1

2Γ
ln
� 1�nσ

1� �n�1�σ

�
� (5)

whereσ �
�
1� exp��2ΓL�

�
�K, andK is the number of steps per fiber span. We will call this

implementation of the split-step method thelogarithmic step size method.

2.4 Walk-off Method

In many optical fiber communications systems chromatic dispersion is the dominant effect, and

nonlinearity only plays a secondary role, particularly in multi-channel systems in which the wave-
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length channels cover a broad spectrum. In this case it can be reasonable to use thewalk-off

method, in which the step size is determined by the largest group velocity difference between

channels. The basic idea is to choose the step size to be smaller than a characteristic walk-off

length. In a multi-channel system with large local dispersion, pulses in different channels move

through each other very rapidly. To resolve the collisions between pulses in different channels,

the step size in the walk-off method is chosen so that in a single step two pulses in the two edge

channels shift with respect to each other by a time which is a specified fraction of the pulse width.

Consequently, the step size is given by

h �
C

∆Vg
� (6)

where∆Vg is the largest group velocity difference between channels andC is a constant that can

vary from system to system. In any system,∆Vg �
		D2λ2�D1λ1

		, whereD1 and D2 are the

dispersions corresponding to the smallest and largest wavelengthsλ1 andλ2. Since∆Vg is constant

in any particular kind of fiber, in a given type of fiber the step size is constant. The walk-off method

can be applied to single-channel as well as multi-channel systems by choosingλ 1 andλ2 at the two

edges of the signal spectrum.

2.5 Constant Step Size Method

The simplest way to implement the split-step Fourier method is to use a constant step size along

the whole transmission path. The global accuracy can be improved only by increasing the total

number of steps. Note that the walk-off and constant step size methods are identical in systems

with only one type of fiber.

2.6 Local Error Method

In practice, it is desirable to have a general criterion for choosing the step size distribution that

is close to optimal for an arbitrary system. Adaptive methods for controlling the step size using

a measure of the local error are widely used in ordinary differential equation solvers [7]. We
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have implemented a scheme based on bounding the error in each step using the technique of step-

doubling and local extrapolation. Given the fieldu at a distancez, our aim is to compute the field

at z� 2h. Suppose that we perform one step of size 2h in a symmetric split-step scheme. We

will refer to the solution obtained atz�2h as thecoarse solution, uc. Since the local error in the

symmetric split-step scheme is third order, there is a constantκ so that

uc � ut �κ�2h�3�O�h4�� (7)

where thetrue solution ut is the exact solution atz� 2h obtained from the given solution atz.

When we write thatu � v�O�h4� for some functionsu andv, we mean that�u� v� � Ch4, for

some constantC. Next, we return toz and compute thefine solution u f at the same distancez�2h

using two steps of sizeh. As above, the fine solution is related to the true solution by

u f � ut �2κh3�O�h4�� (8)

By taking an appropriate linear combination of the fine and coarse solutions we can obtain an

approximate solution atz�2h for which the leading order error term is of fourth order in the step

sizeh [7]. From (7) and (8) it follows that this higher-order solution is given by

u4 �
4
3

u f �
1
3

uc � ut �O�h4�� (9)

which we take as the input to the next step of size 2h.

In the local error method the step size is adaptively chosen so that the local error incurred from

z to z�2h is bounded within a specified range. Now the relative local errorδ4 of the higher-order

solution is defined by

δ4 �
�u4�ut�

�ut�
� (10)

where the norm�u� is defined as�u��
��

�u�t��2dt
�1�2

. However, since we cannot compute the
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true solutionut in practice, we cannot compute the local error using (10). Instead, we define the

relative local error of a step to be the local error in the coarse solution relative to the fine solution:

δ �



u f �uc




u f



 � (11)

Notice thatδ is a measure of the true local errorδ4, sinceδ can be obtained from 3δ4 by re-

placingut by u f . The step size is chosen by keeping the relative local errorδ within a specified

range�1�2δG� δG�, whereδG is the goal local error. Ifδ� 2δG, the solution is discarded and the

step size is halved. Ifδ is in the range�δG� 2δG�� the step size is divided by a factor of 21�3 for the

next step. Ifδ� 1�2δG, the step size is multiplied by a factor of 21�3 for the next step. The reason

for choosing this factor is that then the local error should increase by a factor less than 2, since it

is proportional toh3.

Rather than simply computing the fine solution, our method computes both the fine and coarse

solutions. Although it requires 50% more Fourier transforms than does the standard symmetric

split-step method, the method yields both a higher-order solution, which is globally third-order

accurate, and a measure of the relative local error which is used to control the step size. However,

it is important to understand that the higher-order solutionu4 is not always more accurate than the

fine solutionu f , especially when the step size is large, since we are bounding the local errorδ of

the coarse solution relative to the fine solution, rather than the true local errorδ4 of the scheme.

Since we do not make any assumptions about the physical properties of the system, such as the

amount of nonlinearity or dispersion, we expect the local error method to work well in an arbitrary

system. In order to simulate a system with optimal efficiency, one first needs to investigate it

to ascertain the major sources of the split-step error. Assuming that the system is dominated by

one source of error, one can select an appropriate criterion for choosing the step sizes. The local

error method allows us to deal with general systems when the major source of error is unknown

or may even change during the propagation, or when performing a series of simulations in which

the system parameters are varied. The method can be applied to a variety of systems without

sacrificing too much computational efficiency.
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3 Numerical Results

In this section we compare the efficiency of the five implementations of the split-step method

described in Section 2. Since most of the computational time is consumed by evaluating fast

Fourier transforms (FFTs), we use the number of FFTs per simulation as a measure of the total

computational cost [9]. We used the following scheme to compare the different methods. First, we

compute a solutionua that is accurate to machine precision using the standard symmetric split-step

method (with step sizes on the order of 5 cm). Next we compute the numerical solutionun for each

of the different split-step implementations, and calculate theglobal relative error ε defined by

ε �
�un�ua�

�ua�
� (12)

where we use the norm defined in Section 2.6. We compare the performance of the different

methods by plotting the number of FFTs versus the global relative error.

3.1 Higher-Order Solitons

We start with the propagation of second- and fifth-order solitons. These systems are both highly

nonlinear. In addition, higher-order solitons are very sensitive to numerical errors, thus requiring

an efficient adaptive algorithm. The exact functional form of theN-soliton solution can be found

in [3], [5]. We use an anomalous-dispersion fiber withβ��= �0.1 ps2/km. The initial pulse is a

hyperbolic secant of the formu�t� � Aη
�
�β����γ

�1�2
sech�ηt�, where the nonlinear coefficient is

γ� 2�2 W�1km�1, the inverse pulse duration isη � 0�44 ps�1, and whereA � 2 andA � 5 for

the second-order and fifth-order solitons respectively. The corresponding FWHM pulse duration

is 4 ps and the peak powers are 35 mW and 220 mW for the second- and fifth-order solitons

respectively. The number of Fourier modes is 1024 and the simulation time window is 50 ps.

We show the performance of the different implementations of the split-step method applied to the

second-order soliton in Fig. 1(a) and to the fifth-order soliton in Fig. 1(b). In Fig. 1, we have plotted

the number of FFTs versus the global relative error for the different step-size criteria. Although the

performance of the local error method is not significantly better in the range of low accuracy values
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10�2–10�3, at high accuracy the computational cost of the local error method is one or two orders

of magnitude less than for other methods. Notice that the nonlinear phase method performs better

than the constant step size method, consistent with the system’s large nonlinearity. The slope of

the local error method curve is less than those of the other two methods since the constant step size

and nonlinear phase methods are globally second-order accurate, while the local error method is

globally third-order accurate. The walk-off and constant step size methods are identical since this

system includes only one type of fiber. The logarithmic step size method reduces to the constant

step size method because the fiber is lossless, and (5) leads to a constant step size distribution.

3.2 Soliton Collisions

Soliton collisions can be a good test for numerical methods because the subtle effect of four-wave

mixing cancellation after the collision is very sensitive to numerical errors [3]. The fiber type and

the initial pulse shape are the same as in Sec. 3.1, except thatA � 1. The pulse duration is 4 ps

and the peak power is 8.8 mW. We launch two soliton pulses separated in time by 100 ps and

with a central frequency difference of 800 GHz. The number of Fourier modes is 3072 and the

simulation time window is 400 ps. We show the performance of the different methods in Fig. 2.

The local error, constant step size, and nonlinear phase rotation methods perform equally well at

low accuracy, when the global error is in the range 10�3–10�1, while the local error method is

much more efficient when the global error is less than 10�4. Global errors less than 10�4 are

required to estimate the four-wave mixing terms correctly and to have them cancel out after the

collision. The nonlinear phase method still works better than the constant step size method because

the nonlinear interactions are critical in the propagation. As in Section 3.1, the logarithmic step

size and walk-off methods reduce to the constant step size method.

Using the example of a soliton collision, we illustrate the adaptive behavior of the local error

algorithm. Fig. 3 shows the step size as a function of propagation distance for the soliton collision

when the targeted range for the local error is (0�5�10�5, 10�5) and the initial guess for the step

size is 1000 m. Since the local error for this initial step is much less than the targeted range of
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values, at each step the step sizes are increased until the local error is within the targeted range.

The pulse collision occurs at a distance of 200 km. At this point, we observe a significant decrease

in the step size, which is necessary to accurately resolve the collision. After the collision, the step

size is increased to the same value as before the collision. The last step is smaller than the previous

step simply because the remaining section of the fiber is shorter than the step size chosen by the

algorithm.

3.3 Single-Channel Systems

In this section we study periodically-stationary dispersion-managed soliton (DMS) and chirped-

return-to-zero (CRZ) systems that resemble experimental systems [12], [13]. The DMS system

is highly nonlinear, meaning that both dispersion and nonlinearity determine the signal evolution,

while the CRZ system is quasilinear and the evolution is mostly determined by dispersion [14],

[15]. Thus we are studying the four split-step implementations using two different types of sys-

tems. We include fiber attenuation and gain, but we do not consider amplifier noise. We use 64-bit

random bit streams that repeat periodically. We stress that our goal is to test the performance of

the numerical methods for realistic systems rather than to achieve optimal propagation. Conse-

quently, it is important that we have pulse streams rather than single pulses, that we use dispersion

management, and that we include the effects of fiber loss and amplifier gain.

The DMS system is based on a 107 km dispersion map, which consists of four dispersion-

shifted fiber spans, each of 25 km, with normal dispersion equal to�1�10 ps/nm-km, followed by

7 km of standard single-mode fiber with anomalous dispersion of 16.6 ps/nm-km at 1551 nm [12].

The loss in both fibers is 0.21 dB/km, and the amplifier spacing is 25 km with an additional ampli-

fier after the standard single-mode fiber. We use Gaussian pulses with a FWHM duration of 9 ps,

as is appropriate for a 10 Gbit/s bit rate. The peak power is 8 mW. The signal is launched in the

middle of a span of anomalous fiber to ensure the periodicity of the pulse shape as it propagates

along the fiber. The propagation distance is 1,280 km. The simulation time window is 6400 ps

and the number of Fourier modes is 6144. We have not included a dispersion slope in this system

since there is only a single channel and previous work indicates that higher-order dispersion plays
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no role [12].

The CRZ system is based on a 180 km dispersion map consisting of 160 km of dispersion-

shifted fiber with dispersion�2�44 ps/nm-km, followed by 20 km of standard fiber with dis-

persion 16.55 ps/nm-km [13]. The dispersion slope is 0.075 ps2/nm-km and the fiber loss is

0.21 dB/km for both fibers, while the amplifier spacing is 45 km. Symmetric dispersion pre-

and post-compensation is performed using fiber spans of length 2.0 km, where the dispersion is

93.5 ps/nm-km, the slope is�0�2 ps2/nm-km and the loss is 0.5 dB/km. The initial pulses are

phase-modulated, raised-cosine pulses with 1 mW peak power and a chirp parameter equal to

�0�6 [14]. The bit rate is 10 Gbit/s and the propagation distance is 1,800 km. The simulation time

window is 6400 ps and the number of Fourier modes is 4096.

The performance of the four split-step implementations for the single-channel DMS and CRZ

systems is shown in Figs. 4(a) and (b) respectively. In both systems, the local error method per-

forms best over the entire range. Due to its higher order of accuracy, the data points for the local

error method lie on a line with a smaller absolute slope than those of the other methods, as ex-

pected. However, all methods become comparable in the range of global errors 10�3–10�1, the

region of most interest in simulating fiber optic links. We note however, that in the CRZ system

the performance of the logarithmic step size method is somewhat poorer than that of the nonlinear

phase and walk-off methods.

3.4 Multi-Channel CRZ System

In order to compare the split-step implementations for modeling multi-channel communications

systems, we used the same CRZ system as described in Section 3.3. In Fig. 5, we show the per-

formance of the split-step selection criteria on a 5-channel CRZ system with a 50 GHz channel

spacing. As in the single-channel case, the local error method is much more efficient at high ac-

curacy. However, at low accuracy, with the global error in the range 10�3–10�1, which is typical

for most practical systems, the walk-off method performs best.At low accuracy, the local error

method does not perform as well as the walk-off method for the following reasons. First, in the

multi-channel CRZ system, the step size within each fiber in the local error method varies approx-
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imately within a factor of two, and the average value is comparable to the step size in the walk-off

method for a given global error. However, each pair of steps in the local error method is 50%

more expensive than in the walk-off method. In addition, when the step size is large and the global

accuracy is low, the higher-order solutionu4 may not be as accurate as the fine solutionu f . Indeed,

we have observed that the local error method performs slightly better at low global accuracy if we

keep the fine solutionu f instead of the higher-order solutionu4 at each step.

Next, we observe that the nonlinear phase rotation method does not perform as well as the

walk-off method in the multi-channel CRZ system, although the performance of the two methods

is comparable in the single-channel DMS and CRZ systems. There are two major reasons for this

behavior.First, in contrast to the single-channel case, the walk-off criterion becomes more phys-

ically relevant in a WDM system, in which pulses in different channels collide.Second, the step

size in the nonlinear phase rotation method is determined by the peak power in the time domain.

In the single-channel CRZ system, the power function contains spikes due to the overlap between

neighboring pulses. However, between amplifiers the peak power decreases monotonically with

distance due to fiber attenuation. By contrast, the peak power of the multi-channel system does not

decrease monotonically with distance but contains irregular spikes because pulses from different

channels rapidly pass through each other. As a consequence, there is a significant proportion of

step sizes in the nonlinear phase rotation method that are much smaller than they need to be for a

given global accuracy.The logarithmic step size method is not efficient in the CRZ system because

the step size choice is only based on limiting spurious four-wave mixing, which is only one of the

potential sources of error in a multi-channel simulation. We also found that in the logarithmic step

size method, the error grows most rapidly in fibers with high dispersion. We find that the constant

step size method is inefficient in the multi-channel CRZ system. The reason it performs so poorly

is that for a given step size the global error does not accumulate linearly with distance. Conse-

quently, in some sections of the transmission line the global error grows rapidly, while in others

the error accumulates very slowly and computational effort is wasted.

In Figure 6, we show the step sizes in the local error method as a function of propagation

distance when the targeted range for the local error is (0�5� 10�4, 2� 10�4). The upper two
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plots show the step sizes for the first two and last two periods of the dispersion map, and the

lower two plots show the corresponding portions of the dispersion map. The amplifiers, marked

by triangles, are placed after the pre-compensation fiber, and then every 45 km. Notice that the

step size increases as the signal power and the strength of the nonlinear interactions decrease due

to the fiber loss. Also note that step size is smaller in fibers with higher dispersion since the pulses

in neighboring channels move faster with respect to each other.

To characterize the dependence of the local error method on the number of Fourier modes,

we modeled the multi-channel CRZ system with different numbers of Fourier modes,N. The

results in Fig. 5 were obtained withN � 4096. We also simulated the system withN � 3072,

N � 6144, andN � 8192. In each case, the log-log plots of the number of FFTs versus the global

error have the same slope as for the local error method plot shown in Fig. 5. However, the curves

are slightly shifted with respect to each other. The number of FFTs required to achieve a given

global error can increase by a factor of two asN is increased from 3072 to 6144. Since we keep

the time window fixed, the frequency window increases asN increases, and more high-frequency

components contribute to the global error. However, if we further increaseN from 4096 to 8192,

the number of FFTs grows by less than 30%, since the additional high frequency modes lie well

outside the bandwidth of the WDM signal and contribute little to the error.

3.5 Variation of Method Parameters

In this section we address two important questions concerning how the method parameter should

be chosen to achieve a desired global accuracy. The method parameter is the parameter in a split-

step method that we vary to adjust the accuracy of the method. First, for a given global error, how

much does the method parameter depend on the particular system? Second, by what factor should

the method parameter be decreased to halve the global error?

To answer the first question, in Figs. 7(a)–(e), we show the dependence of the global error on

the method parameter for the local error, walk-off, nonlinear phase, logarithmic step, and constant

step size methods respectively. Although the walk-off method is the most efficient in some cases,

it exhibits the worst system dependence. In particular, for the five systems we studied, when
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the global error is 10�3 the walk-off parameter varies over five orders of magnitude, whereas

the parameter for the other three methods vary only over one to two orders of magnitude. Even

omitting the two soliton systems from the comparison, the walk-off method has a greater system

dependence than the local error method. Consequently, each new system requires a significantly

different walk-off parameter to achieve the same global accuracy.

To answer the second question we examine the slopes of the curves in Fig. 7. For the walk-off,

nonlinear phase, and logarithmic steps methods, the slopes are approximately 2, as expected, since

these three schemes are second order and the step sizes depend linearly on the method parameter.

Ideally, the global error should depend linearly on the local error. However, for the local error

method the slopes of the curves in Fig. 7(a) are approximately 1�3, rather than 1. The reason for

this discrepancy is that the true local error (10) is unavailable. Instead, we use an estimate of local

error given by (11). In addition, in our local error algorithm, the local error (11) is maintained

within a range of values rather than being kept constant.
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4 Conclusion

We have studied the performance of different implementations of the symmetric split-step Fourier

method for solving the nonlinear Schrödinger equation applied to various optical fiber transmission

systems. We developed an implementation of the symmetric split-step Fourier method that is

globally third-order accurate, and for which the step sizes are chosen using a criterion that keeps

the local error within a specified range. We showed that the local error method performs best

for modeling optical solitons, soliton pulse interactions, and single-channel transmission systems.

Because it is a higher-order method, the local error method is much more computationally efficient

at high accuracy than the other three methods we considered for all of the systems we studied.

This behavior is expected with higher-order schemes [9]. Moreover, even at low accuracy, the

local error method has the advantage that it is robust for arbitrary systems.

We find that the nonlinear phase rotation method is inefficient for modeling typical modern

optical fiber transmission systems, although it performs reasonably well for solitons. The logarith-

mic step size method, which is based on bounding the spurious four-wave mixing in each step [6],

and the constant step size method are not efficient for multi-channel systems, although they can

be as efficient as the nonlinear phase and walk-off methods in single-channel systems. Finally, the

walk-off method, in which the step size is chosen to be inversely proportional to the fiber disper-

sion, performs well for multi-channel systems over the accuracy range of interest in commercial

applications.

Acknowledgements

We thank Brian Marks for many illuminating conversations and helpful comments. We ac-

knowledge support from NSF and DOE.

17



References

[1] A. Hasegawa and F. Tappert, “Transmission of stationary nonlinear optical pulses in disper-

sive dielectric fibers. I. Anomalous dispersion,”Appl. Phys. Lett., vol. 23, pp. 142–144, 1973.

[2] G. P. Agrawal,Nonlinear Fiber Optics. London: Academic Press, 2nd ed., 1995.

[3] A. Hasegawa and Y. Kodama,Solitons in Optical Communications. Oxford, UK: Clarendon,

1995.

[4] C. R. Menyuk, “Application of multiple-length-scale methods to the study of optical fiber

fiber transmission,”J. Eng. Math., vol. 36, pp. 113–136, 1999.

[5] V. E. Zakharov and A. B. Shabat, “Exact theory of two-dimensional self-focusing and one-

dimensional self-modulation of waves in nonlinear media,”Sov. Phys.-JETP, vol. 34, pp. 62–

69, 1972 [Zh. Eksp. Teor. Fiz., 61, pp. 118–134, 1971].

[6] G. Bosco, A. Carena, V. Curri, R. Gaudino, P. Poggiolini, and S. Benedetto, “Suppression of

spurious tones induced by the split-step method in fiber systems simulation,”IEEE Photon.

Technol. Lett., vol. 12, pp. 489–491, 2000.

[7] C. W. Gear,Numerical Initial Value Problems in Ordinary Differential Equations. New Jer-

sey: Prentice-Hall, 1971.

[8] K. J. Blow and D. Wood, “Theoretical description of transient stimulated Raman scattering

in optical fibers,”IEEE J. Quantum Electron., vol. 25, no. 12, pp. 2665–2673, 1989.

[9] B. Fornberg and T. A. Driscoll, “A fast spectral algorithm for nonlinear wave equations with

linear dispersion,”J. Comp. Phys., vol. 155, pp. 456–467, 1999.

[10] J. A. Fleck, J. R. Morris, and M. D. Feit, “Time dependent propagation of high energy laser

beams through the atmosphere,”Appl. Phys., vol. 10, pp. 129–160, 1976.

[11] F. Forghieri, “Modeling of wavelength multiplexed lightwave systems,” inProc. OFC’97,

(Dallas, TX), TuG1, Feb. 1997.

18



[12] R.-M. Mu, V. S. Grigoryan, C. R. Menyuk, G. M. Carter, and J. M. Jacob, “Comparison of

theory and experiment for dispersion-managed solitons in a recirculating fiber loop,”IEEE

J. Sel. Topics Quant. Electron., vol. 6, pp. 248–257, 2000.

[13] N. S. Bergano, C. R. Davidson, N. A. Mills, P. Corbert, S. G. Evangelides, B. Pedersen,

R. Menges, J. L. Zyskind, J. W. Sulhoff, A. K. Srivastava, C. Wolf, and J. Judkins, “Long-

haul WDM transmission using optimal channel modulation,” inProc. OFC’97, (Dallas, TX),

PD16.

[14] R.-M. Mu and C. R. Menyuk, “Convergence of the chirped return-to-zero and soliton mod-

ulation formats in WDM systems,”J. Lightwave Technol., vol. 20, pp. 608–617, 2002.

[15] C. R. Menyuk, G. M. Carter, W. L. Kath, and R.-M. Mu, “Dispersion-managed solitons and

chirped return to zero: What is the difference?,” inOptical Fiber Telecommunications (I. P.

Kaminow and T. Li, eds.), vol. IVB, ch. 7, pp. 305–328, San Diego, CA: Academic, 2002.

19



Figure Captions

1. Plot of the total number of FFTs versus global relative errorε for (a) second-order and

(b) fifth-order solitons.

2. Plot of the total number of FFTs versus global relative errorε for a collision of two first-order

solitons.

3. Step sizeh as a function of distance for the local error method applied to a collision of two

first-order solitons.

4. Plot of the total number of FFTs versus global relative errorε for the single-channel (a) DMS

and (b) CRZ systems.

5. Plot of the total number of FFTs versus global relative errorε for the multi-channel CRZ

system.

6. Step sizeh as a function of distance for the local error method applied to the multi-channel

CRZ system. The upper two plots show the step sizes for the first two and last two peri-

ods of the dispersion map, and the lower two plots show the corresponding portions of the

dispersion map. Triangles indicate the positions of amplifiers.

7. Plot of the global error as a function of method parameter for (a) local error, (b) walk-off,

(c) nonlinear phase, (d) logarithmic step, and (e) constant step methods.

20



      
10

3

10
4

10
5

10
6

N
um

be
r 

of
 F

F
T

s Local error
Constant steps
Nonlinear phase

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
4

10
5

10
6

10
7

Global relative error

N
um

be
r 

of
 F

F
T

s

(a) 

(b) 

Figure 1: Sinkin,et al.

21



10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
2

10
3

10
4

10
5

Global relative error

N
um

be
r 

of
 F

F
T

s

Local error
Constant steps
Nonlinear phase

Figure 2: Sinkin,et al.

22



0 400
0

5000

S
t
e
p
 
s
i
z
e
 
(
m
)

Distance (km)

Figure 3: Sinkin,et al.

23



10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
2

10
3

10
4

10
5

N
um

be
r 

of
 F

F
T

s

Local error
Walk−off
Nonlinear phase
Log steps
Constant steps

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
2

10
3

10
4

10
5

10
6

Global relative error

N
um

be
r 

of
 F

F
T

s

(a) 

(b) 

Figure 4: Sinkin,et al.

24



10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
3

10
4

10
5

10
6

Global relative error

N
um

be
r 

of
 F

F
T

s

Local error
Walk−off
Nonlinear phase
Log steps
Constant steps

Figure 5: Sinkin,et al.

25



0 300
0

500

1000

1500

S
t
e
p
 
s
i
z
e
 
(
m
)

0 300

0

100

Distance (km)

D
i
s
p
e
r
s
i
o
n
 
(
p
s
/
n
m
/
k
m
)

1400 1800

Figure 6: Sinkin,et al.

26



10
−8

 
 

10
−6

 
 

10
−4

 
 

10
−2

10
−8

 
 

 
 

 
 

10
−4

 
 

10
0

(a) Local error

Local relative error

G
lo

ba
l r

el
at

iv
e 

er
ro

r CRZ 1 channel
DMS 1 channel
CRZ 5 channels
5−order soliton
Soliton collision
 

10
−8  

10
−6  

10
−4

10
−2

10
0

10
−8

10
−4

10
0

Walk−off parameter (a.u.)

G
lo

ba
l r

el
at

iv
e 

er
ro

r

10
−3

10
−2

10
−1

10
0

10
1

10
−8

10
−4

10
0

Maximum nonlinear phase increment (a.u.)

G
lo

ba
l r

el
at

iv
e 

er
ro

r

10
0

10
1

10
2

10
3

10
4

10
−8

10
−4

10
0

Average step size (m)

G
lo

ba
l r

el
at

iv
e 

er
ro

r

10
0

10
1

10
2

10
3

10
4

10
5

10
−8

10
−4

10
0

Average step size (m)

G
lo

ba
l r

el
at

iv
e 

er
ro

r

(b) Walk−off

(c) Nonlinear phase

(d) Log steps

(e) Constant steps

Figure 7: Sinkin,et al.

27


