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1 Introduction

This document augments the online documentation of the classes cfftw, OptSignal, and
OptFiberLocalError in PhoSSiL, the Photonics Systems Simulator Library.

The OptFiberLocalError class was originally written to solve various forms of the gen-
eralized nonlinear Schrödinger equation (NLSE) that are commonly used to model propagation of
optical signals in optical fiber communications systems. More recently additional features have
been added to the class to model laser systems. In particular, the class can be used to solve the
Haus master equation (HME) which is based on a distributed laser propagation model.

We begin by explaining the conventions used for the Fourier transform, definitions of average
power and energy, some basics of the split-step Fourier method and a discussion of the different
step size selection criteria in the OptFiberLocalError class.

Then we discuss several tests we performed to validate the code. These are based on the
classical sech-soliton solution of the NLSE and on a chirped sech-soliton solution of the HME.
This discussion includes basic information on how PhoSSiL was used to perform these tests.

2 The Fourier Transform

In PhoSSiL, Fourier transforms are performed using the FFTW (Fastest Fourier Transform in the
West) software.1

There are several conventions for the Fourier transform.2 PhoSSiL uses the Physics convention
whereas FFTW is based on the Math convention. The class cfftw provides an interface between
FFTW and PhoSSiL. However users never need to invoke this class for themselves. Instead it is
called by the constructor of the OptSignal class.

1See http://www.fftw.org/. Matlab also uses FFTW.
2See scanned handwritten lecture notes by Curtis Menyuk on the PhoSSil website for an overview.
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In FFTW the forward discrete Fourier transform u=DFTFFTW(ũ) of a vector ũ=(ũ0, · · · , ũN−1)
is the vector u = (u0, · · · ,uN−1), where

un =
N−1

∑
n=0

ũm exp(−2πinm/N). (1)

In FFTW the inverse Fourier transform is computed using

ũ =
1
N

IDFTFFTW(u), (2)

where IDFTFFTW is the unnormalized inverse Fourier transform in FFTW.

In PhoSSiL Fourier transforms are defined using the physics convention as follows. Let u(t)
be a function in the time domain that, for example, represents the complex electric field envelope
of the light. Suppose that u(t) is periodic with period T . (T = OptSignal::TimeWindow.)3

We define the Fourier transform of u(t) to be ũ(ω), where ω is frequency in radians/second, by

ũ(ω) =
1
T

∫ T

0
u(t)exp(iωt)dt. (3)

So, by the Fourier inversion theorem,

u(t) =
T
2π

∫
Ω

0
ũ(ω)exp(−iωt)dω, (4)

where Ω

2π
= OptSignal::FreqWindow in Hz. The reason we use these normalizations is that

then |u(t)|2 and |u(ω)|2 both have units of Watts, W.

Let u and ũ be N-vectors discretizing u(t) and ũ(ω), respectively (N=OptSignal::qtPoints).
Then T Ω

2π
= N and ∆ν = ∆ω

2π
= OptSignal::DeltaFreq which has units of Hz. Also, ∆t =

OptSignal::DeltaTime = T/N, ∆ν = Ω/(2πN) and ∆t∆ν = 1/N. With this discretization
the Fourier transform in PhoSSiL is given by

ũ = DFTPhoSSiL(u) :=
1
N

IDFTFFTW(u), (5)

and the inverse Fourier transform is

u == IDFTPhoSSil(ũ) = DFTFFTW(ũ). (6)

The methods cfftw::FFT and cfftw::IFFT implement DFTPhoSSiL and IDFTPhoSSiL, respec-
tively. With these definitions

DFTPhoSSiL ◦ IDFTPhoSSiL = Id (7)

is the identity operator.

3In this document, classes and variables in PhoSSiL are indicated using typewriter font.
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3 Energy, Average Power and Power Spectral Density

We use the following definitions in the class OptSignal.

Total Energy (in J = W.s) =
∫ T

0
|u(t)|2dt ≈ ∑

n
|un|2∆t (8)

and

Average Power (in W = J/s) =
1
T

∫ T

0
|u(t)|2dt ≈ 1

N ∑
n
|un|2 (9)

so that Total Energy = T Average Power. Parsevals Theorem says that the total energy is also

Total Energy =
∫ T

0
|u(t)|2dt =

T 2

2π

∫
Ω

0
|ũ(ω)|2dω ≈ T ∑

m
|ũm|2. (10)

Also by Parseval,
Average Power ≈ ∑

m
|ũm|2. (11)

These quantities are computed using the methods OptSignal::GetTotalEnergy() and
OptSignal::GetAveragePower().

We define power spectral density to be average power in a bandwidth divided by the bandwidth
in Hz. So

PSDm =
1

∆ν2

∫ 2π(m+1)∆ν

2πm∆ν

|ũ(ω)|2 dω

2π
≈ |ũm|2

∆ν
(12)

in W/Hz. Then it is easy to check that

Average Power = ∑PSDm∆ν. (13)

4 The NLSE, HME, and CNLSE

4.1 The NLSE

With the physics convention the scalar NLS equation is

iuz − 1
2β
′′utt − i

6β
′′′uttt + γ|u|2u− i

2αu = 0. (14)

The names of the parameters in OptFiberLocalError are

• β′′ = FstOrDispFiber in s2/m

• β′′′ = SndOrDispFiber in s3/m

• γ = gamma in (Wm)−1
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• α =−NepperAttenuationFiber in m−1

The scalar NLS is invoked when TypeSolver = SCALAR NLS.

In the input parameter file for the PhoSSiL class OptFiberLocalError the dispersion
is to be specified in one of two ways. If the flag SetFstSndOrDispFlag is set to true then
FstOrDispFiber = β′′ in s2/m and SndOrDispFiber = β′′′ in s3/m are input directly. Other-
wise, we specify DispersionFiber in ps/(nm.km) and DispSlopeFiber in ps/(nm2.km).
Of course the value of DispersionFiber depends on a reference wavelength. We can either
specify ReferenceFreq or ReferenceWavelength by setting the other value to 0.0. The
formulae used to get the β’s are given in the method OptFiberLocalError::SetDispersion().
(Also see Agrawal’s Optical Fiber Communications book.) In the alternate OptFiber class we
specify DispersionFiber and DispSlopeFiber.

In class OptFiberLocalError, for loss we either specify positive AttenuationFiber
in dB/m or positive NepperAttenuationFiber in m−1 or TotalLinearAttenuationFiber
greater than 1 (Set the parameters you are not specifying to 0 for AttenuationFiber and
NepperAttenuationFiber and 1 for TotalLinearAttenuationFiber or omit them.)

Similarly, the nonlinear coefficient γ can either be input directly, via NonlinearCoefficientGamma,
or it can be computed from the input parameters NonLinIndexFiber in m2/W and EffectAreaFiber
in m2 using the formula

γ =
NonLinIndexFiber∗2∗π∗CenterFreq

EffectAreaFiber∗LightSpeed
. (15)

To specify which parameter (NonlinearCoefficientGamma or NonLinIndexFiber)
is to be used, set the other one to 0.

To change parameters in the course of a simuation one can call the methods SetFstOrDispFiber(),
SetSndOrDispFiber(), SetAttenuationLinear(), and SetGamma() to set
FstOrDispFiber, SndOrDispFiber, NepperAttenuationFiber, and gamma directly.

There are also options to solve the vector Manakov equation with or without PMD (TypeSolver
= VECTOR MANAKOV PMD or TypeSolver = VECTOR MANAKOV NO PMD). See Curtis Menyuk’s
paper in the Journal of Engineering Mathematics. Note though that the case with PMD is not so
well developed. Instead users are encouraged to use the OptFiber class which was specifically
designed for PMD modeling, and also includes effects such as fiber loss, chromatic dispersion and
the Kerr nonlinearity.

4.2 The HME

Similarly, the scalar HME is given by

∂u
∂z

=

[
− `

2
+

g
2

(
1+

1
Ω2

g

∂2

∂t2

)
− i

2β
′′ ∂2

∂t2 + (δ+ iγ)|u|2
]

u, (16)

where
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• ` is the power loss in m−1, `= NepperAttenuationFiber;

• g = g(z) is the saturable power gain in m−1, given by g(z) = g0
1+W (z)/Wsat

, where W (z) is the

energy at z, Wsat is the saturation energy and g0 is the unsaturated gain in m−1;

• Ωg is the parabolic gain coefficient FiberAmplifierParabolicGainCoefficient
in s−1;

• δ is the FastSaturableAbsorptionCoefficient, in (Wm)−1;

• γ is the Kerr nonlinear coefficient gamma in (Wm)−1.

Simulations with the scalar HME are performed with TypeSolver = SCALAR NLS.

The unsaturated gain of the fiber amplifier can be specified either by setting
FiberAmplifierUnsaturatedGaindBPerLength in dB/m
or FiberAmplifierUnsaturatedNepperGainPerLength in m−1

or FiberAmplifierUnsaturatedTotalLinearGain.

4.3 CNLSE

PhoSSiL can also be directed to solve the Coupled Nonlinear Schrödinger Equation (CNLS) in the
form

∂u
∂z

=

[
− `

2
+ i

g
2

(
1+

1
Ω2

g

∂2

∂t2

)
+ i∆β−∆β

′ ∂

∂t
− i

2β
′′ ∂2

∂t2 + (δ+ iγ)(|u|2 + 2
3
|v|2)

]
u + i

γ

3
v2u∗

(17)

∂v
∂z

=

[
− `

2
+ i

g
2

(
1+

1
Ω2

g

∂2

∂t2

)
− i∆β+∆β

′ ∂

∂t
− i

2β
′′ ∂2

∂t2 + (δ+ iγ)(|v|2 + 2
3
|u|2)

]
v + i

γ

3
u2v∗.

(18)

For this set TypeSolver = VECTOR CNLS. (See C.R. Menyuk, J. Quantum Electron. Vol QE-
23, pp. 174-176, 1987.) Here ∆β is the (phase) birefringence (CNLSPhaseBirefringence in
units of m−1) and ∆β′ = ∂∆β

∂ω
is the walk-off birefringence (CNLSWalkOffBirefringence in

units of s/m). If we let U= (u,v)T be the Jones vector at (t,z), then the vector form of the nonlinear
terms in the CNLS can be written in the form (See Curtis Menyuk, J. Eng. Math. paper):

∂U
∂z

= iγ
[
|U|2U− 1

3
(U†

σ2U)σ2U
]

(19)

where σ2 is one of the Pauli spin matrices

σ0 =

(
1 0
0 1

)
σ1 =

(
0 1
1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0
0 −1

)
. (20)
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The Stokes parameters are defined by

[S0,S1,S2,S3] = U† [σ0,σ3,σ1,−σ2]U. (21)

Then the Stokes parameters then the vector form of the CNLS can be written as

∂U
∂z

= iγ
[

S0U+
1
3

S3 σ2U
]
. (22)

Applying the product rule to the definition of the Stokes parameters and substituting in the CNLS
gives the evolution equations

∂S0

∂z
= 0 (23)

∂S1

∂z
=

2γ

3
S2S3 (24)

∂S2

∂z
= −2γ

3
S1S3 (25)

∂S3

∂z
= 0. (26)

Therefore the effect of the nonlinearity is that, on the Poincaré sphere the Stokes vector (S1,S2,S3)
rotates around the circle of latitude determined by the constant value of S3, and moves west at a
constant angular speed that is proportional to S3.

5 Numerical solution via the symmetric split-step scheme

5.1 Solving the NLSE using the symmetric split-step scheme

The split-step scheme for solving equations like the NLSE relies on the solution of the equation in
two special cases. First, if there is no nonlinearity, then in the frequency domain we have the exact
analytical solution

ũ(z+∆z,ω) = ũ(z,ω)exp(1
2α∆z+ i

2β
′′
ω

2
∆z+ i

6β
′′′

ω
3
∆z). (27)

Second, in the presence of nonlinearity alone we in the time domain we have the exact analytical
solution

u(z+∆z, t) = u(z, t)exp(iγ|u|2∆z). (28)

We use the symmetric split-step Fourier scheme in PhoSSiL. This means that for the NLSE
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above the solution at z+∆z is given in terms of the solution at z by

ũD1(ω) = ũ(z,ω)exp([1
2α+ i

2β
′′
ω

2 + i
6β
′′′

ω
3]∆z

2 ) (29)
uD1(t) = IDFT(ũD1(ω)) (30)

uNL(t) = uD1(t)exp(iγ|uD1(t)|2∆z) (31)
ũNL(ω) = DFT(uNL(t)) (32)

ũ(z+∆z,ω) = ũNL(ω) exp([1
2α+ i

2β
′′
ω

2 + i
6β
′′′

ω
3]∆z

2 ) (33)
u(z+∆z, t) = IDFT(ũ(z+∆z,ω)). (34)

With this scheme, the local error is O(∆z3) and the global error is O(∆z2).

5.2 Solving the HME using a nested symmetric split-step scheme

For the HME we do dispersion, loss, and Kerr nonlinearity steps as for the NLSE. The saturable
gain and fast saturable absorption are done using Heun’s Method (aka modified Euler method or
2nd-order Runga-Kutta), which is locally O(∆z3). In the time domain we do a half-step of Kerr
nonlinearity followed by a whole step of fast saturable absorption followed by a half-step of Kerr
nonlinearity. This split-step method means that the Kerr nonlinearity part is done exactly. For
the quadratic fast saturable absorption in the standard HME we also derived an exact analytical
solution, which we use if TypeFastSaturableAbsorption = QUADRATIC ANALYTIC. If Type-
FastSaturableAbsorption = QUADRATIC, we use Heun’s Method. Overall the time domain part
has a local error of O(∆z3). Similarly, in the frequency domain we choose to do the chromatic dis-
persion and loss exactly in two half-steps with a full step of saturable parabolic gain in between, so
that the frequency domain part is also O(∆z3). Since we also have two half steps in the frequency
domain with a whole step in the time domain in between, the entire nested split-step method is
locally O(∆z3) and hence globally is O(∆z2) (at least when the step size is constant).

5.3 Solving the CNLSE via a Jones space transformation of the nonlinear
terms

The basic method for solving the CNLSE is as for the NLSE/HME above. However to solve (19)
in the time-domain we proceed as follows.

Our goal is to get rid of the four-wave mixing type terms v∗u2 and u∗v2 in (18). To do so we
let U = AW where A is a 2×2 unitary matrix which diagonalizes σ2:

σ2 = Aσ3A† A =
1√
2

(
1 1
i −i

)
. (35)

Note that the basis {(1,0)T ,(0,1)T} of Jones space is transformed to the basis { 1√
2
(1, i)T , 1√

2
(1,−i)T}.

The corresponding sets of vectors in Stokes space are {(1,0,0)T ,(−1,0,0)T} and {(0,0,−1)T ,(0,0,1)T},
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ie A transform coordinates from a basis of linearly polarized variables to a basis of circularly po-
larized variables. Then (19) is transformed to

∂W
∂z

= iΛW, (36)

where
Λ = S0σ0 +

1
3

S3σ3. (37)

As we saw above S0 and S3 are constant in z. Therefore Λ is also constant in z. This makes sense
since in the circularly polarized basis, energy is split equally between the two basis vectors as the
Stokes vector of the light is just rotating around a circle of latitude.

Therefore the exact solution of (36) is

W(z+∆z) = exp(iΛ∆z)W(z) (38)

and so the exact solution of (19) is

U(z+∆z) = Aexp(iΛ∆z)A†U(z). (39)

Multiplying out the matrices on the right hand side gives

U(z+∆z) = eiα
(

cosβ sinβ

−sinβ cosβ

)
U(z), (40)

where α = γS0∆z and β = 1
3γS3∆z, which is easy to implement. (Note that the components of U

are complex and so we can’t express the rotation of U through angle β as a complex multiplication
by eiβ.)

If we write W = (r,s)T , then (36) becomes

∂r
∂z

= i
2γ

3
(
|r|2 +2|s|2

)
r (41)

∂s
∂z

= i
2γ

3
(
2|r|2 + |s|2

)
s, (42)

where

r =
1√
2
(u− iv) s =

1√
2
(u+ iv). (43)

Note that in the special cases u = 0 or v = 0, this system of equations reduces to the nonlinear
terms in the NLSE.
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6 Step Size Selection Criteria in OptFiberLocalError

For more details on step size selection criteria, see ”Optimization of the split-step Fourier method in
modeling optical fiber communications systems”, by O.V. Sinkin et al. in J. Lightwave Technology,
21 (1), pp. 61-68, 2003, available on the PhoSSiL web site.

In OptFiberLocalError we have four step size selection options. The input parameter
TypeStepSizes can take the values LOCAL ERROR 3RD = 1, LOCAL ERROR 2ND = 2,
WALK OFF = 3, CONSTANT = 4.

No matter what method we use we always choose the last step in a particular fiber so that the
the total propagation length in that fiber is correct.

The rest of this section applies whenever TypeSolver is either SCALAR NLS or VEC-
TOR MANAKOV NO PMD. The option VECTOR MANAKOV NO PMD should be used when
the PMD in the system is negligible but you want to use a simulation with two orthogonal polar-
ization states. The third option for TypeSolver is VECTOR MANAKOV PMD, which has not
been thoroughly tested yet. (For PMD modeling, use the class OptFiber instead.)

6.1 CONSTANT method

In this method the step sizes are constant. The number of steps per fiber is NumStepsBetween-
Scatterings. (This variable name was chosen for the case when there is PMD. Hence the
funny name.)

6.2 WALK OFF method

The code uses a variant of the criterion for choosing ∆z given in the paper of Sinkin et al. For each
type of fiber (e.g., SMF, DCF, DSF) the user inputs a value for the WalkOffParameter and the
code sets the step size in that fiber type to be

∆z =
WalkOffParameter

|D1λ1−D2λ2|
(44)

where D1 and D2 are the dispersions in ps/nm-km at wavelengths λ1 and λ2. We choose λ1, λ2 as
follows:

• WDM Case: λ1, λ2 are the central wavelengths of the edge channels

• Single Channel Case: λ1,2 correspond to frequencies ω1,2 = CenterFreq± RootMean-
Square spectral width of signal.
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6.3 LOCAL ERROR methods

First read Sinkin’s paper for the basic algorithm. Here we just discuss issues that are not mentioned
in the paper.

For this method you need to set RelativeErrorGoal, and DeltaZMax. The algorithm
aims to keep the local error in the range 0.5 ∗RelativeErrorGoal < LocalError < 2 ∗
RelativeErrorGoal. To determine the initial step size in a given fiber for the very first time
through that fiber we take an initial guess of DeltaZ = 0.5*DeltaZMax. Note though that the
algorithm may not actually take a step of that size. For subsequent passes through the fiber we use
the step size of the first step that was taken in the fiber last time we went through it.

Note that when TypeGainLoss = FIBER AMPLIFIER the value of DeltaZMax is se-
lected so as to correctly compute the gain and noise along the fiber. See the online documentation
on OptFiberLocalError for more details.

For LOCAL ERROR 3RD for each step we keep the high-order solution given by Eq. (9) of
Sinkin’s paper. For LOCAL ERROR 2ND we keep the fine step solution, given by Eq. (8) of
Sinkin’s paper.

7 Examples and Code Validation

We present the results of simulations that both validate the code and demonstrate some important
properties of propagation in optical fiber systems.

7.1 Soliton Solution of NLSE

We consider the classical sech-pulse solution of the NLSE

iuz − 1
2β
′′utt + γ|u|2u = 0, (45)

with β′′ =−0.1 ps2/km, γ = 2.2 W−1 km−1 and an initial pulse

u(z = 0, t) =

√
−β′′

γτ2 sech
( t

τ

)
(46)

where FWHM = 2log(1+
√

2)τ = 4.0 ps. The peak power is P0 = 8.8273789 mW. The formula
for the solution is

u(z, t) =

√
−β′′

γτ2 sech
( t

τ

)
exp
(

i
−β′′z
2τ2

)
. (47)

Observe that the power function |u(t)|2 is constant but the phase will evolve as a function z. Also
note that classical solitons only exist when β′′ < 0.
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In Fig. 1, the optical power |u(t)|2 of the soliton is shown at 0 km and 500 km. Agreement
is excellent. In Fig. 2, the real and imaginary parts of u are shown at 10,000 km. The agreement
between theory and simulation is excellent. For this simulation we used qtPoints = 4096,
StringLength = 4, BitRateChann = 40 GHz, and constant Step sizes with 50,000 steps. It
is very important that the peak power in the simulation and theory agree as accurately as possible.
Likewise for the FWHM.

In Fig. 3 we propagate the initial pulse in Eq. (46) for 300 km including only dispersion in the
propagation model. The split-step method uses just 1 step since there is no nonlinearity. In Fig. 4
we show the same pulse after 500 km of propagation through fiber which only has dispersion. The
result is not correct since the pulse is wider than the TimeWindow and so has wrapped around on
itself. To overcome this problem you would need to make StringLength and qtPoints both
larger.

0 0.5 1

x 10
−10

0

5

x 10
−3

Time

O
pt

ic
al

 P
ow

er

Soliton at 500 km  

The initial and final
pulse shapes are identical 

Figure 1: Optical power of classical soliton at 0 km and 500 km.

7.2 Pure Third Order Dispersion

Suppose that we have a fiber with pure third-order dispersion, i.e., the fiber has no nonlinearity
(γ = 0), β′′ = 0 and β′′′ = 1 ps3/km and that the initial pulse is a Gaussian with a FWHM of 4 ps.
In Fig. 5 we show the output pulse after 100 km of propagation through such a fiber. Oscillations
are present at times greater than the central time of the initial pulse, as we would expect.
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agree exactly 

Figure 2: Real and imaginary parts of classical soliton at 10,000 km. Theory and simulation of the
NLSE are in excellent agreement.

7.3 Frequency shift invariance

We simulate the propagation of a Gaussian pulse at νch = 193400 GHz through 50 km of fiber with
D = 20 ps/nm-km. There is no dispersion slope or nonlinearity. We choose qtPoints = 4096
and StringLength = 32 to give FrequencyWindow = 1280 GHz.

We do two simulations. For the first we choose CenterFreq = 193400 GHz and for the
second CenterFreq = 193300 GHz. The outputs are shown in Fig 6. Both have the same shape
but the second is moved by ∆t =−801.5 ps. This time shift is given by the formula

∆t = 2πβ
′′z∆ν, (48)

where ∆ν = νch−ν0 =+100 GHz and β′′ =−25.513 ps2/km. In particular, the signs of the time
shifts are the same in the theory and with the NLS simulation. One way to derive the theoretical
time shift is to use the solution of the linear dispersive equation with a Gaussian initial condition
as one has in the Physics convention

u(z = 0, t) = exp(−t2
∗/2)exp(−i∆ν∗t∗) (49)

where t∗ = t/τ0 and ∆ν∗ = ∆ντ0 are unitless and τ0 is a measure of the pulsewidth. The solution
of the linear dispersive equation

iuz − 1
2β
′′utt = 0 (50)
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Figure 3: The result of propagating an inital sech-shaped pulse through dispersive fiber with β′′ =
−0.1 ps2/km for 300 km. Note that without the nonlinearity the pulse spreads in time.

is

u(z, t) =
1√

1− iB∗(z)
exp
(
− (t∗+ i∆ν∗)

2

2(1− iB∗(z)

)
exp(−∆ν

2
∗/2), (51)

where B∗(z) =
∫

β′′(w)dw/τ2
0 is the normalized accumulated dispersion. From Eq. (51) it is easy

to verify Eq. (48).

7.4 Tyco System

In Fig. 7 we plot the optical power versus time for propagation of a noise-free 32 bit PRBS through
the “Tyco”system. This system is similar to a WDM system designed by Tyco in about 1998.
Details of the system can be found, for example, in Ronald Holzloehner’s Ph.D. thesis on the
PhoSSiL web site. The input pulses have a peak power of 1 mW. Plots of optical power for an
isolated pulse versus time at the end of each span of the dispersion map are shown in Fig. 8. The
initial pulse width (z = 0) is about 30 ps, and after the pre-compensation it is about 200 ps. The
final pulse width is about 22 ps. The corresponding electrical eye is shown in Fig. 9. Notice
that the left side of the eye is steeper than the right side, as one would expect for a causal filter.
(Causality implies that if the signal is zero for all times less than t0 then the filtered signal must be
zero there too.) We also checked that the Q-factor and Eye Opening are invariant to shifts in the
central frequency of the FreqWindow.
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Sech−shaped pulse, dispersion only at 500 km 

Figure 4: The result of propagating an inital sech-shaped pulse through dispersive fiber with β′′ =
−0.1 ps2/km for 500 km. The oscillations are numerical artifacts that occur because the time
window is too narrow to contain the entire pulse.

7.5 Soliton solution of HME

The Haus master equation has a soliton solution of the form

u(z, t) = A [sech(t/τ)]1+iβ exp(iψz+ iθ) (52)

where we recall that [sechx]1+iβ = sechx exp(iβ lnsechx). In Haus et al., JOSA B, 8 (10), pp
2068-2076, 1991, the authors derive formulae for the pulse parameters A, τ, β and ψ in terms
of the material parameters of the laser, i.e in terms of the coefficients in the HME. In the online
documentation of OptFiberLocalError there is a link to a Matlab function based on the
JOSA B paper that computes the pulse parameters in terms of the laser parameters and checks
whether the resulting solution is stable. Using the parameters A, τ, β of the input pulse we can solve
the HME numerically using OptFiberLocalError to obtain an output pulse and compare to
the analytical formula above. In the following plots we show the agreement between the formula
and the simulation for various values of the laser parameters.

If we choose laser parameters of g0 = 3, Wsat = 1, `= 2, Ωg =
√

2, δ= 1, γ= 4, β′′= 3 then the
pulse parameters are W = 0.5, A = 0.0755794477, τ = 43.76559087, FWHM=2log(1+

√
2)τ =

77.147633193, β = 5.105983, ψ = 0.02229926, g = 2 and the stability parameter is 5.56 which,
since it is positive, implies the pulse is stable. We choose a time window of 1000 s discretized
using 4096 points. We used FiberAmplifierGainSaturationMaxGainPerStep = 1.01
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Figure 5: Pure third order dispersion of a Gaussian input pulse.

and RelativeErrorGoal = 10−6.In Figs. 10 and 11, 12 we show the real and imaginary parts
of the solution at z = 300 and power and phase at z = 1000. After about 10 m the value of g
stabilized to g = 1.9971 corresponding to an energy of W = 0.502178. Agreement is excellent at
z = 300 m but there is a slight discrepancy at z = 1000 m.

We checked that the results at z = 300 m do not depend on the discretization by changing
maximum step size, time window, frequency window and we found no diference in the results.
However, we do need to specify the pulse parameters very accurately in order to get the level of
agreement seen in these figures.

The dispersion length is LD = FWHM/|β′′| = 25.6 m and the nonlinear length is LNL =
1/(γP0) = 43.86 m, where P0 is the peak power. So a propagation distance of z = 300 m is about
6 nonlinear lengths and thus is a good test of the code.

We note that all effects are important in this simulation, and the results therefore validate of
the code. For example, fast saturable absorption is important, since if we reduce δ to 0.1, say, then
the theory shows that the pulse will be unstable. Also, the value of Ωg is small enough for the
filtering action to affect the pulse. This is because of the following observations. First, the FWHM
in the frequency domain of the Gaussian filter that corresponds to propagation by distance z due
to the parabolic gain shaped fiber amplifier is FWHM =

√
ln2Ωg/(π

√
gz) Hz. For this FWHM to

equal the frequency-FWHM of the pulse, which is 0.04 Hz, we need z = 44 m. In other words,
every 44 m the fiber amplifier does a Gaussian filtering with the same frequency-FWHM of the
pulse.

Because our maximum step size is 0.007 m, the effective filter width for one step is about 3 Hz
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Figure 6: Result of a simulation that demonstrates the frequency-shift invariance of the NLSE.

which is 80 times the pulse width in frequency. Therefore there is no additional loss in each step
and the gain is therefore constant. Note however, that if we reduce Ωg to 1, then the theory predicts
that the pulse will be unstable.

We also studied the effect of using a larger satuarion energy of Wsat = 10 and g0 = 2.1, so that
g ≈ 2 will still hold. In this case the gain converges to g = 1.9969 which would suggest that the
energy should converge to 0.5023. However it converges to 0.516261, which is due to the fact that
the gain takes about 60 m to decrease to its limiting value. (When Wsat = 1 and g0 = 3 it only takes
about 20 m.) As a consequence there is a slight disagreement between theory and simulation: at
z = 300 m both the power and phase disagree a little in the center of the pulse, see Fig. 13, 14. We
expect that this pulse will converge at large z to a soliton, but with slightly different parameters.

When Wsat = 0.1 and g0 = 12 the agreement is excellent once again and in this case the con-
vergence distance is less than 20 m.
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Figure 7: The output optical power for a 32-bit PRBS in the Tyco system.
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mark.
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Figure 9: The electrical eye diagram for the noise-free Tyco system. The clock recovery time is
indicated with a plus sign.
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Figure 10: The real and imaginary parts of the solution of the HME at z = 300 m.
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Figure 11: The power of the solution of the HME at z = 1000 m
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Figure 12: The phase of the solution of the HME at z = 1000 m
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Figure 13: The power of the solution of the HME at z = 300 m for Wsat = 10 and g0 = 2.1.
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Figure 14: The phase of the solution of the HME at z = 300 m for Wsat = 10 and g0 = 2.1.
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