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Effect of Axial Inhomogeneity on Solitons Near the
Zero Dispersion Point

P. K. A. WAL, C. R. MENYUK, H. H. CHEN, anp Y. C. LEE

Abstract—It is shown both numerically and analytically that solitons
emerge from initial pulses in the neighborhood of the zero dispersion
point even when axial inhemogeneity causes large fluctuations in the
zero dispersion point’s location. The criterion for soliton propagation
in this regime is that the correlation length of the variations is much
shorter than the second-order and the third-order dispersion lengths.

I. INTRODUCTION

N the linear regime, the maximum bit rate which can

be transmitted over a single-mode optical fiber is lim-
ited by dispersion. If we consider a pure silica fiber with
a length of 30 km and propagation at the minimum loss
point A = 1.55 um, we find that dispersion limits the bit
rate to about 10 Gbits. At the so-called ‘‘zero dispersion
point’> where second-order dispersion is zero, the linear
dispersion is minimized; it is not really zero because the
third-order dispersion is nonzero. Nonetheless, the max-
imum obtainable bit rate increases to roughly 300 Gbits.
Unfortunately, this approach suffers from the drawback
that deviations away from the zero dispersion point of only
1 percent will degrade the bit rate by a factor of ten, and
the zero dispersion point always shifts along the fiber due
to variations in the core size. Another approach which has
been proposed is to make use of the Kerr effect in the
anomalous dispersion regime to produce solitons, nonlin-
ear pulses which propagate without dispersive broadening
[1]. This idea, while quite promising, suffers at present
from the drawback that quite substantial power, on the
order of 1 W peak power for a 5 ps pulse, is needed to
produce a soliton. While this peak power can be substan-
tially reduced in specially manufactured fiber, the doping
process which produces this fiber will lead to far higher
attenuation loss. At the same time, the soliton scheme is
quite robust since solitons will propagate whenever A =
1.3 pm. Moreover, this scheme lends itself naturally to
the use of amplifiers rather than repeaters [2]-[4].

Recently, we have proposed a scheme which combines
the low power requirement of propagation at the zero dis-
persion point with the robustness of the soliton approach
[5]. If a pulse is launched at or near the zero dispersion
point, then the nonlinear Schrédinger equation which has
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been used to model phenomena in the anomalous disper-
sion regime is no longer valid. Nonetheless, a soliton (or
more precisely, a solitary wave) is created anyway. More-
over, this soliton has a peak power which is substantially
lower than that for solitons in the anomalous dispersion
regime, putting the use of laser diodes within reach. When
the soliton forms, the nonlinearity downshifts its center
frequency into the anomalous dispersion regime. As a
consequence, the soliton is quite robust. At the same time
that the soliton forms, a substantial fraction of the initial
pulse power will, in general, go into a dispersive wave
component. This fraction is quite sensitive to the initial
central frequency of the launched pulse and is generally
substantial. When the initial central frequency is exactly
at the zero dispersion point, this fraction is about 40 per-
cent. However, the dispersive wave component is up-
shifted by the nonlinearity into the normal dispersion re-
gime, so that there is a clear frequency separation between
the soliton and the dispersive waves. Hence, the latter can,
in principle, be removed by filtering the signal.

In previous work [5], we concentrate on demonstrating
that a soliton forms when a pulse is launched at or near
the zero dispersion point, ignoring the response of the so-
liton to variations in the zero dispersion point along the
fiber length due to axial inhomogeneity. The core diam-
eter of a step-index fiber typically has a tolerance of 1
percent [6]. While the amount of the fluctuation is small
and has little effect on soliton propagation in the anoma-
lous dispersion regime, it can have a significant effect in
the new proposed scheme. The zero dispersion point is
the result of a balance between the material dispersion and
the waveguide dispersion. The material dispersion is in-
dependent of the fiber design, but the waveguide disper-
sion is sensitive to variations of the fiber parameters.
Small deviations from the prescribed value would shift the
balance such that a pulse launched at the zero dispersion
wavelength at one point of the fiber would encounter
strong chromatic dispersion later. In this paper, we show
both analytically and numerically that within the physi-
cally important parameter range where the correlation
length of the axial variations is much shorter than the sec-
ond-order and the third-order dispersion length, soliton
propagation is possible even for large amplitude of fluc-
tuation in the second-order dispersion. Physically, the
second-order dispersion varies so fast that the pulse can-
not respond to it. Its evolution is therefore governed by
the weaker third-order dispersion. This result overcomes
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a major hurdle for the new scheme. If long period axial
variations are eliminated by carefully controlling the man-
ufacturing process of the fiber, solitons propagate in the
neighborhood of a rapidly fluctuating zero dispersion
point.

The present paper is arranged as follows. The results in
the ideal case with no axial variations are reviewed in Sec-
tion II. In Section III, the equation governing the evolu-
tion of the pulse envelope at the zero dispersion point,
including the effect of axial inhomogeneity, is introduced.
The magnitude and correlation length of the variations in
a fiber are discussed. In Section IV, we introduce scale
lengths corresponding to different physical effects. A mul-
tiple length scale expansion, based on ordering the differ-
ent scale lengths, is used to demonstrate soliton propa-
gation near the fluctuating zero dispersion point. In
Section V, the equation of motion is integrated numeri-
cally. The effects of different correlation lengths with dif-
ferent amplitudes are studied in detail by assuming an ax-
ial variation which consists of a single Fourier mode.
Finally, random fluctuation of the zero dispersion point is
simulated by a Gaussian modulated Fourier series with
randomly chosen frequencies.

II. IDEAL CASE

Using the slow-varying envelope approximation, we
find that the pulse envelope of the electric field, assuming
no axial inhomogeneity, satisfies the equation
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where n, is the Kerr coeflicient, k is the propagation con-
stant, k' = 0k /dw, k" = 3% /3w’ k" = 8’k /8, 7!
is the attenuation length, and w is the carrier frequency.
The propagation constant and its derivatives are indepen-
dent of the axial coordinate z. At the zero dispersion point,
k" = 0. Letting 7 equal the pulse width, (1) is reduced to
dimensionless form using the following transformation:
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£ = |k |o/7 (3)
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where I' = vy7° /k™ . In subsequent discussion, the effect
of attenuation on the fiber is ignored, and T is set to zero.
For hyperbolic secant initial conditions, g(0, s) = A4, sech
(s5), the soliton forms over a length £ = 10/A3 when A4,
> 1.5 and somewhat more quickly at lower values of 4.
Hence, attenuation will not affect the soliton’s emer-
gence, as long as I' < A3/10. If Raman amplification is

used, then it may be possible to bypass this constraint on
AO .
We look for a soliton of the form

q(&, s) = q(6) exp (ikok — iQ0) (6)

where § = s — £ /u where u is the speed of the pulse and
ko and € are the shift in normalized wavenumber and fre-
quency of the soliton, respectively. The quantity €, takes
into account the variation in the central frequency near the
zero dispersion point. When £ is large and negative, the
soliton is deep inside the anomalous dispersion regime,
and the second-order dispersion dominates. The quantity
G(0) can then be determined from the nonlinear Schro-
dinger equation with third-order dispersion being treated
as a perturbation. Subsitution of (6) into (5) yields
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The boundary conditions for G(8) is taken to be

G(8) = 2age !, as |f| - o (8)

where a, and o are real constants. Equations (7) and (8)
are solved numerically using the shooting method. It is
found that solutions are possible if ay, o, and £, are cho-

sen such that
5/¢ :
a(z)::: lil _6<QO> }UZ‘QO‘ (9)

0> Qi > —0.24. (10)

0
Fig. 1 plots the solutions for the amplitude | §(6)| and
the normalized instantaneous frequency —Im {d In
[G(6)1/d0} for ¢ = 1 and Q, = 4.5. We then verify the
soliton’s existence by integrating (5) numerically using
the split-step Fourier method with the solution of (7) and
(8) as the initial profile. It is observed that the pulse prop-
agates without change in shape.

The bandwidth of the soliton equals ¢, so that in actual
physical quantities, (10) can be written as

(2t0) AN > 6 (nm)(ps) (11)

where 21, is FWHM and AN is the shift in wavelength
towards the anomalous regime. For a given pulse width,
(11) imposes a lower limit on AX. The peak power P,
required to launch a soliton is

engcAk”

™,

%

Py(215) = s (12)

where ¢ = 8.85 x 107" F/m, c is the speed of light, and
S is the effective core area. For pure silica fiber, the ma-
terial dispersion vanishes at Ay = 1.27 um. If we take &”
=0.08 (ps)’/km, ng = 1.5, n, = 1.22 X 1072 (m/V)?,
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Fig. 1. The amplitude and instantaneous frequency of a soliton of the ideal
equation near the zero dispersion point. The bandwidth ¢ = 1 and fre-

quency shift Q, = 4.5.

and § = 20 ymz, (12) and (10) together give

Po(21)° = 0.16 W(ps)'. (13)

Equations (10) and (13) form the basis for the design of
a high bit-rate optical communication system in the vicin-
ity of Aq. If the pulse width is 1 ps, AN = 0.01 um, and
the peak power required is only 0.16 W. For a 2 ps pulse,
AN = 0.005 pm and only 20 mW peak power is required.
The wavelength shift is automatically produced by the fi-
ber as long as the initial center frequency of the pulse is
at or slightly below the zero dispersion point and should
be relatively insensitive to variations of the zero disper-
sion point along the fiber length. For a 2 ps pulse, the
dispersion and the nonlinearity only become effective over
100 km, and the use of solitons is only of interest over
greater propagation lengths. At these long lengths, this
approach must be used in conjunction with Raman ampli-
fication.

An important property of nonlinear Schrédinger equa-
tion solitons is that they emerge from arbitrary initial pro-
files as long as a threshold condition is met. As a conse-
quence, it is possible to experimentally observe solitons
when neither the initial pulse amplitude nor the initial
pulse shape corresponds to a pure soliton. To determine
whether a similar property holds for the solitons of (5),
we integrated (5) numerically, taking ¢ (0, s) = 4, sech
(s) as our initial conditions, corresponding to pulses with
the central wavelength at the zero dispersion wavelength
No. The initial amplitude A, is varied and the subsequent
pulse evolution is followed up to £ = 15. We also inves-
tigated Gaussian pulses in a similar fashion. The evolu-
tion is qualitatively similar in both cases, although soli-
tons emerge over a length about a factor of two larger in
the latter case. The step size is halved, the node spacing
is halved, and the simulation region is doubled in selected
cases to ensure accuracy of the results. In general, dis-
persive waves appear as multiple peaks at the leading edge
of the pulse (a consequence of k” > 0; for the opposite
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Fig. 2. The pulse amplitude for a hyperbolic secant initial profile with A,
= 2 at £ = 10. The soliton peak is surrounded by a pedestal consisting
of dispersive waves.

sign, the dispersive waves would appear at the trailing
edge) and eventually separate from the main peak. The
normalized distance required for the separation decreases
with increasing amplitude. The peak that is left behind is
a soliton. Both the soliton and the dispersive waves move
in the forward direction. Fig. 2 shows the pulse amplitude
for a hyperbolic secant initial profile with 4, = 2 at £ =
10. The dispersive waves and the soliton part can be read-
ily identified. The evolution into a soliton and dispersive
waves is more obvious in the frequency spectrum. The
initial spectrum splits into two peaks at either side of the
zero dispersion frequency wy. The peak in the anomalous
regime corresponds to the soliton part, while the peak in
the normal regime corresponds to the dispersive wave
component. The interaction between the two components
shifts part of the pulse from the normal to the anomalous
regime. The soliton contains approximate 60 percent of
input power for all the cases considered. Fig. 3 shows the
two-peak structure of the spectrum for 4, = 2 at £ = 2.
The shift in frequency of the soliton and dispersive waves
from wy is different, with the latter about 1.7 times larger
than the former. Since the group delay (1/v,) is propor-
tional to the square of the normalized frequency shift, the
dispersive wave component travels faster and breaks away
from the soliton. Fig. 4 plots the frequency shift of the
solitons which emerge at different values of Ay. This fig-
ure shows that the shift varies almost linearly with 4.
Hence, the dispersive wave component separates from the
soliton at a shorter distance for larger A,.

III. AXIAL INHOMOGENEITY

In this section, we discuss the effect of variation of fiber
parameters, particularly the chromatic dispersion, along
the fiber axis. The chromatic dispersion or, more pre-
cisely, the coefficient of second-order dispersion (k"), is
composed of material dispersion and waveguide disper-
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Fig. 3. The frequency spectrum at ¢ = 2 for 4, = 2. The peak in the
anomalous regime corresponds to the soliton, while that in the normal
regime corresponds to dispersive waves.
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Fig. 4. The frequency shifts of the solitons and the dispersive waves plot-

ted versus initial amplitudes of hyperbolic secant profiles for the ideal
case.

sion. The former depends only on the refractive index and
the operating wavelength, while the latter is a function of
fiber parameters. The wavelength at which the material
and waveguide dispersion balance each other is called the
zero dispersion point. For an ideal fiber, its parameters
are assumed to be perfectly axial-invariant; hence, the
zero dispersion point is constant. In practice, the wave-
guide parameters, for example, the core radius and the
index difference between the core and the cladding in a
step-index fiber, fluctuate along the fiber. Consequently,
for a carrier wavelength, cancellation between the two
types of dispersion over the whole length of the fiber is
not possible. In other words, the zero dispersion point
fluctuates due to the axial variations. A pulse launched at
the zero dispersion wavelength at one point is subjected

to both normal and anomalous dispersion when it travels
along the fiber.

Equation (1) is, therefore, no longer a valid model of
the situation. It has to be modified to include the effect of
axial variations. We assume that the inhomogeneity along
the axial direction is small so that | Ad In (¢)/dz| << 1
where \ is the carrier wavelength and e is the dielectric
constant. In this case, (1) holds except that the coeffi-
cients k', k", and k” are now dependent on the axial co-
ordinate due to the fluctuation. More important, the chro-
matic dispersion &” cannot be set to zero as in the case of
an ideal fiber. Since the variations of k" are small com-
pared to their average magnitude, they can safely be ig-
nored. Equation (1) is again normalized by using the
transformation in (2), (3), and (4). Equation (2) for the
time variable transformation is modified to

2

5= L - SUa(z) dz]/r

to account for the axial dependence of the group delay
k' (z). If the group delay is independent of z, (14) reduces
to the original equation. The normalized equation at the
zero dispersion point including the effect of axial inho-
mogeneity is given by

(14)

dg 1 g 13 )
M _ 2 79 ;%9 =0 (15
"ot T 2 ()3 " 6o lal'g (15)

where
£(8) = 7k /K"

Apart from the modification of the group delay, the effect
of axial variations is to reintroduce the second-order dis-
persion term. Its coefficient takes on both positive and
negative values. Equation (15) forms the basis of the fol-
low analysis. Although (15) is obtained using heuristic
arguments, it can be derived rigorously starting from
Maxwell’s equations and using the reductive perturbation
method developed by Taniuti e al. [7], [8].

We proceed to estimate the magnitude of the variation
of the second-order coefficient. An explicit expression for
the coefficient can be obtained from the exact derivation.
For a step-index fiber, assuming a transverse electric field,
the variation of the second-order coefficient at the zero
dispersion point has been estimated to be [9]

6An

k" = —4 — —

An (16)

1222 ((ps)'/km)
where a is the core radius, An is the index difference, and
8An and éa are the corresponding fluctuations. For ex-
ample, a variation of the core radius by 1 percent [6] and
a negligible variation of the index difference [10] would
give a variation of +0.12 (ps)°/km in chromatic disper-
sion. The magnitude of the variations of the normalized
coefficient is given by | f(£)| = 1.57 (ps). Fora 1 ps
pulse, | f(£)| = 1.5. Therefore, the contribution from
the second-order dispersion term in (15) is not small.
Another important parameter governing the axial vari-
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ation is the correlation length of the fluctuations. The outer
diameter of an optical fiber can be controlled carefully in
the drawing process through a feedback controlled system
using nondestructive and noncontacting measurement
methods such as the scanning beam technique or the for-
ward scattering method [6], [11]. On the other hand, the
core diameter cannot be monitored directly in the pulling
process. If one assumes that the ratio of the core to the
cladding diameter is strictly maintained, the variations in
the core diameter are then proportional to those in the
outer diameter. The diameter variations can originate from
vibration in the drawing machine, from thermal instabil-
ities such as turbulent cooling of the hot gases, or long-
term temperature drift. They can also result from me-
chanical problems such as variations in a lead screw that
is feeding the preform, or from eccentric drawing drums,
or from some cogging effect in a gear mechanism [6].
They give rise to correlation lengths on the order of me-
ters or less. In addition, long periodic variations can re-
sult from composition variations in the preform caused by
the fabrication process. Variations in the index difference
also arise from the fabrication process and possible dif-
fusion of dopant materials. The correlation length in nor-
malized coordinates is given by L, = k" I./7 =01 %
I, (km)/7* (ps) where L. is the normalized correlation
length and [. is the correlation length in physical unit. For
alpspulse and [, ~ 1 m, L. ~ 107*. The normalized
correlation length can, therefore, be very short. We are
going to demonstrate that if the correlation length of axial
variations is sufficiently short, soliton propagation is pos-
sible even when the strength of the fluctuation | f(£)| is
large. The axial variation has almost no effect on the ev-
olution characteristics.

IV. ScALE LENGTHS

First, we consider the different length scales which play
a role in the fiber. Two of these are the carrier wavelength
and the core radius. They are of the same order, and are
much smaller than any other length scales in the fiber.

We now introduce the concept of characteristics dis-
persion length, which is defined as the distance at which
the effect of dispersion becomes important. There are two
different characteristic dispersion lengths, corresponding
to the second- and the third-order dispersion. The second-
order dispersion length is defined as [, = 72/|(<” |, and
the third-order dispersion length is given by , = 7°/| k" |.
In the case of interest in this paper, the second-order dis-
persion length /; fluctuates between a minimum value [,
= 7°/|k" | max, corresponding to the maximum value of
k", and infinity, corresponding to k" = 0. Equation (15)
is normalized to the third-order dispersion length. Notice
that the normalized second-order coefficient of (15) is the
ratio between the third-order and the second-order disper-
sion length f(£) = [, /1.

We now look at the parameter regimes where (15) can
be approximated by (5), the ideal equation. In the regime
where the third-order dispersion length is much shorter
than the minimum second-order dispersion length, i.e., /,

377

<< [, or, equivalently, f(£) << 1, the effect of axial
inhomogeneity can be treated as a small perturbation. The
evolution characteristics of the fiber are not changed sig-
nificantly in this case. Soliton propagation near the fluc-
tuating zero dispersion point is not affected. However, this
regime corresponds to a very stringent control on the fiber
parameters such as the core radius. For example, if one
requires that | f(£)| = 0.01 for a 1 ps pulse, the toler-
ance on the core radius would be 0.01 percent, a highly
unrealistic demand. This regime can also be achieved by
using very short pulses (7 << 1), but then the higher
order nonlinear effects which are ignored in (15) would
become important. Equation (15) would no longer be
valid. Another parameter regime of interest is when the
third-order dispersion length is much shorter than the cor-
relation length /, << .. The variation of the second-order
dispersion with the axial coordinate is very slow and can
be assumed to be constant over the dispersion length.
Therefore, if the carrier wavelength is chosen initially at
k" = 0, the chromatic dispersion would stay small for a
long time. The solitons would adjust adiabatically to the
slowly changing dispersion. However, for a 1 ps pulse,
the third-order dispersion length /, is on the order of ki-
lometers. This implies a correlation length on the order
of hundreds of kilometers, an unrealistic number for most
fibers.

The most interesting, and also physically important, re-
gime of parameters is when the correlation length is much
shorter than both the minimum second-order dispersion
length and the third-order dispersion length, i.e., [, <<
l,,, and [. << I,. Soliton propagation in this regime is pos-
sible, and its evolution characteristics are similar to that
of the ideal case. This result might seem a bit surprising
because the minimum second-order dispersion length can
be very small so that the magnitude of the axial variations
(| f(&)]) is very large. However, since the correlation
length is assumed to be much shorter than the minimum
second-order dispersion length, the coefficient f(§)
changes sign many times in a distance of length [,,. In
other words, the zero dispersion point varies about the
zero value so fast that its effect is averaged out, and the
pulse is governed by the weaker third-order dispersion.

To illustrate the above arguments, let us assume the
normalized second-order coefficient to be of the following
form:

(17)

where A = 1./1,, 6 = I, /1, and g(&) is a function with
a maximum amplitude of one. Let us assume that the cor-
relation length is much shorter than the minimum second-
order dispersion length. For example, let A = 8°. Since
A << & << 1, the criteria [, << [, and /. << I, is
satisfied. The variation of the second-order dispersion in
this case is both large and rapid. We now apply the method
of multiple length scale expansions [12] to (15) and (17).
We first assume that the envelope ¢ (&) depends on both



378 IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 24, NO. 2, FEBRUARY 1988

the fast () and the slow (7,) variables, defined as

o =£/8° (18)
m =& (19)

Substitution of (18) into (15) and (17) gives

i dg . dqg 1 (m0) d'q

it ST N S °4

8 am g, 265\ 52

1 63q 2

—166S3+‘q|q—0. (20)

We then write g (09, 11, §) as a series in the small param-
eter §:

(21)

We substitute (21) into (20) and collect terms at the same
order of 8. At order 8 %, we have

q(no, m, s) = 21 8"¢™ (no. s, 5).

349
id— =
I
Therefore, ¢’ is independent of the fast variable. Its slow
variable dependence is determined at higher order. At or-
der 67, we have

(22)

ag" 1 FYQY
Rl S =0 23
S = 5 8(m) (23)
from which we obtain
1 az (O) 1
¢" = —igln) 57 +3"(ns)  (24)

where Z(n9) = (1/2) {0 g(y) dy, and g (n,, s) is a
function of the slow variable only. At order 1, we have

) aq(2) ‘ aq(o) 1 azq(l)
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from which we obtain the fast time dependence of ¢

(. 0¢% 108"
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|q” "¢ (o 58
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where g‘* is only a function of the slow variables. From
(26), we see that the function ¢'*’ (1, 1, s) grows lin-
carly with the fast variable n,. At a distance of 5, ~ 1/8°
or ¢ = 1, i.e., the third-order dispersion length, ¢'®’ and
¢'" have the same order of magnitude. The expansion in
(21) therefore becomes invalid. In order to extend the re-
gion of validity of the series expansion, we eliminate the

secularity by demanding that its coefficient be zero.
Hence,
3q® 19%®

A 27
a6 s’ (27)

+ ‘q<0)[2q<o> =0
which is exactly the same as (1). Therefore, at leading
order, the pulse evolves as if there is no axial variation.
Similarly, at the next order of 8, we find that " (y,, 5)
is governed by the linearized form of (27). To first order
in é, the pulse envelope is given by

q(no> 11, 8) = ¢V (ny, s) + 5[“’?(770)
an(O)
' s’

The modification in the pulse envolpe due to the axial
variation of the fiber only appears at the first order in the
small parameter &, even though the amplitude of the fluc-
tuation of the normalized chromatic dispersion is very
large (~1/6). Further calculations show that the secu-
larities which appear at higher order can be eliminated in
a similar fashion. Equation (28) has a range of validity
which is at least of order £ ~ 6 2. In the above argument,
the assumption A = §% is not essential. The derivation
remains valid as long as A << 8. In fact, numerical sim-
ulations show that soliton propagation is still possible even
when [, ~ [,,. Our estimates are conservative because we
overestimate the effect of the second-order dispersion
length by using the maximum second-order dispersion.

" q“’(n.,s)}. (28)

V. NUMERICAL RESULTS

In this section, (15) is integrated numerically using dif-
ferent functions for the normalized second-order coefli-
cient f(£). In practice, the fiber variations are very com-
plex. If the drawing process is random or random with
some deterministic components, the waveform represent-
ing the axial variation can be Fourier decomposed. We
first study the case where f (£) consists of a single Fourier
component, i.e., f(£) = fy sin (k& + x) where f;, , and
x are constant parameters. This model allows us to study
the effect of different amplitudes and fluctuation lengths
in detail. The initial pulse is chosen to be 2 sech (s) in
all cases that we report here. This choice is somewhat
arbitrary; however, if the initial pulse amplitude is too
weak ( < 1), the pulse will not evolve into a soliton, and
if the initial amplitude is too large ( =4), the pulse may
break up into multiple solitons. Studies that we have car-
ried out on Gaussian waveforms yield qualitatively simi-
lar results.

The amplitude and the wavenumber of the fluctuations
are varied between 1072 and 10%. The equation is inte-
grated up to £ = 15. While this represents 10’ cycles if «
= 500, it is only one-tenth of a cyle for the case x = 0.05.
We do not integrate past £ = 15 because with a pulse
width on the order of 1 ps, £ = 15 already represents 200
km, and other effects such as dissipation have to be taken
into account. The results obtained verify the analysis in
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Fig. 5. (a) The pulse shape of an initial profile 2 sech (s) at £ = 1; the

axial inhomogeneity is given by f,(£) = 10 sin (0.4£). (b) The corre-
sponding frequency spectrum. The pulse is broadened and distorted.
There is no splitting in the frequency spectrum. The initial pulse is shown
in dashed line for comparison.

Section IV. When f; is small ( <0.1), the evolution of the
initial pulse is essentially the same at all wavenumbers «.
If the fluctuation length is very long (« < 0.1), the evo-
lution is sensitive to the initial phase x. For example, if
x = 0, the pulse broadens for large f, and no soliton
emerges. In this case, the zero dispersion point moves
towards longer wavelengths and the pulse is in the normal
regime. In this regime, the nonlinearity and the dispersion
both work to broaden the pulse. If x = =, the zero dis-
persion point moves towards a shorter wavelength, leav-
ing the pulse in the anomalous dispersion regime. The
pulse first contracts due to the interplay between the
anomalous dispersion and the nonlinearity. A soliton is
formed. As the strength of the dispersion increases, the
pulse begins to broaden and finally disperses away. Fig.
5(a) shows the pulse shape for fy = 10, x = 0.4, x =0
after £ = 1, and Fig. 5(b) gives the corresponding fre-
quency spectrum. The pulse has broadened considerably,
and there is no splitting in the frequency spectrum. The
initial pulse 2 sech (s) is shown in the dashed lines for
comparison. When x = w, as shown in Fig. 6(a) and 6(b),
the soliton peak is in the negative part of the spectrum.
When § increases, the soliton starts to broaden due to an
increase in chromatic dispersion. When the variations are
very short (x = 10), the initial phase is not essential, and
the propagation characteristics are almost indistinguish-
able from those of the ideal case. We find that solitons
propagate even in a regime where the analytic arguments
are not applicable, i.e., when the fluctuations amplitude
is large but the correlation length is not short enough. For
example, in the case of f; = 100 and x = 40, the pulse
evolves differently; it takes £ = 6 for the two-peak struc-
ture to develop in the frequency spectrum, while it takes
only ¢ = 1.5 for the ideal case. However, a soliton with
a somewhat different amplitude and pulsewidth finally
emerges.
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Fig. 6. (a) The pulse shape of an initial profile 2 sech (s) at £ = I; the
axial inhomogeneity is given by fo(£) = —10 sin (0.4£). (b) The cor-

responding frequency spectrum. The soliton can be identified in the neg-
ative part of the frequency spectrum. The initial pulse is shown in dashed
line for comparison.

We then simulate the axial fluctuations by using the fol-
lowing series [13], [14]:

F(8) =f 2 exp (—ary) sin (k€ +x)  (29)

where k, = kg — r,Ak, r, is a random number —1 < r,
< 1, and x, is random phase. Equation (29) represents a
finite Fourier series with N wavenumbers randomly dis-
tributed between two cutoffs at k, + Ak. The cutoffs are
introduced because physically there are neither very long
nor very short correlations in a fiber. The magnitude of
the Fourier components are Gaussian modulated with the
maximum value f; at o. The half width of the modulation
is controlled by the parameter «. Fig. 7 shows one reali-
zation of the Fourier component distribution and the cor-
responding amplitudes for the case o = 10, N = 40, f,
= 10, k, = 400, and Ak = 400. Fig. 8 gives the corre-
sponding variations of f (£) as a function of £.

The parameter Ak is chosen to be k, for all the cases
reported here. It cuts off short wavelength fluctuation, but
does not affect the long wavelength variations. When f; is
small ( s0.1), the results again resemble those of the ideal
case for all center wavenumbers k,, modulation band-
widths o, and numbers of Fourier components N; solitons
emerge from the initial pulse. If f is not small (= 10),
the results divide roughly into two categories—those of
large and small «. If the spectrum of the axial fluctuation
is sharp, i.e., « is large, the evolution of the initial pulse
is similar to the results where there is only a single Fou-
rier component with amplitude f;, and wavenumber k,. So-
litons emerge if k, >> fy. For example, Fig. 9 gives the
pulse amplitude at £ = 10 for the axial variation shown
in Figs. 7 and 8, i.e., the case with o = 10, N = 40, f,
= 10, k, = 400, and Ak = 400. It is the same as the
result shown in Fig. 2 for ideal case. The variation of the
evolution characteristics among different realizations of
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Fig. 7. One realization of the spectrum of the axial inhomogeneity with
40 Fourier components, modulation bandwidth @ = 10, center wave-
number k, = 400, f, = 10, and cutoff wavenumbers amplitude at 0 and
800.
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Fig. 8. The axial variation f;(£) as a function of £ for the spectrum shown

in Fig. 7.

the Gaussian-modulated random wavenumbers are small.
We have used both 40 and 100 Fourier modes; there is no
significant change in behavior. When the axial variation
has a broad spectrum ( « small), there are relatively large
contributions from the long wavelength components. In
this case, the results differ from the case where only a
single component at the central wavenumber «, is kept.
The evolution of the pulse is dominated by the long wave-
length components and their initial phases. Generally, the
initial pulse broadens and no soliton emerges.

VI. CONCLUSIONS

In the case of an ideal fiber which is axially uniform,
we have shown that it is possible to launch solitons from

r T T T 1
6.0 10.0 15.0 20.0 25.0

S
Fig. 9. The pulse amplitude of an initial profile 2 sech (s) at £ = 10. The
axial variation is given by that shown in Figs. 7 and 8 for N = 40, o =
10, o = 400, f, = 10, and Ax = 400. The soliton pulse is identical to
that shown in Fig. 2 for the ideal case.

pulses near the zero dispersion wavelength of single-mode
optical fibers. These solitons have central frequencies
downshifted into the anomalous dispersion regime. The
size of the downshift increases with the initial pulse am-
plitude. For a given pulsewidth, we have determined the
minimum power required to launch a soliton. This power
is substantially lower than that required to launch solitons
in the experiments to date. We have also shown that so-
litons will emerge from arbitrary initial profiles and am-
plitudes above the minimum power threshold. If the effect
of axial inhomogeneity is included, we note that the vari-
ations generally have large amplitudes. A physically im-
portant regime of parameters has been found analytically,
and extended by results from numerical simulations in
which soliton propagation is nonetheless possible. If the
correlation length of the axial inhomogeneity is short
compared to the second-order and the third-order disper-
sion lengths, the effect of the fluctuations is averaged out.
The evolution characteristics of the pulse are then de-
scribed by the ideal equation.
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