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Gyrotron Oscillators with

Slotted Cross-Section Structure

P. VITELLO anp C. MENYUK

Abstract—A linear-theory analysis of gyrotron oscillators with slot-
ted cross section is used to calculate the net change in beam energy
(8Y ),,4,» In our new formalism, geometric factors are clearly distin-
guished from the geometry-independent harmonic resonance terms
which are due to the fundamental electron cyclotron maser and peni-
otron interactions. This separation of the interaction terms from the
geometric factors greatly simplifies the physical analysis, and leads to
a very compact form for (v ), . The theory is applied to slotted rec-
tangular oscillators (which have not previously been treated) and to
slotted cylindrical oscillators to show that a unified expression can be
obtained for the start oscillation condition. In sample applications of
our theory, it is demonstrated that slots lower the start oscillation con-
dition in both cylindrical and rectangular geometries, and can lead to
a decrease in this condition as harmonic number is increased in the
rectangular geometry. The use of these slotted devices thus appears
quite attractive in the millimeter-wave regime. We also find that the
peniotron interaction, which is easily identified in our formalism, may
be very strong in slotted cavities.

I. INTRODUCTION

HE GYROTRON is well known as a coherent micro-
wave source capable of generating unprecedented
power levels. Gyrotron emission occurs at harmonics of
the electron cyclotron frequency. As the emission fre-
quency increases, either large magnetic fields must be
used or operation at high-cyclotron harmonics is required.
Currently, most gyrotron development has focused on de-
vices using either the first or second harmonics [1]-[3].
These low harmonics necessitate the use of a supercon-
ducting magnet if frequencies as high as the millimeter
and submillimeter wave regimes are to be achieved.
High-harmonic gyrotron emission has been achieved for
several tube designs. Using smooth-walled cylindrical
cavities and an axis-encircling beam, harmonics as high
as m = 1] have been observed for a TE,,, ‘‘whispering
gallery’’ mode gyrotron oscillator [4], [5]. A high-en-
ergy, large-Larmor-orbit beam is required for ‘‘whisper-
ing gallery’” mode gyrotrons as these modes tend to con-
centrate the RF field towards the wall of the cavity. Also
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using an axis-encircling beam with high-energy (2 MeV)
electrons, Destler et al. [6] have reported the generation
of a strong burst of microwave radiation at the 12th har-
monic from a slotted cylindrical tube. This new interac-
tive slotted structure leads to an excellent high-harmonic
interaction and good mode selection. Further investiga-
tions of slotted cylindrical tubes [7]-[15] and of slotted
rectangular and ridged rectangular tubes [16]-[19] have
shown that even for moderate beam energies, strong high-
harmonic fringe fields can be positioned at the beam or-
bits. Two slotted tube geometries, shown in Fig. 1, have
been investigated in detail; these are the cylindrical (or
magnetron-type) geometry, and rectangular geometries,
both slotted and ridged. As there is no real distinction
between slotted and ridged tubes, we will refer to them
all as slotted. Both gyro-TWT amplifiers [7]-[10] and gy-
rotron oscillators [11]-[15] have been studied theoreti-
cally in slotted cylindrical geometries. For rectangular ge-
ometries only, gyro-TWT amplifiers have been studied in
detail for slotted cavities [16]-[19]. All of these studies
show that slotted structures greatly increase the high-har-
monic interaction in a gyrotron relative to a smooth wall
design.

In this paper we extend the modeling of slotted gyrotron
oscillators by presenting a linear kinetic theory applicable
to gyrotrons of both rectangular and cylindrical cross-sec-
tion design. In our analysis we calculate the net energy
loss of the beam 6y ),,,,, which is needed to determine
the cavity start oscillation condition and the frequency de-
tuning. We give {dy),,, as a sum over harmonics in
which each harmonic contribution consists of a geometry-
independent factor due to the fundamental interactions and
a geometry-dependent factor, which varies from device to
device. The geometry-independent factor consists of
clearly distinguished terms due to the electron cyclotron
maser and peniotron interactions.

This paper is organized as follows. In Section II,
we derive the TE mode fields in either rectangular or cy-
lindrical slotted cavities. Two specific examples are pre-
sented which are then used in the remainder of the paper.
In Section III, we present our linear theory and determine
the start oscillation condition and frequency detuning of
the oscillator cavity modes. In Section IV, we present
sample calculations which show both the strong high-har-
monic content of slotted cavities, and the importance of
peniotron emission for these systems.
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(b)
Fig. 1. (a) Cross section of the slotted cylindrical gyrotron. (b) Cross sec-
tion of the slotted rectangular gyrotron.

N

II. PROPERTIES OF SLOTTED CAvITY FIELDS

Let us consider the behavior of the TE modes in a tube
with a slotted cross section. If the axial RF magnetic field
is written in the form

B, = Ar(x, y) f(z)e™™ (1)

(where f(z) = e* for an amplifier and f(z) = sin (k,z)
for an oscillator), then from Maxwell’s equations [20] the
solution for Ay will be an eigenfunction of the equation

(2)

subject to the boundary conditions of an assumed per-
fectly conducting tube wall. In (2), k% =_’w2 — k2 is the
transverse wavenumber eigenvalue, and V; is the trans-
verse Laplacian. The transverse RF electric and magnetic

(Vr-Vo+ k2)Ar =0
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fields, ET and ET, may be obtained from B, as follows:

— . w . —

Er= —i k2 (¢ X V7B;) (3)
L

. 1 9 - -

Br = K2 % VrB, (4)

Two sets of orthogonal eigenfunction basis sets are
commonly used to describe A7 in slotted cavities. If the
cross section is naturally specified in a Cartesian coordi-
nate system, then the solution

Ar(x, y) = FE“ Qp(e ke + ap e

. (e—i".vry + brei"yr)’) (5)

where k2, + kir = k2, should be used. For a cross section
with cylindrical symmetry,

Ar(r,0) = 2 GrCp(k.r)e™ (6)
should be used. In (6), Cp(k.r) = Jr(k.7) + apr Yr (k. 1),
where Jr and Y; are Bessel functions of the first and sec-
ond kind. The constants Qr, ar, and by depend on the tube
geometry. For both of these eigenfunction basis sets the
coordinate dependence is separable. The total time-aver-
aged volume-integrated RF field energy stored in the fields
W can in all cases be written as

w oL

167 (7

favE - &+ 5 5e).
In calculating W, any static magnetic field energy is not
included.

We now consider the RF cavity fields for two specific
cases, a slotted coaxial cylindrical cavity, as shown in
Fig. 1(a), and a slotted rectangular cavity, as shown in
Fig. 1(b). We will use N to designate the number of slots
and L, as the axial length of the cavity. In the cylindrical
coaxial cavity, the central coaxial radius is given by R;,
while the inner and outer slot radii are respectively R and
R,. The angular width of the slots is taken to be 20,. In
the rectangular cavity, the inner and outer slot dimensions
are R and R,,, while the cavity width in the x direction is
given as L,. The distance 2d between the slots equals twice
the distance from the first or last slot to the tube wall; the
slot width is taken to be 2w. In the following, we make
use of dimensionless units, with the cavity transverse
length R being our scaling parameter. In these units,
length is measured in units of R, time in units of R/c,
frequency in units of ¢ /R, and the background magnetic
and RF fields are measured in units of m,c” /| e| R, where
m, is the electron rest mass, e is the electron charge, and
c is the speed of light. The dimensionless cyclotron fre-
quency 2/ is equal in these units to B,/y where B, is
the assumed constant background magnetic field and v is
the relativistic factor.

To determine the RF fields, it is convenient to treat the
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cavity proper (Region I) and the slots (Region II) as sep-
arate expansions which are matched across the slot open-
ings [21]. We take the relative phase dependence of each
of the N slots as being ¢™/¥ for the cylindrical slotted
case and cos [7(g + 1/2)m /N ] for the rectangular slot-
ted case, where ¢ = 0, +, N — 1 is the slot number.
The value of the mode number m determines the overall
mode. The 27 mode corresponds to m = 0, while the =
mode is given by m = N /2 for a cylindrical slotted cav-
ity, and by m = N for a rectangular slotted cavity. In
order to obtain a closed analytic form for the field solu-
tion, an infinite sum is used only in Region I, with just
the I' = 0 term being kept in Region II. The RF fields for
the slotted coaxial cylindrical cavity are then given ap-
proximately by [12]

Region I
® I
k ,
E = 02 Z G{{—Fer( lr)]sin(k;,'z)e'(m”"’) (8)
kJ_j kJ_r
E, = —iEoki X @bl (kr) sin (kz)e ™ (9)
L=
E =0 (10)
k, < , .
B, = E,,—ZrZ rCr (k. r) cos (k,z)e 0«0 (11)
) J=—»
k., < reh(k.r) .
By = iE, = 2 a’r[—} cos (k.z)e 0=
ki j=-o k. r h
(12)
B, =E, 2 QL CL(k, r) sin (k,z)e T« (13)
j=—o
Region I1
E, =0 (14)
_ . w 121rmq/N I fwt
Ey = —onk- Qe (k.r) sin (kz)e”
1
(15)
E.=0 (16)
k, , »
B, = E, ; ePN el (k,r) cos (kz)e ™  (17)
L
By =0 (18)
B. = E,e®™ /N Ul (k,r) sin {(k.z)e ™ (19)
where
; sin(Tg,) 1 ,
= — — (20)
ST el |
1 .
@l =~ (21)

N el (k)

and
Crkyr) = Jo(kyr) = Ji(koR:) Yo(kor)/Yi(k.R;)
(22)
= Jo(k R,) Yo(kyr) /Yo (k. R,).
(23)

A prime represents differentiation with respect to the ar-
gument. Due to the cavity symmetry, the only harmonics
which contribute are I' = m + jN, where j = 0, +1, +2,

- . For these fields, the dispersion relation determining
k, and the total field energy “W are

CY(kor) = Jo(ky,r)

N6, 5 (sin r00>2 Crik) _ Colk) oy
T j=- reé, @{J(ki) e{)[ (k.)
and
W = O)ZL: % [al]Z {[el(k )]Z 1 _F_z
CKL16 (e T [T K

_ R-z[(%(kLR»)]z 1 — F_z
‘ ‘ kLR

+ b)) + & efk) etk )( ki)}

2
. NG,[ @]

™

- (el k)] - - etk

(8]

The slight difference between W as given in (25) and the
form presented by Chu and Dialetis [11], [12] stems from

our use of the field energy density E-E*+ B - B*while

Chu and Dialetis used 2E - E*. If the RF fields were
calculated exactly, with an infinite series expansion for
both Regions I and II, then the energy in the magnetic
fields would equal that in the electric fields and both
expressions for ‘W would be identical.

The rectangular slotted fields (see, e.g., [18] for a
derivation) for our tube are

[Ri[eé’(kl&)]z - [e¥k)]
yel(k,)

(25)

Region I

B = =iz £ Xy @ 005 (k)

L

- sin (kyy) sin (k.z)e ™™ (26)
ro_ .9 Y [
E.=i-—=E, Lk, Qp sin (k,x)

k= r

- cos (k) sin (k.z)e (27)
E.=0 (28)
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k
B, = — % E, 2 k.. @k sin (k,.x)
k7 r
* cos (k,y) cos (k,z)e ™" (29)
k
B, = — =X E, 2 k,. @} cos (k;.x)
k7 r
- sin (ky) cos (kz)e ™ (30)

B, =E, %} Qf cos(kyx) cos (kyy) sin (k,z)e

(31)
Region II
E = -ikiE" cos (r(q + 1/2)m/N)@QY
1
* sin (k. y) sin (k,z)e ™™ (32)
E =0 (33)
E =0 (34)
B, =0 (35)
k.
B, = —k—z E,cos (n(q + 1/2)m/N)@QY
L
* sin (k. y) cos (k,z)e ™ (36)
B, = E, cos (7(q + 1/2)m/N)Q¥
* cos (k,y) sin (k,z)e ™ (37)
where k. = T'x /L, k,. = (k% — k2)'/? and
2k% sin (k,w)(—~1 .
apo sty
(1 + 8ro)k, k. sin (kyr)
k L
;f = == . 39
° 7 Nsin [k (1 - R,)] (39)
Only ' = +m +2Nj, j = 0,1,2, -+ , with T = 0,

are to be included in the sums. For m = 0, each term for
I' = 2Nj must be counted twice. For our model of a rec-
tangular slotted cavity, the RF field in Region I is not
affected by the presence of the slots for the modes m =
Ni, wherei = 1,3,5, - - -, and has the same form as in
a simple smooth-walled cavity. For all other rectangular
cavity modes, the dispersion relation for k . and volume-
integrated energy W can be written as

2Nw
L,

kJ_ [sin (kXFW):}z cot (kyr)
rl+ 6F0 erW kyr

= cot [k, (1 — R,)] (40)
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and

w

_LL&*(1 + 8,) 12
= 642 ; (@r)” (1 + &rg)

sin (2k 2 2
. 1+%( ")[k—;+ 1+k—z2
4/’6},r w w
. 2k§r_1} L 2Nw(R, - 1) (@)’
k% L,
sin (2k, (1 — R, 2 2
SPpeLIC ))<k—;—1—k—;> :
4k, (1 — R,) w w

(41)

III. LiNEAR KINETIC THEORY

To solve for the interaction of the electron beam with
the RF field, we use the single-particle relativistic equa-
tion of motion:

~-LVE+

dau ¥ {a U x BJ (42)
where U = 'YE is the product of the electron velocity 8
and the Lorentz factor y. Note that we are using time 7(z)
as a dependent variable and the axial position z as the
independent variable. The use of z facilitates the compar-
ison of the linear theory with the weak field limit of a
nonlinear numerical modeling of the equations_of mo-
tion. In dimensionless units, v (1 +U - U)l/2
(1 + U+ U%H)'/? gives the electron energy. From (42)
it follows that the change in v is

dy U-E
dz U,

Regardless of the symmetry of the overall cavity fields,
the guiding-center coordinates (see Fig. 2) are the natural
system to use when carrying our linear theory. The guid-
ing-center variables may be expressed as (U, , U,, ¢, Xges
Yge> 1) in Cartesian coordinates or (U, , U, ¢, rge Yer 1)
in cylindrical coordinates. The guiding-center coordinates
are related to cavity-frame coordinates by the relations

. (43)

X = Xy + 1y cos (@)

= Tge €08 (Y ) + 1y cos () (44)
Y =Yg + rp8in (o)

= rge sin (V) + . sin (@) (45)
U, = U, sin (p) (46)
U, = U, cos (¢). (47)

The position (x,,, Ygc) OF (rge, ¥, ) corresponds to the
electron-guiding-center position, with r, = U, /B, being
the Larmor radius. The dynamical equations for the guid-
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Ygc

b —_ —- — — =

fgc

YWac

ing-center variables follow from (42) and (44)-(47):

X
gc
Fig. 2. Guiding-center coordinate system.

au ¥
d_; = _a [Ev: + UZBFL/’Y]
de Y B,
— =——IE, — U,B + B + =
& " U0, (E, — UB,/y + U.B./v] .
au, U,
— = _B
dz At
a _ v
dz U,
and either
% " UE [(E, + U.,B,./v) cos (¢)
+ (E,, — U.B,/y + U.B./y) sin (¢)]
dyc Y .
d;’ = ﬁ [(Ev + UzBrL/'Y) sin (‘p)
Z [
- (ErL - UzB‘a/'Y + UJ.BZ/'Y) cos (tp)]
or
dr,
c Y
g;: = U.B [(Ew + UzBrL/7) Cos (’I’gc - ‘p)

- (E"L - Usz/'Y + ULBZ/7) sin (‘)Lgc‘ -

(48)

(49)

(50)

(51)

(52)

(53)

)]

(54)

dll’ c ’y .
dzg = —rchzBa [(E, + U.B, /) sin (Yo — @)
+ (EI'L - Usz/'Y + UJ.BZ/'Y) cos (‘Ibgc - ‘P)]

(55)

The RF fields terms, E,, E,,, B,, and B,,, correspond to
the values of E and B along the ¢ and 7, directions.

To solve for the perturbations induced by the RF field,
we linearize the equations of motion as follows:

U, =U, +8U, (56)
U, = U, + U, (57)
¢=¢G+Ba(—z——z(')+6<p (58)

U,

Xge = Xge, T 0Xpe (59)
Yoo = Ve, T e (60)
rgc=rgto+6rgc (61)

Ve = Voo, + 0c (62)

t=t‘,+‘yo(#zi)+5t (63)

20

where the constants U, ,, U, ¢5, Xgc,s Yecor To00r Wgeor and
1, represent the initial variable values at the entrance po-
sition of the cavity z,. In the following we take z, = 0.
The equations of motion for the perturbed variables then
follow as

déU,

d _anEZ )
dj_zﬂo:#&nég—&% (65)
df;gc _ ﬁ;: [ES cos (¢,) + Ef, sin (¢,)]  (68)
% - UZ;?O [£¢ sin (¢,) — E7, cos (¢,)]  (69)
%gf = UZ;BD [E} cos (Yge, — ¢0)

— 9 sin (Vg — 0)] (70)
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= g [Bxsin (v~ )
+ E5, cos (Yye, = 60)] (71)
where
Ej = E, + UB7 /v, (72)
E;, =E}, - UBy/v, + ULB /v,  (73)
8 = ¢o + B,2/U,. (74)

ES, ES, BS, BY,, and B? are the RF field terms in the ¢,
fr, and 2 dlrectlons evaluated along the unPenurbed or-
bits. £ and E ?L tepresent, respectlvely, the ¢ and 7, com-
ponents of vector E + U X B /v from the equation of
motion also evaluated along the unperturbed orbits. The
variable ¢, gives the phase variation about the guiding
center for zero RF field.

To calculate the average change in energy for the beam,
we must also linearize the energy equation, (43), which
becomes

dsy _ 8U, B+
@ U, * " UL

U, [ 9E” AE®
- == + brpe
U [5’ ot < or

2 gc

U.L 06 UZ EO*

aE"* 0E% dEY
+ or, —& + 8¢
e o, de

+ e T } (75)

or

U, 3,

@ = _ﬁjﬁ E® + 4 EO*

@ U, " U,
U, [ E? OE”
—=2 | 8t —* + bxy
U, at axge

OEY OEY
+ bp
+ ory, o, I

BE o*
+ 0y 7 %,

]. (76)

For a constant background magnetic field B,, ér, =
8U, /B,. The equations for ddy /dz have been expanded
to second order in the RF field amplitude E,.

In order to solve these linearized equations, we must
express the RF fields in terms of the guiding-center co-
ordinates. For the cylindrical geometry eigenfunction set
(8)-(13), Graf’s theorem is used to give [22]

e, (kur)y v(¥ge — )
= kzz—:m ev+k(3€gc)Jk(3cL)sm k(7l' - "bgf + ‘p)

(77)
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for rpe > rp, or
COS )

e (k r)sm V(‘/’gc -

cos

= k:z_:@ Ty (o) Col K)o k(T — Yoo + )

(78)

for rp. < r, where X,. = k,r,oand X, = k r;. For the
rectangular geometry eigenfunction set (26)-(31), the ex-
pansions

cos [¥, sin (¢ + N)]

= k=z-: Ji(%L) cos [k(e £ N)] (79)
sin [X, sin (¢ £ )]
= ki J (%) sin [k(e £ N)] (80)

cos [X, cos (¢ + N)]

= Z _ Ji(Xy) cos [k(¢ £ N + 7/2)] (81)

sin [JCL cos (¢ + \)]

= k_Ev J(%,) sin [k(e £ N + 7/2)] (82)
are similarly used. In (79)-(82), cos \ = ke /ky.

Using the above expansions, the guiding-center RF
fields in Region I, which contains the beam, can be ex-

pressed as

E, = —kiE‘,;(i{‘

0 §=—00 JCL
- sin (k,z) e'¢ ™) (83)
E, = -ikiEo Zar T DrJi(%,)
n §=-®
- sin (k,z) e~ (84)

k L )
B, = 2E, Lr‘] QL 2 DpJI(XK,) cos (kz) e
@ §=—00

(85)
B,=i%“EYal I o <SJ‘(‘KL)>
w T s=—0 JCL
- cos (k,z) e~ (86)

: = E, %: G';' _Z gDI‘st(:"CL) sin (kzz) pllse — o)

oy
|

(87)



VITELLO AND MENYUK: THEORY OF HIGH-HARMONIC GYROTRON OSCILLATORS

where the function Dy is
Dr, = Cf ,(5,) T (88)

for the cylindrical coordinates eigenfunction expansion,
and

Shp) + (1) s

isw/2

“DI’ =1 [e!krptg( Cos ( yrYee —

(89)

for the Cartesian coordinates expansion. For cylindrical
coordmates if rp > ry, the replacement €'—>JandJ -
©' must be made in (83)-(88). The form of the guiding-
center RF fields is clearly independent of the choice of
the coordinate eigenfunction-basis set one wishes to use
to describe the cavity fields, and follows from the Fourier
transformation for our separable eigenfunction expansion.
To determine the contribution of the cavity field at the sth
harmonic, one merely sums the contribution from each I'
eigenfunction @ - Drp,.

When evaluated along the unperturbed particle orbits,
the only variation in the guiding-center RF fields (83)-
(87) comes from sin (k,z) e“** ", which takes the sim-
ple fOI‘n‘l(elkz _ e-—lkzZ)el(SBg/’)‘o w)’Yaz/Uz,, PLE wta)/zl mak-
ing the linearized equations of motion simple to evaluate.
These equations are solved in the following order: We
first integrate (64), (66), (68), and (69), or (64), (66),
(70), and (71), to determine 6U, , 6U,, and either dx,. and
0y, Or O, and 6y, . The expressions for U, and 86U, are
then substituted into (65) and (67) to determine d¢ and 6z.
Using these perturbed orbital variables, (75) or (76) is
finally integrated from z = 0 to z = L in order to calculate
oy. The perturbed energy change is then averaged over ¢,
and the phase angle ¢,. We will not average over guiding-
center position at this point. The averaged form for
{ 8% )1,0,» Which comes from a straightforward integration
of (75) or (76), is given by

cos (kyyee + shr)] e

— 070 I*

<6’Y >t0¢0 - 8U2 k2 Z Z a GA

_Z (0 + o + a3 + a5) (90)
where
US,L} ) :
ap = ‘—%Uzw‘zi (of — k2) [ip-(e* + 1)
: U Lk,
— 2 - __ 1 H P Y S ki 4
(e Hras Yo Uz on® liu-e”

. L?
—e" 4+ 1]Hpy, — —5 (ip- — e™ + 1)
wpZ

’ [(‘*’ — k; - kJ.UJ.,,UFAs/'Yo]

(91)

Uz»/ 70) TI‘A:

111

2 3
oy = ——U“—Lz( Pk )[(iu-e"“ —e* 4+ 1)
Yo U op—p
2 2
L P + I}H — UL Lk . in—
L ¢ s 'YaUza""l"'z— Liu-e
) L? i
— e + l]HFAs — 4 (elﬂ'— — 1)
WH 4 p—
' [(w + szzﬂ/'Yo)TI‘As - k.L U.L,;UI‘As/'Yo] (92)
By = (w = SBo/'Yo + szz.;/'Yo)Lz'Yo/Uzo (93)
and
2
Hpy = SDI"‘:SSDM[JS,(JCLO)] (94)

Tras = Hras + X1, J5(KL,) {Js"(xl,n)s)lfsﬂ)m
DE D + D 1Dy
—JJ(J{:L,;)[ Ts+199As+1 . ts—1Das-1]
2 *
Js(JcLa) SDFSDAS}
+ 95
ch ( )
K Ji(X
Uras = —% {Jo-1(52,)
: [:Dl’l“s—l:DAs—l - 2Dl’l“x:DAs] + J:+I(JCL(;)
) [:DF5+IS)A5+1 - 33;5:®m]}~ (96)
The functions a, and «a; are related to o and o, by
(k) = a(—k;) (97)
a3 (k) = as(—k;). (98)

Equation (90) for € éy ),,,, contains a double sum over
the cavity mode harmonics I' and A. For the cylindrical
coordinates expansion, I' and A are restricted to I' = Nj
+mforj =0, +1, £2, -and A = Nk + mfork =
0, +1, +2, . For the Cartesian coordinates expan-

sion, the nonnegative harmonics which satisfy I' = 2Nj
+ m, wherej =0, 1, 2, - ,and A = 2Nk + m, where
k=20,1,2, , are allowed. When m = 0, the two

Cartesian I' cavity mode harmonics I' = 2Nj + m and T’
= 2Nj — m, and two A cavity mode harmonics A = 2Nk
+ m and A = 2Nk — m are identical. In this case, the
sums over I or A can be written as twice the sum for all
I' = 2Nj or A = 2Nk. Note again that for the cylindrical
exPanswn if r,, > , Teco OME must make the replacement
— Jand J = €' in the above relations.

In (90), the variation of <&y ),,, with guiding-cen-

ter position only enters through the factors D D,,,
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D+ 1Dasv1, and DDy, ;. Averaging over the
guiding-center position v, from 0 to 7 for the cylindrical
case, Or x,,, from 0 to L, for the Cartesian coordinate case,
collapses the double sum over I' and A to a single sum
with T' = A and Dp, D f replaced by either [(",f‘_k]z or
[c0s (KyYge,)* €08 (SAp)® + sin (kyp ., ) sin (sAp)*1/2.
For the cylindrical slotted gyrotron oscillator, the result-
ing expression for {6y ;.. agrees with the results of
Chu and Dialetis [11], [12]. While this guiding-center av-
eraging is reasonable for modeling an axisymmetric beam
in a cylindrical cavity, it is not reasonable in a rectangular
cavity, where x,., cannot realistically be taken within 7,
of the cavity walls. If m = 2Ni wherei = 0, 1,2, - - -,
then the RF field shows an N-fold periodicity in the x di-
rection, and the simplifying x,., averaging can be done
from L.(j/N)to L,(k/N), where 0 < j < N — 1, and
Jj <k <N.

The form of {dvy),,, given in (90) is a very compli-
cated function of the beam and cavity parameters. It is far
from the most compact form for the net energy change,
and it does not clearly show the separate contributions
from the electron cyclotron maser interaction, the peni-
otron interaction, and other interactions. A more compact
form can be obtained by combining and rearranging the
terms in oy + oy + a3 + a4. To begin we will rewrite
{89 )4,p, in the form

Ea'Ya Fl
(67),0¢ —k2U2k2 Eza a
s sQ k.U '
% {[ Trps — —=—2 Urm}g
§=-® Yo Yo
2\, U2, U2,
* YoU,w Hras§ = YoU, kyw
- [w? = k2N Hpa Q'
. ksz |:U2.Lokz kz Uz» ]
+ i 4‘0 HUIJ HFAs + Y Tpm
(99)
where
sQ 0%
A= <— — w) —2 (100)
Yo k.U,
—iflan+ (- 17}
e +1 . I\
g = - — —i————. (101)
2(N-1) 4N -1

While (99) shows explicitly the rapid variations in the
magnetic mistuning variable A about the harmonic reso-
nances, one can still obtain a simpler form for ( vy ),
Upon expanding and rewriting the Hy,,, Trp,, and Upy,
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terms, the following final expression can be obtained:

Ely,o’

kZUZ
) {0101;2(3@) (g dg(N)

YoU,, k, d\

SJS(JCL;) ﬁ

‘IK:La Yo@
kL U%,
2v,Qw
T (%L)g(NT) = T2 (%) g(M)]
_i@ [Ui,,léz(ﬂcu) w df(N)

4 YU, k, d\
_k d)\zf()\)
w

SJs(JcLa)

d\
X,

<67>f0¢0 - Z ZGI*SDFSZGASDM

2 e §

 kdNg(N\)
w d\

- 255350) (

_kU,
LV ) )0 -

o

w

207300, (

kU

[ 5% (nr(n) - 1)+f(x)] Ll

0

k. UL,,

: (%)f(M) = (1,0, (721 (%)

“f(NY) - Js'z—l(JCLo)f()\—)) + kU,
(Lo (K (Ky,) + T (%L)

Tioi(%) + 2Js(scL,,)J;(3cLo>)]B

(102)
()

N 4 sin (u) cos (u)
(M =1) " kL(N-1) (104)

+1)Q Y
A= <_____(s - w> <
Yo kZUZo

p=IN/2 + (- 1)x/2. (106)

Because the product Lr@F D L,&,D,, is real, and
since all of the variables and functions within the brackets
{- - -} are real, the first set of terms in (102) gives the
real part of {év),,,, and the second set of terms multi-
plied by i gives the imaginary part of &y ),,,. As is
shown below, Re ({dv),,,) and Im ({éy),,,) respec-
tively determine the gyrotron start oscillation beam power
and resonant frequency detuning. Averaging over the

where

(103)

f:

(105)
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guiding-center angle ¥, for a cylindrical cavity, or over
X,c, for a rectangular cavity, again leads to a reduction of
the double sum over cavity eigenfunctions to a single sum.
After averaging, the product Zr@F D L&\ D,, is re-
placed by | @F|?| &r, |* where | &, |? is either [CF_,]?
(or [Jr i) if r, > rp.,) or [cos (kyYe,)” cos (shp)? +
sin (kyrygc”)2 sin (sAp)“1/2, respectively, for cylindrical
and Cartesian geometries. The smooth-walled limit of
(102) is obtained by taking the limit w = O or §, = 0 in
thg dispersion relation, and by using T' = m, @4,r = 1,
G’O = O

The full behavior of { évy ),,,, is clearly given by (102).
The guiding-center dependence is given by the factor Iy
QR DE T,@LD,,; the resonance behavior as a function
of magnetic field about the cyclotron harmonics is given
by the functions g and f; the several interactions which
take place simultaneously in a gyrotron are explicitly sep-
arated. Cyclotron maser and Weibel emission resonances
are given by the terms in Uzlon'z/y,, U,(: ). Theterms
in 2sJ; (- - +) are due to cyclotron maser absorption.
Peniotron emission and absorption resonances are repre-
sented respectively by the terms with the factors g( A7),
F(AT), g(A"), and f(A"). We note that (102) for a
smooth-walled cylindrical cavity is equivalant to the re-
lation derived by Brand [23], and that the real portion of
&y ),,, averaged over ¥, is in the same form given pre-
viously by Vitello and Ko [24]. For slotted cylindrical
oscillators, the real part of (102) can also be shown to
equal the more complicated relation by Chu and Dialetis
[111,[12]. .

The start oscillation beam power and the frequency de-
tuning equation for steady-state operation for any TE,,,
mode can be found directly from  év ),,,,.. Taking the un-
perturbed beam energy to be P,, the total net energy trans-
ferred from the beam to the cavity fields is given by
Py {8y )10/ (Yo — 1). Quite generally [25], the starting
power can be given by

QP, = —8.6 X 10°W(y, — 1)/Re ((bv),, ) kW

(107)

and the frequency detuning due to the presence of the
beam is

W =W, 1 Im ((5'7),0%)

©,  20Re({(57),,)

(108)

where w, = (k% + k2)'/? is the cold-cavity frequency.
For gyrotron tubes, the quality factor Q is due mainly to
diffractive losses, and with a good estimate of its value
obtained from cold-cavity tests (107) provides a good
estimate of the actual start oscillation power required. By
constrast, the linear-theory values for the frequency de-
tuning often differ significantly from the detuning under
normal high-field operating conditions [23] and should

be used with caution. Again, we stress that for r;, > rg,
there must be a replacement in the above relations of C
- JandJ — €.

i

IV. DiscussioN

We have extended the modeling of the linear kinetic
theory for gyrotron oscillators to cavities with slotted
rectangular and cylindrical coaxial cross sections. The
averaged beam perturbed energy change is shown in a
form, (102), which is the same in rectangular and cylin-
drical cavities. The cavity geometry determines only k;
and the magnitude of each harmonic contribution to the
overall RF cavity field of a particular mode. For each har-
monic, the functional form of the differing interactions,
such as the electron cyclotron maser and the peniotron
interactions, do not vary with the cavity geometry and are
the same for smooth-walled and slotted tubes. Studies of
the relative strengths of the interactions for smooth-walled
gyrotrons [25] can therefore be applied directly to slotted
cavity devices.

We apply here our results to the slotted rectangular
and cylindrical cavities discussed earlier. In the case
of a cylindrical cavity, we set R; = 0, average {67y ),,,
over Y,,,, and use an axis-encircling electron beam to al-
low for comparison with the results of Chu and Dialetis
[11], {12]. In Fig. 3 we show the E, RF field profile for
the TE5;, mode for a cavity with N = 6 and R, = 1.4. As
one of the major advantages of the slotted cylindrical cav-
ity is the reduction of the start oscillation condition with
increasing R,, we plot QP,, in Fig. 4 for both the electron
cyclotron maser interaction and the peniotron interaction
as a function of R,. In the figure, L, is increased with
increasing R, to hold k, /k fixed at 10.7. The decrease
in QP, with R, is partially due to the effects of a longer
cavity, but is primarily caused by the increasing slot
depth. The electron cyclotron maser emission curve for
49.9 keV is terminated at the R, value where the Larmor
radius strikes the cavity wall. Our results for the electron
cyclotron maser QP,, are in agreement with Chu and Di-
aletis. However, we find that at low-beam energy the start
oscillation condition is actually smaller for the peniotron
interaction. Chu and Dialetis give results only for the
electron cyclotron maser resonances and do not consider
the peniotron resonances.

As an example of the effect of slots in a rectangular
cavity gyrotron oscillator, we will consider the start os-
cillation condition QP,, for the cavity and beam parame-
ters investigated by Han and Ferendeci [17] for a slotted
rectangular cavity gyro-TWT. For the TE,, mode, which
Han and Ferendeci found to give strong sixth-harmonic
emission, we place the electron beam in Region I at x,,,
=L./2, ¥e, = R/2. Fig. 5 shows the E, component of
the RF field. The strong fringe field observed in this figure
couples very strongly with high-harmonic emission. This
coupling will be significant at high harmonics since with
rising harmonic number s the growth of the Larmor ra-
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Fig. 3. E, RF field for a ridged cylindrical cavity with R, = 1.4, 8, =
#/2N,N = 6.
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Fig. 4. Variation of the start oscillation condition for the third-harmonic
electron cyclotron maser interaction (dashed curves) and second-har-
monic peniotron interaction (solid curves) as a function of R, for the
TE;,, mode. The beam axial velocity is 8,, = 0.1.

dius, r;, = sBL,/w, allows the beam to increasingly pen-
etrate the fringe fields. In Fig. 6 we show QP, for the
slotted rectangular cavity as a function of magnetic field
for multiple harmonic emission. Harmonics greater than
the sixth are not shown, as the beam Larmor radius would
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Fig. 6. TEy,, mode start oscillation condition for the rectangular cavity
for the electron beam with 72 keV, and 8z, = 0.28. The solid curve
gives QP, for the ridged cavity, while the dashed curve gives QP, for
the smooth-walled cavity.

be greater than one-half the cavity width R. For compar-
ison, QP, for a smooth-walled rectangular cavity is also
shown. For our beam position, the smooth-walled cavity
only shows emission at the even harmonics. For the slot-
ted cavity, harmonics for s = 1-3 are dominated by the
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electron cyclotron maser instability. The fourth harmonic
is due primarily to the peniotron instability. For harmon-
ics greater than fourth, both the electron cyclotron maser
and peniotron instabilities strongly contribute. It is evi-
dent that the addition of slots not only enormously en-
hances the very high harmonics (s > 4) interaction and
hence greatly lowers QP,, but this enhancement increases
with increasing harmonic number. This descrease in QP,
with harmonic number is also implicit in the ridged gyro-
TWT modeling of Han and Ferendeci. For the smooth-
walled rectangular, smooth-walled cylindrical, or even
ridged cylindrical cavities with axis-encircling beam pre-
viously studied in the literature, the standard behavior
with increasing harmonic number is a growth in the start
oscillation beam power. The high-harmonic interaction
observed here for the ridged rectangular cavity shows a
great potential for the practical development of a high-
frequency low-magnetic-field gyrotron oscillator.

In conclusion, we find that for complex cross-gyrotron
cavities the start oscillation condition can be written in a
form that separates the geometric factors from the physi-
cal interaction terms. An analysis of slotted cavities using
this formalism shows that slots can be used to enhance
enormously the high-harmonic RF field and beam inter-
action for both rectangular and cylindrical cavities and
also for both the fundamental electron cyclotron maser
and the peniotron interactions.

REFERENCES

[1] J. M. Baird, ‘‘Survey of fast wave tube developments,’" in Tech. Dig.
Int. Electron Devices Meeting, 1979, pp. 156-163.

[2] R. S. Symons and H. R. Jory, ‘‘Cyclotron resonance devices,”’ in
Advances in Electronics & Electron Physics, vol. 55, L. Marton and
C. Marton, Eds. New York: Academic, 1981, pp. 1-75.

[3] V. L. Granatstein, M. Read, and L. R. Barnett, ‘‘Measured perfor-
mance of gyrotron oscillators and amplifiers,”” Int. J. Infrared Mil-
limeter Waves, vol. 5, pp. 267-304, 1984.

[4] D. B. McDermott, N. C. Luhmann, Jr., and D. S. Furuno, ‘‘Opera-

tion of a high-harmonic gyrotron,’” in Proc. 8th Int. Conf. Infrared

Millimeter Waves, TH4.1, 1983.

D. B. McDermott and N. C. Luhmann, Jr., **Operation of a compact

mm-wave high-harmonic gyrotron,”” Proc. SPIE, vol. 423, pp. 58-

63, 1983.

[5

—_

[6] W. W. Destler, R. L. Weiler, and C. D. Striffler, *‘High power mi-
crowave generation from a rotating e-layer in a magnetron-type wave-
guide,”” Appl. Phys. Lett., vol. 38, pp. 570-572, 1981.

[71 Y. Y. Lau and L. R. Barnett, ‘“Theory of a low harmonic field gy-
rotron (gyromagnetron),”’ Int. J. Infrared Millimeter Waves, vol. 3,
pp. 619-744, 1982.

[8] P. S. Rha, L. R. Barnett, J. M. Baird, and R. W. Grow, in Proc. Int.
Electron Device Meeting, 1985, pp: 525-538.

[9] R. W. Grow and U. A. Shrivastava, ‘‘Impedance calculations for
traveling wave gyrotrons operating at harmonics of the cyclotron fre-
quency in magnetron-type circuits operating at the PI mode,’’ in Proc.
Int. Electron Devices Meeting., 1982, pp. 384-387.

[10] H. S. Uhm, C. M. Kim, and W. Namkung, ‘‘Theory of cusptron
microwave tubes,'’ Phys. Fluids, vol. 27, pp. 488-498, 1984.

[11] K. R. Chu and D. Dialetis, ‘‘Theory of harmonic gyrotron oscillator
with slotted resonant structure,”’ Int. J. Infrared Millimeter Waves,
vol. 5, pp. 37-56, 1984.

[12] K. R. Chu and D. Dialetis, ‘‘Kinetic theory of harmonic gyrotron
oscillator with slotted resonant structure,’” Infrared Millimeter Waves,
vol. 13, pp. 45-74, 1985.

[13] J. Y. Choe and W. Namkung, ‘‘Experimental results of cusptron mi-
crowave tube study,”” IEEE Trans. Nuclear Sci., vol. NS-32, pp.
2882-2884, 1985.

[14] U. A. Shrivastava, R. W. Grow, P. S. Rha, J. M. Baird, and L. R.
Barnett, ‘‘Threshold power transfer for the gyrotron and peniotron
oscillators operating at the harmonic cyclotron frequencies using
coaxial electron beam-circuit configurations,’” Int. J. Electron., vol.
61, pp. 33-59, 1986.

[15] P. Vitello, in Proc. 11th Int. Conf. Infrared Millimeter Waves (Tir-
renia, Pisa, Italy), 1986, pp. 46-48.

[16] A. M. Ferendeci and C. C. Han, ‘‘Theory of high-harmonic rectan-
gular gyrotron for TE,,, modes,’’ IEEE Trans. Electron Devices, vol.
ED-31, pp. 1212-1218, 1984.

[17] C. C. Han and A. M. Ferendeci, ‘‘Nonlinear analysis of a high-har-
monic rectangular gyrotron,’” Int. J. Electron., vol. 57, pp. 1055~
1063, 1984.

[18] A. M. Ferendeci and C. C. Han, ‘‘Linear analysis on an axially
grooved rectangular gyrotron for harmonic operation,’” Int. J. In-
frared Millimeter Waves, vol. 6, pp. 1267-1282, 1985.

[19] Q. F. Li and J. L. Hirshfield, ’‘Gyrotron traveling wave amplifier
with out-ridged waveguide,’’ Int. J. Infrared Millimeter Waves, vol.
7, pp- 71-98, 1986.

[20] 1. D. Jackson, Classical Electrodynamics. New York: Wiley, 1962.

[21] G. B. Collins, Microwave Magnetrons. New York: McGraw-Hill,
1948. ’

[22] M. Abramowitz and A. Stegun, Handbook of Mathematical Func-
tions. New York: Dover, 1972.

[23] G. F. Brand, ‘‘A gyrotron frequency detuning equation,’’ Int. J. In-
frared Millimeter Waves, vol. 4, pp. 919-931, 1983.

[24] P. Vitello and K. Ko, ‘“Mode competition in the gyro-peniotron os-
cillator,”” IEEE Trans. Plasma Sci., vol. PS-13, pp. 454-463, 1985.

[25] P. Vitello, W. H. Miner, and A. T. Drobot, ‘“Theory and numerical
modeling of a compact, low-field, high-frequency gyrotron,’” IEEE
Trans. Microwave Theory Tech., vol. MTT-32, pp. 373-386, 1984.




