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‘Abstract—The ¢oupled nonlinear Schrodingef”cqu\a hich de-
-scribes optical propagation in a birefringent Kerr medium, is derived.
Itis vn that when the ellipticity angle § = 35°, .\Wakov's equation
results. Consequences fér switching applications are discussed. In par-
ticular, if 8 ¥ 35°, shadows-form when two pulses of opposite polar-
ization interact, I ey, Jhe emerging pul: 0 longer have their original
polnriulmm This p blem disappears at

[ INTRODUCTION  * . . VARY V-
N'a Kerr medefm . nonlinear -wave evolution is due to - - Pwsa, s ‘»'. , : )
the x""-rc.x;ponsc. *he \":) rcspﬂ)n§é‘ is 4CTO OF Can be Fig 1. Schemy w{c. |l|uxlmuu,n6 .upo\ﬁ\k Kerr switch configuration. The
~Releced: Examples incude cerain LINDO, and Gais 8 Do/ M0 sl P e s Ve s
avegyides dnd opticll fibers. We focus-ona pair of or- the signal pulse 1n (e lofer g, A
*\hog(mally polarized crg:.nmodcv«whlch dru\nq,cngmlc “/ T :
when blrcfnngcnu. can be. neglected. In a single-mode
‘optical fiber, these, orrespond to ?\;onl) modes which
am‘propagmc cy u)uptc tagedch other nonhincarly
tlyubh( ¢ Kerr effect. 4
he nature and strength of the coupling depends criu-
cally onvthe birefringence Vn lnnx,arly’blrctrmp,n( tibers
" [1}. the cross u]uplln&, between modes is only two thirds
as strong as the self-coypling. There is another coupling
term which at low birétringerce leads to ellipse rotation.
In circularly bircfringent ﬁb:k"ﬂl the cross coupling 1s
twic€ as strong as the self-cdupling: Thes®results suggest
this sthere® might vbe an idtal elliptical birefringence at - switching pulse moves through the signal pulse. the
- which the self- angd cross coupfing are 1dcnm.l| Hml is Lo ‘ PR R Lo
switching pulse not only shifts the phase of the signal
lndcgd the casc when the L“lplltlly angle 8 = 35° as we , L ) . ‘ . .
will \}“ W, -~ N p'ul.\c, but it can 'IC'd\gf: b'chmd a .shadow——a'por'tmn of the
-signal pulse which is in the same polarization as the
switchjng pulse. This shadow is slaved to the signal pulse
and does not separate from it. Shadows have been ob-
served numerically [10]. ‘
Shadows ill no longer fosm when the medium is el-
liptically birefringent so that the sclf-couplmg and cross
coupling are equal. In this case, Manakov [11]'has shown
that the coupled nonlinear Schrodinger equation which’
governs the wave evolution can be solved using nonlinear
“spectral transform mclhods [12]. As a consequcnc.c s0-
litons exist. When. a soliton of one polarization interacts

)

of the .yénal pulses is temporally delayed, the swo signal
pulsc./go through the same fiber, and the delayed pulse is
advapced before the two pul.sc.s are recombined. To con- -
veniently advance and delay one,of the signal pulses with-
out atfecting the other, they should have opposite polar-
izations. The switching pulse must have the opposite
puluri_z;uifo\n' from the signal pulse-whose phase it is alter-
mg, - ® .
01~hcr switching configurations hav been proposed with
varying advantages ahd drawbacks [S]-19]. A potential
drawback with the scheme just proposed is that when the

This” cross’ coupling may play - animpartant rolg in
switching applications. Onc _possible! confighiration, shown
.schematically in Fig. |, has been progosed by Lattes er
al. 13] and LaGasse et al [4). A signal pulse of one po-
larization is divided in two with eaeh portion going ‘dow,
one arm of a Mach-Zender mtcrferomctcr In one of the
arms, a .y(vi’tchml_ pulse may be introduced at the o her
polarization. This switching pulse then shifts the phase of

*xhg: signal pulse in"that arm so that when the signal pulses
in both arms recombine, they interfere destructively rather
than ébnstructivcly. Inits 0p’ljcal fiber impl¢mentation [4],

/
: with an arbitrarily shaped pulse of the opposite polariza-
the two arms of the interferometer must be temporally, y shapec p ppo po
" rather th tall ted in order to avoid the-effect tion, it will undergo a uniform phase shift with some spa-
raf f;f an spatially. segara ed tn orce ho avot © OCL tial displacement, but will suffer no change in polarization
3) ! Lnng pdmmelcr uuudllons—m the.two amms. One shape. As long as the signal pulse is a soliton, the shapgg
PR * of the switching pulsg canbe chosen for convenience.
_ Manusenpt recerved Apnl 3, 1989 revised July 21, 1989, An clliplically bircfri.ngcnl Kerr medium can be ob- -
" The author is with the Depanment of Elecifidal Engineening, University R R S, .
of Marylafid, Baltimore, MD 212268 tained, for example, by lv{‘mmg'an appropnately doped
. IEEE Log Number 8.93(.)‘)63 optical fiber preform during the drawing stage [13]- [15]
: e T 9197/89/1200- 2674$01 00 © 1989 IEEE



MENYUK: PULSE PROPAGATION IN KERR MEDIUM

" The remainder of this paper.is organized as follows. In
Section II, we derive in detail the coupled nonlincar
h Schrodmger equation. We discuss, in particular, the”
physical zfpproximalions‘ which are made and the limits in
which they hold. In Section III, we study the Manakov
cquation, considering both the application to switches and
possible experiments to study the basic physlcal phenom-
- ena. Section IV contains the conclusions and acknowi-
edgment., . ¢

I1. CourLED NONLINEAR SCHRODINGER EQUATION

For simplicity, we will present here a dertvation of the
basic equations which assumes plane wave propagation.
_This approach allows us to elucidate the basic physical
“issués without considering transverse- gepmetric effects.
The method for taking into account the detailed geometry
is well ‘known [16], and these geometric effects do not
change the basic structure of the equations, but merely
alter their coetlicients somewhat.
The starting point is Maxwell’s wave equanon which
may be written for plane wavés

o’E -3°D

_Len

5:—?-(' ot

‘ where E is the electric field, D is, the dielectric response.
c is the speed of light. and z and r are propdgatmn distance
and time. We stress that both E and D are the obscrved
ficlds which «f& real, not complex.

Our fitst goal is to relate D to E. We write, as usual,

. D =E + 4xP (2)

where P is the polarizability. We shall assume that the
linear response of the medium is anisotropic, so that the
medium is birefringent along the z direction. Hence. con-
sidering only The linear response, P and E are related
through a tensor . such that

(r

~
’

"yt (3)

P = | _xt-r) e

The nonlinear response will be treated separately. It is a
consequence of causality that P at time 7 can only depend
on E at earlier times.

We now consider the Fourier transforms of E, P, and
x. In general, given a quantity X(z, r),. we shall define
the transform X(z, w) such that

.

X(z, w) = S X(z. 1) e™ dr, (4).
 from which it follows that
X(z. 1) = L S X(z. @) e ™ dw. (5)
27|' — oo .
We also define the quantities )

.. LRz w), w>0. Co
Xz, w) = (6)
: . 0, - w< 0 .
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and X (2. w) = X(z, w) = X° (2, w). The correspond-
ing quantities X “(z. ry and X~ (2. 1) are then defined by
(5). Although X(z.1) = X "(z. 1) + X " (z.t)isreal, X~
and X~ are individually complex and conjugate to each
other.

In this paper, we will assume that the nonzero contri-
bution to E and D comes from a small region in w space
surrounding some carrier frequericy w, and another small
region surrounding its opposite —w,. The reality of E(z,
t) implies E(z, —w) = E*(z.w). Hence, if E(z, w) is
NONZETO NEAr w = wy. it must be nonzero near w = W
Viewed from this perspective, the standard *‘trick’" of
using compteR=fields and then adding the complex con-
jugate at the end of the calculation is equivalent to simply
considering positive frequency components in the small
region around w = w, and neglecting the negative fre-
yuency components which may then be restored at the end
of the calculation.

Since (3) is in the form of an autocdrrelation. it may be
rewritten

N (zow) = (w) - BT (2 w). ’ (7)

At any frequepcy w, x~ will have two orthonormal eigen-
vectors é, and é, which satisfy the relations

é, - éf =6, 67 =1, é,-é¥ =0 " (8)
. Analogous quantities indicating th€ eigenyectors of 1
may be defined. Writing now
E- =E é + F
P"=Pré + Ple, (9)
we obtain
P, = X,E,‘ Py = x:E; (10)
where ¥, and X are the elgt_nvalucs (,orre\pondmg to €, -
and é,. pi;utymg Xi(w) xa(w), é,(w), and & (w) is

equivalent to specifying x(w). The linear dispersion re-
lations corresponding to the eigenmodes are given by

‘:11 barg,(w)]”

=

€
it
|

. .
‘:[l + darxa(w)]” (i1)
Equations (7) and (11) are general and do not depend on
the assumption that E “ (w) is zero outside a small range
surrounding w = wy frequency.

‘We now use this assumption, and we also suppose that
within this frequency range, we may set é, (%) = é,(w,)
and é,(w) = & (wy) which is equivalent to ignoring linear
mode coupling. It fdbllows from this latter assumption that

'P,’(:.t)=g xii{t —t"YE (z.t")ydr” (12a)

Pi(z. 1) = S | xa(r = 'Y Es (2, ') dr'.  (12b)

-
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We now write
/ 'PI#(:‘ l) = D(:- [)elku:—'u..ul‘
EF(Z. ,) = U(z, ,)e:kn:_-m'm

where k, = k(wy) is determined from the dispersion re-
lation, (11). Because the spectra of P, and E; are con-
centrated near w = wy. the spectra of p and U are concen-

" trated near w = 0. In effect, p and U are the envelopes of

(S

Py and E"; the rapid variation at frequency w, has been
removed. One theh finds

\ -co
= - ‘ xi(w + wy) U(z, w)e™ dw.

27r »~cc . (14)

Since U is zero outside a small region surroundmgr w =
0, we may approximate X, by its Taylor expansion

(15)

where x;(wy) = dx, /dw and x"(w(,) = d“)g/(iml. both
evaluated at w = w,. Substituting (15) into (14) and eval-
uating the Fourier transform, we obtain ,

L, oU(z. 1) . l
Xy “—‘a"‘““

Xi(w + wn) = X (wg (w(,)w\-*- 3Xi (‘f’())wZ

/

aU( 1)

ar-

IS l

(16)

where x;. X7, and x| are all cvaluatcd al w = wy. If we
let

D (z.1) = Az, 1) e, (17)
we then find
Az 1) = U(z. 1) + i€ aug 0 %;;’ ah(i)(’”;‘ 2
AT (s
where
Qo) =1 +am () L (19)

-
. -and its derivatives are evaluated at w = wy,. We have thus

determined D|" in terms of E;. We may similarly deter-
mine Dy in terms of £5 . Noting that D; = D;* and D5y
= D;*, we see that the linear portion of D i§ completely
determined in terms of E. .

In (11), we have written the dispersion relation which
corresponds to forward-propagating waves. Since Max-

well’s wave equation, (1), is second order in z, it will also -

have backward-propagating solutions which correspond
to choosing a negative sign in (11). It is, however, a con-

- sequence of our assumption that the frequency spegtrum

of E| is concentrated near w = w, that the wavenumber
spectrum is conc emrated neark = k() ork = —Iw In mher
sists cnurely of forward- gmng or dederd g()mg waves,
We shall ‘assume that the optical pulse consists of for-
ward-going waves with no loss in generality.

It is now possible to reduce Maxwell's wave equation
so that it is only first order in'z. Substituting the expres-

IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL.
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sions for £ -and D{ into Maxwell's wave equation, one
obtains

KU+ 2ik 4 oy
0 1Ky 3z 972

3 2 \ U
ﬂ6U+1<w06' +2‘i?6>—
c c c* ot N
w(; bwo - azU -
A = DL =0. (20
<2<"6 w2 > ar’ \( :

. In (20). only second- and lower order time denvanves
have been kept, consistént with the earlier expansion of
A in terms of U where only derivatives up to second order
were kept. The goal is to eliminate the term 8°U /92" in
favor of a term containing only time derivatives. Because
U is slowly varying in time and space, we conclude

U U
k — |, 21
‘ ()U| >> lko Py ‘ 6:“ (21)
and similarly.
- U °U
|wg Ul >> wo - 3 .(_22)

We may thus expand (20) in order of the number of de-

rivatives. At lowest order, this procedure yields

5 -
4 (IJ()

ky - —=¢€ =0,

e

(23)

which in essence fixes the linear dispersion relation, (11).
At next order, one finds

QU < W w > U
1 + il 50 + €| —
3:: 2k0C~ k()(‘- or
U aU
={i—+ik— =0 24
> ar (24)

where k' = 9k /dw is evaluated from the dispersion rela-
tion, (11), at w = w,. At this order, the overall motion of
an optical pulse is determined to be v, = 1/k’. From
(24). we find that to second order
v L2 U

— = (k 3.
az- ( ar-

Substi(uling (25) into (20), we conclude

,aU+ ,A,au
! K — —
9z .ot

25)

2
)

4k0('2 ¢

”

1

>y =0

(20)

where k" = 0’k /3w’ is evaluated at w = wp. In similar
fashion, if we let .

V(z. 1) = Ef (2, ) e (27)
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where /) = I(w) is evaluated at w = wy, 7 follows from
(11) that , B o
av v 1,0
T ijf— = =] —— = N
I R L I
where I' = 8l /3w and I” = 3%] /3w’ are evaluated at w =
wy. The terms which contain second derivatives in time
lead to pulse spreading or dispersion.
1t is no accident that the coefficients of the time deriv-
atives just involve derivatives of the dispersion relation.
This result can be made apparent by using a Green's func-
tion or the Fourier-Laplace transform approach. The
Fourier transform of Maxwell's wave equation for £
yields

(28)

B ) a:Er b + '
—a—TJrk'(w)E,. (29)
If we write the Laplace transform in the form
Er(k‘ w) =S El(:‘ u))e"k:d: (30)
_ 0
where Im-(k) < 0, we find that (29) becomes
[k*(w) = K*)E = Ej + ikE, (31)

~where E, = 8E(z, w)/0z and E, = E(z. w) are evaluated
at z = 0. Demanding that our light pulse consist of only
forward-going waves is equivalent to demanding that Ej
‘=~' ik (@) Ey. In this case, (31) becomes
:SZ ‘ ilk = k()| E; = E,. (32)
Expanding é (w) in'a Taylor series about the frequency w
= wy yields .

[k = ko) = K'(w = &) = tk" (@ — @) |E{ = By

' (33)
Using the definition of U(z, 1), one may verify tkat (33)
is just the Fourier-Laplace transform of (26). This ap-
proach yields the linear wave equation more easily than
the approach previously described where one directly
eliminates 3°U/3z* in the z domain; however, this ap-

- proach does not generalize'in any simple way to nonlinear
problems, while the previous approach does.

We turn now 1o consideration of the nonlinear contri-
bution to the polarizability P. We shall suppose that no
second-order nonlinearity appears, so that the lowest or-
der nonlinearity is third order. We shall also suppose that

- the medium is only weakly anisotropic, so that the non-

linear response can be considered isotropic. Leaving aside.

second harmonic generation, which only appears in spe-
cial cirsumstances, bath these assumptions apply to op-
tical fibers. The nonlinear polarizability must have the

- " form :
P(z.1) = S dr, S dt S p)
cig- 3 - oo -0

cdyx (-1 - r;; 1= 1)
c[E(zn) - E(z0)] E(z.n). (34)
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This combination of E vectors is the only combination
which is invariant under rotations and mirror refiections.

" From the form of (34), it follows that x(7,, 73 73) is

invariant under the interchange 7, <* 7, but not neces-
sarily under the interchanges 7, < 7y and 75 «* 75, Since
the spectrum of E is concentrated primarily in small spec-
tral regions surrounding w = wy and w = —wy, it follows
that P will be concentrated primarily in spectral regipms
surrounding @ = — 3wy, —w. wp. and 3wy.-Assuming, as -
is certainly the case in fibers, that if waves propagate at
w = wy they cannot propagate at w = 3wy, We can ignore
the contributions of P at +3w, to the electric field. Des-
ignating P * as the contribution to P concentrated near w
= wp. we find that it consists of all combinations of the
E field containing two + and bne — contribution. It fol-
lows that

1 r ' o -
P‘(:. ’) = S l!ll S (1’: S ] .

cdry x(t— b= it = )
2[E (o) - ET ()] E‘(:..:})
+{ET(z0) - ET (e )] E7 (20}

L
(35)
In the Fourier domuin{BS) becomes
’ 1 P - .
P (:. = 5 3 { S fos X (6. wal
> (2 w) P _dey Am(w_x(w, W w_;)‘
2B (w) - B (o) BTz @)
+ [E*(zow)) " E7 (2 w)] E7 (2. w;)}

- (36)
where wy = w — w; — wy. The first term in (36) is con-
centrated in the spectral region w, = —wy = w3y = wo.
The second term in (36) is concentrated in the spectral
region w, = w; = —w; = wy. If we Taylor expand x (w,.

w,; wy) just as when deriving the linear response. but re-
tain only the lowest order contribution, we obtain

. 1 z z +
P (zw) = (27r)2 S—w dw, S a,dwz {2U[E (2, wy)

CE7 (2 w)] BT (2 w)

4 b[ET(z w) BT (2 wn)] ET (2w}

' (37)

where ¢ = x(wy, —wps wy) and b = )‘((wo,‘\bo: —wy ).
Neglecting higher order contributions is equiyalent to ne-
glecting the contribution to the nonlinear polarizability of -
terms which include the factors U /3¢, aV /31, and higher
order envelope derivatives. Ths assumption is valid in.
optical fibers as long as the optical pulses are longer than
several hundred femtoseconds. In the opposite limit; terms

containing envelope derivatives lead to the Ramgn self-
frequency shift, a physically important phenomenon [17].

- -
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Retuming to the time domain yields

IEEE JOURNAL OF QUANTUM ELECTRONICS. VOL. 25: NO. 12. DECEMBER 1989

fringence ellipse. we find that we may write

P*(z. 1) =2a|E* (2, 0) - E (5, )] E" (2. 1) ‘
: é, + iré, ré, — ié, '
+b[E*(zt)  E* (2 )] E (2 1) - ! b = el by = (43)
, L+ r L+ 7
. ’ (38) " ' '
It should be emphasized that in deriving (38). we have ~ where, letting r = tan (6/2), we have that é, - &, = é, -

assumed that the field envelopes vary slowly compared to
the dielectric fesponse time, not the E field itself. When
the dielectric response times are so fast that they may be
regarded as instantaneous, i.e., they are much greater than
wg ', then

i(wo~ W wo)"‘f: X (wp. wor —wp) = %(0.0:0) (39)

. J
so that @ = b and the number of indeperident Kerr coef-
ficients is reduced from two to one. To make this point
explicit, we return to (35) and note that if x (7. 72. 73)
-+ 0.s0 rapidly that the variation of E can be neglected,

then
P (z1) = S dt, S dts S
cdtyx(t =t =0t = 1)
A2ET (2 - ET (2 D) ET (2 )
+ |ES(z1) - ET (2. )] E (2 1)}.
' ‘ ‘ (40)
Noting that - -
r 1 i .
S dr, S dis S diyx{t = 1,1 = it~ 1y)
= %(0. 0: 0) (44)

and comparing (40) to (38). we arrive at (39). In optical
fibers, the nonlinear diclectric response €an be viewed as
instantaneous and one does find that @ = b. The reduction
in the number of independent Kerr coeflicients from two
to one when the nonlinear dielectric response becomes in-,
stantaneous is implicit in the prevf&m results of Maker
and Terhune [18].

Recalling that the unit vectors' é, = é (w,) and é, =

é,(wy ) definesthe eigenmodes, and usmg the onho;,onal
A ity rc!dtlons (8), we hnd

P? =2alEJE] + ESE7)E; + b[E’E“(é. &)
ﬁEfE{(e “'_»)+Ew E'n éa)]

CET(er ey + Ef(er és')]. (42

The term in which a appears does not depend on the éi-'

genmode structure, but the term in which b.appears does.
Hence, the strength of the nonlinear mode coupling will
depend on the eigenmode structure. In general, a Kerr.
medium may be elliptically birefringent. Choosing, (with
_no loss of generality) &, along the major axis of the bire-
fringence ellipse and é, along the minor axis of the bire-

é, = cos 0 and é, - é, = sin 0. A linearly birefringent
fiber corresponds to r = 0 and 6 = 0, while a circularly
birefringent fiber corresponds to r = l and § = /2. In
the former case, one finds é, = é and é, = —ié, This
choice of eigenvectors differs from the usual choice, é, =
é. and & = €, but this difference leads to no change in
the evolution equations. In the latter case, one finds é, =
(e + ié‘.)/\/[i and-é, = (é, — ié,.)/\/i which is standard.
Noting that £ = E and E;= E,.(42) now becomes

P; = (2a ¥ bcos 8) |E;

zEn‘,
+ b cos 8 sin O(E,’)ZEJ ’

+ (2a + 2bsin® 0) |Ey

“ 4+ 2bcos 0sin0|E;ES
+ b cos? 6(5{)2[:‘," + b cos 6 sin 0|Es IE{.
: *(44)

4
-t

Using the definitions in (11) and (27) for the wave enve-
lopes, we conclude

p=(2a+ bcosz 6) |U|2U + (2a + 2b sin” §) |V|1U
+ b cos® OVIU* exp | =2i(ky ~ ) 2]
+ b cos 0 sin 6{ UV * exp [i(ko = 1) ]

QU+ [VEYVexp [=ilky = )]} (45)

- We may now combine (45) which gives the nonlinear -
polarizability with (16) which gives the linear polariz-
ability and substitute the result into Maxwell’s wave
equation. We assume that the nonlinear-contribution is of
the same order as the dispersive contribution because so-
litons are obtained when these two cqatributions balance.
Substituting the total polarizability iX:o Maxwell's wave
equation and reducing the equation so that it is first order
in 2, just as in the strictly linear case: we obtain .

U dU 1
’»a: + ik ot 2k ar-

+ (2a' + 2b’ sin® ) I)Vl-UA+ b’cos' BV'U"'
“exp [ =2i(ky — b)) . - ' ¢

+ b’ cos 8 sin O{U‘V* exp [§(ky — lo);j -
+ UL + V) Vexp [ =itk = lo) 2]} = 0

aL»/+(2a + b’ cos” 8)|U|U

(46)



-

MENYUK: PULSE PROPAGATION IN KERR MEDIUM .. \

where a'= a/2k0 and b’ = b/2k0 Ina Slmlldl' fashion,

it can be shown that . _ .
v v 1 -V
ia—z+il'-5;—21 a,+(2a + 2b' smB‘U‘V

+ (22" + b’ cos? 0) | V|’V + b cos” UV
~exp [2i(ky — ly) 2] * '

+ b'.cos 8 sin o{V2U* exp [—i(ky - h)z]
+(JUI + 2] ) Uexp [i(ko = lo)z]} = 0
t (47)

where we assume that 4 /2ky = a/2lyand b /2ky = b/2l,.

We now -reduce (46) and (47) to normalized form. To
do so, we assume that light is propagating in the anoma-
lous dispersion regime where k" < 0 and /" < 0. We
-also assume, as is appropriate for optical fibers, that the
small difference between k" and /” may be neglected and

~

]

that k” = 1" = (ko —="1y)/wy. Letting
\ ~
k”zln— _ ():D()\U) ‘(48)
27C
we define
e x'c‘:t{)
= Iy = ty = 0.5687,
A A TES T ’
1 ( N\ 2
S = - ! - — R y =
b T',,) ok
u=(2a" + b"cow 0)”:U (24" + b’ cos™ 9)
k' - l‘; xcArnt PR " 8me .
= =z N = — R
2[k"] 7 Do) N No
‘ B. 2a'-+ 2b’ ,ln’O _ b’ cos® 9
C 24’ +b cos’ 0’ T 2a 4 b'cest 0
D - b’ cos 8 sin 8 T
Za cosT @

where 7 is the FWHM pulse intensity and An = (k, —
ly) ¢/ wy is the difference between the indexes of refrac-

‘tion. With these definitions, (46) and (47) become
_3u .. Ol 18% 2 "'2
. l-af "585 2(752+(J“|‘+ B]t'l)u ‘
+ Cv’u* exp (~iR6E) + D|ue* exp (iR8E/2)
# (2)ul’+ [0 v exp (—iRSE/2)] = 0 (49a)
. a% dv 1 821' 3 3 ‘
b (6 — + 3 . e
laf i 235_.+(‘B|u| +|z|)z'
+ Cuv* exp (iR6E) + D[v’u* exp ( —iR6E/2)
e (ul w2 el uge (RsE/2)) = 0 '(4§b)

" The time variable s is not proportional to 1, absolute

time in'the laboratory frame. Its variation at any point ¢
. »e . 1

¥
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is proportional to time measured in the laboratory frame,
but its origin is § dependent. TRe origin is chosen so that
if a signal moved at the group velocity intermediate be-

tween that of the two modes, the evolution in £ of its s

profile would -appear to be frozén. Hence, terms propor-
tional to du/ds and dr/ds appear with opposite sign in
(49) to account for the group velocity difference between
the two modes. These terms can, in fact, be removed by
making the transformation

52 .
u = uexp i— & + ibs
. 2
_ 8 :
I = vexp 1—2—5 —~ ibs (50)
. . .
which yields the equations
du +‘13u + |~!: N B}_‘.’)_'
lag 3 7ol 7] i )u

+ Cu* exp (—iR6§ + 4dids) + D{u'v*
- exp (iRSE /2 — 2ibs)
-\ Ty Al )
+ (2fu]" + | 7)) 7 exp (—iR8E/2 + 2ibs)] = 0
1831_'
EEXE

+ Cu'p* exp (iRd¢ — 416s) + D[
- exp ( —iR8E /2 + 2ibs) |
+2lal*+ 7)) uexp(lR6£/2 ~ 2ids)] = 0.
(51)

Fhysically. this transformation is equivalent to shifting the
central frequencies of the two modes just far enough apart
that their group velocities become equal. The cost is to
add explicit time-dependent factors into the equatiSh: The
fuctor & is quite sizable in most optical fiber experiments,
the exception being when fibers with unusually low bire-
fringence or pulse durations substantially shoner than a
picosecond are used [1]. Freatments of nonlinear birefrin-
gence that have appeared in the literature in which cos 6
= 1 ynd & = O apply in this limit {19], [20]. From an
experimental standpoint, it is convenient to use (49) rather
than (51) since the two eigenmodes are usually injected-
into the fiber with the same central frequency.

In most cases of experimental interest, R6 >> 1. In
these cases, the terms in which exponential factors appéar
in (49) are rapidly oscillating and can be neglected. This
assumption corresponds physically to assuming that the
birefringent beat length is small compared to the disper-
sive scale length..Equation (49) now has the extremely

o~z

81
82

+ (Bla| + |T~[ ) B

simple form ‘.

Ou - . du 1 3% L
l¢9—E+‘68s+2332+”u' + Blv[Yu=0

Qv dv  1d% 2

'ae*"sas 2332+(Bl“| + o] )e =0, (52)



2680

From the definition of B, we find that B = | ‘when cos® §
=2 sin® 0, or, in other words, when

6 = 35°.

| (53)

- This result does not, depcnd on the ratio b/a. Since the
terms proportional to du/ds and dv/ds can be trans-
formed away. we find that (52) 1s/|ust a version of Man
akov's equation [11] which is mtcgrdble using spectral
transform methods [12]. In particular, solitons of one po-
larization should ‘pass through pulses of the opposite po-
lanization without creating shadows.

_ Before leaving this section, we review the assumptions
which led us to (52). These are ab follows.

1) The plane wave approximatiog. Taking into account
the transverse variation in the fibep will not change the
form of our final equation. It may lé&gd to multiplying the
coeflicient B in (52) by some @ dependent factor which
would shift the critical angle slighfly.
©2) The slowly varying envelope dpproxlmduon This
assumption underpins the entire theoretical development.
Most of the subsequent assumptions are only reasonable
in the context of this assumption.

‘3) No linear mode coupling. In the regime of interest
to us in this paper. linear mode coupling in fibers is ex-
tremely weak compared to the nonlinear coupling.

4) Truncation of the Taylor expansions of k(w) and
x (w), w1 w3). We stopped at second order in the former
_case and zeroth order in the latter case. From the stand-
point of linear propagation, the first-order term governs
the overall velocity of the optical, pulse, while the second-
order term govems its spreading. Both these effects are

readily visible. By contrast, the effect of the third-order .

term'is not readily visible unless the second-order term is

zero. Since a soliton forms by balancing dispersion with

the zeroth-order nonlinearity, higher order nonlinearity
LN

4 A Y
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verify by subsmuuon that (52) has the smg]e soliton so-
Jutions _ ,

= Aexp (iA3E/2) sech ¢,

-
-~

v=0 . (54)
>where N . )
1= (s = s = ) (55)
angd ' .
u=20 ) .
T o= A> exp (t'/1'§£/2) sech ¢, s5)
where ) |
6, = Ay(s =5, + 589, (57)

The quantities. A,, A,, 5, and s, are all arbitrary param-
cters. Equution (52) has these solutions for any value of
B. When B = 1, one has the following addmonal result.
Given an lnllldl <.0ndmon

A, sech [A,(s — 51)]

it

u

(58)

at ¢ = 0 where we assume that D(s) is real and that'the )
two polarizdtions pass through each other, then when £ is
large, we.will find

W= A exp (iA3/2 + iy,) sech (¢, — 4,). (59)

In other words, the soliton emerges unscathed from the
Jnteraction except for a shift in phase ¥, and a shift in
umc A, /A,. In particular, the polarization of the soliton
is unaltered and shadows dd not appear.

As an’example, we consider two soliton collisions
where the solitons are in opposite polarizations. The so-
lution to (52) which we seek’has the form

~

v = D(s

v =

most circumstances in ogucal fibers.

["and k' = 1" = (ky —
“well obeyed in optical fibers. o

2A|CXP("A":<C./2)[CXP¢: + Q CXP(”%)] (60a)
exp (@ + ¢2) + exp (&, — ¢;) + exp |~ (¢) — d)w)] 1, exp [ = (&) + ¢1)]
' o ZA, exp (iA3¢/2) [cxp ¢, + Q’ gxp —cb,)] ! ' ‘(60b)
exp (@) + 1) + exp (¢ — ¢3) +LXP[“ o — )] + .|Q:’-CXPIT'(¢3 +¢:)] }
r
N . " where .
will not be visible unless the pulse duration is quite small. .
5)' Birefringent beat length small compared to disper- Q, = _2_5_+’_(’4_'____L)
sive scale length. This assumption is well obeyed under 26 + i(A) + A)
6) Other simplifying assumptions. These include k" = 0, = 2—6—f—’—(—’1—'————m—) (61)
ly)/ we. They are both reasonab!y 26 ~ i(4, + A)
When ¢, = 0and £ << 0, ¢, << 0, we find
: ~ 24,0, exp (iAE /2
. MANAKOV EquatioN = - 1 e3P (2 1£/2) (62)
, . exp (¢1) + |2 exp (-9))
Assuming that B =1, Manakov [11} has shown how to d hen § >> 0, >> 0,
solve (52) using the spectral transform method [12]. We. and when 2
do not describe this. approach here as it is rather intricate. 24, exp (IA,E/Z) (63)

Instead, we concentrate on its consequences. One can

*

" exp(d)) + exp (=)
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" Hence, we find for the phase shift

Im () 4564,
t = - - = ,. 3 64
an ¥y Re (D)  48° + A} — A3 (64)
and for the time shift
. B ¥ +
As = ns In 46 + (A, + A, )2 (65)

The phase changc is largest when 4> >> A, in which case
As = 2/A2 and »
46

tan ¥ = ——

A (66)

corr.espoAnding to Y, =7~ 45//13. When A, = A; = A,

.we find N

IV A
AS='2';1'|n/ l'+g§ K lan\(/, = -
in which case ¥, < /2.

Itis 1nteresung to consider (60) in the limit & = 0. In
this case, the solution is stationary, i.e., |u|* and |0}
are mdcpendent of . For that reason, ‘this solution has
been referred to as a soliton solution [20], but it is really
a two-soliton™(or two-pole) solution.

(67)

. The result which we have obtained for ¥, in (66) can

be understood from an elementary viewpoint. We suppose
that the pulse in the v polarization has duration s, and

-amplitude A, at the point that it interaces with the soliton

. in the u polarization. We also suppose that the pulse in

" the v polarization is intense enough to dominate the evo-

*lution of the u polarization while the two polarizations
interact. Finally, we suppose that the interaction is swift
enou_gh lhgt the pulse in the v polarization does not change
its shape. it then follows that

Wb
| ol (68)
s0 that
' v ., i
¥, = % Sﬂ» |Ul ds = 55 So- "(69)

For a soliton, s = 2 /A, which yields reasonable agree-
ment with (67). Equation (69) is appropriate for ¢ pulses
whose integrated intensities are large and whose s deriv-
atives are small.

The existence of shadows when B # 1 might appear
surprising given the well-known robustness of single so-
litons when the nonlinear Schrodinger equation is per-
turbed so that is no longer integrable. Under the influence
of non-Hamiltonian perturbations such as attenuation or
the Raman sclf-frequency shift, the soliton parameters
change secularly. In the first case, the amplitude steadily

diminishes-[21], and in the second case, the frequency

steadily diminishes [16]. Inboth cases, the soliton main-
tains its basic shape. When/ the perturbation is. Hamilton-
ian with no explicit dependence’dn space or time Lhe so-

~ead

. liton
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is almost unaffected. Its shape, speed, and
wavenumber shift change somewhat, and that is all. From
a fundamental viewpoint, solitons can be regarded agpoles
in spectraf transform’space [12]. It is difficult for pertur- - .
bations to destroy the poles in spectral transform space so
solitons continue to exist {22]. By contrast, multiple so- .
liton structures are nQt robust because each of the individ-
ual poles which compose it can shift their locations and
strengths, in different ways, leading the structure to break
up. In a similar sense, when the Manakov equation is per-
turbed, individual solitons are robust, but their polariza-
tions are not. When they undergo collisions, the polariza-
tion will, in general, change along with the speeds and -
amplitudes. .

We now consider a set of example parameters which
can be used to experimentally verify the phase shifts which
we have predicted. We consider pulses which are 500 fs
long, which is the largest size that can be conveniently

Jproduced by the soliton laser [23]. We shall also assume

& = 5. corresponding to falrly large birefringence which
will ensure a short interaction length and good control over
the birefringence. At this pulse size, 6 = 5 corresponds
to An = 1.9 X 107* where we have set Ay = 1.55 um
and D(\y) = 6.5 x 107>, The birefringence is large,
but is substantially smaller than the largest birefringences
available [13], [14]. The soliton period is 2o = 7.1 m. If

.we deqand that As = 20 for a complete interaction to

occur between a soliton in-the u polarization and a pulse
in the v polarization, we find
(70)

This estimate .of the necessary interaction length is con-
servative: as little as 4.5 m might suffice. Fmally if we
‘suppose that

v = Ay sech [(s = 5,) + 8] (7])
before collision, then we find from (69) lhal'
Vi = A/  (72)
$0, to obtain a phase shift of 7, we :concluc(ie A3‘ =

4.0, -
corresponding to a pulse containing four solitons. To de-*
termine the twist length required to obtain 6 = 35°,

musl know the strength of the electrooptic tensor, In gcn— .
eral, we have

‘ o = gr (73)
where « is the birefringent rotation rate and 7 is the me-
chanical rotation rate. For a pure silica fiber with no linear
birefringence, g = 0. 16, but is higher in a fiber which
already has substantial linear birefringence. Noting that

a = E:—U An sin6,: (74)
we find 7 s 2600 m~', correspondirig 10'a twist length
2z 2.3:mm. This value can be obtained by twisting the -
fiber as it is drawn in the fabrication pgocess [13]-[15].

&
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N \' IV. CONCLUSIONS

A\

We have considered nonlinear pulse propagation in el-
liptically birefringenat Kerr medla, with particular cmphd-
. {is on optical fibers. We have derived a version of the
coupled nonlinear -Schrodinger equatiof, and we have
shown that when the angle of ellipticity § = 35°, cross

coupling and self-coupling in-the Ketr effect brcome ,

equal, and pulse evolution is described by Manakev's
equation for sufﬁcncntly large blrefnngcncc

An_important potentml apphcauon of the Kerr cﬂut 1S
in switches where a switclfing pulse in the ¢ polarization
will rotate the phase of a signal pulse in the « polarization.
In gencml this use of the Kerr effect generates shadows—
the sq,nalvpulse develops a’ LomponenL in the v polariza-
tion. However, when Manakov's equation applies. shad-
ows no longer dévelop. If the signal pulse is zﬂ,s‘olilon. it
undergoes a phase’shift and some displacement, but no
change in polarization and no distortion. -

It is possible to experimentally study the phenomena
described in.this paper by using specially fabricated 0p-
ucal fibers. .
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