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TRANSIENT STIMULATED RAMAN SCATTERING*

CURTIS R. MENYUKt$ AND THOMAS I. SEIDMANt

Abstract. The system: u -zv, v u, Z.r u- ?z with z 0 at -cx) and initial
data for U (u, v) at 0 are considered. Well posedness results are obtained for this and also for
a version discretized in . Stability is considered as

Key words. Raman scattering, well posed, partial differential equations, system, stability

AMS(MOS) subject classifications. 35B40, 35Q60, 78A60

1. Introduction. The Raman effect has played a conspicuous role in physics
since its discovery in the 1920s [14], [11]. Specifically, the system of partial differential
equations

(1.1)

(i) Ou/O -zv,

(ii) Ov/O u,

(iii) OZ/OT U Z,

was first derived to model the interaction of two laser beams with gases when the fre-
quency difference between the beams corresponds to a resonance of the gas molecules
[16], [1]. Here, u and v are unknown C-valued functions on JR+ P (i.e., functions of
(, T) with 0 < < oc; -cx < T < X)) which represent the two laser beams, usually
referred to as the pump beam and the Stokes beam, respectively. Then the function
-iz corresponds to the off-diagonal density matrix element which describes the quan-
tum mechanical state of the gas. The real parameter /_> 0 represents a de-excitation
rate due to molecular collisions.

In recent years, these equations have been the focus of intense activity, both
experimental and theoretical; some references to the relevant physical literature are
provided in our bibliography. It has long been known that (1.1) has a Lax pair when
/- 0 and so has soliton solutions [2]. On the other hand, we note that it is physically
reasonable to require that

(1.2) Z(T)

SO that z should be "independent of the infinite past"; yet it was later shown that this
physical boundary condition leads to special difficulties which require modification of
the standard inverse scattering approach [8], [15], [9]. These modifications seriously
complicate the theory, leading to results which are difficult to interpret [10]. We
note that soliton-like pulses have been observed in experiments with laser beams
whose durations are long compared to the collisional de-excitation time [3], [17] but,
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surprisingly, soliton-like pulses are not observed in experiments with laser beams
whose durations are short compared to the molecular de-excitation time [4], [5]
even though setting -y 0 is presumably "more legitimate" for the latter case. Indeed,
numerical experiments indicate that both u and z tend toward zero almost everywhere
as --+ oo for a fairly broad set of initial data [13], [7]; compare 5. Following the
somewhat less formal argument of [12], we show here that z --, 0 as oo. The
more detailed asymptotic behavior of u and v as --+ oo remains an open question
and, as will become evident in the course of this paper, a somewhat delicate one.

Clearly, there is a need for careful mathematical work. Remarkably, despite the
importance of (1.1) in the physics literature, no one until now has even shown that
these equations are well posed! The goal of this paper is to place the study of (1.1)
on a firm mathematical foundation by demonstrating well posedness, obtaining a
number of other simple results relating to the asymptotic behavior of these equations
as --+ oo, and outlining the remaining difficulties and some open problems. The key
insights will be that solutions satisfy the identities

(1.4) }u(, T){ 2 {U0l 2 a.e. T e IR for all _> 0

(where luol 2 luo( )l 2 + Ivo( )12; see (2.1)) and, also pointwise in T,

2. Formulation. We will use a subscript (or simply ’) for (partial) differenti-
ation with respect to and subscript r for differentiation with respect to T, etc. We
will consistently use the notation

0
u0 := (u0, v0),

(2.1) K2(T) := lUo(T)l2 := [lU0(T)I 2 + iV0(’)I2],

cr Or(T):= K2() d? so K2dT =: do’.

We will assume the initial data u(0) Uo is to be in 7/so

2 := IIKII2 .= g2 dT < oo.

We can solve (1.1.iii) as an ordinary differential equation in T, temporarily ignor-
ing the dependence, to obtain

Z(T) e-’v(’-’’ z(T, + e-’v(-)u(-)v(-) d

We note also that the system (1.1) is invariant under the action of the group G {g9 z9 ]R

t} of transformations

(1.3)
for "arbitrary" real 19 vg(), independent of . So far, however, we have not been able to exploit
this insight effectively.
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for arbitrary real T., T. Imposing (1.2), the first term on the right can be omitted "at
-oc" so the differential equation (1.1.iii) can replaced by

Z(T) e-(-)u(’)v() d

as a definition. We note that a principal point of difference between our present treat-
ment and most previous work is precisely this imposition of the boundary condition
(1.2); compare Remark 4.4 below.

For (2.2) to be meaningful, we need u to be integrable and we will therefore seek
solutions in the L2 space2

Along with -/, we introduce the spaces

{u (u, v) e 7-/: lU(T)l K(T) a.e. e JR},
e c((-o, ): 0},

zEZ
0

Note that sup{Iz(.)l } just gives the norm of X(-) e A’ as an operator on 7-/(or on any
7-/K C 7-/), acting by pointwise multiplication. We will also introduce the linear space
/4 of functions u(.) E C(lR+ - 7-/) for which the exponentially weighted norm

(2.3) Ilul[ := sup{e-2=l[u(, ")1[}
(_>o

is finite for some a. Convergence in U is given by convergence in I1" II- for every
large enough a;/ is then metrizable and complete. We finally let/g be the subset
of u E/ taking values almost everywhere in 7-/g--topologized through I1" I1 with

Finally, we introduce the map

(2.4) X’u H X := for u (u, v)
0

with z z(.) defined by (2.2). Then (1.1.i, ii) can be written as an abstract ordinary
differential equation with respect to in the more succinct form

u’= X(u)u, u(o) uo e n.
2 Clearly it would be sufficient to have this integrability only "to the left," i.e., on each semi-infinite

interval (-cx), ’] with T finite, imposing no growth condition as +x). The present formulation
permits us to work with a Hilbert space formulation for u (u, v) and the greater generality can be
recovered--observing that, by setting everything equal to zero for T > T*, we can always restrict the
problem to (-o, *] for each (arbitrary) finite T* to make the present formulation appropriate.

Note that although we use a I2 notation, thinking of 7-/as a complex Hilbert space, it will later
be convenient (cf., Thm. 3.4) to treat it also as a real Hilbert space, effectively identifying (j2 with
4.
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3. Well posedness. Our principal concern here is to show that the problem
(2.5) has a unique solution, but we begin with a lemma about the map u - X(u).

LEMMA 3.1. The map X is well defined by (2.2) and (2.4), and is continuous

from 7-I to ,. For each ’g ::- U{- K <_ K}, the set of functions z defined by
(2.2) with u E g is precompact in Z and the map X is uniformly Lipschitzian on
7-lg with Lipschitz constant := Ilgll.

Proof. Suppose u e 7-/with lU(T)I < K(T) almost everywhere and obtain z from
u as in (2.2). Noting that e-(-) <_ 1 and that 21u <_ K2, we then clearly have

z(,)l 1 K2

which shows the continuity of z and, indeed, equicontinuity on K; essentially the
same computation shows that {Z(Tn)} is (uniformly on 7-/g) always Cauchy as Tn --* OO

SO Z(T) always has a limit as T --. OC. Similarly, there is a uniform bound: IZ(T)I _.<2
By the Arzela-Ascoli Theorem, it follows that the relevant {z} will be in a compact
subset of Z. Now let Zl, z2 be obtained from Ul, u2 and set z "= Zl z2, u := Ul u2
so, pointwise in T, we have

Ull u22 Ul + u2 Ul -+- u2,
]u u221 < min{[lu] 2 + Iv212], [Iv l 2 + lu212]} /21ul.

Note that this minimum is bounded by the average---which is bounded by K(T) for
Ul, u2 7-/g. Thus,

Iz( )l Klul IIKlllluII.

Since we are using sup{[z(.)l } as our X-norm, we then get for X(.) the desired Lipschitz
condition with constant

THEOREM 3.2. Let u0 (no, vo) be given in 7{. Then there is a unique function
u (u, v) :JR+ -- T/ in g satisfying the nonlinear equation (2.5) with the notation

of (2.1) and (2.4).
Before beginning the proof, we remark that an essentially identical argument

works for the problem with reversed (here and also in Theorem 3.3) so, in particular,
we have backward uniqueness for the solution as well. We also remark that our
definition ofg means that finding u g implicitly includes the assertion of (1.4).

Proof. Fix u0 7-/, thus fixing g := lul L_(]R) and the spaces ’lg, g as
above. There is no difficulty in defining a map F fi - u for fi E g by solving the
linear ordinary differential equation

(3.1) u’= X(fi.)u, u(O) uo.

Indeed, we note from Lemma 3.1 that X(fx)u is continuous on JR+ lR so (3.1) can
be interpreted pointwise in T as a (finite-dimensional) ordinary differential equation
in --with an adequately defined initial condition for almost every T. Note that, since
X := X(fi) is skew-adjoint, we have from (3.1) that

(lull)’ 2(u, u’)= 2(u, Xu) --o
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whence lU(.,T)I is constant and we have (1.4) for solutions of (3.1), i.e., we have
u(.) E /gg. (Indeed, we need not even have fi E g to have u =" F(ft) /,/g and
I1(,-)11 =- .)

A fixed point for F is a solution of (2.5) so it will be sufficient to show that F is
a uniformly strict contraction from/g to itself. Given uj :- F(j) for j 1, 2, set
U :-- U U2, 1 111 l2 and let be the/J-norm of ft. Then

Since II()ll2 < exp [4n2]2 and u(0)= 0, integrating gives

t2 [ e2- <

and then

(e-2llull) < 2/4

Thewhich shows that F is uniformly Lipschitzian on/tg with Lipschitz constant 5"
result then follows by the Contraction Mapping Theorem. [3

We complete our treatment of well posedness by considering the continuous de-
pendence of the solution on the initial data u0. It is clear that the estimate (3.2) gives
continuous dependence of solutions on initial data in the sense of uniform convergence
(with respect to the ?-/-norm) on bounded -intervals but the estimate grows expo-
nentially in . Since we know that the solutions themselves are bounded uniformly in, it might seem plausible that this could be improved to have convergence uniform
on lR+. That, however, is false; see Remark 6.4.

THEOREM 3.3. Let ujo (uo, Vo) for j 1, 2 be given in Tl with corresponding
solutions uj :lR+ --+ 7-/satisfying (2.5). Then

(3.2) Ilux (, .) u2(, ")ll -< </-)lluxo u2oll
where + := IIK+II with K+():= max, min{lfio(T)l

Proof. The argument is standard. Set v := ul u2 and X "= X X2 with
Xj X(uj), etc. Pointwise in T, we have Iv[ 2 (v, v> so

0 Ivl/O: 2Re[<v, Xv)+ <v, Xu2>]
2Re[<v, X2v> + <v, Xu>]
el:t<,,,, Xu> R<,,, Xu>

by the skew symmetry of Xl,X2. By Lemma 3.1, we have IX(r)l < IIK+II Ilvll and
(1.4) gives, pointwise in T, min{lul, lu21 K_. Thus,

o Ivl=/o < 21v()IIIK+IIIIvIIK-(),
d Ilvll=/d < 211vii IlK+ IlK-II.

The result now follows on applying the Gronwall inequality.
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Extending Theorem 3.3, we next wish to consider linearization of the system, i.e.,
differentiability of the dependence on initial data.

THEOREM 3.4. The solution map S 7-l bl for (2.5), is "Frdchet differentiable"
(in a sense to be made precise below). At each u) e 7-l and corresponding u* :- S(u)
the derivative is the linear map: 7-/--/ u0 (u0, v0) - u defined by the linearized
system:

U --Z*V V’Z,
(3.3) z :=

V *U q- U*,
e-(r-) [*u + u*] d

with u(0) u0. In particular, for any u) E ?-I yielding u* by (2.5) the equation
(3.3) has a unique solution u for each initial u0 e 7-/ and u(, .) will be bounded in
uniformly on bounded -intervals.

A word of caution is in order here since we have been working with complex spaces:
the solution map is not differentiable when complex differentiation is considered since

(2.5) involves conjugations. Instead, as noted earlier, although we have made no
alteration in the notation, we are here considering 7-/- L2(]R -- 2) as isometrically
equivalent to the real Hilbert space L2(]R -- IRa), etc.

Proof. Now consider Theorem 3.3 with u20 u) and, for s 0, Ul0 u) + su0;
set v V(,T;S) [Ul- U*]/S. Then (3.2) gives the uniform estimate
e(+-)e[[u0[I, where a+ a+(s) -- [[u)[[ 2 as s 0. A standard argument then
shows that v(.; s) satisfies a system whose right-hand side tends to that of (3.3) as
s -- 0 (O(s) difference in the coefficients) so I[v(.; s) u[l 0 for any
Temporarily fixing any such a, we may treat (the relevant subspace of)/ as a Banach
space with the norm [[. [Ix and u, given by (3.3), is the Gteaux differential of S(.)
at u* in the direction of u0. This is clearly linear in u0, so this gives a Gteaux
derivative. It is continuous in u (as long as we stay close enough to the original u
so as not to disturb the choice of a), so this is necessarily a Fr6chet derivative, working
with this [[-I]- [We do note that when considering bounded -intervals, the choice of
t is irrelevant; in any case, (3.2) gives control of errors in the norm with

4. Some remarks. Our first concern here is to verify (1.5).
LEMMA 4.1. Let u be any solution of the system (2.5) with u0 in L2. Then,

(4.1)
(i) o -Iz
(ii) o [e-(’-)v[ 2 Iz[ 2,
(iii) z’(., T) fo e-(-) ([u[ 2 Iv[ 2) z

for all > 0 and all T JR.

Proof. From (1.1) we have [ez]’ e (In[ 2 -Iv[ 2) z and, using (4.5), integrat-
ing this gives (4.1.iii). Similarly, we have

and integrating this gives (4.1.i) and (4.1.ii). That these identities hold pointwise
for all T [0, 1] follows from the known continuity in T of Z and continuity of the
indefinite integral in the third identity. [3
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COROLLARY 4.2. If Z is real (alternatively, if z is pure imaginary or if z vanishes
identically) for T <_ T. at o, then this holds for all >_ O. For the case in
which z =_ 0 on JR+ (--OC, T.), we have u stationary (independent of ) there and
conversely.

Proof. The first assertion follows immediately from (4.1.iii), viewing e-(-) (lul2-
Ivl 2) simply as an integrable real function and integrating this ODE forward or, as in
the remark following the statement of Theorem 3.2, backward in . The case of z 0
is obvious with the converse following by, e.g., (4.1.i). D

Remark 4.3. While the system (1.1) cannot give analyticity in its dependence on
the initial data, we observe that we could consider the analytic system

(4.2)

and have

Utl --ZlVl

V Z2ltl,

lt Z2V2,

V Zllt2,

Zl :--- f--oo e--’/(’--?)UlV2’

Z2 :--- f--oo e--’Y(’--?)U2Vl’

(4.3) [Ul, Vl, Z] [U, V, Z] [U2, V2, Z2] [, V, ]

for all real > 0 if this holds initially, at 0.
Without (a.3), we do not have the estimate (1.4) and so it is not clear when

solutions for (4.2) will exist globally. On any finite -interval, however, we can get ex-
istence for initial data almost satisfying (4.3) and thus, analytic linearization, subject
to (4.3), with (3.3) suitably extended to a complex neighborhood of JR+. In partic-
ular, this shows that we can also obtain higher derivatives of the solution map with
respect to the initial data.

Remark 4.4. For nonstationary solutions, it is interesting to consider the case
in which 0 and z is real on ]R initially, at 0, and so for all >_ 0 by
Corollary 4.2.

For this we will first reduce the problem to a more convenient form, modifying
our notation somewhat, without (at first) taking 0. If we set u =: Kfi pointwise
in T, then we have the identity

(4.4) Ifil 2 := [fil 2 + Ilu 1 pointwise in ,T

in view of Theorem 3.2. It is easily seen that fi also satisfies (2.5), provided we modify
the definition of the operator X(.) by replacing (2.2) with

Z(T) := e-7(-)u(’)v()K2 (’) d.

Of course, the initial data now must satisfy: Ifi01-- 1, pointwise in T.

That much reduction is available for all 7, but when 7 0 we can conveniently
use the variable a of (2.1) to view fi as a function of (, or), rather than of (, T). This
further reduction will actually (crmalmost everywhere by Sard’s Theorem) avoid any
difficulty with the definition of fi when K(7") 0. We note that it is possible to view z
also as a function of (, or) since, while the function or(.) may not be injective, this can
happen only if K vanishes on some subinterval in which case u (whence uF z)
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also vanishes on this subinterval so z is constant there: the value of z(, T) depends
only on (, a). In this case, the domain of a is [0, a2] and, henceforth omitting the
(4.5) becomes simply

(4.6) z(.,a) ud.

Apart from the name of the variable (a - T), we observe that this is identical to the
original problem for - 0 with initial data giving

K() {1 for 0 _< T _< a2; 0 else}.

Note that use of (4.6) means that we have the boundary condition

(4.7) z--0 at a =0,

corresponding to (1.2).
In view of (4.4), u must have the form

(4.8) u ei cos , v e

with , real. Assume is independent of first as an ansatz, but then confirmed
by our subsequent calculations. We then see that (2.5), (4.6) are equivalent to the
requirement that z and

(4.9) uv sin 2.
If we set t a / and x "= a , then (4.9) becomes

(4.10) 299tt 2 sin 2,

i.e., 2 satisfies the sine-Gordon equation. Conversely, if 2 2(t, x) is any real
solution of the sine-Gordon equation, then, for arbitrary real O(a),

:= +
v(, a) := eio() sin (a + , a ),

:=

gives a solution of (1.1) for 7 0 with z real.
For this to be consistent with the boundary conditions (4.7) we are imposing on

z, it is necessary that 2 be a solution of the sine-Gordon equation satisfying

(4.11) t(t,x) =-- (t,x) along the line: t + x 0.

While the sine-Gordon equation has nontrivial traveling wave solutions, we emphasize
that those are all excluded by this constraint (4.11)corresponding to (4.7) and so
to our original boundary condition (1.2) at T --5. Discrete approximation. In this section we consider the "obvious" dis-
cretizations (with respect to T) of the system (2.5). For convenience, we restrict
our attention to the case /= 0 and take the system reduced as in Remark 4.4 so that
luol 2 + Ivol 2 1 for 0 _< a _< 2 and

U --ZV 0(5.1) with z(., a) "= ud.
V U
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While much of our analysis here directly parallels that for the partial differential
equation system, for this finite-dimensional approximation we have the advantage
of local compactness and will be able to obtain a more complete description of the
asymptotic behavior of solutions as -+ (x. This may be viewed both as a theoretical
complement to the results observed in computational simulation and for comparison
with our less complete asymptotic analysis in the next section, as an indication of
goals and conjectures for future work.

For the remainder of this section, we adopt the notation that

/ (()J,
u "=

7-/1 := {u e/" luj{ 2 :--lujl 2 + ]vjl 2 1},
o__00r 0__0 for each j-l, J,S := {u 7 "u v

:=

:= max{Uj/jS"j=l,...,g}.

In general, we have Uj U(.) for some particular solution u(.) of (5.3), below, and
will similarly relate to this; we could write explicitly (u) for u E 7tl or
:= (; u) := (u()), with u(.) satisfying (5.3) with initial data u.
Assuming the nodes are equally spaced with respect to a, we can then define

z .. z(j) by a discretized approximation to the integral

(5.2) zj 5F-,uk-- 5uj- + zy-1, Zo :-- 0,

for j 1,..., J. Thus, we consider here the system of ordinary differential equations

(5.3)
----zjvjuj

u
with uy (0) u,

for each j 1,..., J, using (5.2). For the initial conditions we assume, as earlier,
that

for j 1,..., J.

The factor ti could be removed by rescaling , but we will retain 5 "= a2/J here
to remind us of the correspondence: uj() .. u(,jS), etc. We note that (5.3) is
equivalent to

(5.4) u} -5Ivj 12uj 5jvj,

5lu Iv + 6uvj

with 5 := zj-1.
We begin by asserting the set of "background" results.

LEMMA 5.1. For each u E 7t there is a unique global solution u(.) u(.; u) of
(5.3), depending on u uniformly on bounded -intervals. The functions uj, u-), z-
are all real-analytic functions of . For u 7-/1, we have u() 7-/1 for all >_ O.

Proof. The arguments are straightforward parallels of those given above for The-
orems 3.2, 3.4, and Remark 4.3. Details are left to the reader. E]
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LEMMA 5.2. For j 1,..., J we have

(i) [ujj]’ zj [lujl 2 -Iv12],
(ii) z tiEz [tul
(iii) -U [zj[2 + ti2ElUkk[2.

If, for k 1,... ,j, we have zk(O) O, then this persists .for all , and uk, Vk are then
constant (independent of ).

Proof. The formulas (5.5.i, ii) are direct from (5.3) and the final assertion follows;
compare Corollary 4.2. Also from (5.3), for each k we have

+
(Zk Zk-1)Zk -" k(Zk Zk-1)

since zk- zk-1 6uak. Summing over k- 1,-.. ,j gives (5.5.iii).
LEMMA 5.3. If (for some k) zk is not identically zero, then (for each j >_ k) zd

can vanish at most on a discrete set (with no finite limit points) and Uj is strictly
decreasing on every -interval.

Proof. By the real-analyticity noted in Lemma 5.1, it is only possible for zd to
vanish on a set with a finite limit point if zd -= 0; else Izj 12 > 0 almost everywhere and
(5.5) implies Ud strictly decreasing. To have zj 0 we must either have uj =_ 0 or

vd _= 0; suppose the former, so Ivjl =_ 1. Since (5.4) would then give 0 =- u -zd_lvd,
this is only possible if also zd_l 0. Similarly, vd _= 0 would also require zd_l _= 0.
Induction on the index completes the proof.

LEMMA 5.4. For arbitrary initial data in 7-ll, we have each zj 0 and u --, q

Proof. Since Uj is nonincreasing by (5.5) and is obviously bounded below by zero,
we must have [Izjl 2 +i2Elukkl2] integrable. As we know that uj, vj, zd are bounded,
this has a bounded derivative and so must go pointwise to zero. In particular, this
immediately gives zd 0. Each component of u lives in the (compact) unit sphere
of 2 so, setting (u, v) := u], convergence (u, v) 0 implies that (u, v)
-({0}) {(u,v) e :u 0 or v 0}. Thus, u S {each uj 0 or vj 0}
as serted.

LEMMA 5.5. Let u(.)~be a solution of (5.3) such that Uj(,) < 5 for some , >_ O.
Then u() E 270 for each >_ O, where

270 := {u e 7-/1 each

The set 270 is open in 7-ll.
Proof. For each j, the assumption precludes having Ivjl --, 0 since Uj is nonin-

creasing and lujl 1 implies Uj >_ 5; by Lemma 5.4, this ensures uj -- O. By the
definition, this gives u 270 and, of course, each u( 270. To see that 270 is open,
consider any fi0 e 270 so each fly 0. We may then find , such that .j(,) < 5/2.
By Lemma 5.1 we have uniform continuity on bounded -intervals for the depen-
dence of solutions of (5.3) on the initial data, so there is a neighborhood of fi0 giving
Uj(,) < 5. The first part of this proof then shows this neighborhood is in 270.
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THEOREM 5.6. For arbitrary initial data in 7-ll we have convergence u --, u* (at
an asymptotically exponential rate) as oc .for some steady state solution u* E ,.
Thus, for each j 1,..., J we have either Case 1: uj --, 0 and vj --, v (with Ivl 1)
or Case 2: vj --, 0 and uj u (with lull- 1); in particular, we always have Case 1

for j-- 1.

Proof. We will proceed inductively in j, taking the system in the form (5.4) with
the index j suppressed so

(5.7) ((i)(ii)
and with the inductive assumption that we know

<

for C C and arbitrary 0 < # < 1. By Lemma 5.4 we know that u--, 0 as

--* oc, so we must be in one of the two possible cases--which we then consider
separately to show the exponential decay rate for the appropriate component. With
(4.4) and the inductive hypothesis on , this completes the induction by giving
the corresponding exponential decay for +1. Returning to (5.3) with knowledge of
exponential decay of zj, integrability of the derivative gives existence of a specific
limit for the nonvanishing component as well.

Case 1 [u 0}. Fix # < 1. Set y "= lul 2 so y’= 2 aeu’-- -26[Iv12y+ Re(v,
using (5.7.i) and note that ae(v

_
I(llvlv/-

_
elv[2y + [[2/4e. Now choose 0 <

e < 1 # and use (5.8) with # replaced by/5 :- # + e < 1. By (4.4), if u -- 0, then

Ivl --, 1 so (noting that #/(1 e) < 1) there exists such that (1 e)lv()l 2 _> # for
_> . Thus, we have

y’() <_ -2#y + (C2/2)e-2(+)

for ( >_ . The Gronwall inequality and some simple manipulation then give the
desired estimate for y- lul 2-

for { _> ; this also applies to all { _> 0 with a modification of the (.
Case 2 v -- 0 I" Again, fix # < 1 and now set y Ivl 2 and choose 0 < 2e < 1 #.

Much as above, we get

y’() _> 26(#- e)y- (C2/2)e-2"

for large enough ( _> -0) that (1- e)lu()l2 >_ #- e. Applying the (reversed)
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Gronwall inequality we then obtain, for any > >_ 0,

It follows that we must have Iv()l <_ (C/2)e- for all >_ 0 (hence, for all
_> 0 with a modified coefficient) or the Gronwall estimate would give y() cx),

contradicting the case that v 0.
In view of Lemmas 5.3, 5.4, and 5.5 and the experience with computational ex-

perimentation with a variety of sets of initial data, it is plausible to conjecture that
one always has uj --+ 0 as --+ unless Zk =-- 0 for each k 1,..., j. This is false!

THEOREM 5.7. Let u* be any stationary solution such that uj 0 for some
j < J. Then there is a nonstationary solution u such that u() --+ u* as -+ oc.

Proof. For each j we have either:

Case 1 lu 0 so Iv;I-- 1 Set

uj vj sin aj, vj vj cos aj,

so (v cos a)a uj -zjv cosa or:

Case 2[v; 0 so ]u;I-- 1}. Set

Xj :=-1

uj u cosaj, vj u sinaj, Xj := +I

cosso cos
sin 2aj whence, after scaling for convenienceIn either ce, we have uj

to permit the omission of a factor from our definition of zj, we must have

Zj J(5.9) aj Xjz, k= sin 2a

(provided cos 2a 0) for j 1,..., J. Note that by restricting our attention here
to the real ce, we have isolated stationary solutions: each aj . Our notation
ensures that any nonstationary solution a [a,..., ag] of (5.9) for which a() 0
corresponds to a nonstationary solution u of (5.4) for which u u* . The
linearization of (5.9) around a 0 is just

(5.10) a’= Aa with A

X1 0 0

X2 X2 0

Since A is lower triangular, we see that its eigenvalues (with multiplicity) are the
diagonal elements (X1,’", XJ} and if any of these is -1, we have a corresponding
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eigenvector giving an exponentially decaying solution. Since there are no purely imag-
inary eigenvalues, the linearized problem (5.10) gives the local splitting into stable
and unstable manifolds whence the nonlinear problem (5.9) must also have an ex-
ponentially decaying solution near zero--asymptotically behaving precisely like the
solution of (5.10). [2

Remark 5.8. While we have carried through the analysis for the discretization
corresponding to (5.2), we could equally well have considered a trapezoidal rule ap-
proximation to (4.6):

(5.11) zj {(Uk-lVk-1 + Uk-)/2.

With trivial modification, we would then have obtained for that setting the same
results obtained above. Indeed, (5.11) gives the identical system (5.4) if we were to

j--1scale by 2 and set Cj 2 ’k=l ukVg, instead.

6. Stationary solutions. We now introduce the set S of all stationary solutions.
Note that u E S means u’ 0 so z 0 on R. By (2.2), this corresponds to having
u 0 almost everywhere; note from this that S is entirely independent of 7. It is
ey to see that S, & "= {u e S" u u0 0} nd S& := {u e S" u0 0} are
each uncountable arc-wise connected sets in ven if we were to restrict attention
to the "purely real" ce, taking L2( 2), or to factor out the action of the
group := {g u ei()u}.
om the characterization u 0 we observe that, for each u S, we can

partition3 R, independently of in view of(1.4), a disjoint union A B such that

(6.1)
lul=K’ v=0 on ,4,

u=0, Ivl=K onB.

We now wish to consider the linearization around a stationary solution u* E S so
that z* 0 in (3.3). We fix ,4, B, and g(.) corresponding to u* and note that (3.3)
now gives

{ u-z onA,0 on ,4,
u*z(6.2) u’ -v*z

-v*z on B, 0 on B,

/_ {u* onA}d.ez= e -u onB

Now introduce

*v (so v -e-"u*)(6.3) K2w :-
v*u (so e-w)

on ,4,
on B

with w itself irrelevant, where K 0; e.g., we may set w :- 0 there. Then, noting
that u* is independent of with Iv*l g on ,4 and lu*l g on B, (6.2) gives (where
g0)

3 Any T for which K(7") 0 SO U V 0 may arbitrarily be assigned either to ,4 or to B; the
partition is unique to within da-nullsets.
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(6.4) w (e-)(--v*z) on B

_ev’* on ,4 .-ez -eru on B

If we define X : {1) by

(6.5)

and change variables to think of w a function of (, a), using (2.1) so g2d d,
then (6.4) takes the simple form

(6.6) w’ Xw

or, equivalently,

(6.7) w Xw (= [--])(o,.) o e L.
Note that this formulation omits the irrelevant values of w for the set of T where
K(T) 0, which disappears when we write things in terms of a. Since the operator:
w f xwd5 is certainly bounded, the solution operator S w0 - w(, .) for
(6.6) forms a group on L1. Alternatively, we might note that Theorem 3.4 ensures
integrability of K2w with respect to T and so integrability of w with respect to a.

We now restate the results of this discussion as a lemma without further proof.
LEMMA 6.1. Let u* -= u be given in , determining K(.), a(.) as in (2.1) and

X as in (6.5); let u be a linearized perturbation, obtained from (3.3), corresponding to
a perturbation uo E 7-/ of the initial conditions u). Then,

{no, v {-e-’u* on.A,(6.8) u e-v,w, vo on B,

h,. , ,,d as , 1’uno, oI (, o), ,U,# (6.7) a,d has nat daa o ,U 0
given by

*V5 on A,K2w := e-VUo on B.

Note that wo is necessarily integrable with respect to a.

LEMMA 6.2. When X is constant (X =- +1), the solution of (6.7) is given explicitly
by

(6.9) w(, a) := Wo(a) + wo()’(r) d,

where we set r :- [a ] and have

Jo(2gr) for X -1 (u* e o),(6.10) (r) "=
io(2v/) for X =-- +1,

where Jo is the usual Bessel function of first kind and Io is .the modified Bessel func-
tion: Io(s) :- Jo(is).
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Proof. We begin with the ansatz that e-z can be obtained from w0 by a
convolution with respect to a:-- xo (.):= x 0()()a

with r := [a- (]. Differentiating with respect to a then gives (6.9)--provided we
require (0) 1 so as to have the correct condition at 0. Next, differentiating
first with respect to and then with respect to a gives

with the final equality coming from (6.7). We obtain this last, provided that

[v’()]’ I=o= ,
The differential equation gives ([r’(r)]’-x(r)) constant and evaluating at r 0
shows this constant must be zero. If we now set (r) -: O(s) with s :- 2x/, this
gives

0(0) 1.

For X -1, this is Bessel’s equation with parameter a 0 and the normalization
gives O(s)= J0(s); for X +1, we then get O(s) Jo(is) =: Io(s).

Note that d(P(r)/dr O’(2V)/x/ so, since

j() -j() I(8) iJ(is) -iJl (is) --: 11(8),

we have

(2x/r)/v/ for X -1,(6.11) ’(r) i(2v/-)/v/ for X +1

for use in (6.9). Since Jo(z) is an even analytic function of z, it is also analytic in
so is analytic (afortiori bounded) near zero and so on any bounded interval. Thus,
(6.9) makes sense for all da-integrable w0.

Remark 6.3. What information can we draw from this in the case of u* E S0 (so
X -1)? We observe, first, that the integral term in (6.9) is a convolution so, using
L1 norms,

II,(, .)II _< llwoll [1 + II:’I]]
4 It is at this point already that we need the assumption: X constant.
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Here we have, setting s2 --a,

and since J1 (s) decays like 1/x/, we see that we have II  ’ll- so, worst,
we always have

(6.12) I1(, ")IIL O(1/4) s - .On the other hand, if we are considering perturbations for which Wo E BV
(bounded variation) so that it is justifiable to integrate by parts in (6.9), then we
obtain

(6.13) w(, a) w0(0)J0(2X/ + J0(2V/(a 5)) dwo(Yr).

The integral term on the right can be estimated in the same way as for (6.12) to
give O(-l/a) decay. The first term goes to zero pointwise in a as - 0 at a rate
(9(-/a). This is not uniform, but can certainly be integrated in a to give a decay
rate

(6.14) IIw(, ")IIL 0(-1/4) as (:K)

in this case.
Clearly, even as "linearized stability," this is far weaker than the results we have

for the discretized setting, corresponding to Lemma 5.5 and Theorem 5.6. Neverthe-
less, it is as strong a result as we have been able to obtain here. That the result is
weaker is certainly related to the fact that ,So is not isolated from other stationary
solutions, but we might still hope to improve this. Indeed, if (6.12) could be improved
to give boundedness as - cx) for each initial w0 E L (0, t2), then a simple argument
would show decay for all w0. So far we do not know whether this is true and, further,
note that this linearized stability by itself would not show u -- S0 (locally) for the
nonlinear problem.

Remark 6.4. We next consider the case of u* ,S\S0 so 4 is nonempty. We are
seeking here to demonstrate instability, so it is only necessary to construct special
examples. Suppose Jt contains an interval [a_, a+] and we take the perturbation u0
so wo 1 on this interval and vanishes otherwise. This effectively lets us take a_ 0
with no loss of generality. Thus, at least for a in the interval, we are considering (6.7)
with X -= +1 and Lemma 6.2 applies. Integrating by parts as for (6.13), we then have

w(, a) I0(2X/) for 0 < a < a+
and, since I0 grows exponentially, we have instability: growth of w(, .) which is
exponential in /2. We remark that this is consistent with having Ilwll O(ee) for
arbitrarily small > 0, as is suggested by the fact that the Volterra operator on the
right of (6.6) has spectrum {0}.

What does this tell us for the nonlinear problem? Using the fact that, as observed
in Remark 4.3, the solution map has a locally bounded second derivative we can show
that for arbitrarily large M and arbitrarily small > 0 there exist solutions of (2.5)
which initially differ from u* by less than but at a later time differ by more than
M, assuming M is not too big.

Again, as in Remark 6.3, this is not very much. It certainly is enough, however, to
guarantee that the exponential factor in (3.2) cannot be omitted to give the Lipschitz
continuity uniform in .
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7. Asymptotic behavior. In this section we consider the asymptotic behavior
of solutions of the system (2.5) as -- c. We will assume that the reduction of 4 has
been made, if necessary, so in (2.1) we have g() 1 for T e [0, 1] with everything
vanishing for T [0, 1] whence we have (4.5) and (4.4). While we might conjecture
for this context essentially the same results which we obtained for the discretized
system in the previous section, we have so far not been able to carry out this program
completely. Our results here are primarily the consequences of (4.1).

Remark 7.1.
DEFINITION. A function v" l+ -4 X’ will be called recurrent (for some 0) if

there is a sequence n -- c for which IIv(n) v(0)II -* 0.
Clearly, every periodic function is recurrent for arbitrary 0. Following_ Bohr, v is

almost periodic on ]it+ if, for_ any e > _0, there exists/() such that (with arbitrary)
IIv()- v(s)ll _< for some < s < +/() and all E JR+; clearly, this also implies
recurrence for arbitrary 0. This would include sums of (incommensurately) periodic
functions: if v :- -j vj (where each v is continuous with period j and
convergent); then it is easily seen to be almost periodic, using the number-theoretic
result that we can always find positive integers q and {nj}, making Iq- njjl ar-
bitrarily small simultaneously for j 1,..., J [6, Thm. 201] every "positive ray"
q[1/1 1/g] passes arbitrarily close to integer lattice points in ]RJ for infinitely
many integers q].

Finally, we note that, for v satisfying an autononomous ODE, if we were to have
IIV(n)-V(0)ll -- 0 for any sequence {n} bounded away from 0, then we would have
recurrence at 0. To see this when {n} is bounded, extract a subsequence converging
to some 1 0 and observe that continuity gives V(l) v(0) whence, assuming
uniqueness for the ODE, v would necessarily be periodic with period I1

THEOREM 7.2. Under the hypotheses of Lemma 4.1 and taking the system reduced
as in the previous section, if u is recurrent (for some o), then it is stationary: z =_ 0
so u independent of .

Proof. By (4.1.ii), for each T and for , -0 _> 6 > 0 we have

foIz(.,-,-)l : <_ I.o(e,,.)l2- I.(,o,.)12 <_ v/llU(n, .)- u(,o,-)ll---, o,

which gives z 0 on [0, 0 + ] [0, 1]
giving stationarity of u as asserted. D

and so everywhere, as in Corollary 4.2,

THEOREM 7.3. Under the hypotheses of Lemma 4.1 and taking the system re-
duced as in the previous section, we always have z L2(]R+ [0, 1]) and uniform
convergence: z(, .) -- 0 as -. oc.

Proof. It is convenient to set

(7.1) U(., "r) :- lul, V(., ",’) Ivl.
From (4.4) we see that 0 <_ U, V <_ T and, also using (4.1), we see that each is uniformly
Lipschitzian (jointly in , T) with U’ -Izl 2, V’ Izl 2 so U is nonincreasing in and
V nondecreasing. For each (fixed) T, we have

I*(’, *)l: U(, ,) U(, ,) _< U(, ,) _<,

v(, ) v(, ) _< v(, ) _< .
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So, taking 0 and letting --. o, we see that we have IIz(., T)]I <_ X/ (this is the
L2(l+)-norm) whence ]]z[[ < 1/x/. (Here, this is the L2(l:[+ x [0, 1])-norm.) Using
the bounds 0 < In[ 2, [v[ 2 < 1 in (4.1.iii), we have [z’ < v/[[z[I so [[z’[[ < [[z[I/x/; thus

Then (llzl12) is integrable on lR+ whence Ilzll 2 has a limit as c, necessarily
zero almost everywhere in T since z e L2(R+ x [0, 1]). This gives z(,.) 0 in
L2(0, 1)-norm. Since z(, .) stays in a compact subset of C[0, 1], as we have noted in
the previous section, this is actually uniform convergence. D

Remark 7.4. Since the set S of stationary solutions is characterized by having
z -= 0, it would be tempting to conclude, from the uniform convergence above, that it
is a global attractor, i.e., that we must necessarily have u --. S; indeed, computation
suggests the stronger conjecture that we have u So (u --* 0) as --, cx for all u0 E
H1 except, of course, S\So. We do note, however, that this cannot follow simply
from Theorem 7.3 since, e.g., there exist sequences like Uj(T) := (COS jTrT, sin jTrT) for
which we have ]Zj(T)] _< 1/47rj --. O, but [[u SI[ 2v/Tr- 2 7A 0. (Of course, this
example has not been constructed by taking uj :-- u(j) with j --, x for a solution

of
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