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Accurate Solution of the Paraxial Wave
Equation Using Richardson Extrapolation

V. R. Chinni, Member, IEEE, C. R. Menyuk, Senior Member, IEEE and P. K. A. Wai

Abstract—Richardson extrapolation is used along with the mid-
step Euler finite difference method to solve the paraxial wave
equation. Highly accurate solutions can be efficiently obtained
using this combined approach. Numerical results are presented
for wave propagation in a straight integrated optical waveguide
and a Y-junction waveguide. Discretization errors in both the
propagation and the transverse dimension can be systematically
eliminated by using Richardson extrapolation. Accuracies on the
order of 10~*! or better are obtained.

I. INTRODUCTION

CCURATE analysis of guided wave devices such as
waveguides and couplers is important for the devel-
opment of optical integrated circuits. In general, numerical
methods are used to investigate the propagation characteristics
of such devices. The beam propagation method, which is
based on the fast Fourier transform, has been used for a long
time [1]; scalar and vector finite difference schemes have also
been used [2]-[4]; more recently, a hybrid finite difference
scheme has been implemented [5]. A straightforward way
to improve accuracy is to increase the density of the grid
and decrease the step size. With a uniform mesh and step
size, the computational cost will quickly become prohibitive.
Nonuniform mesh structures and step sizes [2] can achieve
higher accuracies, but they are cumbersome to implement.
It is useful to have highly accurate, yet rapid schemes for
solving the paraxial wave equation in order to be able to
separate inaccuracies inherent in the numerical methods from
inaccuracies due to the paraxial wave approximation itself.
In this letter, we use a scheme based on Richardson extrap-
olation which allows one to efficiently and simply obtain a
highly accurate solution of the paraxial wave equation. This
extrapolation method is often used in numerical analysis [6],
[71, but has not been applied to optical waveguide problems.
Richardson extrapolation is used to eliminate discretization
errors in both the propagation and the transverse directions.
In the following, we will discuss Richardson extrapolation
and its implementation to solve the paraxial equation with
one transverse dimension based on the explicit mid-step Euler
finite difference method. We stress that Richardson extrapo-
lation is a simple algebraic procedure which can be used in
conjunction with any method to improve its accuracy. The
explicit mid-step Euler method vectorizes well on a CRAY-
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YMP, the computer which we used, in contrast to implicit
schemes which involve tridiagonal matrix inversions and do
not vectorize well. Thus, the explicit mid-step Euler method
is significantly more efficient. It is, however, unconditionally
unstable, and consequently, has been rarely used in problems
with one transverse dimension. However, it has long been
known that Richardson extrapolation can stabilize unstable
schemes [8], and we have found that it stabilizes the explicit
mid-step Euler method in optical waveguide problems. As a
consequence, the CPU cost of our approach is competitive
with implicit schemes which have far lower accuracy.

As a particular example, we study the evolution of a
Gaussian input pulse along a straight, single-mode, step-
index waveguide. We use transparent boundary conditions
[9] which are meant to be used in conjunction” with the
implicit Crank-Nicholson method. They also work well with
our explicit mid-step Euler method when combined with
Richardson extrapolation for reasons which will be explained
in detail elsewhere. The purpose of this example is to examine
the evolution of an initial pulse which is not perfectly matched
to the waveguide and produces radiation—a case which often
occurs in practice. No analytical results are available in this
case: s0, it is useful to have a highly accurate scheme available
for use as a baseline. We also study a Y -junction optical
waveguide in order to demonstrate that our approach works
in a more complicated geometry.

II. COMPUTATIONAL APPROACH
In Richardson extrapolation, one uses a sequence of es-
timates which are obtained by varying the step size of a
numerical calculation and extrapolating to zero step size. We
may write

A(h,N) = S(h) + ex(B) g + b g + -0 D

1
N2
where A(h, N) is the outcome of the numerical calculation
over a very short interval h, S is the exact solution, and A =
h/N is the step size used inside the interval. More generally,
one can have a term proportional to 1/N in the sequence.
However, since the mid-step Euler method is second-order
accurate and there are N steps inside h, the first error term
will be proportional to 1/N 2 From (1), the leading error terms
can be eliminated by taking a linear combination of the results
calculated by using different values of N. For example, we find

4A(h,2) — A(R, 1)

1
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After each stage of extrapolation, the accuracy of the solution
can be estimated by comparing the new solution to the best
solution obtained in the previous Richardson stage.

To illustrate the use of Richardson extrapolation in sim-
ulations of optical devices, we consider the paraxial wave
equation,

; 0E O°E
2kono - = o= +kiln*(¢,2) —nj]E,  (3)
where E is the electric field vector of a TE wave and kg is the
wavenumber in free space. The parameter ng is the reference
refractive index, and n(z, z) is the cross section index profile.
Eq. (3) is then solved numerically using the mid-step Euler
finite difference method,
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where E} = E(iAx, jAz), while Az and Az are step sizes
in the transverse and propagation directions respectively.

In solving the paraxial equation, both the propagation and
the transverse directions are discretized. To obtain an accurate
solution, the discretization errors arising from both the trans-
verse grid and the propagation step size have to be eliminated.
Similar to (1), the solution can be written as

A(hzahzvNaM) = S(hz’hz) + fO(h’z>hsz)
1
+ fl(h27haraM)N

+ Dalhahe My 4 )

where S is the exact solution over a very short interval of A,

in the propagation direction and a width of A, in the transverse .

dimension, Az = h,/N is the step size used inside h,, and
Az = hy /M is the step size used inside h,. The parameters
M and N are integers, and

1
fi(hz7 h:u M) = nO,i(hza hx) + 7]2,12(’?'2: hx)w

+ ailha, he) 3z + ©
The coefficients 1o and 70,1 are equal to zero because the
method is second order accurate. While the discretization
error in the propagation direction can be eliminated by linear
combinations of solutions with different N, and the error in
the transverse dimension can be eliminated by using different
transverse grid sizes.
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III. NUMERICAL RESULTS

We calculated electric fields at each propagation step using
(4). We then extrapolated the solutions until the error was
below a given threshold. We used error thresholds of 10~2 and
10™"2. The error estimate is defined as [ |e[?dz = 37, |Ei—
E}|?Az where the subscript i indicates the grid location in
transverse dimension, and rn is the number of grid points
in the transverse dimension, E is the extrapolated solution,
and E’' is the solution obtained in the previous Richardson
stage. The input pulse is normalized to unit power. The total
propagation length is 4000 um in the straight guide problem,
while the total length is 500 pm in the Y -junction problem.
The branching angle of the Y -junction is 3°. We carried
out our calculations with 512,1024, and 2048 transverse grid
points. Then, the solutions obtained for different numbers of
grid points were extrapolated in z to eliminate errors due
to the discretization. The extrapolation in z need not be
done at each step. In fact, for the problems we studied, we
found that it was sufficient to extrapolate at the end of the
calculations.

For both the straight waveguide and the Y -junction, the
width of the guiding region was 4 um and the computational
window was 60 um. The refractive indices of the guiding and
the surrounding regions are 3.38 and 3.377 respectively. The
reference refractive index ng is 3.377. The wavelength is 1.15
pm and the FWHM of the input Gaussian pulse is 4.828 um.
For the straight guide problem, we used propagation step sizes
of 0.4,0.067, and 0.013 um for, respectively, 512, 1024, and
2048 transverse grid points when we set the error threshold
at 1078, while we used step sizes of 0.2,0.067, and 0.013
respectively when we set the error threshold at 10~'2, The
computation time can be further improved by using variable
step size in the z-evolution of the pulse [6] as we will discuss
elsewhere.

In Fig. 1, we show the error estimate for each z-step for up
to 3 stages of Richardson extrapolation for the wave evolution
in the straight waveguide problem for a distance of 250 ym.
In the case shown here, the error threshold is 10712, the basic
step size is 0.25 pm, and there are 512 grid points. We use
only as many stages as are required for the error to go below
the threshold. A dramatic reduction in error is obtained with
each additional iteration.

In Fig.-2, we plot the radiation intensity at distances of
1000, 2000, 3000, and 4000 pm along the straight waveguide.
We use a semilog plot which shows the radiation leaving
the guiding region. We have extrapolated these solutions
for accuracy in the transverse direction. The estimated error
after two stages of Richardson extrapolation in the transverse
dimension is shown in Table I. In column I, we used an error
threshold of 10~8 while propagating in the z direction, and in
column I, we used an error threshold of 1012, Note that when
the error threshold is set at 10~8, the estimated accuracies
are actually lower than the érror threshold for distances less
than 3000 pum. That happened because the actual error was
significantly below threshold in this case as determined by
comparison with the case in which the error threshold was
10-12,
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Fig. 1.  Error in each propagation step vs. distance along the waveguide.

The error is calculated with a grid of 512 points in x.(a) The error in each
step after performing one stage of Richardson extrapolation, (b) The error
after performing two stages of extrapolation, (c) The error after three stages
of extrapolation. An error threshold of 10~12 is used.
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Fig. 2. Accurate solutions obtained after propagating for (a) 1000 pm, (b)
2000 pm, (c) 3000 pm, and (d) 4000 pm.

TABLE I
EsSTIMATED ERROR AFTER TWO STAGES OF RICHARDSON
EXTRAPOLATION IN THE TRANSVERSE DIMENSION. ERROR THRESHOLDS
OF 108 AND 1072 ARE USED FOR THE z-PROPAGATION.

Distance Error Thresholds
pgm 108 1012
1000 1.7 x 101 9.7 x 1012
2000 2.7 x 1010 1.6 x 101!
3000 6.8 x 10 12 x 101
4000 6.3 x 1098 1.1 x 101!

Finally, we compare the efficiency of the proposed scheme
with the Crank-Nicholson implicit finite difference method.
For the latter, we use 2048 transverse grid point and a
propagation step size of 0.0285 pm. The simulation takes
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approximately 18 minutes of CRAY-YMP time and attains
an accuracy on the order of 108, Using the mid-step Euler
method and Richardson extrapolation, only 14 minutes is
required to attain an accuracy on the order of 10~ ForaY-
junction waveguide, while using mid-step Euler method with
Richardson extrapolation 2 minutes of Cray time is required
to obtain an accuracy of 108, while the Crank-Nicholson
method required 4 minutes to obtain an accuracy of 1076,
These results demonstrate that Richardson extrapolation is an
efficient way to obtain accurate solutions to optical waveguide
problems.

IV. CONCLUSION

In this letter, we present a simple and efficient approach,
based on a combination of the mid-step Euler method with
Richardson extrapolation, to obtain an accurate solution of
the paraxial wave equation. We use the extrapolation scheme
to reduce discretization errors in both the transverse and
propagation dimensions. We study a straight waveguide and
a Y -junction waveguide, and we obtain solutions with accura-
cies on the order of 108 to 10712, Comparison with the usual
Crank-Nicholson method shows that this approach is efficient
and highly accurate.
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