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Two-dimensional solitons with second-order nonlinearities
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We investigate the propagation of intense Gaussian beams in materials with quadratic nonlinearity. Excitation
of (2 1 1) solitons is numerically predicted at finite phase mismatch and in the presence of linear walk-off between
the fundamental and second-harmonic waves. The numerical results are interpreted in terms of the conserved
quantities of the wave evolution, and the appropriate conditions for the experimental observation of the solitons
are discussed.
In addition to harmonic generation and frequency
mixing, intense light beams propagating in x s2d non-
linear media exhibit a variety of self- and cross-
phase modulation effects that until recently were
commonly thought to occur only in x s3d interactions.
One important example is the propagation of soliton-
like waves, in which the fundamental and second-
harmonic waves mutually focus and trap each other.
The (1 1 1) trapping (i.e., one transverse dimen-
sion and one propagation dimension) yields both
spatial and temporal solitons that can in principle
occur in planar waveguides and fibers, respectively.1,2

Although spatial solitons appear to be easier than
temporal solitons to obtain experimentally,3 their
excitation still requires nearly phase-matched propa-
gation in high-quality planar waveguides. Here we
study the propagation of cw Gaussian beams in bulk
x s2d media, and we show that it is stable under a va-
riety of physically realistic conditions. Thus (2 1 1)
confinement in x s2d media has potential applications
to switching in bulk optics and to wave propagation
in cavities containing x s2d crystals.

The mutual focusing of Gaussian beams in x s2d

media and the implications for the formation of
solitons were first investigated by Karamzin and
Sukhorukov.4 The formation of stationary (3 1

1) states was later analyzed by Kanashov and
Rubenchik.5 The main conclusion of those works
is that the interaction of parametric waves in
x s2d media can lead to the formation of higher-
dimensional solitons (or, more properly, solitonlike
waves). More recently, the problem has been re-
visited by Hayata and Koshiba,6 who analyzed mul-
tidimensional confinement, using an approximate
solitary-wave solution in a phase-matched configu-
ration. Our goal here is to identify the conditions
required for the actual excitation of (2 1 1) soli-
tons and to show that indeed these solitons form
under a variety of currently accessible experimental
conditions, in the presence of finite mismatch and
linear walk-off between the fundamental and second-
harmonic waves.

We consider cw light beams traveling in a x s2d ac-
tive bulk crystal. We write the electric field of each
of the waves in the form Esr, td ­ Asrdexpsikz 2 ivtd,
and we make the slowly varying envelope approxima-
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tion. Under such conditions, the wave propagation
can be described by the equations3
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where a1 and a2 are the normalized amplitudes of
the fundamental and second-harmonic waves, respec-
tively, a ­ n1y2n2, d ­ k1hr, and b ­ k1h2Dk. Here
Dk ­ 2k1 2 k2 is the phase mismatch, n1 and n2 are
the appropriate refractive indices at both frequencies,
r is the walk-off angle, and h is the beam width.
The transverse coordinates are measured in units of
h, and zylc ­ jbjjyp, where lc ­ pyjDkj is the coher-
ence length. For lc , 2.5 mm, l1 , 1 mm, n1 , 1.7,
r , 1±, and h , 15 mm, which are typical values
for current materials and lasers, one has a . 0.5,
b , 63, and d , 1.5. In this Letter we focus on such
near-phase-matching conditions, reserving the large
phase-mismatch regime for a later publication.

From a physical standpoint, the stability of the x s2d

higher-dimensional confinement as opposed to its x s3d

counterpart, which in Kerr x s3d media in the parax-
ial approximation is always unstable, is not hard
to understand. The rate at which a beam tends to
focus is proportional to Im in a Kerr x s3d medium and
to Im

1/2 in a x s2d medium, with Im being the maxi-
mum light intensity; in both cases, the rate at which
a beam tends to diffract is proportional to h22. Be-
cause energy is conserved, Imh2 may be assumed to
be roughly constant when a beam with radial symme-
try collapses; hence, under this assumption, the rate
at which a beam diffracts is proportional to Im. In a
x s3d medium the rate of diffraction matches the rate
of self-focusing. In contrast, in a x s2d medium the
diffraction rate will always become greater than the
rate at which the beam focuses, so that Eqs. (1) will
not exhibit collapse. An important point that war-
rants emphasis is that the x s2d nonlinearity acts like
the x s3d nonlinearity only when the coherence length
is short compared with the diffractive scale length,
so that the wave evolution in x s2d media can be ap-
proximately described by the nonlinear Schrödinger
1995 Optical Society of America
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equation.1 However, although self-focusing can oc-
cur in this limit, ultimately the difference between
the x s2d and the x s3d nonlinearities must manifest it-
self when both scale lengths become comparable, so
that, in particular, collapse does not occur.

To show that the stable higher-dimensional soliton-
like waves described by Eqs. (1) do exist, we examine
the following two conserved quantities of the beam
evolution:
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where we have defined â2 ­ a2 exps2ibjd. The for-
mer is the Manley–Rowe relation; the latter is pro-
portional to the Hamiltonian of Eqs. (1). We will
show that, for fixed intensity and phase mismatch,
H is bounded from below. We restrict ourselves to
the case d ­ 0. Using the approach developed by
Zakharov and Kuznetzov7 (see also Refs. 5 and 8),
one finds that

H $ 2
1
4

sjbj 2 bdI 2 I 2 .

This is a crude estimate. Nevertheless, as the sta-
tionary solutions of Eqs. (1) can be obtained as the
extrema of the quantity hH 1 k1I j, with k1 being
the nonlinear correction of k1 that is due to the wave
interaction, this bound indicates that a stable solu-
tion exists that realizes the absolute minimum. In
fact, at exact phase matching one can readily show
that the stationary solutions are realized at H ­
2k1Iy2 , 0.5 Therefore, as expected from physical
grounds, a second-harmonic signal has to be supplied
at the input face of the crystal for such stationary
solitons to be excited because otherwise H . 0. A
family of stationary solutions could in principle be
found by solution of the stationary governing equa-
tions. However, the stationary solutions do not nec-
essarily exhaust the possible (2 1 1) solitonlike wave
behavior generated by the beam interaction. Indeed,
oscillating solitonlike waves, with the energy going
back and forth between the interacting waves, could
exist, as they do in (1 1 1) trapping.2

In order to demonstrate that stable beam propaga-
tion occurs for a wide range of practically realizable
conditions, we numerically solved Eqs. (1), using a
split-step Fourier approach. In all our simulations
we used Gaussian input beams:

a1sj ­ 0d ­ A exps2r'
2d ,

a2sj ­ 0d ­ B exps2r'
2d .

We begin by analyzing the beam evolution with neg-
ligible walk-off (d ­ 0). We set a ­ 0.5, b ­ 63,
and we monitor the beam evolution at various in-
put intensities. Figure 1 shows the outcome for the
fundamental wave. Below a threshold input inten-
sity, the beams spread. In contrast to this, when
suitable signals are injected with sufficient intensity
at the input face of the crystal the beams evolve
into a solitonlike wave. Solitons form with both
signs of the phase mismatch, but for identical exci-
tation conditions the sign of b significantly affects
the beam evolution. In particular, in our numerical
experiments at B ­ 0 with negative phase mismatch
the beams always spread. For comparison, we have
also plotted the evolution of a beam governed by
the nonlinear Schrödinger equation (NLS). Above
the collapse threshold, formation of the characteris-
tic spike is clearly visible. In a second numerical
experiment we examine the beam evolution in the
presence of moderate linear walk-off. We set d , 1,
which corresponds to a walk-off length comparable
with the diffractive scale length. As is the case
for (1 1 1) trapping,2 we find that the beams stick
together and evolve into a soliton. Figure 2 is rep-
resentative of the beam evolution in that regime.

Under the conditions in which Eqs. (1) are ap-
plicable, the experimental observation of mutual

Fig. 1. Evolution of the amplitude of the fundamental
wave. Dashed curves show the evolution of the beams
in absence of nonlinearity. Dotted curves show the evo-
lution of a beam governed by the nonlinear Schrödinger
equation. All values are scaled to the input amplitudes.
(a) b ­ 3, (b) b ­ 23.
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Fig. 2. Detail of the beam evolution in the presence of
walk-off. The plots show a slice of the beams along the
walk-off axis. Dashed curves, j ­ 0; solid curves, j ­ 5.
(a) d ­ 0, (b) d ­ 1. In both cases b ­ 23, A ­ 4, and
B ­ 4.

beam trapping requires two primary ingredients:
large, nonresonant x s2d nonlinearities, which have
to be accessible in configurations with negligible
or moderate walk-off, and a large damage thresh-
old and long samples. As suggested in Ref. 6, such
conditions can be fulfilled by ferroelectric materials
such as lithium niobate and potassium titanyl phos-
phate, although photorefractive effects could limit the
usefulness of lithium niobate. For the parameter
values in Figs. 1 and 2 the phase-matchable nonlin-
ear coefficients of these materials accessible through
birefringence tuning lead to peak intensities in the
range 0.1–1 GWycm2, which are accessible with com-
mon picosecond pulsed lasers. However, organic
materials, with larger nonlinear coefficients, con-
stitute a promising alternative. The large walk-off
characteristic of these materials limits their useful-
ness for the present purposes to spectral ranges in
which noncritical phase matching occurs. Noncriti-
cal configurations have been identified, for instance,
in N -4-nitrophenil-(L)-prolinol,9 with effective coef-
ficients as large as 70 pmyV. For such nonlinear
coefficients one gets peak intensities of the order
of 1 MWycm2, which are readily reached in tightly
focused geometries with cw lasers.

In conclusion, we have investigated the forma-
tion of (2 1 1) solitons with intense cw beams in
materials with second-order nonlinearity. We have
explored here near-phase-matching conditions. We
have observed numerically that (2 1 1) solitonlike
waves form at both signs of the phase mismatch
and continue to exist in the presence of moder-
ate linear walk-off between the fundamental and
the second-harmonic waves. At the large-phase-
mismatch regime, at which under certain conditions
the wave evolution can be approximately described
by the nonlinear Schrödinger equations, the beams
do not collapse. The detailed beam evolution in that
regime remains to be analyzed. As we have as-
sumed input cw lasers, we have ignored here the
effects on pulsed signals that are due to chromatic
dispersion and different group velocities at both fre-
quencies. However, we recently found that, when
the two transverse spatial coordinates can be ig-
nored, temporal solitonlike waves form also in the
presence of moderate temporal walk-off.2 The com-
bination of both effects to yield stable two-wave light
bullets through the modulational instability of the
(2 1 1) bound states is an interesting possibility5

that we will investigate.
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