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Self-starting of passively mode-locked lasers with fast saturable absorption is studied. Our basic assumption
is that the lasers will self-start when cw operation is unstable and mode-locked operation is stable. We start
with a standard model, closely related to the Ginzburg–Landau equation, that is valid when the change in
the time variation of the laser light during one round trip through the laser is small, and we determine the
parameter regime in which cw mode operation becomes unstable. Coupled with previous results on the stability
of mode-locked operation, these results allow us to determine when a laser will self-start. We apply our theory
to figure-eight lasers with external gain.
Passively mode-locked lasers typically have two pos-
sible steady-state or equilibrium behaviors. The
first is cw operation and the second is pulsed oper-
ation. Of course, a third possibility, often observed
in practice, is that there is no steady state. One
wants to operate mode-locked lasers in the pulsed
mode and avoid cw or non-steady-state operation. It
is desirable for the laser to self-start, which means
that after the laser is turned on it automatically
settles into pulsed operation without the need for
any further modulation or adjustment of the laser.
In practice, one often finds that it is necessary to
modulate the laser’s pump in some way to obtain
mode-locked pulses.

Theoretical modeling of passively mode-locked
lasers has been based on two different approaches.
The first is ab initio simulations in which one sim-
ulates the entire evolution of light within the laser
starting from noise. The second, which is analytical,
is based on an idealization in which one assumes that
the light evolution during one round trip through the
laser is small. One then derives a simple equation,
closely related to the Ginzburg–Landau equation,
that describes the evolution. Finally, one deter-
mines the equilibria of this equation and their sta-
bility. This approach was first pioneered by Haus,1
who has in recent years applied it extensively to
passively mode-locked, fiber-based lasers.2 To de-
termine when a laser will self-start within this ap-
proach, one must find both the cw and the pulsed
equilibrium solutions and determine when the cw
solution is unstable while the pulsed solution is sta-
ble. Under these conditions, one assumes that the
laser will self-start; this assumption underpins the
theoretical work to date.3–5 Although this analysis
does not rule out the possibility that the laser could
exhibit non-steady-state rather than pulsed mode op-
eration, extensive ab initio simulations indicate that
this assumption works well in practice.6

In previous work, we have already considered the
stability of pulsed-mode operation.7 In this work, we
consider the stability of cw operation and determine
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the parameter regime in which passively mode-locked
lasers with fast saturable absorption are expected to
self-start. Our basic starting point is the equation
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where z is the round-trip number, t is time, l and
u are the loss and phase change per round trip, B
and D account for the effect of a frequency limiter
and dispersion, and G and K account for the effect
of a fast saturable absorber and nonlinearity. Our
analysis, which is analogous to that of the usual
modulational instability of the Schrödinger equa-
tion, resembles the earlier study of Krausz et al.4
Our study differs from theirs principally in retain-
ing a nonzero dispersion and phase change per pass.
These terms contribute significantly to the behav-
ior of fiber-based lasers, such as the ring laser and
figure-eight laser, which are our principal focus. To
model the gain, we use the two-level rate equation2–7
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where T0 is the decorrelation time and Psat is the sat-
uration power. The decorrelation time is typically
much shorter than the level lifetime, and Haus and
Ippen5 have identified reflections in the laser cav-
ity as a plausible source of the decorrelation. When
U ­ Uc is time independent, we may write the steady-
state gain as gs ­ g0ys1 1 Uc

2yPsatd. As in Ref. 7, we
assume that the bandwidth is not limited by the gain
curve and we treat B as an independent parameter.

The laser equation, Eq. (1), has a cw solution U ­
Uc expsiPczd, where both Uc and Pc are real. Sub-
stituting this cw solution into Eq. (1) and using the
steady-state gain gs, we may determine the cw solu-
tion from the relations
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Pc ­ u 1 KUc
2. (3b)
 1995 Optical Society of America



February 15, 1995 / Vol. 20, No. 4 / OPTICS LETTERS 351
In most cases there are two values of Uc satisfying
Eq. (3a), but the larger one is not physically mean-
ingful because the corresponding solution is always
unstable.

We now study the stability of this cw solution.
Perturbing around this solution, we set g ­ gs 1 dg
and U ­ sUc 1 ũdexpsiPczd, where dg and ũ are per-
turbations of the gain and the cw solution, respec-
tively. From Eqs. (1) and (2), it follows that
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where the asterisk stands for complex conjugation,
and
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where ec ­ g0Ucyfs1 1 Uc
2yPsatd2Psatg and Tc ­

T0ys1 1 Uc
2yPsatd is the effective decorrelation time

of the cw solution.
Because of the presence of ũ*, we must take into ac-

count the conjugate of Eq. (4) when determining the
stability of the cw solution. Introducing a new vari-
able ṽ ­ ũ*, which is formally independent of ũ, and
writing ũ ­ A1 expslz 1 ivtd and ṽ ­ A2 expslz 1

ivtd, we obtain the eigenvalue problem
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where M1 ­ 2sB 1 iDdv2 1 sG 1 iKdUc
2 and M2 ­

sG 1 iKdUc
2.

From Eq. (6) we obtain the dispersion relation
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There are two solutions for l at each value of
v. When v ­ 0, the two solutions of l are 0 and
2GUc

2 2 2ecUc, and when v ! 6`, the solution tends
toward 2Bv2 1 GUc

2 6 isDv2 2 KUc
2d. The term

Ucecys1 1 ivTcd is due to gain saturation. Its effect
is to stabilize cw operation because without this term
the system always has positive eigenvalues l when
v is near 0. This effect is similar to the stabiliza-
tion that gain saturation provides for pulsed-mode
operation.2,7

For the laser to self-start, l must be positive over
some range of v, indicating that cw operation is un-
stable. In Fig. 1 we plot lsvd parametrically as a
function of v on the complex l plane for two dif-
ferent parameter sets listed in the figure captions.
Figure 1(a) corresponds to stable cw operation be-
cause Resld , 0 for all v, whereas Fig. 1(b) cor-
responds to unstable operation because Resld . 0
at some values of v. The parameters are typical
for figure-eight lasers.8,9 The model that we use,
Eq. (1), is consistent with assuming that the gain is
outside the Sagnac loop, as in the experiment of Wu
et al.9 From Eq. (7) we can extract several qualita-
tive rules that govern the laser’s ability to self-start:
(1) If GUc . ec, then cw operation is not stable near
v ­ 0 and the laser will self-start. Raising G aids
self-starting because Uc increases while ec increases.
This observation is consistent with the experiments
of Goodberlet et al.10 (2) Larger decorrelation time
aids self-starting. The contribution from the term
ecUcys1 1 ivTcd in Eq. (7) becomes smaller when Tc

becomes larger. The effect is equivalent to reduc-
ing ec, which aids self-starting, as previously noted.
This result is in agreement with the heuristic ar-
gument of Ref. 3 in which a smaller emission cross

Fig. 1. Eigenvalue l on the complex plane. The solid
curve corresponds to the positive branch of Eq. (7),
whereas the dashed curve corresponds to the nega-
tive branch. (a) Non-self-starting case. Parameter
values are Psat ­ 1 mW, B ­ 0.3 ps2, D ­ 0.045 ps2,
G ­ 0.001 W–1, K ­ 0.008 W–1, T0 ­ 1000 ps, g0 ­ 3,
and l ­ 0.05. These parameters correspond to a dye
laser with a weak saturable absorber. (b) Self-starting
case. Parameter values are Psat ­ 10 mW, B ­ 0.3 ps2,
D ­ 0.045 ps2, G ­ 0.1 W–1, K ­ 0.008 W–1, T0 ­ 108 ps,
g0 ­ 3, and l ­ 0.2. These parameters correspond to a
figure-eight laser.
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Fig. 2. Self-starting region in the g0 –l plane. The
small-signal power gain is exps2g0). The parameter
values are T0 ­ 106 ps, Psat ­ 1 mW, B ­ 0.3 ps,
D ­ 0.045 ps2, G ­ 0.001 W–1, and K ­ 0.008 W–1.

section s ~ 1yT0Psat is predicted to aid self-starting.
(3) A larger bandwidth also aids self-starting. Phys-
ically, that comes about because fluctuations exist
over a wider range of frequencies. Mathematically,
one finds from Eq. (7) that there is a slower move-
ment of l toward the left-hand plane with increasing
v2 when B is small. (4) When D becomes large and
positive, Eq. (1) becomes more analogous to the non-
linear Schrödinger equation, which is modulationally
unstable, and self-starting is enhanced. Similarly,
larger K values aid self-starting when D is positive.

The parameters g0 and l influence self-starting
through Uc in a complicated way. First we note that
Ucecys1 1 ivTcd , g0yivT0 when Uc

2 .. Psat. So
when g0 is fixed and l decreases, then Uc increases
while Ucecys1 1 ivTcd is almost unchanged, and self-
starting becomes easier. An increase in g0 induces
a linear increase in Ucecys1 1 ivTcd; however, the in-
crease in GUc

2 is faster than linear, assuming that
Uc

2 .. Psat. Thus, increases in g0 moderately aid
self-starting.

In Fig. 2 we plot the region in the g0 –l plane
in which self-starting can occur. The parameter set
given in the figure caption is close to that of Fig. 1(b)
and may again correspond to a figure-eight laser with
external gain and a decorrelation time that is long
enough for the laser to self-start. As expected, de-
creases in l and increases in g0 enhance self-starting.
We have shown in Ref. 7 that there exists one sta-
ble pulsed solution when the steady-state gain satis-
fies gs ­ g0ys1 1 PavyPsat), where Pav is the average
power. The shaded region that has an unstable cw
mode has a stable pulsed solution and therefore is
the region in which the laser will self-start.

In summary, we study the requirements for pas-
sively mode-locked lasers to self-start using the
figure-eight laser as a practical example. We derive
a dispersion relation lsvd that governs the stability
of cw operation and use the criterion that Re(ld . 0
for some v so that cw operation is unstable. Gen-
erally, increases in the relaxation time, bandwidth,
dispersion, saturable absorption, Kerr nonlinearity,
and the small-signal gain aid self-starting. Decreas-
ing loss also aids self-starting.
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