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Soliton propagation with up- and down-sliding-frequency
guiding filters
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We analyze the effect of the third-order guiding filter term on soliton transmission in optical fibers. We find
that this term causes a significant difference between the regimes of up- and down-sliding of filter frequency. In
particular, the use of up-sliding requires less additional amplifier gain than down-sliding does, which is preferable
in real systems.
Soliton transmission with sliding-frequency guiding
filters significantly improves the quality of transmis-
sion over transoceanic distances.1 – 3 In a transmis-
sion line that uses Fabry–Perot étalon filters with a
mirror spacing d and a reflectivity R, the distributed
filter function is
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where lf is the filter separation. To date, soliton
propagation with filters has usually been studied the-
oretically by expansion of Eq. (1) in a Taylor series
as a function of v and truncation of the series at the
quadratic term.1,4 This theoretical approach reveals
no difference between up-sliding, for which v

0
f . 0,

and down-sliding, for which v
0
f , 0, whereas in fact

experiments to date indicate that up-sliding is clearly
preferable.5 In this Letter we show that the third-
order contribution in the Taylor expansion of Eq. (1)
leads to an additional offset in the soliton mean fre-
quency. As a consequence, the use of up-sliding re-
quires less amplifier gain at a fixed rate of sliding
than does down-sliding and is preferable.

Keeping terms through the third order in the Tay-
lor expansion of Eq. (1), we obtain the propagation
equation in soliton units,
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The parameters f 0 and aR are, respectively, the slid-
ing rate and the excess gain, D is the fiber dispersion,
t0  ty1.763, where t is the soliton pulse FWHM,
and l is the wavelength. We consider only the fixed
sliding rates v

0
f  const. Note that the third-order

term is inversely proportional to pulse duration, so
that it becomes increasingly important as the bit rate
increases. For typical parameters in current experi-
ments, d  1.5 mm, R  9%, and t(FWHM)  14 ps,
we find that h3  0.5h2, so that its contribution is
not negligible.

We begin by introducing the following ansatz for
the soliton pulse shape into Eq. (2):
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where q  2AsV 1 h3A2d. Equation (4) is the soliton
solution of Eq. (2) to the first order in h3 and V, when
a  h2  v

0
f  0. We have not included the first-

order contributions of a and h2 in Eq. (4) because
they significantly complicate Eq. (4) while having no
effect on the frequency offset. The mean frequency
v0 of the soliton given by Eq. (4) is related to V by
the relation

v0 
Im
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The term 2h3A2 describes the frequency shift that is
due to the change in shape of the soliton.6 The total
shift of the soliton mean frequency v0 is determined
by both the second- and third-order filter terms.

Substituting Eq. (4) into Eq. (2), we obtain through
the first-order perturbation theory7 the following pair
of coupled equations for the amplitude A and mean
frequency v0 of the soliton:
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Fig. 1. Equilibrium values of (a) soliton amplitude A
and (b) mean frequency offset from the filter frequency
Dv versus excess gain a, as determined from Eqs. (6)
and (7). The filter parameters are h2  0.1, h3  0.05,
and jv

0
f j  0.44h2. The dashed curves represent the

equilibrium values sA2, vd for h3  0.
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At equilibrium, assuming a constant rate of sliding,
we find after setting dv0ydz  v

0
f in Eq. (6a) that
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When v
0
f . 0, corresponding to up-sliding, then the

two terms on right-hand side of Eq. (7) are of the op-
posite sign and the third-order term diminishes the
frequency offset that is due to sliding. Physically,
sliding leads to an offset because the soliton has in-
ertia so that its central frequency lags behind the cen-
tral frequency of the filter as it slides. At the same
time, the filter is asymmetric because of the third-
order term so that the central frequency of the soli-
ton in the absence of sliding is offset from the central
frequency of the filter, which is also the frequency
corresponding to minimum loss for the soliton. In
the presence of up-sliding, the effect of the third-order
term is to bring the soliton closer to the minimum loss
point and diminish the loss that it experiences. By
contrast, when v

0
f , 0, corresponding to down-sliding,

the effect of the third-order term adds to the effect
of sliding and pushes the soliton farther away from
the minimum loss point. This difference is of prac-
tical significance because the extra loss in the case
of down-sliding implies that extra amplifier gain is
needed, which in turn implies that amplifier-induced
noise will be larger than in the case of up-sliding, as-
suming that the sliding rate is the same for both up-
and down-sliding.1 Thus, larger sliding rates can be
tolerated in the case of up-sliding than in the case of
down-sliding.

Figure 1 show the dependence of the equilibrium
values of A and Dv  v0 2 vf on the gain a. When
a is below some critical value acr, there is no stable
soliton solution.1 Mathematically this is revealed by
the appearance of an imaginary part in the equilib-
rium values of A and Dv below some critical value acr

of the excess gain a. As our approach assumes that
A and Dv are real, we conclude that there is no equi-
librium when an imaginary part is present in the so-
lution for A and Dv. In Fig. 1 the curves stop at the
points where the equilibrium disappears. When the
h3 term is not taken into account, acr is determined
only by the absolute value of the sliding rate, and
there is no difference between up- and down-sliding
regimes. The third-order term causes an asymme-
try between up- and down-sliding. With up-sliding,
stable soliton propagation can be achieved when acr

diminishes, whereas with down-sliding acr increases.
To confirm the analytical predictions of the first-

order perturbation theory, we solved Eq. (2) numeri-
cally. As an initial condition we set u  sechstd, and
we then studied its evolution to its equilibrium state.
The filter parameters were h2  0.1 and h3  0.05,
and the sliding rate was set at jv

0
f j  0.44h2, which is

close to the critical value.1 For both up- and down-

Fig. 2. (a) Soliton amplitude A (b) mean frequency offset
from the filter frequency Dv as a function of distance
z given in soliton periods, as determined by numerical
solution of Eq. (2) with v

0
f  20.44h2, corresponding to

down-sliding. The solid curves correspond to the gain
value a1 given by Eq. (8), and the dashed curves corre-
spond to a2 given by Eq. (9).
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Fig. 3. (a) Soliton amplitude A and (b) mean frequency
offset from the filter frequency Dv as a function of dis-
tance z given in soliton periods, as determined by numer-
ical solution of Eq. (2) with v

0
f  0.44h2, corresponding to

up-sliding. The solid curves correspond to the gain value
a1 given by Eq. (8), and the dashed curves correspond to
a2 given by Eq. (9).

sliding we performed two sets of computation, the
first set with a gain value a  a1, where
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which would lead to equilibrium at A  1 if the third-
order contribution were neglected, and the second set
with a  a2, where
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which would lead to equilibrium with A  1 when the
third-order contribution is included. In all cases we
keep the third-order contribution in the simulations.
With down-sliding, there is no stable soliton propaga-
tion when a  a1; the gain value is below acr for this
regime of propagation and the pulse disappears af-
ter some distance of propagation, as shown in Fig. 2.
When a  a2, which is greater than a1, the soli-
ton propagates stably at values of A and v0 that are
in agreement with the predictions of Eq. (6) and (7).
The results for up-sliding are shown in Fig. 3. Sta-
ble soliton propagation is observed both when a  a1

and a  a2.
We have examined the influence of the third-

order filter contribution on solitons in a system with
sliding-frequency guiding filters. We have shown
that the soliton loss is lower in a system with up-
sliding than it is in a system with down-sliding at
the same sliding rate. Consequently, it is advan-
tagerous to use up-sliding. This result is consistent
with current experimental practice.
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