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Anisotropic diffusion of the state of polarization in optical
fibers with randomly varying birefringence
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Polarization diffusion in communication f ibers is studied. Diffusion of the states of polarization in an optical
f iber is found to be anisotropic on the surface of the Poincaré sphere. The predicted anisotropy has signif icant
implications for nonlinear evolution in long-distance communication systems.  1995 Optical Society of
America
Random fluctuations in birefringence along an
optical fiber degrade the transmission rate in com-
munication systems.1 In modern, dispersion-shifted
communication fibers, at typical data rates and trans-
mission powers, the birefringent beat length is of the
order of meters or tens of meters, whereas the disper-
sive and nonlinear scale lengths are typically hundreds
of kilometers. Thus, although the index difference
corresponding to the birefringence is small, Dn ø 1027,
the birefringence should be considered large, and its
effect would be devastating except that the orientation
of this birefringence is rapidly and randomly changing
on a length scale of tens to hundreds of meters. Under
these circumstances, if one assumes that the variation
of the birefringence is so rapid that its only effect is to
scramble the electric field on the Poincaré sphere, one
finds that light propagation in both nonreturn-to-zero
and soliton communication systems can be described
by the Manakov equation.2 – 4 If one takes into account
the finite fiber decorrelation length, one finds that
additional terms that act as noise sources are added
to the Manakov equation.2,4 These additional noise
terms are both linear and nonlinear in field strength.
The linear terms lead to the usual linear polarization
mode dispersion, whereas the nonlinear terms will
lead to a nonlinear polarization mode dispersion whose
effects have barely begun to be explored.

In simulations of long-distance propagation in optical
fibers, the practice has often been simply to scramble
the electric field on the Poincaré sphere at fixed inter-
vals while allowing the field to evolve deterministically
in between. This approach tacitly assumes that the
electric field diffuses uniformly on the Poincaré sphere.
However, communication fibers are nearly linearly
birefringent so that the polarization eigenaxes, even
though randomly varying, are confined to the equator
of the Poincaré sphere, and one might anticipate that
the equatorial diffusion rate on the Poincaré sphere is
not the same as the azimuthal diffusion rate. In this
Letter we show that the electric-field diffusion on the
Poincaré sphere is indeed anisotropic. This anisotropy
affects the relative contribution of the linear and the
nonlinear noise terms and thus has important implica-
tions for nonlinear pulse evolution.

In this Letter we use two different physical models4 – 6

to study the rate of diffusion of an input state of polari-
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zation on the Poincaré sphere as a function of fiber
autocorrelation length hfiber and beat length LB . We
may measure the diffusion lengths by calculating the
variances of the Stokes parameters S1, S2, and S3 and
determining the lengths d1, d2, and d3 at which the
variances are within 1ye of the final asymptotic value
of 1y3. The diffusion lengths d1 and d2 correspond to
equatorial diffusion along the Poincaré sphere. Both
these lengths and the polarization decorrelation length
hE are physically related to the length over which
the electric field loses memory of its orientation. By
contrast, d3 corresponds to azimuthal diffusion along
the Poincaré sphere and is physically related to the
length over which the electric field loses memory of
the ratio between the minor and major axes of the
polarization ellipse.

After we remove variation common to both polariza-
tions components, the spatial dependence of the electric
field Usr, v, zd is given by
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≠z
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∏
Usr, v, zd , (1)

where sx2 1 y2d1/2 is the birefringence. The beat
length is given by LB ­ 2pysx2 1 y2d1/2. The coupling
constant y is taken to be real because the fiber is
assumed to be linearly birefringent, as is nearly the
case for real communication fibers.

In the first model we assume the strength of the
birefringence to be fixed but we allow the orienta-
tion to vary randomly, i.e., xsv, zd ­ bsvd cos uszd and
ysv, zd ­ bsvd sin uszd, where bsvd does not depend
on the distance z. We further assume that the rate
of change of the angle u of the orientation axes is a
white-noise process, i.e., duydz ­ guszd, kguszdl ­ 0,
and kguszdgusz 1 udl ­ Gdsud, where G is a constant
and dsud is the Dirac delta function. The fiber auto-
correlation length hfiber is 2yG. In the second model,
both x and y vary independently according to the fol-
lowing Langevin equations: dxydz ­ 2ax 1 gxsv, zd
and dyydz ­ 2ay 1 gy sv, zd, where a is a constant
and both gxsv, zd and gysv, zd are white-noise pro-
cesses with zero mean and the same distribution. The
fiber autocorrelation length hfiber is 1ya.

We now switch to the Poincaré representation of the
field. Instead of following the evolution of the complex
 1995 Optical Society of America
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f ields U1szd and U2szd, we will follow the evolution of
the three real Stokes parameters S1 ­ U1U p

1 2 U2Up
2 ,

S2 ­ U1Up
2 1 U2Up

1 , and S3 ­ 2isU1Up
2 2 U2Up

1 d,
where U1 ­ U ? ê1szd and U2 ­ U ? ê2szd. We assume
that the field U is normalized so that S1

2 1 S2
2 1

S3
1 ­ 1. There are two physically sensible choices of

the orthogonal unit vectors ê1szd and ê2szd. We may
choose that they equal ê1sz0d and ê2sz0d, the polariza-
tion eigenstates at the beginning of our simulations, or
we may choose that they equal the local polarization
eigenstates.

To study the anisotropy, we start our simulations
on the equator of the Poincaré sphere by setting
sS1, S2, S3dsz0d ­ s1, 0, 0d. We have repeated our
simulations with sS1, S2, S3dsz0d ­ s0, 1, 0d, and we
find that the results are qualitatively the same. We
then repeatedly integrate Eq. (1) 1000 times with a
fixed set of parameters, using different, randomly
generated inputs for guszd in our first model or for
gxszd and gyszd in our second model. These 1000
time histories constitute our ensemble that we then
use to calculate the variances of Si, which are the
statistical quantities of interest. At large distances
the polarization states of the electric field become
uniformly distributed on the Poincaré sphere so that
kSil ! 0 and kSi

2l ! 1y3. We define the diffusion
length di as the distance at which the variance of
Si, si

2 ­ kSi
2l 2 kSil2 rises to 1ye of its asymptotic

value 1y3, where i ­ 1, 2, 3. Quantities that are mea-
sured with respect to local polarization eigenaxes are
designated by the subscript local, and quantities that
are measured with respect to the initial polarization
eigenaxes are designated by the subscript fixed. We
start in a pure state so that ksi

2sz0dl ­ 0.
In Fig. 1 we plot si

2 versus distance, setting
hfiber ­ 0.1LB in the first model, in which the birefrin-
gence strength is fixed. The long-dashed curve gives
s

2
1, local, the short-dashed curve gives s

2
2, local, the dotted

curves gives s
2
1, fixed, and the dashed–dotted curve

gives s
2
2, fixed. The solid curve is the measurement of

s3
2. We note that the choice of reference axes does

not affect S3, so that s3
2 is the same when measured

with respect to both sets of axes. From Fig. 1 it is
apparent that the diffusion lengths for the different
Stokes parameters are different. We find that in
a fiber f luctuation length both s

2
1, local and s

2
2, local

increase from zero toward 1y2, the expected variance if
there is no azimuthal diffusion. Then both s

2
1, local and

s
2
2, local approach 1y3 on the same length scale at which

s3
2 approaches 1y3. When measured with respect

to the initial eigenaxes, s
2
1, fixed and s

2
2, fixed steadily

increase toward 1y3 on a length scale longer than the
length scale at which s3

2 approaches 1y3. In other
words, the equatorial diffusion length measured with
respect to the local eigenaxes is shorter than the azi-
muthal diffusion length, which in turn is shorter than
the equatorial diffusion length measured with respect
to the fixed eigenaxes. From a physical standpoint,
the electric field cannot follow the rapid changes in
the axes of birefringence when hfiber ,, LB , and its
orientation changes slowly. Thus with respect to the
local eigenaxes the electric field will change rapidly,
on the length scale hfiber , whereas with respect to the
f ixed eigenaxes it will change slowly, on a length scale
LB

2yhfiber.6

The same ordering of the diffusion lengths does
not hold when the fiber autocorrelation length is
comparable with or longer than the beat length. In
Fig. 2, we plot si

2 versus distance for hfiber ­ 10LB
in the first model in which the birefringence strength
is fixed. The curve types have the same meaning as
in Fig. 1. The diffusion length d1, local for s

2
1, local is

now the longest. The variance s
2
2, local and s3

2 are
almost identical, whereas s

2
1,fixed and s

2
2, fixed have

small oscillations with a period equal to the beat
length. Although these small oscillations appear as
sharp steps in Fig. 2, these are adequately resolved
numerically because we use 500 points per the shorter
of hfiber and LB in our simulations.

In Fig. 3 we plot the diffusion lengths di versus
hfiberyLB for the first model, in which the birefringence
strength is fixed. When measured with respect to
the local eigenaxes, the diffusion lengths d1, local and
d2, local are proportional to hfiber , and d1, local is larger
than d2, local. With respect to the fixed eigenaxes,
we find that the di, fixed are proportional to 1yhfixed
when hfiber ,, LB and proportional to hfixed when
hfiber .. LB . When hfiber ,, LB we find that d2, local .
d3 and when hfiber .. LB we find that d1, fixed .
d2, fixed . d3. In Fig. 4 we plot the diffusion lengths of

Fig. 1. Variances of the Stokes parameters. The s1
2 are

plotted versus distance for hfiber ­ 0.1LB in the first model,
in which the strength of birefringence is fixed but the
orientation varies randomly.

Fig. 2. Variances of the Stokes parameters. The si
2 are

plotted versus distance for hfiber ­ 10LB in the first model.
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Fig. 3. Diffusions length di versus hfiberyLB for the first
model.

Fig. 4. Diffusion lengths di versus hfiberyLB for the second
model, in which both the strength and the orientation of the
birefringence vary randomly.

si
2 versus hfiberyLB for the second model, in which both

the birefringence strength and orientation vary. The
results are qualitatively similar to those of the first
model, shown in Fig. 3, so that including the variation
of the strength of the bireringence does not have a
signif icant effect on the diffusion lengths di.

As a simple example of how the anisotropic field
diffusion on the Poincaré sphere can affect the non-
linear evolution, we consider the case in which the ini-
tial input to the optical fiber is in a single state of
polarization, ê1sz0d, as a function of time. At low in-
tensities the polarization state of the central frequency
will undergo a complex evolution through a sequence
of states ê1szd. Different frequencies will undergo a
somewhat different evolution, and the Kerr effect will
also lead to a somewhat different evolution. Referring
to the complex amplitude in the polarization state ê1szd
as U sz, td and the complex amplitude in the orthogo-
nal polarization state as V sz, td, we have shown that
the evolution of U sz, td and V sz, td is governed by the
Manakov equation with additional noise terms.2,4 If
we set sU , V dsz0d ­ sU0, 0d and the nonlinear and chro-
matic dispersive scale lengths are long compared with
the scale lengths for linear and nonlinear polarization
mode dispersion, then

V sz, td ­ 2 b0

√Z z

0
dz0c1

!
≠U0

≠t

1 i
1
3

√Z z

0
dz0c2

!
jU0j2U0 , (2)

where c1 and c2 are complex coefficients. For the first
model, with constant birefringence, the evolutions of
c1 and c2 are given by that of S1 with respect to the
local axes and S3

2, respectively, with the appropriate
initial conditions.4 The relative contribution of the
linear and the nonlinear noise terms depends on the
ratio of the equatorial diffusion length to the azimuthal
diffusion length.

In conclusion, using two physically reasonable mod-
els, we show that the diffusion length of the Stokes
parameters is a function of both hfiber and LB . We
have demonstrated that the diffusion is anisotropic in
general. This anisotropy can have important conse-
quences for the nonlinear evolution of light in optical
fibers and for current practice in simulations that ran-
domizes the electric field on the Poincaré sphere at a
fixed interval.
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