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Timing-jitter reduction for a dispersion-managed
soliton system: experimental evidence
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We have measured the timing jitter for dispersion-managed solitons in a recirculating loop for distances
up to 20,000 km. The data were obtained with modulated data, 27 2 1 and 223 2 1 pseudorandom binary
sequence patterns, at 10-Gbitys rates and with an unmodulated pulse train at 10 GHz. We have obtained
good agreement with our data, using a filtered Gordon–Haus model for the timing jitter reduced by the energy
enhancement of our solitons relative to solitons in a fiber with a constant dispersion equal to our map’s path-
average dispersion. We have also measured a bit-error rate of ,1029 at a distance of 15,000 km.  1997
Optical Society of America
There has been a great deal of interest in enhanced-
power, dispersion-managed solitons.1 Since their in-
troduction impressive gains have been made in soliton
transmission without frequency sliding and in some
cases without in-line optical filters.2 The solitonlike
pulse propagating in the dispersion map has its energy
enhanced by a factor j relative to a pulse propagat-
ing in a constant-dispersion fiber with the same path-
average dispersion D and pulse width t.1 For solitons
the pulse energy is proportional to Dyt, and thus am-
plitude errors rise as D is reduced for a given t.3 For
dispersion-managed systems the limiting value of the
dispersion as a result of amplitude errors is reduced by
j, which is a major advantage for enhanced-power soli-
tons, since contributions to the timing jitter are propor-
tional to D1/2 for the Gordon–Haus effect and to D2 for
the acoustic effect. Recently, there has been a theo-
retical suggestion that s2

t , the variance of the timing
jitter as a result of the Gordon–Haus effect for the soli-
tons propagating in these dispersion-managed systems
without in-line optical filters, is reduced by j.4 This
extra reduction in timing jitter has enormous system
implications and may potentially allow for the relax-
ation of a number of constraints in optical communica-
tion systems based on solitons. We have measured the
timing jitter in a dispersion-managed system with in-
line optical filters. After reducing the formula for the
filtered Gordon–Haus jitter by a factor j, we obtained
good agreement with the measured data, providing ex-
perimental evidence of the extra reduction of soliton
jitter resulting from a dispersion map.

The experimental setup is described elsewhere.5

We have four 25-km spans of normal-dispersion
fiber (D ­ 21.2 psynm km at 1550 nm) followed
by a short section sø8 kmd of fiber with dispersion
in the anomalous regime (D ­ 116.5 psynm km at
1550 nm). For the experiments described in this
Letter the path-average dispersion is anomalous,
D ­ 0.15 psynm km. There are four optical am-
plif iers in the loop to compensate for the losses in
0146-9592/97/080513-03$10.00/0
the fiber spans, followed by one final amplif ier to
overcome the loss that is due to the optical band-
pass filter, the loop coupler, and the loop switch.
There is a single-bandpass filter in the 108-km
loop that has a 3-dB bandwidth of ø1.3 nm. With
this setup we observed stable pulse propagation up
to distances of 28,000 km.5 For the measurements
described in this Letter we used modulated data with
both a 27 2 1 and a 223 2 1 pseudorandom binary se-
quence (PRBS) pattern at 10 Gbitys and unmodulated
data at a pulse-repetition rate of 10 GHz. For the
10-Gbitys modulated data we measured a bit-error rate
of less than 1029 at a distance of 15,000 km. Figure 1
shows the measured decision voltage threshold for
errors (bit-error rate BER ­ 1 3 1026) as a function
of propagation distance for the 223 2 1 pattern, not-
ing that the data were essentially the same for the
27 2 1 pattern. We can see from these data that the
amplitude of the pulses (1’s) is stable as a function of
distance while the noise when there are no pulses (0’s)
is growing because of excess gain.

To measure the timing jitter, we used three differ-
ent methods to cover the range of propagation out to
20,000 km. First, we used the reduction of the phase
margin as a function of distance at a particular deci-

Fig. 1. Measured threshold voltage for a 1026 bit-error
rate. The squares are near the 1’s, and the circles are near
the 0’s.
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sion level for BER ­ 1 3 1026 to extract the timing jit-
ter, assuming Gaussian statistics. Further, we mea-
sured the jitter of the eye with a sampling oscilloscope.
Finally, we used unmodulated data, i.e., a pulse train,
and we measured the jitter of the pulses with the same
sampling oscilloscope. This last procedure eliminates
the contribution of the acoustic effect.6 The results of
our measurements are shown in Fig. 2. We note that
these measurements yield the same jitter to within
approximately 0.25 ps over most of the measurement
range. The larger spread of data at short distances
of #4000 km is due to subtraction of the oscilloscope
jitter from the data to obtain the jitter in the pulses.
The oscilloscope jitter was of the order of 2 ps, and thus
small f luctuations in the measurements lead to larger
errors at these short distances. These differences be-
come unimportant at larger distances, as is verified by
the close agreement among the different techniques at
these distances. At distances greater than 15,000 km
the errors induced by the energy in the 0’s interfere
with the measurement of the errors that are due to
timing. The bit-error rate measurements rely on the
tail of the distributions. The tails of the timing and
the amplitude errors begin to overlap at these large
distances, making it diff icult to separate them and de-
termine the effects of timing errors alone. The oscillo-
scope measurements, on the other hand, measure the
distribution in the vicinity of the peak, where there
is essentially no overlap of the distributions out to
20,000 km. For these reasons we did not use the bit-
error-rate measurements beyond 15,000 km.

The data in Fig. 2 look remarkably like Gordon–
Haus timing jitter modified by a filter.7,8 To model our
system we used the analytic result for the filtered Gor-
don–Haus effect modif ied for frequency sliding for soli-
tons propagating in constant-dispersion fiber.9 The
formula that we used from Ref. 9 is of the form
s

2
GH 3 f sh, z, v0d, where s

2
GH is the variance that is

due to the Gordon–Haus jitter and f sh, z, v0d is the
filter-damping function, which is a function the filter
strength per unit distance h, the propagation distance
z, and the sliding rate v0.9

Reference 4 suggests that s
2
GH is reduced by j for

a dispersion-managed system with no optical filters.
In the derivation of s

2
GH a factor of 1yE, where

E is the pulse energy, comes from the relationship
between the mean-square amplitude of the noise and
the gain of the optical amplifiers.10 In a dispersion-
managed system E is bigger by a factor of j. This
leads to the reduction of s

2
GH by the factor of j in

Ref. 4. Adopting this same strategy, the analytical
form for our model is ss2

GHyjdf sh, z, v0d. One might
question our use of these formulas for ideal solitons,
since in simulations of our system we found that the
pulse shape and spectrum are quite different from
those of ideal solitons.11 However, as we show below,
this model yields an impressive agreement with the
experimental data.

For the model shown in Fig. 2 we used s
2
GH in

real world units3 corrected for the more accurate
determination of the nonlinear index of refraction in
optical fibers.12 The experimental parameters that we
used for s

2
GH were loss per unit length G ­ 0.069 km21,
which includes the total loss in our loop including fiber,
connections, couplers, filter, and switch; path-average
effective area of the fiber, Aeff ­ 47 mm2; excess
spontaneous emission factor nsp ­ 1.3; power penalty
owing to the variation of soltion amplitude between the
optical amplif iers, F sGd ­ 1.14, where G ­ gain; and
path-average dispersion D ­ 0.15 psynm km.

The complication in using the analytic formulas in
Refs. 3 and 9 is that the pulse shape assumed in
these references is an ideal soliton, so that any pulse
width used in these formulas corresponds to an ideal
soliton. As mentioned above, the simulations of stable
pulse propagation in our loop result in nonideal pulse
shapes that also have a frequency chirp. In separate
experiments we determined that the pulses from our
source are ,20 ps in duration, but we are unable to
determine the pulse width in the loop to the same
degree of accuracy. We observed an ø30% spectral
broadening of our input pulse as it propagates through
the loop. In the analytic formulas of Refs. 3 and 9 we
used a pulse width (FWHM) tf ­ 17 ps. We obtained
this pulse width from the steady-state spectrum in the
loop sz . 10, 000 kmd with the assumption of an ideal
Gaussian pulse. This may be a reasonable assumption
since the optical filter is sensitive to bandwidth. We
use a filter strength h ­ zysLf tc

2d ­ 0.45 Mm21.
Here z is the maximum measured filter curvature
ø4.5 3 10224s2, Lf ­ 0.108 Mm, which is the filter
spacing, and tc ­ tf y1.762. For these parameters the
ratio of the sliding angular frequency to that of the
critical frequency in soliton units is vf

0yvcr
0 ­ 0.5.

Figure 2 shows the model without the enhancement
factor, j ­ 1.0 (dashed line). We chose the value of j ­
2.6 (solid line) in Fig. 2 to give good agreement with the
experimental data. This value of the enhancement is
in good agreement with the value of ø2.5 obtained from
our simulations of the loop.5,11 Also, we estimated
our experimentally determined enhancement factor by
measuring the pulse energy in the loop and comparing
it with the energy of a soliton of the same pulse

Fig. 2. Timing jitter as a function of propagation distance.
For the modulated data the filled and open squares are
bit-error-rate measurements and the eye measurements
on the oscilloscope, respectively, using a 27 2 1 PRBS
pattern; the filled and open circles are bit-error-rate and
eye measurements on the oscilloscope, respectively, using a
223 2 1 PRBS pattern; 3’s are an unmodulated pulse train.
The lines are the theoretical model with a 17-ps pulse
width and an enhancement factor of 1.0 (dashed line) or
2.6 (solid line).
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width propagating in a fiber with a constant dispersion
equal to our path average, taking into account lumped
amplification. The enhancement factor determined
this way is approximately 2, which is in reasonable
agreement with the factor of 2.6 needed to fit our data
in Fig. 2, since we measured the power in our loop after
a series of couplers.

Our results indicate that soliton-perturbation theory
has application in solitonlike systems such as ours, in
which the pulse shapes deviate signif icantly from the
shapes of ideal solitons. These analytical formulas
provide a powerful tool for understanding non-
linear pulse propagation in dispersion-managed sys-
tems and should aid in the optimization of their design
to minimize timing jitter. Our sliding rate is small
s1 GHzyMmd, and we see clearly from Fig. 1 that the
excess gain is causing the noise accumulation in the
0’s, limiting our error-free sBER , 1029d transmission
distance to 15 Mm. Our measured timing jitter
indicates that the jitter would not limit the error-free
bit-error rate for distances less than 20 Mm. By
optimizing the enhancement factor, filter design, and
path average dispersion, we anticipate that we will
further increase the error-free propagation distance.
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