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Dispersion-managed soliton interactions in optical fibers
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We simulated dispersion-managed soliton propagation and interaction in optical fibers. The energy-
enhancement factor, together with the time–bandwidth product and the stretching factor, were calculated
as a function of the difference in absolute values of accumulated dispersion in the fiber spans. The interaction
strength of the dispersion-managed solitons was found to depend on the stretching factor. When this factor
is less than 1.5, the interaction is weaker than for ideal solitons. When it is more than 1.5, there is a strong
interaction between the pulses, which constrains the energy enhancement for practical applications.  1997
Optical Society of America
The recent interest1,2 in dispersion-managed solitons
has been stimulated by the possibility of decreasing the
path-averaged dispersion of the transmission line, thus
reducing the timing jitter. Computer simulations3,4

and experiments5 have shown that stable pulses in
a fiber with dispersion maps that have large devia-
tions of the local dispersion from the average have
enhanced energy relative to solitons in a fiber with
uniform dispersion that is equal to the path-averaged
dispersion of the map. Solitons in the dispersion map
are analogous to stretched pulses in mode-locked fiber
lasers.6 In this Letter we present a computer study
of pulse propagation and interaction in a dispersion
map consisting of two spans of normal- and anomalous-
dispersion f iber with a path-averaged anomalous dis-
persion kbl ­ jb1L1 1 b2L2jyLm, where Lm ­ L1 1 L2
is the map length. We modeled the pulse evolution
in the dispersion-managed fibers, using the nonlinear
Schrödinger equation, with the dispersion coeff icient b

changing periodically along the propagation distance
and taking the values of b1 in the positive group-
velocity dispersion span of the map and b2 in the nega-
tive group-velocity dispersion span of the map.

Keeping kbl and the FWHM pulse duration constant
and varying Db ­ jb1 2 b2j, the dispersion differ-
ence in the spans, we found the shapes of the stable
dispersion-managed solitons by trial and error. Here
we define the stable pulses as dispersion-managed
solitons to emphasize that the temporal and spectral
shape of these pulses repeats itself each map period.
However, inside the map these pulses undergo periodic
expansion and compression.3 Typically, the values of
the local dispersion in each of the spans that constitute
the map are much larger than the path-averaged
dispersion. Thus the pulse behavior inside each
span is dominated by linear dispersion, whereas the
much weaker nonlinearity supports the pulse on
average. Consequently, the effective nonlinearity for
the dispersion-managed solitons is smaller than that
for fundamental solitons in uniform-dispersion f ibers,
resulting in larger energy for single-soliton propaga-
tion in the map. For the dispersion-managed solitons,
we then determined the energy-enhancement factor
relative to the energy of fundamental solitons in
uniform-dispersion f ibers with the same values of
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the average dispersion, the time–bandwidth prod-
uct DtDn, and the maximum stretching factor of a
dispersion-managed soliton duration inside the map
cycle. The dispersion map consists of alternating
positive- and negative-dispersion spans with lengths
L1 and L2. We investigated two maps, one with
L1 ­ L2 and another with the same total map length
Lm but with L1 ­ 9L2. We tried different dispersion-
map arrangements for an injected pulse whose initial
phase is uniform (chirp free). Stable dispersion-
managed solitons form only if the chirp-free pulse is
injected into the middle of the negative- or positive-
dispersion span. By contrast, initially chirped pulses
can be launched at different points on the map to
form dispersion-managed solitons.7 Having obtained
stable pulse shapes, we relaunched these pulses into
the dispersion-managed fiber to make sure that the
amount of dispersive waves generated owing to the
nonsoliton components was negligible.

Figure 1 shows the dependence on g ­ 2sb1L1 2
b2L2dyt0

2 of the energy -enhancement factor, the time–
bandwidth product DtDn, and the stretching factor,
where b1 is the dispersion value in the span of length

Fig. 1. Energy-enhancement factor (circles), stretching
factor (triangles), and time–bandwidth product (squares)
versus g ­ 2s b1L1 2 b2L2dyt0

2. The f illed shapes show
the data for a map with equal spans L1 ­ L2 ­ Lmy2, and
the open shapes correspond to L1 ­ 9L2. The energy-
enhancement factor is the pulse energy normalized to the
energy of a fundamental soliton.
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L1, b2 is the dispersion value in the span of length L2,
and t0 is the pulse duration (FWHM). The simula-
tions showed that dispersion-managed soliton parame-
ters are the same for equal values of the parameter
g for both the map with L1 ­ L2 and the map with
L1 ­ 9L2. Thus the parameters of the dispersion-
managed solitons depend only on the difference of the
accumulated dispersion in each of the map spans, and
they are not sensitive to the details of the map it-
self. As g increases, the soliton shape evolves from
a hyperbolic secant with DtDn ­ 0.315 to a Gauss-
ian3 with DtDn ­ 0.441 and into a pulse shape with
a spectrum that is nearly square at the top with
DtDn ­ 0.6. The time–bandwidth product saturates
near DtDn ­ 0.6. Figure 1 shows that the energy-
enhancement factor has a nearly quadratic depen-
dence on the parameter g. In our simulations we
obtained dispersion-managed solitons with an energy-
enhancement factor as great as 24. Figure 2 shows
the pulse shape and the spectrum for g ­ 18.3 and
DtDn ­ 0.6.

For the dispersion–managed solitons that we found,
we examined the pulse interaction numerically. For
values of as much as g ­ 3.3, as shown in Fig. 3, we
found that the interaction length—the length over
which each soliton retains an independent identity—
increases with g. Moreover, out-of-phase, dispersion-
managed solitons repel, as is the case for ideal
solitons. Beyond g ­ 3.3, corresponding to a stretch-
ing factor of 1.5, we found that the interaction length
decreases with g and, moreover, that dispersion-
managed solitons attract regardless of the initial
phase. The maximum interaction length is obtained
with a an energy enhancement of ,2.5 and a stretching
factor of 1.5, and then it rapidly decreases with an
increase of the energy enhancement. The maximum
interaction length occurs for nearly Gaussian pulses
because the tails of the pulses are diminished in
comparison with those of fundamental solitons, and
the interaction is always attractive at large g because
the large local dispersion tends to average out the
phase-dependent contribution. In other words, in
the process of interaction a second soliton acts upon
the first, whose f ield we designate us, as a pertur-
bation up. The nonlinear perturbation to the f irst
soliton field owing to the interaction contains terms
proportional to jusj

2up and jupj2us. The strength
of the leading-order perturbation jusj

2up depends on
the phase of the perturbing f ield, and the strength
of the higher-order perturbation jupj2us does not.
For ideal solitons, jusj

2up .. jupj2us, and the inter-
action is phase dependent. When the shapes of the
dispersion-managed solitons are transformed from
hyperbolic secant to Gaussian with an increase of g,
the pulse tails diminish, thus reducing the value of
jusj

2up, and consequently the interaction strength,
while the interaction remains phase dependent.
With a further increase of g, the pulse tails start to
overlap signif icantly owing to the pulse stretching
inside the map and thus increase the interaction
strength. On the other hand, the phase in the pulse
tails is rapidly changing along the propagation dis-
tance owing to the strong local dispersion. Thus
the phase-dependent term jusj
2up averages out, and

the interaction is governed by the phase-independent
term jupj2us. For the same reason, the interaction of
orthogonally polarized pulses at a high enhancement
factor and a large stretching degree becomes almost
as strong as for copolarized pulses. We verified
this point with additional simulations based on the
Manakov equations. We also note that the intensity of
the dispersive waves in our calculations was ,8 orders
of magnitude smaller than the pulse intensity, so the
interaction between stable pulses was not induced by
the dispersive waves.

An example of the dispersion-managed soliton inter-
action at g ­ 3.65 is shown in Fig. 4. Note that the
interaction of the dispersion-managed solitons is dra-
matically different from that of fundamental solitons
in uniform-dispersion f ibers. Figure 4(a) shows the

Fig. 2. Intensity and spectrum of a dispersion-managed
soliton at g ­ 18.3 as shown on a logarithmic scale. The
time scale is normalized to the pulse FWHM, and the fre-
quency is shown in the soliton units sv 2 v0dt0y1.76. The
time-domain intensity is normalized to the peak intensity of
a fundamental soliton at the same average dispersion and
pulse duration. The frequency-domain intensity is nor-
malized to the peak intensity.

Fig. 3. Dependence of the dispersion-managed soliton in-
teraction length on the parameter g. The f illed squares
correspond to the initial pulse separation 3t0, the circles
correspond to 4t0, and the open squares correspond to
5t0. The triangles show the interaction length for pulses
separated by 4t0 that have an initial p-phase difference.
The interaction length is normalized to the fundamental
soliton period.
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Fig. 4. Interaction of (a) two in-phase fundamental soli-
tons, (b) two in-phase dipersion-managed solitons, and (c)
two opposite-phase dispersion-managed solitons for g ­
3.65. The propagation distance is normalized to the fun-
damental soliton period.

interaction of two fundamental solitons that are ini-
tially in phase. In contrast with fundamental solitons
that interact periodically, re-emerging undistorted af-
ter interaction, the dispersion-managed solitons be-
come closely bound after the f irst interaction, as shown
in Fig. 4(b). These solitons attract each other when
g . 3.3, corresponding to DtDn . 0.45 and a stretch-
ing factor .1.5 regardless of the initial phase, as shown
in Fig. 4(c).
In conclusion, we have studied the interaction of
dispersion-managed solitons, and we have shown that
there is an optimal energy-enhancement factor beyond
which the mutual soliton interaction grows stronger.
The shape of the dispersion-managed soliton changes
from hyperbolic secant, to Gaussian, to f lat top as the
enhancement factor grows, and the optimal point cor-
responds to a nearly Gaussian shape. These results
suggest that there is a practical limit to the enhance-
ment factor owing to the mutual interaction.
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