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Dispersion-managed soliton dynamics
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We obtain and solve algebraic eigenvalue equations that predict the dependence of the pulse energy of a
dispersion-managed soliton on pulse duration, chirp, and dispersion-map parameters. We demonstrate that
a variational ansatz based on a Gaussian pulse shape remains useful even when the actual pulse shape is
not Gaussian, and we show that the enhancement factor saturates as the pulse duration decreases.  1997
Optical Society of America
Impressive results obtained recently indicate that
dispersion-managed solitons have advantages relative
to standard solitons in either constant-dispersion or
even dispersion-decreasing optical fibers. Single-
channel distance 3 rate products have been achieved
that exceed the best results for standard solitons
without soliton control obtained with either sliding
filters or active retiming.1,2 Theory indicates that
there is a reduced Gordon–Haus jitter at any given
dispersion,2– 4 a reduction in the mutual interaction,5

and either comparable or reduced timing jitter in a
wavelength-division-multiplexed system.6 Numerical
simulations indicate that as the difference between
the dispersion in the spans of the dispersion map
increases, with the average dispersion kept fixed, the
pulse shape at its point of maximum compression
changes from a hyperbolic secant shape to a Gaussian
shape1,2 to a shape that is sinclike.5

A key theoretical distinction between solitons and
nonreturn-to-zero signals is that the former can be
analyzed with reduced models that follow only a few
of the soliton’s parameters, whereas the latter with
few exceptions must be analyzed with the nonlinear
Schrödinger equation and its extensions. This distinc-
tion is conceptually important,7 but it also has prac-
tical implications because it implies that the soliton
systems are simpler to analyze and design. In par-
ticular, theoretical predictions of soliton amplitude and
timing jitter based on reduced models have yielded im-
pressive agreement; there is no analogous result for
nonreturn-to-zero systems.

It is natural to ask whether it is possible to ob-
tain a reduced description of the dispersion-managed
solitons that can accurately reproduce the behavior
during an entire period of the evolution. Here we
answer this question affirmatively. Aside from this
conceptual issue, we had an important practical moti-
vation for developing a reduced model. Determining
the shape of the periodically stationary pulse as a func-
tion of pulse duration and system parameters directly
from a numerical solution of the nonlinear Schrödinger
equations is computationally time consuming, requir-
ing considerable trial and error5—particularly if the
launching point is a point of maximum expansion
where the pulse is chirped. Using our reduced ap-
proach, we have been able to explore a wider range of
the parameter space than was possible previously and
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to show that the enhancement factor ultimately satu-
rates as the pulse duration decreases, a result that was
later verif ied computationally.

Our reduced model is derived by use of Anderson’s
variational approach8 with a Gaussian ansatz. The
Gaussian ansatz is used both because of its simplicity
and because computational results indicate that pulses
have this shape at certain values of the dispersion dif-
ference. We show, however, that it yields reasonably
accurate results even when the shape is not Gaussian.
Our starting point is the nonlinear Schrödinger equa-
tion, modif ied to include a spatially varying dispersion
Dszd and gain gszd:
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where q is the normalized field amplitude and z and t
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where, physically, A, t, a, and s indicate the pulse’s
amplitude, duration, chirp, and phase, respectively.
The variational method yields the following equations:
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where S ­ sU0y
p

2 dGszd, G ­ expf2
Rz

0 gszddzg, and
A2t ­ U0 is constant as a function of z. It follows from
Eqs. (3) below that the equation for the pulse duration
in each homogeneous span is
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Equations similar to Eqs. (3) were previously ob-
tained by Gabitov et al.9 and by Matsumoto and Haus,10

who verif ied numerically that the equations work well
with a Gaussian ansatz in the parameter region in
which numerical results show that the pulse shape
is Gaussian. Here we demonstrate that the equa-
tions are useful even when the pulse shapes are non-
Gaussian. We also note that Yang and Kath11 used
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another reduced approach, based on perturbation the-
ory, to derive the numerically observed4,5 increase in
the enhancement factor when the pulse duration de-
creases. Here we show that the enhancement factor
saturates as the pulse duration decreases.

From here on, we focus on a lossless medium to
relate our results to those that have been published,4,5

although we stress that our formulation applies equally
well when loss is compensated for by gain. In the
case considered here S is constant as Gszd ­ 1. The
solution to Eq. (4) in a single span can be written
implicitly as

sCt2 1 2ft 2 1d1/2 2
f

p
C

lnhCt 1 f 1 fCsCt2

12ft 2 1dg1/2j ­ 2CDz , (5)

where C ­ a0
2t0

2 1 1yt0
2 2 2fyt0, f ­ Sy2D, and

a0 and t0 are the chirp and the pulse durations,
respectively, at the beginning of the span, as shown in
Fig. 1. Equation (4), which is symmetric with respect
to z, has a solution in which tszd is strictly symmetric
about the midpoint of each span of the dispersion
map and for which aszd is strictly antisymmetric. We
search for periodically stationary solutions tszd and
aszd with the period of the dispersion map length.
The symmetry condition together with the periodicity
condition implies that the solutions satisfy tsL1d ­
tsL1 1 L2d ­ t0 and asL1 1 L2d ­ 2asL1d ­ a0, where
L1 and L2 correspond to the lengths of the spans
with dispersions D1 and D2, respectively. Combining
these conditions with Eq. (5), we obtain the following
algebraic eigenvalue equations for determining the
boundary values of a0 and t0:
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where f1, 2 ­ f sD1, 2d and C1, 2 ­ CsD1, 2d. The pulse
durations at the midpoints of the spans with dispersion
D1 and D2 are then defined as
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To validate the variational approach we first com-
pare the pulse dynamics given by Eqs. (5) and (6) with
a complete numerical solution of Eq. (1), using the
split-step method. The first case, in Fig. 2(a), corre-
sponds to g ­ 2fsD1 2 DdL1 2 sD2 2 DdL2gytFWHM

2 ­
2.89, where D ­ sD1L1 1 D2L2dysL1 1 L2d and where
tFWHM ­ s2 ln 2d1/2t1 is the pulse full width at half-
maximum at the midpoint of the f irst span. At this
value of g, the complete numerical solution of Eq. (1)
shows that the pulse shape is nearly Gaussian.5 The
second case, shown in Fig. 2(b), corresponds to g ­
5.83, at which point the pulse shape differs substan-
tially from a Gaussian.5 Nevertheless, the variational
approach accurately predicts the evolution of the pulse
duration and the chirp. The point here is that in
the Lagrangian the pulse duration and chirp are de-
fined as integrated characteristics of the pulse through
the expressions t ­ s
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2` jqj2dt. The varia-
tional approach integrates over the pulse profile and
is to some extent tolerant of the choice of ansatz.

We now apply our approach to determining the
dependence of the pulse energy S on g, keeping D1,
D2, and D f ixed and decreasing the full width at half-
maximum pulse duration tFWHM. It was previously
found empirically that the pulse energy increases
quadratically with g,4,5 and our results are consistent
with that result when g is small. The quadratic de-
pendence proves to be correct when the average disper-
sion length Ldisp ­ tFWHM

2yD is much larger than the
length of the dispersion map, Lmap ­ L1 1 L2. How-
ever, when g increases, the enhancement factor even-

Fig. 1. Schematic illustration of the dispersion map.

Fig. 2. Comparison of the stable pulse duration and
chirp dynamics found with the help of Eqs. (5) and (6)
(solid curves) with those produced by direct numerical
simulations of Eq. (1) (f illed diamonds) in the medium with
D ­ 1 and a dispersion map length 2L1 ­ 2L2 ­ 0.1554; (a)
D1 2 D2 ­ 58, (b) D1 2 D2 ­ 117.
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Fig. 3. Dependence of the stationary pulse energy S on
g for the case L1 ­ L2, D ­ 1, and D1 ­ D2 ­ 58, as
predicted in this Letter (solid curve) and in Refs. 4 and
5 (dashed curve). Open diamonds represent the results of
direct numerical simulations of Eq. (1).

tually saturates, as shown in Fig. 3. Physically, this
saturation occurs when the average dispersion length
Ldisp becomes comparable with the length of the
dispersion map Lmap. Significant discrepancies from
quadratic growth in the enhancement factor are visible
when Ldisp & 5Lmap. We verif ied this saturation by
using numerical simulations, although we note, as
shown in Fig. 3, that the quantitive agreement with
the variational approach is not good. Here both the
strength and the weakness of the variational approach
are manifest. The computational rapidity and physi-
cal transparency of the approach made it possible for
us to examine the parameter regime globally and to
observe this saturation in the first place. However,
its lack of quantitative reliability in the case when g

becomes large and the pulse shape differs significantly
from our Gaussian ansatz required us to verify this
result, at least in selected instances.

In conclusion, we have shown that the basic char-
acteristics of dispersion-managed soliton dynamics can
be successfully described by ordinary differential equa-
tions. Focusing on the lossless case, we derived im-
plicit equations for the pulse duration and the chirp,
and we showed that these equations can accurately
describe the behavior of the dynamics even when the
shape differs significantly from a Gaussian. Even un-
der extreme conditions when the approach failed to
yield quantitatively accurate results, we found that it
still provided a useful starting point for numerical in-
vestigations. We note that one can use these equa-
tions to determine the required chirp when launching
a pulse at the edge of one of the spans of the disper-
sion map, which was one of our principal motivations
for developing this approach. We then applied this ap-
proach to determining the dependence of the pulse en-
ergy on g as the pulse duration decreased and showed
that the energy saturates.
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