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Dispersion-managed solitons at normal average dispersion
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We find that in a dispersion-managed fiber, in which the strength of the dispersion management is above some
threshold, solitons can exist with normal average dispersion. When the normal average dispersion is below
some limiting value there exist two soliton solutions with the same pulse duration and different pulse energies.
When the normal average dispersion is above this limiting value, no soliton exists. Both higher-energy and
lower-energy solitons are dynamically stable in the parameter range that we considered.  1998 Optical
Society of America

OCIS codes: 060.5530, 060.4370.
It was recently shown that in strongly dispersion-
managed fibers, consisting of a periodic dispersion map
with alternating spans of anomalous and normal dis-
persion, solitons can exist not only with anomalous av-
erage dispersion but also with zero and normal average
dispersion.1 Here we find, based on a reduced model
that we described elsewhere,2 that if the dispersion dif-
ference DD between the anomalous and the normal
dispersion spans is higher than some threshold, the de-
pendence of soliton energy S on average dispersion D̄
is described by a C-shaped curve. The curve starts
at D̄  0 when S  0. From there, as S increases, the
curve moves into the normal dispersion region but then
bends around after reaching a limiting value of normal
dispersion, ultimately moving into the anomalous dis-
persion region. We used a reduced model because it
allowed us to explore rapidly a large parameter space,
but we checked our results by full numerical simula-
tions in key instances and found good agreement.

Our starting point is the nonlinear Schrödinger
equation in the lossless medium, modified to include
a spatially varying dispersion Dszd:
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where we have used a standard normalization of the
nonlinear Schrödinger equation. We choose a time
scale T0, which is of the order of a pulse duration, and
a (negative) dispersion scale b2, which is of the order
of typical average dispersion in our system. Then we
set z as the distance normalized to length scale LD 
2T0

2yb2, t as time normalized to T0, D as dispersion
normalized to b2, and q  E sn2vLDyAeffcd1/2, where E
is the actual field amplitude, n2 is the Kerr coeff icient,
v is the frequency of light, Aeff is the effective area,
and c is the speed of light. First we analyze this
system based on a reduced model obtained with the
help of a variational approach.2 This approach was
first described in the context of optical fiber solitons
by Anderson3 and further developed for dispersion-
managed solitons in Refs. 4 and 5. We recall that with
the ansatz
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where A, t, a, and s indicate the pulse’s amplitude, du-
ration, chirp, and phase, respectively, the variational
method yields the following equations2 – 5:
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where S  U0y
p

2 and A2t  U0 is constant as a func-
tion of z. We consider a dispersion map consisting of
the anomalous and normal dispersion spans L1, 2 with
dispersions D1, 2, respectively, periodically repeating
in z. Using symmetry and antisymmetry conditions
for t and a, respectively, which imply that tsL1d 
tsL1 1 L2d  t0 and asL1 1 L2d  2a0sL1d  a0, one
can derive the following eigenvalue equations, which
determine the parameters of the dispersion-managed
soliton2:
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where f1, 2  f sD1, 2d, C1, 2  CsD1, 2d, C  a0
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the midpoints of the spans with dispersion D1 and D2
are then defined, respectively, as
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Using Eqs. (4), we vary the average dispersion D̄ 
sD1L1 1 D2L2dysL1 1 L2d with a fixed dispersion dif-
ference DD  D1 2 D2 and numerically find the nor-
malized pulse energy S. Figure 1 shows the variation
of SsD̄d for six values of DD when L1  L2  0.0777.
This length corresponds to 100 km when the dispersion
unit is b2  20.1 ps2ykm and the time unit T0 is chosen
such that the pulse duration is TFWHM  1.763 3 T0 
20 ps. Then LD  1287 km, and for Aeff  47 mm2 and
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n2  2.6 3 10216 cm2yW the nonnormalized pulse en-
ergy is 0.007 3 S pJ. One can see that at small DD
the curve SsD̄d is almost a straight line, and there
is no solution with normal average dispersion. How-
ever, when DD exceeds a threshold value of ,190 the
curve makes a bend through the normal dispersion
regime. Beyond the threshold dispersion difference,
a nontrivial solution exists for the dispersion-managed
soliton with exactly zero average dispersion.1 One can
see from Fig. 1 that, if the normal average dispersion
does not lie below the turning point, there exist two
solitons with energies A and B. At the turning point
the lower- (B) and higher- (A) energy solitons merge.
We verif ied these results, using complete numerical so-
lutions of Eq. (1). Figure 2 shows the actual FWHM
pulse duration at the point of maximum compression
in the anomalous dispersion span as a function of nor-
malized pulse energy S along the curve correspond-
ing to DD  220 in Fig. 1. The pulse duration differs
by ,9% from what was predicted by the solutions of
Eqs. (4), but it remains almost constant at ,1.97. We
conclude that for every value of average normal disper-
sion D̄ above the turning point there are in fact two
solitons with nearly equal pulse durations and differ-
ent pulse energies. The pulse shapes of the higher-
and the lower-energy solitons at the point of maximum
compression remain nearly the same, with a f lat top
and weakly oscillating wings that are apparent only on
a logarithmic scale.

A careful study of the evolution during one period
of the dispersion map yields an important clue to why
strongly dispersion-managed solitons can exist with
average normal dispersion. In Fig. 3 we show the
evolution of the soliton corresponding to point A in
Fig. 1. It is apparent that the soliton undergoes more
compression in the anomalous dispersion span than in
the normal dispersion span. Consequently, the length
of the anomalous dispersion span measured relative
to the dispersion length can be greater than that of
the normal dispersion span, so the rescaled average
dispersion would be negative rather than positive,
giving the dispersion and the nonlinearity a chance to
balance.

Finally, we consider the stability of the solitons by
injecting an initially hyperbolic secant pulse and allow-
ing it to evolve. Figure 4 shows the evolution of a hy-
perbolic secant pulse to the lower-energy soliton, which
corresponds to point B in Fig. 1. One can see the
buildup of the oscillating wings of the soliton and then
stable propagation of the soliton over a long distance
z  1000. For the system parameters indicated above
this distance corresponds to more than 1.2 3 106 km.
Lower-energy, dispersion-managed solitons were
stable even with small energy in the normal average
dispersion near the zero-dispersion point when we
varied the energy in the range indicated by diamonds
in Fig. 2 along the curve corresponding to DD  220
in Fig. 1. This point is significant because Carter
et al.6 recently showed that the main source of errors
in a dispersion-managed soliton system is the growth
of spontaneous-emission noise. The stability of the
lower-energy soliton solution may indicate that the
noise growth is nonlinearly damped in the normal
dispersion regime by being incorporated into the
lower-energy soliton. However, the question of soliton
stability in the whole parameter space in the normal
dispersion regime still remains open. One interesting
effect here is a very long-term instability indicated
recently by Turitsyn7 and by Kodama et al.,8 assuming

Fig. 1. Dependence of the pulse energy on the average
dispersion for six dispersion differences DD predicted by
the reduced model.

Fig. 2. Comparison of the FWHM pulse durations ob-
tained from the reduced model (solid line) and full simu-
lations (f illed diamonds) corresponding to curve DD  220
shown in Fig. 1.

Fig. 3. Pulse evolution of the stable soliton corresponding
to point A of Fig. 1 inside one period of the dispersion map.
The starting point is the point of maximum compression
inside the anomalous dispersion span.
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Fig. 4. Evolution of a hyperbolic secant pulse to the stable
lower-energy soliton corresponding to point B of Fig. 1.
The intensities are cut off at 5 3 1024.

a quadratic chirp, that is of conceptual interest even
if it might be unobservable in practice because of the
intervention of other effects.

In conclusion, we have shown that if the strength
of the dispersion management is above some thresh-
old then two different dispersion-managed solitons of
higher and lower energy and the same pulse duration
can exist when the magnitude of normal average dis-
persion is below a limiting value. If the magnitude
of normal average dispersion exceeds this limit then
no dispersion-managed soliton can exist. Both higher-
and lower-energy dispersion-managed solitons are dy-
namically stable, periodically stationary pulses in the
range of parameter space that we have considered.
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