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Solutions to the optical cascading equations
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Group theoretical methods are used to study the equations descyfBing® cascading. The equations are
shown not to be integrable by inverse scattering techniques. On the other hand, these equations do share some
of the nice properties of soliton equations. Large families of explicit analytical solutions are obtained in terms
of elliptic functions. In special cases, these periodic solutions reduce to localized ones, i.e., solitary waves. All
previously known explicit solutions are recovered, and many additional ones are obtained.
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[. INTRODUCTION the cascading equations are not integrable. We do, however,
show that well behaved analytical solutions exist in special

Materials with a significany(®) nonlinearity exhibit soli- cases. Explicitly, elliptic function solutions are presented in
tonlike beam or pulse propagation. These materials can beec. IV together with their elementary function limits. Some
modeled by the nonlinear Sciioger equation and its vari- further special cases are discussed in Sec. V. Conclusions are
ants[1], which are known to be integrable and possess exadrawn in the final Sec. VI.
soliton solutions.

In the case of¢(?) materials, it has been possible to pro- 1l. CASCADING EQUATIONS AND THEIR REDUCTION
duce solitary waves through!®:x(? cascading[2]. This
effect occurs in parametrically coupled fields with quadratic]c
nonlinearities in which the nonlinearities in the fundamental
and first harmonic fields interact in a way that mimics the r
X nonlinearity. Moreover, several particular cases of soli- iay— sanntaia,=o0,
tary wave solutions of the system describing this phenom- 2
enon have been obtained numerically and analyticgBy-
9)).

The solitons ofy® type are known to belong to families
that include periodic solutions. It is essential to know if this
is the case for the solitary waves of thé?) type, mainly  wherea,; anda, are the normalizedcomplexy envelopes of
because the system describing them is not integrable. We dbe fundamental and second harmonic waves, respectively.
not know what properties of integrable systems these solitaryhey are functions of two variables, namety the normal-
wave solutions possess. ized distance along the wave guide, andthe normalized

Moreover, the periodic solutions containing these solitarytransverse coordinate. The constants involved are-1 and
waves as limiting cases can be important in their own righta, 8, andd (all reals. Physically,a is given by minus the
especially if they are stable. For instance, they may propatatio of the wave numbers of the fundamental, and its first
gate as a background to solitary wave signals. harmonic which nearly equals 0.5. This ratio becomes ar-

In this paper we find families of periodic solutions ex- bitrary when considering temporal structures, but these are
pressed in terms of elliptic functions. As special limiting difficult in practice to observg3]. The quantity8 corre-
cases, we obtain elementary trigopnometric solutions and alsgponds to the normalized wave number mismatch. It may be
localized solitary wavesincluding all those found earlier ~ written 8=k, 72Ak, whereAk= 2k, —k; is the actual physi-

Let us write the cascading equations in the normalized
orms [3]

a

5 B2t a?=0, 1)

iay— Ba,—idas,—

We mention that not all of the solitary waves are stapl®—  cal mismatch andy is a parameter that characterizes the size
12]) and that the stability of periodic solutions needs a sepaef a single beam which is 10 to 5@m in typical experi-
rate study. ments[2]. One then finds thaB is typically in the range

In Sec. Il we present thg®:x(® cascading equations, —50 to 50. The paramete$ corresponds to a normalized
and find their Lie point symmetry group. We then reduce thewalkoff coefficient, and may be writtefi=k; p, wherep is
system to a set of four coupled real ordinary differentialthe actual walkoff angle. In typical experimengsjs in the
equations for traveling wave solutions. These reduced equaange—2 to 2.
tions are further studied in Sec. lll. We show that in general To obtain explicit solutions we use the method of symme-
the equations do not have the Painlgueperty[13,14 so  try reduction, i.e., use Lie point symmetries to reduce Egs.
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(1) to ordinary differential equations. We first replace Eq. ¢=km, keZ,
by four real equations, putting
) ie.,
a(X,t) =Ry(x,t)e' %t k=172,
sin =0, cos¢=¢, €°=1. (10
O=R(<», 0s¢<2m, 2

We shall call such solutions “phase locked solutions.” Let
and apply a standard algorithm to find their symmetry groupus first assume
[15-17. In the generic case, when all constants in the equa-

tion are arbitrary, the symmetry group of the equations is just raw#0, (17
three dimensional, consisting of translationsximndt and o ) )
correlated shifts of the phasé;—¢,+\ and ¢,—¢, and simplify notations, putting
+2\. The Lie algebra of the symmetry group has a basis
consisting of the operators _lww—v _2a00;-v— 0w
2 ! 2 !
P1=o7x, POIO"t, W= ﬁ¢1+ 2&¢2 (3) ro aw
2 2
We shall consider solutions invariant under the subgroup _ 2001~ 2K~ 20w, — B _loi—2k,
generated by aw? ' ro?
X:UP1+ wP0+(KlU)_U)lU)W, (4) 2N1 2N2 12
wherev, w, k1, andw, are real constants. e T w2 (12
The invariant solutions then have the forms
. . Equations(6)—(9) can be rewritten as
a;(£) =Ry(§)e'41@¢!(xatmor),
. : M
ay(£) = Ry(£)€! P2 D2 at=erx), Bi=At . (13
1
&= wx—uvt. (5)
, 2
The four real functiondR;, R,, ¢;, and ¢, satisfy the fol- $,=B+—, (14
lowing system of coupled ordinary differential equations: R2
r 2 g " ! H 2 26
50 (2R1$1 TRy d1) T (rww; —v)R + Ry Rysin ¢=0, R;—R;¢;%>+2AR, ¢, —DR;— ERlRZ:o, (15)
(6)
a 2 . " 12 ’ 2¢ 2__
- §w2(2Ré¢§+ Ro5) + (2aww,— v — dw)R,— Résing R~ Ra¢5"+2BRyp;— CRy— 2 Ri=0. (16

0, (7)

B. CaseM M,#0

r , , LT The phase locking conditioffl0) imposes a relation be-
— AR~ R1¢12>+<v—rwwl>R1¢1+(gwi— Kl) Ry % o P

2 tweenR; andR,, namely,
+R;R, cos ¢=0, (8) M 2M
o B+ —=2A+ 2, (17)
o R> R1
— 5 0’ (R3—Rp$y?) — (2awwi—v — 6w)Ry¢h) . . ,
2 so that the systeril3)—(17) is overdetermined. Expressing
+(2aw?—21,— B—28w1)Ry+ R2c0S =0, 9) Ry, ¢1, andg, in terms ofR, and substituting into Eq$15)

and (17), we obtain two second order ordinary differential
equations foR,. These turn out to be compatible only Ry
and R, constant. This case will be considered separately in

d=¢,—2¢;.

It is the system of equation®)—(9) that we wish to solve.

I1l. ANALYSIS OF THE REDUCED EQUATIONS
A. Phase locked solutions

The system of equation(®)—(9) is in general quite diffi-
cult to decouple and solve. It is greatly simplified if we im-
pose a supplementary restriction on the phases, namely,

Sec. V below.

C. CaseMM,=0

Again R; andR, are constant, unless we have

Let us investigate casd 8). We have
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di=A, ¢y=B=2A. (19 An alternative procedure is to solve HG1), again under
the condition(22), for R,. We obtain the ordinary differen-
We put tial equation
) 2¢ ) 2¢ 2(Ry+CoRy) (RY + CoR%) — (Ry + CoR5) %+ 4(Ag+ BgRy)
AO:A _D, BOZ__Z, COZB _C, DOZ__Z,
o aw X (R5+ CoR,)%=0. (26)
(20)

] ) ] ) ) A Painleveanalysis of Eq(26) leads to the same conclusion
and obtain a system of two ordinary differential equations ¢ that of Eq(23.

RZ+A0R1+ BoRlRZZO, i Lo i i
D. Introduction of the elliptic function equation
R+ CoR,+ DoRZ=0. (21 Let us look for solutionsR,(€) satisfying Eq.(26), and

) ) _ ) ) also the elliptic function equation
This system is not overdetermined since constréli) is

now simply the conditior(19) on the constants, i.e., R52=y,R3+ y3R3+ y,R5+ y1Ro+ 74 (27)
2av—rv—o6rw=0. (22 The compatibility of Eqs(26) and(27) implies
Eliminating R, from Eq.(21), we obtain a fourth order equa- ¥4=0, (28)

tion for Ry, namely, . . . .
! y and imposes six relations between the constants in 6s.

(R’l’ " R] ) and (27). These allow for the following solutions.
—| +Cy= —BoDoR2+A,Co=0. (23)
Ry Ry (1) 73#0, Co(Co=Ag)#0 (29
If the original Egs.(1) are integrable, then Eq23) should The constanty,, in Eq. (27) are completely specified:
have the Painleveroperty, i.e., have no movable singulari- a
ties other than pole$13,14. An algorithmic test exists 2B,
[13,18, establishing certain properties of an equation, nec- ¥3=~ 3 ¥2=Co=2A0,
essary for it to have the Painleyeoperty.
Thus, the general solution of E(®3) must allow an ex- (Cot2A0)(Co—Ay)
pansion in the neighborhood of any singular point of the Y1= B )
form 0
°°  (Co+2A0)%(Co—Ao) (30
Ri= 2, aué—&)""", (24) Yo 6B2

with p a negative integegy+ 0, and three of the coefficients T_he other amplituder,(¢) is given directly by the expres-

a, arbitrary. ThernR; has a good chance of representing the®
general solution of qu3), depending on four arbitrary con- , 1 ) (Ag—Co)(2A0+ Cyp)
stants(one of them being,, the position of the pole The RI=—= BoR5+2(Ag—Cp)Ro+

values ofk for which a, are arbitrary(i.e., are not deter- Do 2Bo (31)

mined by a recursion relatigrare called “resonance” val-

ues. o _ . _ and we must requir&’ to satisfy

Substituting the expansiot®24) into Eq. (23), we find

p=—2,a5=36/(BoDy), and the resonance values R2=0 (32

r=—1, 6, (5=i J23)/2. (25) in the entire range of values &, a condition to be analyzed
below.

Thus, we have only one nonnegative integer, nanehs, Notice that Eq(27) will have solutions depending on just

rather than the three needed. An analysis of the obtainedne parameter, an integration constant, since the coefficients

recursion relations shows thag, ... ,as are fully deter- v, are fixed in terms of,, By, Co, andDy. The only con-

mined;ag is indeed free, and can be chosen arbitrarily. Therstraints on the constants in the original equatitns , «, 8,
a; and all the higher terms are fully determined in terms ofand &, and those introduced in the reduction procedife
& andag (and of coursédg, By, Cp, andDy). Thus Eq.(23) namely,v, w, k1, andw; are Eqs(11), (22), and(32).
does not have the Painlepeoperty, and the cascading equa-

tions (1) are not integrable. (2) y3#0, Cp=0 (33
The Painleveanalysis does, however, indicate that fami- ) )
lies of “well behaved” solutions should exisi.e., single In this case, we obtain

valued in the neighborhood of their movable singularjties
depending on one or two free parameters rather than on four.
We shall find such solutions below.

2B, 2A3
Y3= T 3 Y2=—2Ao, yl:_B_o' (34)
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and vy, is arbitrary. Moreover, we have
/Bo Ao
Do

R,+

Ry= 2 B_o

. (35

Thus we obtain a two parameter family of solutions, the
parameters beingg and a constant arising in the integration

of Eq. (27). The constraints on the coefficients are H44),
(22), andCy=0, i.e.,

200+ w(2k10+ Bo—2ww)=0 (36)
(we haver?=1).
(3) v3#0, Co=Ag (37)
We then have
2B,
Ysz_T: Y2=—Ao, 71=0, (39)

and vy, arbitrary. Again, Eq(27) provides a two parameter
family of solutions, and the constraiy=A, is

3av?+2ro(a—2r)(ww—kiw)+2Bw?=0, (39
and we have
Ry= ERz. (40)
Do
(4) 7=0 (41)
In this case, Eq(27) reduces to

Ry*=—CoRy+ %o. (42

The solutions are
R,=0 43
- %(§_50)2+Ma Co#0 )

p(&=&o), Co=0

E. Phase locked solutions fora=0

We return to Egs.(6)—(9) for a=0, sing=0, and
cos¢ = €. From Eq.(7), we see thaR,# const implies
v+ dw=0. (45)
Equation(6) can be integrated to give
, 2N 1 rew;—v (46)
b2 R% 2 ,

whereN is an integration constant.
In order to haveR; # 0, we impose

and obtain from Eq(9) that we have
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Ri=[e(2k;+ B+28w1)R,y]Y2 (48)

Finally, Eq.(8) implies thatR, satisfies the elliptic function
equation
16N?

w* (2K, + B+26w,)?
(49

(R})?=—2BoR3—4A,R5+ SR, —

Since bothN and S are arbitrary integration constants, Eq.
(49) yields a three parameter family of solutions.

IV. SOLUTIONS IN TERMS OF ELLIPTIC FUNCTIONS
AND THEIR LIMITING CASES
A. General comments on the elliptic function equation

In Sec. Ill we have obtained three equations of the type

R'?=B3R%+ B,R?+ B1R+ By, (50)
whereB; are real constants angs+ 0. Putting
f=p3R, (51
we obtain the equation
£12= 13+ B,of2+ B1Bsf + BoPS3. (52

We introduce the root§,, f,, andf; of the polynomial on
the right hand side of Eq52), and rewrite this equation as
fre=(f—f)(f—f)(f—fs). (53

The solutions of this equation can be expressed in terms of
Jacobi elliptic functiong19] if the three roots are distinct.
The case of multiple roots leads to solutions in terms of
elementary functions.

Let us first consider the case of three real roots, and order
them to satisfyf,<f,<f;. We are only interested in real
solutions.

(D

We obtain a finite periodic solution

fo<f<f,<fs

f=(f2—f1)sr12(u,k)+fl,

f,—f Vi—f
K=, u= (&), (54)
fa— 1, 2

where ¢, is a real integration constant.
(2)

A special (limiting) case of solutior(54) is obtained for
f,=1f3, namely the solitary wave solution

f1$f$f2:f3

f=(f,—fy)tantf(u)+f,, (55)
with u as in Eq.(54).
(3)

We obtain a singular periodic solution
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f=(f3—fy) (56)

! +f
sf(uk)
with u andk as in Eq.(54).

(4) f1:f2<f3$f

For f,=f,, solution (56) reduces to an elementary peri-

odic singular solution, namely,

f=(f3—f,) (57

fq.
sinz(u)+ !

(5) f1<f2:f3$f

For f,=f3, solution(56) reduces to a “singular solitary

wave,” hamely,
f=(f3—f1)00th2(u)+f1. (58)

(6) f1=f2=f3$f

A triple root corresponds to a “singular algebraic solitary

wave”

4
(£—&0)?

+f,. (59

The case of one real and two mutually complex conjugated

roots leads to singular periodic solutions.

(7) fi=a+ib, f,=a—ib, f3,a,beR, b>0
The solutions are
fs+P+(fz3—P)cn(u,k)
B 1+cn(u,k) ' (60)
P+a—f
U:\/B(g_fo), kZZTS, P2=(a—f3)2+b2.

(61)

B. Explicit solutions of the cascading equations fora# 0

(1) Case(29)
We have

2
Bo=Co—2Aq, PB1B3=— §(Co+ 2A0)(Co—Ap)

2
BoB3=25(Cot+2A0)*(Co—Ao),  Co#0, Co#Ag
(62)

in Eq. (52). Using Eq.(31), we have

R2=—2—Bof,
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9

4 2
R§=m f2—3(Ap—Co)f + §(A0—Co)(2AO+CO)}.
(63

A globally defined solution exists in is positive for all
values off . We note that the roots of the polynomial defining
R? are

fas=3[2(Ag—Co) = V6Co(Co—Ag)]. (64)

Hence forCy(Cy—Ag) <0 the functioan is sign definite,
and can be chosen to be positive definite. Eg(Cy— Ag)
>0 a more careful analysis is required. Thus solutib4)
provides a global solution if the roots satisfy one of the fol-
lowing relations:

fisf<sf,sf,<fgz. (65
Similarly, caseg56) and (60) both require
fasfgsfy<f. (66)

Multiple roots occur in the two excluded caseg=0 and
Co=A,, but also in the allowed case

C(): _ZAO (67)
For A;<0 we obtain, from Eq(55),

o _61Ad 1
> Bo cosf \IA|(¢— &)1’
o __6lAd sint VAol (- &0)]
Y J=BoDy cosR VA (- &)1

so that we must requirByD(<<0.
Similarly, for Ag<<0, Eq.(58) provides the solutions

(68)

o BlAg 1

2" Bo sinR[V|AJ(é—&)]
o 6|Ag| coshi VAl (£—&o)]
1 VBoDo S \[Al (- £0)]’

with the requiremenByD>0.
For Ap>0 it is solution(57) that is relevant, and yields

(69)

% 1
Bo sir?[VAs(£—&0)]
n_ B8R0 cofVAg(£— )]
Y VBoDo sirf VA £~ £0)]

(2) Case(33): Cy;=0
Equation(52) is

BoDy>0. (70

2

4 4B
/2= 2= 2A0f 2+ ZA3F+ 7057, (72)
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with vy, arbitrary, and

3 1
Ry=——f, R;= —-3f+2A,), ByDy>0.
2 ZBO 1 Zm( O) oo
(72)

SOLUTIONS TO THE OPTICAL CASCADING EQUATIONS

A multiple root, namely, a triple one, occurs in one case only

f2=| f 2A )3 Gl (73
3 0] » Yo 38(2)1
and we have
2T T 0/
Bol (£-&p)?
-6 1

VBoDg (£—&p)?

In all other cases, two of the roofs are complex, and is
given in Egs.(60) and (61).

(3) Case(37): Co=Ag

2523
Equation(52) in this case is
fr2=f3— A f2+ yOTBg, (75)
wherey, is arbitrary, and we have
R,=— if, Ry=— > f, ByDy>0. (76)
2B, 2\ByDo

The discriminant of the cubic equatidh?=0 is
(77)

For D<0, two roots are complex; fdd >0, they are all real
and distinct; and foD =0, we have a double or triple root.
The absence of a first degree term in Etp) implies that for

f; real the three signs df cannot be all the same. Moreover,
if a root is equal tof; =0, it must be double. The elementary
solutions in this case are as follows.

D =% (A3—-3B370)B3vo.

(1) yo=A3/3BZ. The finite solitary wave, the singular
solitary wave, the singular periodic solution, and the singular
algebraic solutions in this case are

Ry= &Rlz_%e’tanﬁ @(§_§O)>_1}1 Ao>0, (78)
0 0
D A VA
e /2o 223 cond e 1], o0, 79
Ry— %RFJZAE?W Jﬁ —2|, A=<0, (80)
’ °{sin2( 2°<§—§o>)
/o
R,= —OR1=—L2, 0=V, (82)
Bo Bo(£—&o)

respectively.

(2) yo=0. The four different real solutions in this case are

3 VIA

Rz=2—BolelsecH( '2°|<§—§o>), A< (82
R,= 1A ! A,<0 (83

2__§ 0 A ' 0

i sinr?( “2_‘)'@—50))
R,= — Sho ! A,>0  (84)
2= 7 5B. A ) 0
” sir? Q(&—f@)

and forAy=0 we reobtain solutiori81).

C. Solutions for a=0

Equation(52) [obtained from Eq(49)] in this case is
f'2=13—4A,f?— 2B Sf—4M?B3, (85)

whereS and M are arbitrary. All possibilities for the three
roots f; occur, but we have the restriction
fifof3=0. (86)

We have

e
Rz—_2_BOf, Rl_ — €

For R; to be globally defined, we neddto be sign definite.
This imposes the following restrictions on the roots for each
of the solutions of Sec. IV A.

(2Kl+ ,8+ 25(1)1)
2B,

f. (87
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Solutions(54) and (55):

fi=f=f,<0=<f; or Osf;sfsf,<f;.

Solutions(56)—(58):

Solution (60):

V. OTHER EXPLICIT SOLUTIONS

In Sec. IV we presented solutions of Ed.) satisfying
a,a,# 0, and such thdi,| and|a,| are not constant. Let us

now discuss these previously rejected solutions.
(1) Solutionswith a;=0

For a#0, we put
52
Bt5,

a(X,t)=w(x,t) expi

t——xXx
a

Equation (1) for a,(x,t) and a;=0 reduces to the linear

Schralinger equation

For «=0, the solution of Eq(1) is
a(x)=e"Pw(f), E=x+ot
wherew(€) is an arbitrary(complex function.

(2) Solutionswith R; and R, constant

We require thatp,; and ¢, should not be constant; other-

S. LAFORTUNE, P. WINTERNITZ, AND C. R. MENYUK

(88)

(89

(90)

91

(92

(93

(94)

wise we obtaira; =a,=0. Equationg6)—(9) for R; andR,

constant imply that we must have si=0, i.e., the solutions

will be phase locked.
Explicitly, for a#0 we have

I‘w2 2
Ry=— 5 (¥i—2Ay1+D),

ar o®

4

Ri= (4y2—2B7y,+C)(y2—2Ay,+D),

b1=v1&+ 2,

h2=2y,1&+ 2y, K,

wherey; and y, are arbitrary constants.
For «=0 we haveg, and ¢,, as in Eq.(95):

e=(—1)k,

row? 5 rwf—le
Ry=—¢€ 771+(U_rww1)71+T ,

(99

PRE 58
Ri=—e[(v+5w)71_(2K1+B+ dwy)]R,.  (96)

VI. CONCLUSION

The symmetries used in this paper are only those that
exist in the generic case of the cascading equatidns.e.,
for all values of the constants «, 8, andé. This “generic”
symmetry algebra is summed up in E@) representing
space and time translations and a shift in the phases of the
fundamental and second harmonic waves.

The reduction to the system of ordinary differential equa-
tions (6)—(9) was achieved by requiring that solutions be
invariant under the one-dimensional subgroup of the symme-
try group, corresponding to the Lie algebra elemg@ht In
order to decouple these equations we had to impose either
a,;=0 (no fundamental harmonic or the supplementary
condition (10) on the phase$phase locked solutiohsThe
existence of the symmetiy in Eq. (3) guarantees that if the
phases locking conditiofiL0) is imposed on the initial con-
ditions, it will survive for all times. Thus, by construction, all
the explicit solutions obtained in this paper are phase locked
traveling waves. Let us discuss some of their features.

Solution(63), for certain values of the parametersy, 3,
and 8, characterizing the material involved, and of the con-
stantsw, v, wq, andk4, characterizing initial conditions, can
be periodic finite wavegsee Eq(54)]. The second harmonic
R, then oscillates in the interval[—(3/2By)f,
—(3/2By)f,] and the fundamental wave also oscillates be-
tween finite limits.

For other conditiongsee Eq.(67)], the elliptic function
solutions reduce to solitary wavés88) with the second har-
monic going through a zero when the fundamental one
reaches its maximum value. Asymptotically both wa@&®
tend to zero, with the second harmonic vanishing at a faster
rate. Many of the obtained solutions are singular, either at
some specific poinf= ¢, as in Eq.(69), or periodically, as
in Egs. (56) or (60).

For conditions leading to Eq33), the second harmonic
differs from the fundamental one just by a proportionality
factor and a constant shift of the amplitupeee Eq.(35)].
Similarly, for conditions(37), the two waves are simply pro-
portional.

Singular solutions coexist with the finite ones for all the
values of the coefficients in Eq1). Their physical meaning
needs a separate investigation: they may be an indication that
higher harmonics or dissipative effects were unjustifiably ig-
nored in the derivation of these equations. These effects
would tend to smooth out the singularities and possibly turn
them into finite resonance phenomena.

The existence of families of elliptic function solutions can
be viewed as a manifestation of “partial integrability.” We
have shown that the studied equations do not, in general,
have the Painleveroperty. For special values of the con-
stants involved we do obtain solutions that do have this prop-
erty: they have no movable singularities other than poles.

Finally let us mention that for particular values of the
constants in Eq(l), the symmetry group may be larger. For
instance, forB= =0 the equations are invariant under di-
latations generated by

D= X&X-i- Zt&t— 2( R1&R1+ RzaRz) .
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This raises the possibility of obtaining self-similar solutions parallel beams similar to the single beams described in Ref.
of the forms [2]. At present, it does not appear to be feasible to do so.
However, such a periodic array, should it ever become fea-
sible, could be used as a reconfigurable, all-optical switching
fabric. Thus it seems a long-term goal that is worth pursuing.
Along these lines, we note that many years intervened be-

1 H .
ai(§)= T Fi(&)e P1eli/2int

1 (&) iln t tween the first theoretical prediction of cascading solitons
ay(§) = Fa(£)e™ % e, and their observation.
X
&= ﬁ ACKNOWLEDGMENTS

The authors thank D. Levi, Z. Thomova, and Yu.S.
Since self-similar solutions are particularly importgand  Kivshar for helpful discussions. S.L. acknowledges financial
stablg in optical systems with memor20—27, this situa- support from NSERGNational Science and Engineering Re-
tion may be well worth exploring. search Council of Canagldor his Ph.D. studies. The re-
For elliptic solutions, which we have found to be ob- search of P.W. was partly supported by research grants from
served experimentally, one would have to launch a series dISERC of Canada and FCAR du Quee.

[1] See, e.g., G. P. AgrawaNonlinear Fiber Optics(Academic, [13] M. J. Ablowitz, A. Ramani, and H. Segur, J. Math. Phg§,
San Diego, 1980 Chap. 2. 715(1980.

[2] W. E. Torruellas, Z. Wang, D. J. Hagan, E. W. Van Strykland, [14] M. J. Ablowitz and H. SeguiSolitons and the Inverse Scatter-
G. I. Stegeman, L. Torner, and C. R. Menyuk, Phys. Rev. Lett. ing Transform (SIAM, Philadelphia, 19811
74, 5036 (1999; R. Schiek, Y. Baek, and G. |. Stegeman, [15] P. J. Olver,Applications of Lie Groups to Differential Equa-

Phys. Rev. E53, 1138(1996. tions (Springer, Berlin, 1986

[3] C. R. Menyuk, R. Schiek, and L. Torner, J. Opt. Soc. Am. B[16] B. Champagne, W. Hereman, and P. Winternitz, Comput.
11, 2434(1994. Phys. Commun66, 319 (1991).

[4] L. Torner, C. R. Menyuk, W. E. Torruellas, and G. |. Stege-[17] P. Winternitz, inlIntegrable Systems, Quantum Groups and
man, Opt. Lett20, 13 (1995. Quantum Field TheoryKluwer, Dordrecht, 1998

[5] A. V. Buryak and Yu. S. Kivshar, Opt. Letl9, 1612(1994. [18] D. Rand and P. Winternitz, Comput. Phys. Commdi®. 359

[6] M. J. Werner and P. D. Drummond, J. Opt. Soc. Am1® (1986.
2390(1993. [19] P. F. Byrd and M. D. Friedmanrjandbook of Elliptic Inte-

[7] M. J. Werner and P. D. Drummond, Opt. Lel®, 613(1994. grals for Engineers and ScientistéSpringer, New York,

[8] P. Ferro and S. Trillo, Phys. Rev. #, 4994(1995. 1971).

[9] G. I. Stegeman, M. Sheik-Bhae, E. Van Strykland, and G.[20] D. Levi, C. R. Menyuk, and P. Winternitz, Phys. Rev.44,
Assanto, Opt. Lettl8, 13(1993. 6057 (1991); 49, 2844(1994).

[10] A. V. Buryak and Yu. S. Kivshar, Phys. Lett. A97, 407 [21] C. R. Menyuk, D. Levi, and P. Winternitz, Phys. Rev. L&,
(1995. 3048(1992.

[11] A. V. Buryak and Yu. S. Kivshar, Phys. Rev. B1, R41  [22] Self-Similarity in Stimulated Raman Scatteriregglited by D.
(1995. Levi, C. R. Menyuk, and P. WinternitfCRM, Montreal,

[12] A. V. Buryak and Yu. S. Kivshar, Opt. LetR0, 834(1995. 1994.



