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Solutions to the optical cascading equations
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Centre de Recherches Mathe´matiques, Universite´ de Montréal, Case Postale 6128, Succursale Centre-ville, Montre´al,
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Group theoretical methods are used to study the equations describingx (2):x (2) cascading. The equations are
shown not to be integrable by inverse scattering techniques. On the other hand, these equations do share some
of the nice properties of soliton equations. Large families of explicit analytical solutions are obtained in terms
of elliptic functions. In special cases, these periodic solutions reduce to localized ones, i.e., solitary waves. All
previously known explicit solutions are recovered, and many additional ones are obtained.
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I. INTRODUCTION

Materials with a significantx (3) nonlinearity exhibit soli-
tonlike beam or pulse propagation. These materials can
modeled by the nonlinear Schro¨dinger equation and its vari
ants@1#, which are known to be integrable and possess ex
soliton solutions.

In the case ofx (2) materials, it has been possible to pr
duce solitary waves throughx (2):x (2) cascading@2#. This
effect occurs in parametrically coupled fields with quadra
nonlinearities in which the nonlinearities in the fundamen
and first harmonic fields interact in a way that mimics t
x (3) nonlinearity. Moreover, several particular cases of s
tary wave solutions of the system describing this pheno
enon have been obtained numerically and analytically~@3–
9#!.

The solitons ofx (3) type are known to belong to familie
that include periodic solutions. It is essential to know if th
is the case for the solitary waves of thex (2) type, mainly
because the system describing them is not integrable. W
not know what properties of integrable systems these soli
wave solutions possess.

Moreover, the periodic solutions containing these solit
waves as limiting cases can be important in their own rig
especially if they are stable. For instance, they may pro
gate as a background to solitary wave signals.

In this paper we find families of periodic solutions e
pressed in terms of elliptic functions. As special limitin
cases, we obtain elementary trigonometric solutions and
localized solitary waves~including all those found earlier!.
We mention that not all of the solitary waves are stable~@10–
12#! and that the stability of periodic solutions needs a se
rate study.

In Sec. II we present thex (2):x (2) cascading equations
and find their Lie point symmetry group. We then reduce
system to a set of four coupled real ordinary different
equations for traveling wave solutions. These reduced eq
tions are further studied in Sec. III. We show that in gene
the equations do not have the Painleve´ property @13,14# so
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the cascading equations are not integrable. We do, howe
show that well behaved analytical solutions exist in spec
cases. Explicitly, elliptic function solutions are presented
Sec. IV together with their elementary function limits. Som
further special cases are discussed in Sec. V. Conclusion
drawn in the final Sec. VI.

II. CASCADING EQUATIONS AND THEIR REDUCTION

Let us write the cascading equations in the normaliz
forms @3#

ia1t2
r

2
a1xx1a1* a250,

ia2t2ba22 ida2x2
a

2
a2xx1a1

250, ~1!

wherea1 anda2 are the normalized~complex! envelopes of
the fundamental and second harmonic waves, respectiv
They are functions of two variables, namely,t, the normal-
ized distance along the wave guide, andx, the normalized
transverse coordinate. The constants involved arer 561 and
a, b, andd ~all reals!. Physically,a is given by minus the
ratio of the wave numbers of the fundamental, and its fi
harmonic which nearly equals20.5. This ratio becomes ar
bitrary when considering temporal structures, but these
difficult in practice to observe@3#. The quantityb corre-
sponds to the normalized wave number mismatch. It may
written b5k1h2Dk, whereDk52k12k2 is the actual physi-
cal mismatch andh is a parameter that characterizes the s
of a single beam which is 10 to 50mm in typical experi-
ments@2#. One then finds thatb is typically in the range
250 to 50. The parameterd corresponds to a normalize
walkoff coefficient, and may be writtend5k1hr, wherer is
the actual walkoff angle. In typical experiments,d is in the
range22 to 2.

To obtain explicit solutions we use the method of symm
try reduction, i.e., use Lie point symmetries to reduce E
2518 © 1998 The American Physical Society
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~1! to ordinary differential equations. We first replace Eq.~1!
by four real equations, putting

ak~x,t !5Rk~x,t !eifk~x,t !, k51,2,

0<Rk,`, 0<fk,2p, ~2!

and apply a standard algorithm to find their symmetry gro
@15–17#. In the generic case, when all constants in the eq
tion are arbitrary, the symmetry group of the equations is
three dimensional, consisting of translations inx and t and
correlated shifts of the phasef1→f11l and f2→f2
12l. The Lie algebra of the symmetry group has a ba
consisting of the operators

P15]x , P05] t , W5]f1
12]f2

. ~3!

We shall consider solutions invariant under the subgro
generated by

X5vP11vP01~k1v2v1v !W, ~4!

wherev, v, k1, andv1 are real constants.
The invariant solutions then have the forms

a1~j!5R1~j!eif1~j!ei ~k1t2v1x!,

a2~j!5R2~j!eif2~j!e2i ~k1t2v1x!,

j5vx2vt. ~5!

The four real functionsR1, R2, f1, andf2 satisfy the fol-
lowing system of coupled ordinary differential equations:

2
r

2
v2~2R18f181R1f19!1~rvv12v !R181R1R2sin f50,

~6!

2
a

2
v2~2R28f281R2f29!1~2avv12v2dv!R282R1

2sinf

50, ~7!

2
r

2
v2~R192R1f18

2!1~v2rvv1!R1f181S r

2
v1

22k1DR1

1R1R2 cosf50, ~8!

2
a

2
v2~R292R2f28

2!2~2avv12v2dv!R2f28

1~2av1
222k12b22dv1!R21R1

2cosf50, ~9!

f[f222f1 .

It is the system of equations~6!–~9! that we wish to solve.

III. ANALYSIS OF THE REDUCED EQUATIONS

A. Phase locked solutions

The system of equations~6!–~9! is in general quite diffi-
cult to decouple and solve. It is greatly simplified if we im
pose a supplementary restriction on the phases, namely
p
a-
st

is

p

f5kp, kPZ,

i.e.,

sin f50, cosf5e, e251. ~10!

We shall call such solutions ‘‘phase locked solutions.’’ L
us first assume

ravÞ0, ~11!

and simplify notations, putting

A5
rvv12v

rv2
, B5

2avv12v2dv

av2
,

C52
2av1

222k122dv12b

av2
, D5

rv1
222k1

rv2
,

M152
2N1

rv2
, M252

2N2

av2
. ~12!

Equations~6!–~9! can be rewritten as

f185A1
M1

R1
2

, ~13!

f285B1
M2

R2
2

, ~14!

R192R1f18
212AR1f182DR12

2e

rv2
R1R250, ~15!

R292R2f28
212BR2f282CR22

2e

av2
R1

250. ~16!

B. CaseM 1M 2Þ0

The phase locking condition~10! imposes a relation be
tweenR1 andR2, namely,

B1
M2

R2
2

52A1
2M1

R1
2

, ~17!

so that the system~13!–~17! is overdetermined. Expressin
R1, f18, andf28 in terms ofR2 and substituting into Eqs.~15!
and ~17!, we obtain two second order ordinary differenti
equations forR2. These turn out to be compatible only forR1
and R2 constant. This case will be considered separately
Sec. V below.

C. CaseM 1M 250

Again R1 andR2 are constant, unless we have

M15M250. ~18!

Let us investigate case~18!. We have
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f185A, f285B52A. ~19!

We put

A05A22D, B052
2e

rv2
, C05B22C, D052

2e

av2
,

~20!

and obtain a system of two ordinary differential equation

R191A0R11B0R1R250,

R291C0R21D0R1
250. ~21!

This system is not overdetermined since constraint~17! is
now simply the condition~19! on the constants, i.e.,

2av2rv2drv50. ~22!

EliminatingR2 from Eq.~21!, we obtain a fourth order equa
tion for R1, namely,

S R19

R1
D 9

1C0

R19

R1
2B0D0R1

21A0C050. ~23!

If the original Eqs.~1! are integrable, then Eq.~23! should
have the Painleve´ property, i.e., have no movable singula
ties other than poles@13,14#. An algorithmic test exists
@13,18#, establishing certain properties of an equation, n
essary for it to have the Painleve´ property.

Thus, the general solution of Eq.~23! must allow an ex-
pansion in the neighborhood of any singular point of t
form

R15 (
k50

`

ak~j2j0!k1p, ~24!

with p a negative integer,a0Þ0, and three of the coefficient
ak arbitrary. ThenR1 has a good chance of representing t
general solution of Eq.~23!, depending on four arbitrary con
stants~one of them beingj0, the position of the pole!. The
values ofk for which ak are arbitrary~i.e., are not deter-
mined by a recursion relation! are called ‘‘resonance’’ val-
ues.

Substituting the expansion~24! into Eq. ~23!, we find
p522, a0

2536/(B0D0), and the resonance values

r 521, 6, ~56 iA23!/2. ~25!

Thus, we have only one nonnegative integer, namely,r 56,
rather than the three needed. An analysis of the obta
recursion relations shows thata0 , . . . ,a5 are fully deter-
mined;a6 is indeed free, and can be chosen arbitrarily. Th
a7 and all the higher terms are fully determined in terms
j0 anda6 ~and of courseA0, B0, C0, andD0). Thus Eq.~23!
does not have the Painleve´ property, and the cascading equ
tions ~1! are not integrable.

The Painleve´ analysis does, however, indicate that fam
lies of ‘‘well behaved’’ solutions should exist~i.e., single
valued in the neighborhood of their movable singularitie!,
depending on one or two free parameters rather than on
We shall find such solutions below.
-

ed

n
f

ur.

An alternative procedure is to solve Eq.~21!, again under
the condition~22!, for R2. We obtain the ordinary differen
tial equation

2~R291C0R2!~R2-81C0R29!2~R2-1C0R28!214~A01B0R2!

3~R291C0R2!250. ~26!

A Painlevéanalysis of Eq.~26! leads to the same conclusio
as that of Eq.~23!.

D. Introduction of the elliptic function equation

Let us look for solutionsR2(j) satisfying Eq.~26!, and
also the elliptic function equation

R28
25g4R2

41g3R2
31g2R2

21g1R21g0 . ~27!

The compatibility of Eqs.~26! and ~27! implies

g450, ~28!

and imposes six relations between the constants in Eqs.~26!
and ~27!. These allow for the following solutions.

~1! g3Þ0, C0~C02A0!Þ0 ~29!

The constantsgm in Eq. ~27! are completely specified:

g352
2B0

3
, g25C022A0 ,

g15
~C012A0!~C02A0!

B0
,

g05
~C012A0!2~C02A0!

6B0
2

. ~30!

The other amplitudeR1(j) is given directly by the expres
sion

R1
25

1

D0
S B0R2

212~A02C0!R21
~A02C0!~2A01C0!

2B0
D ,

~31!

and we must requireR1
2 to satisfy

R1
2>0 ~32!

in the entire range of values ofR2, a condition to be analyzed
below.

Notice that Eq.~27! will have solutions depending on jus
one parameter, an integration constant, since the coeffici
gm are fixed in terms ofA0, B0, C0, andD0. The only con-
straints on the constants in the original equations~1! r , a, b,
and d, and those introduced in the reduction procedure~5!
namely,v, v, k1, andv1 are Eqs.~11!, ~22!, and~32!.

~2! g3Þ0, C050 ~33!

In this case, we obtain

g352
2B0

3
, g2522A0 , g152

2A0
2

B0
, ~34!
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andg0 is arbitrary. Moreover, we have

R15AB0

D0
S R21

A0

B0
D . ~35!

Thus we obtain a two parameter family of solutions, t
parameters beingg0 and a constant arising in the integratio
of Eq. ~27!. The constraints on the coefficients are Eqs.~11!,
~22!, andC050, i.e.,

2av21v~2k1v1bv22v1v !50 ~36!

~we haver 251).

~3! g3Þ0, C05A0 ~37!

We then have

g352
2B0

3
, g252A0 , g150, ~38!

and g0 arbitrary. Again, Eq.~27! provides a two paramete
family of solutions, and the constraintC05A0 is

3av212rv~a22r !~v1v2k1v!12bv250, ~39!

and we have

R15AB0

D0
R2 . ~40!

~4! g350 ~41!

In this case, Eq.~27! reduces to

R28
252C0R21g0 . ~42!

The solutions are

R150 ~43!

R25H 2
C0

4
~j2j0!21m, C0Þ0

m~j2j0!, C050.

~44!

E. Phase locked solutions fora50

We return to Eqs.~6!–~9! for a50, sinf50, and
cosf 5e. From Eq.~7!, we see thatR2Þconst implies

v1dv50. ~45!

Equation~6! can be integrated to give

f185
2N

rv2

1

R1
2

1
rvv12v

2
, ~46!

whereN is an integration constant.
In order to haveR1Þ0, we impose

2k11b12dv1Þ0 ~47!

and obtain from Eq.~9! that we have
R15@e~2k11b12dv1!R2#1/2. ~48!

Finally, Eq. ~8! implies thatR2 satisfies the elliptic function
equation

~R28!2522B0R2
324A0R2

21SR22
16N2

v4~2k11b12dv1!2
.

~49!

Since bothN and S are arbitrary integration constants, E
~49! yields a three parameter family of solutions.

IV. SOLUTIONS IN TERMS OF ELLIPTIC FUNCTIONS
AND THEIR LIMITING CASES

A. General comments on the elliptic function equation

In Sec. III we have obtained three equations of the typ

R825b3R31b2R21b1R1b0 , ~50!

whereb i are real constants andb3Þ0. Putting

f 5b3R, ~51!

we obtain the equation

f 825 f 31b2f 21b1b3f 1b0b3
2 . ~52!

We introduce the rootsf 1, f 2, and f 3 of the polynomial on
the right hand side of Eq.~52!, and rewrite this equation as

f 825~ f 2 f 1!~ f 2 f 2!~ f 2 f 3!. ~53!

The solutions of this equation can be expressed in term
Jacobi elliptic functions@19# if the three roots are distinct
The case of multiple roots leads to solutions in terms
elementary functions.

Let us first consider the case of three real roots, and o
them to satisfyf 1< f 2< f 3. We are only interested in rea
solutions.

~1! f 1< f < f 2, f 3

We obtain a finite periodic solution

f 5~ f 22 f 1!sn2~u,k!1 f 1 ,

k25
f 22 f 1

f 32 f 1
, u5

Af 32 f 1

2
~j2j0!, ~54!

wherej0 is a real integration constant.

~2! f 1< f < f 25 f 3

A special~limiting! case of solution~54! is obtained for
f 25 f 3, namely the solitary wave solution

f 5~ f 22 f 1!tanh2~u!1 f 1 , ~55!

with u as in Eq.~54!.

~3! f 1, f 2, f 3< f

We obtain a singular periodic solution
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f 5~ f 32 f 1!
1

sn2~u,k!
1 f 1 , ~56!

with u andk as in Eq.~54!.

~4! f 15 f 2, f 3< f

For f 15 f 2, solution ~56! reduces to an elementary per
odic singular solution, namely,

f 5~ f 32 f 1!
1

sin2~u!
1 f 1 . ~57!

~5! f 1, f 25 f 3< f

For f 25 f 3, solution ~56! reduces to a ‘‘singular solitary
wave,’’ namely,

f 5~ f 32 f 1!coth2~u!1 f 1 . ~58!

~6! f 15 f 25 f 3< f

A triple root corresponds to a ‘‘singular algebraic solita
wave’’

f 5
4

~j2j0!2
1 f 1 . ~59!

The case of one real and two mutually complex conjuga
roots leads to singular periodic solutions.

~7! f 15a1 ib, f 25a2 ib, f 3 ,a,bPR, b.0

The solutions are

f 5
f 31P1~ f 32P!cn~u,k!

11cn~u,k!
, ~60!

u5AP~j2j0!, k25
P1a2 f 3

2P
, P25~a2 f 3!21b2.

~61!

B. Explicit solutions of the cascading equations foraÞ0

~1! Case~29!
We have

b25C022A0 , b1b352
2

3
~C012A0!~C02A0!

b0b3
25

2

27
~C012A0!2~C02A0!, C0Þ0, C0ÞA0

~62!

in Eq. ~52!. Using Eq.~31!, we have

R252
3

2B0
f ,
d

R1
25

9

4B0D0
F f 22

4

3
~A02C0! f 1

2

9
~A02C0!~2A01C0!G .

~63!

A globally defined solution exists ifR1
2 is positive for all

values off . We note that the roots of the polynomial definin
R1

2 are

f A,B5 1
3 @2~A02C0!6A6C0~C02A0!#. ~64!

Hence forC0(C02A0),0 the functionR1
2 is sign definite,

and can be chosen to be positive definite. ForC0(C02A0)
.0 a more careful analysis is required. Thus solution~54!
provides a global solution if the roots satisfy one of the f
lowing relations:

f A< f 1< f < f 2< f B , f A< f B< f 1< f < f 2 ,

f 1< f < f 2< f A< f B . ~65!

Similarly, cases~56! and ~60! both require

f A< f B< f 3< f . ~66!

Multiple roots occur in the two excluded casesC050 and
C05A0, but also in the allowed case

C0522A0. ~67!

For A0,0 we obtain, from Eq.~55!,

R25
6uA0u

B0

1

cosh2@AuA0u~j2j0!#
,

~68!

R15
6uA0u

A2B0D0

sinh@AuA0u~j2j0!#

cosh2@AuA0u~j2j0!#
,

so that we must requireB0D0,0.
Similarly, for A0,0, Eq. ~58! provides the solutions

R252
6uA0u

B0

1

sinh2@AuA0u~j2j0!#
,

R15
6uA0u

AB0D0

cosh@AuA0u~j2j0!#

sinh2@AuA0u~j2j0!#
, ~69!

with the requirementB0D0.0.
For A0.0 it is solution~57! that is relevant, and yields

R252
6A0

B0

1

sin2@AA0~j2j0!#
,

R15
6A0

AB0D0

cos@AA0~j2j0!#

sin2@AA0~j2j0!#
, B0D0.0. ~70!

~2! Case~33!: C050
Equation~52! is

f 825 f 322A0f 21
4

3
A0

2f 1g0

4B0
2

9
, ~71!
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with g0 arbitrary, and

R252
3

2B0
f , R15

1

2AB0D0

~23 f 12A0!, B0D0.0.

~72!

A multiple root, namely, a triple one, occurs in one case o

f 825S f 2
2

3
A0D 3

, g052
2A0

3

3B0
2

, ~73!

and we have

R252
1

B0
S 6

~j2j0!2
1A0D ,

R15
26

AB0D0

1

~j2j0!2
. ~74!

In all other cases, two of the rootsf i are complex, andf is
given in Eqs.~60! and ~61!.

~3! Case~37!: C05A0
re
y

Equation~52! in this case is

f 825 f 32A0f 21g0

4B0
2

9
, ~75!

whereg0 is arbitrary, and we have

R252
3

2B0
f , R152

3

2AB0D0

f , B0D0.0. ~76!

The discriminant of the cubic equationf 8250 is

D5 16
9 ~A0

323B0
2g0!B0

2g0 . ~77!

For D,0, two roots are complex; forD.0, they are all real
and distinct; and forD50, we have a double or triple roo
The absence of a first degree term in Eq.~75! implies that for
f i real the three signs off i cannot be all the same. Moreove
if a root is equal tof i50, it must be double. The elementa
solutions in this case are as follows.

~1! g05A0
3/3B0

2 . The finite solitary wave, the singula
solitary wave, the singular periodic solution, and the singu
algebraic solutions in this case are
R25AD0

B0
R152

A0

2B0
F3 tanh2SAA0

2
~j2j0! D 21G , A0.0, ~78!

R25AD0

B0
R152

A0

2B0
F3 coth2SAA0

2
~j2j0! D 21G , A0.0, ~79!

R25AD0

B0
R152

uA0u
2B0F 3

sin2SAuA0u
2

~j2j0! D 22G , A0,0, ~80!

R25AD0

B0
R152

6

B0~j2j0!2
, A050, ~81!
ch
respectively.
~2! g050. The four different real solutions in this case a

R25
3

2B0
uA0usech2SAuA0u

2
~j2j0! D , A0,0 ~82!

R252
3

2B0
uA0u

1

sinh2SAuA0u
2

~j2j0! D , A0,0 ~83!

R252
3A0

2B0

1

sin2SAA0

2
~j2j0! D , A0.0 ~84!

and forA050 we reobtain solution~81!.
C. Solutions for a50

Equation~52! @obtained from Eq.~49!# in this case is

f 825 f 324A0f 222B0S f24M2B0
2 , ~85!

whereS and M are arbitrary. All possibilities for the three
roots f i occur, but we have the restriction

f 1f 2f 3>0. ~86!

We have

R252
1

2B0
f , R15A2e

~2k11b12dv1!

2B0
f . ~87!

For R1 to be globally defined, we needf to be sign definite.
This imposes the following restrictions on the roots for ea
of the solutions of Sec. IV A.
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Solutions~54! and ~55!:

f 1< f < f 2<0< f 3 or 0< f 1< f < f 2< f 3 . ~88!

Solutions~56!–~58!:

0< f 1< f 2< f 3< f or f 1< f 2<0< f 3< f . ~89!

Solution ~59!:

0< f 15 f 25 f 3< f . ~90!

Solution ~60!:

0< f 3< f . ~91!

V. OTHER EXPLICIT SOLUTIONS

In Sec. IV we presented solutions of Eq.~1! satisfying
a1a2Þ0, and such thatua1u andua2u are not constant. Let u
now discuss these previously rejected solutions.

~1! Solutions with a150

For aÞ0, we put

a2~x,t !5v~x,t ! exp i F2S b1
d2

2a D t2
d

a
xG . ~92!

Equation ~1! for a2(x,t) and a150 reduces to the linea
Schrödinger equation

iv t2
a

2
vxx50. ~93!

For a50, the solution of Eq.~1! is

a2~x,t !5e2 ibtv~j!, j5x1dt ~94!

wherev(j) is an arbitrary~complex! function.

~2! Solutions with R1 and R2 constant

We require thatf1 andf2 should not be constant; othe
wise we obtaina15a250. Equations~6!–~9! for R1 andR2
constant imply that we must have sinf50, i.e., the solutions
will be phase locked.

Explicitly, for aÞ0 we have

R252
rv2

2e
~g1

222Ag11D !,

R1
25

arv4

4
~4g1

222Bg11C!~g1
222Ag11D !,

f15g1j1g2 ,

f252g1j12g21kp, e5~21!k, ~95!

whereg1 andg2 are arbitrary constants.
For a50 we havef1 andf2, as in Eq.~95!:

R252eF rv2

2
g1

21~v2rvv1!g11
rv1

222k1

2 G ,
R1
252e@~v1dv!g12~2k11b1dv1!#R2 . ~96!

VI. CONCLUSION

The symmetries used in this paper are only those
exist in the generic case of the cascading equations~1!, i.e.,
for all values of the constantsr , a, b, andd. This ‘‘generic’’
symmetry algebra is summed up in Eq.~3! representing
space and time translations and a shift in the phases of
fundamental and second harmonic waves.

The reduction to the system of ordinary differential equ
tions ~6!–~9! was achieved by requiring that solutions b
invariant under the one-dimensional subgroup of the sym
try group, corresponding to the Lie algebra element~4!. In
order to decouple these equations we had to impose e
a150 ~no fundamental harmonic!, or the supplementary
condition ~10! on the phases~phase locked solutions!. The
existence of the symmetryW in Eq. ~3! guarantees that if the
phases locking condition~10! is imposed on the initial con-
ditions, it will survive for all times. Thus, by construction, a
the explicit solutions obtained in this paper are phase loc
traveling waves. Let us discuss some of their features.

Solution~63!, for certain values of the parametersr , a, b,
andd, characterizing the material involved, and of the co
stantsv, v, v1, andk1, characterizing initial conditions, ca
be periodic finite waves@see Eq.~54!#. The second harmonic
R2 then oscillates in the interval @2(3/2B0) f 1 ,
2(3/2B0) f 2# and the fundamental wave also oscillates b
tween finite limits.

For other conditions@see Eq.~67!#, the elliptic function
solutions reduce to solitary waves~68! with the second har-
monic going through a zero when the fundamental o
reaches its maximum value. Asymptotically both waves~68!
tend to zero, with the second harmonic vanishing at a fa
rate. Many of the obtained solutions are singular, either
some specific pointj5j0 as in Eq.~69!, or periodically, as
in Eqs.~56! or ~60!.

For conditions leading to Eq.~33!, the second harmonic
differs from the fundamental one just by a proportional
factor and a constant shift of the amplitude@see Eq.~35!#.
Similarly, for conditions~37!, the two waves are simply pro
portional.

Singular solutions coexist with the finite ones for all th
values of the coefficients in Eq.~1!. Their physical meaning
needs a separate investigation: they may be an indication
higher harmonics or dissipative effects were unjustifiably
nored in the derivation of these equations. These effe
would tend to smooth out the singularities and possibly t
them into finite resonance phenomena.

The existence of families of elliptic function solutions ca
be viewed as a manifestation of ‘‘partial integrability.’’ W
have shown that the studied equations do not, in gene
have the Painleve´ property. For special values of the con
stants involved we do obtain solutions that do have this pr
erty: they have no movable singularities other than poles

Finally let us mention that for particular values of th
constants in Eq.~1!, the symmetry group may be larger. F
instance, forb5d50 the equations are invariant under d
latations generated by

D5x]x12t] t22~R1]R1
1R2]R2

!.
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This raises the possibility of obtaining self-similar solutio
of the forms

a1~j!5
1

t
F1~j!eif1~j!e~ i /2!ln t,

a2~j!5
1

t
F2~j!eif2~j!ei ln t,

j5
x

At
.

Since self-similar solutions are particularly important~and
stable! in optical systems with memory@20–22#, this situa-
tion may be well worth exploring.

For elliptic solutions, which we have found to be o
served experimentally, one would have to launch a serie
d
et
n,

B

e-

G

of

parallel beams similar to the single beams described in R
@2#. At present, it does not appear to be feasible to do
However, such a periodic array, should it ever become f
sible, could be used as a reconfigurable, all-optical switch
fabric. Thus it seems a long-term goal that is worth pursui
Along these lines, we note that many years intervened
tween the first theoretical prediction of cascading solito
and their observation.
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