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Summary. The phenomenon of stimulated Raman scattering (SRS) can be described
by three coupled PDEs which define the pump electric field, the Stokes electric field,
and the material excitation as functions of distance and time. In the transient limit these
equations are integrable, i.e., they admit a Lax pair formulation. Here we study this
transient limit. The relevant physical problem can be formulated as an initial-boundary
value (IBV) problem where both independent variables areforitadomain. A general
method for solving IBV problems for integrable equations has been introduced recently.
Using this method we show that the solution of the equations describing the transient
SRS can be obtained by solving a certain linear integral equation. It is interesting that
this equation is identical to the linear integral equation characterizing the solution of
an IBV problem of the sine-Gordon equation in light-cone coordinates. This integral
equation can be solved uniquely in terms of the values of the pump and Stokes fields
at the entry of the Raman cell. The asymptotic analysis of this solution reveals that
the long-distance behavior of the system is dominated by the underlying self-similar
solution which satisfies a particular case of the third Pamteanscendent. This result

is consistent with both numerical simulations and experimental observations. We also
discuss briefly the effect of frequency mismatch between the pump and the Stokes electric
fields.
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1. Introduction

The Raman cell is a tube, typically a meter long and a couple of centimeters wide, that
contains a molecular gas, suchlsor D,. At the entry of the tube, lasers create two
incoming electric fields denoted by (pump) andes, (Stokes). Letw; andw, be the
frequencies ot ande,, respectively, wherev; > wo. If A(wy — wo) = &, whereh

is the Planck constant arélis the energy between two molecular levels of the gas,
then Raman scattering occurs: Either a pump photon is absorbed and a Stokes photon is
emitted, or a Stokes photon is emitted and a pump photon is absorbed. Both processes
are quantum-mechanicially possible. In either case, the molecule is displaced from level
|1 > tolevel|2 >, and a photon is created. These photons are characterized by a material
excitation waved which is proportional to the off-diagonal element of the associated
guantum-mechanical density matrix. This wave is proportional to the spatial correlation
of the excited molecules, implying that it is proportional@, whereN is the density

of the excited molecules. The field is attenuated on the time scalg, the so-called
molecular dephasing time. On this time sc&lds attenuated because collisions destroy

the spatial correlation between excited molecules.

Inthe model of stimulated Raman scattering considered here, we will neglect a number
of effects that appear to be unimportant in the recent experiments that have investigated
stimulated Raman scattering in gases [1], [2]: (i) We neglect diffraction. This is valid
for the long-focal-length experiments reported in [1] and the references cited therein.
(i) We ignore level saturation, i.e., we assume that only one excitation field is created.
This is always valid in molecular gases. (iii) We neglect second and higher-order Stokes
generation from spontaneous emission. This assumption is valid only when multipass
cells are used [2].

Letting

8]' — EjeikJX—int, J — 1’ 2; Q — Qékgx—iwgt7

and making the further assumption that, E,, Q are slowly varying, it can be shown
that the following PDEs are valid:

10E; 0E; ki
——— 4+ — = —i—xEQ, 1.1
cat T ax PRI (113
10E, O0E; . -
EW + a—X = —ikE1Q, (1.1b)
0Q 1 . _
— + —Q = —-ix EEs. 1.1c
ot +T2Q k1E1E2 (1.19

In equations (1.1); is the group velocity of light in the Raman medium, andx, are
certain constants depending e, w, and on the quantum properties of the molecular
gas. Alsothroughout this paper, bar denotes complex conjugation

Letting
K2 k2K1
= KX, = kot — —X, A= | —E;,
r=e FTRT YT ke (1.2)

- /K
A= [i2Es, X=i/Q,
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and assuming thdlox, — oo, equations (1.1) become the equations for the transient
stimulated Raman scattering,
dA oA - _
I A, 2o ax, 2o AA (1.3)
dx dx
Equations (1.3) imply thatA;(x, 7)|° + |Ax(x, 7)|?> = K?(1), K € R. This suggests
the introduction of the normalized variables

A]f =A/K,j=12, X' = X/, X = XToo,

Too = / K2(7)dr, T = f K2(£) de. 14
0 0
The normalized variables also satisfy equations (1.3) but Mt + | Az|? = 1.

The physical problem is specified as followse [0, I'], wherel’ is the length of the
propagation through the Raman cell (which, for a multipass cell, may be many times the
cell length),t € [0, 00), A, j = 1,2, are given ak = 0 for all t, and X = 0 for all
X < ct. Thus,7’ € [0,1], x" € [0,1], | = wotool’s Aj(O, T'), j = 1,2, are given, and
X(x',0) = 0. Hence, dropping the primes, we deduce th&e problem of transient
SRS can be formulated as follows: Determine the complex-valued functiopst,

Ax(x, T), X(x, t) satisfying equations (1.3) with

te0,1, xelol], |AL(0, )% + | A2(0, T)|* = 1,

A (0, 1) = A (1), =12, X(x,0 =0, (1.5

whereAj () are givenln particular, the interesting physical question is the determina-
tion of A (I, t) and of A(l, ), where | is large.

Let the complex-valued functio¥(x, ) and the real-valued functiob(y, t) be
defined in terms oR;(x, ) andAx(x, ) by

b=|A?— A% Y =2iA1A;. (1.6)
If A, Ay, X satisfy equations (1.3), thdn Y, X satisfy the equations

ab - - oY X [
— =i (XY = XY), — = 2ibX, — =—=Y. 17
ax ( ) ax ot 2 €0

Equations (1.7) are integrable in the sense that they admit a Lax pair formulation. Indeed,
it is straightforward to verify that equations (1.7) are the compatibility condition of

5 —ik X
w_ v, (1.83)
Ix —X ik

ib =Y
%zi(_ )W wsb

and

Y —ib
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wherey (x, 7, k) is a complex-valued 2 2 matrix anck is a complex constant usually
referred to as the spectral parameter.

The main aim of this paper is to solve an initial-boundary value problem for equations
(1.7), where botly andr are in a finite domain. The usual problem of transient stimulated
Raman scattering correspond®to, t) = by(t), Y(0, ) = Yo(z), X(x, 0) = 0, where
bo(t) andYy(r) are given functions. Here we shall solve the more general problem of
X(x,0) = Xo(x), Xo(x) given. This corresponds physically to pre-exciting the Raman
cell.

Given A; and A, equations (1.6) determireandY uniquely. However, the inverse
transformation is not unique. Indeed, if

b = cosg, Y =isinge ', A, = a e, A, = ae?®, (1.9
then equations (1.6) imply
cosg = a? — aZ, sing = 2aay, 0 =0, — 0. (1.10)
This ambiguity is physically insignificant because one is interested in the phase difference

between the pump and the Stokes waves.
We now state the main results of this paper.

Theorem 1.1. Let b(x,t) € R, Y(x, 1) € C, X(x, t) € C satisfy equations (1.7),
with x € [0,1],] > 0, andt € [0, 1]. Let

b(0, 7) = bo(7), Y(0, 1) = Yo(1), X(x, 0 = Xo(x), (1.11a

where (1), Yo(r) are differentiable forr € [0, 1], and X(x) is differentiable for
x € [0,1]. Assume that

bo(1)? + [Yo(7)|* = 1. (1.11b)

The unique solution of this IBV problem is given by
X(x,7) = 2 k|im (kWi (x. 7, k),
bx.7) = —1—4i- lim (kw(x T R)) keC, k #0
’ 8‘[ K> 00 2 L] ’ ’ ’

where the scalar functiond (x, t, k) and W5 (x, 7, k), k € C, can be obtained by
solving the following Riemann-Hilbert problem:

oF(x,7.0) @ik

n ¥

\I—’l (X, T, k) 1K) 1K) lIJZ (X’ T, k)
+ 5 (x.7.K) F(x,r,k)

Utk e W (x, 7. k)
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£2(K) 2iky+5
1 &
, k eR, (1.129

_ p2(0) o—2iky— 5 1
p1(K) (k)2

1 1 1
cbf(x,r,k):1+O<E),<b§”(x,r,k):O<E>,‘I‘f(x,r,k):O(E),

1
\U;(X,r,k)zl—i—O(E), k— oo, k #0.
(1.120)
This Riemann-Hilbert problem, which is specified through the scalar fungbigkgand
p2(K), k € R, has a unique solution. The functiopg’k) and p,(k) are constructed as

follows: Let(u1(t, K), u2(, k)T be the unique solution of

i (Ml("—', k)) _ i iiiJO(T) —Yo(7) (Ml("—', k)) ’ (1133
8T MZ(T» k) 4k YO(.[) _Ibo(-’:) I’LZ(I—’ k)
ui(l, k) =1, wu2(1, k) = 0. (1.13b)
Let (v1(x, k), v2(x, k)T be the unique solution of
K2 (vl(x, k)) _ jik Xo(0) <v1(x, k)> , (1143
ax \v2(x. Kk —Xo(x) ik v2(x, K)
v1(0, K) = u1(0, K)e =&, 2(0, K) = u2(0, K)e %&. (1.14b)
The functiong1 (k) and p,(K) are defined by
pa(k) = v1(l, KEN,  py(k) = va(l, k)e . (115

If p1(k) # 0forImk > 0, the above Riemann-Hilbert problem reduces to solving a
system of linear integral equations. In this caséxXt) and k(x, t) are given by

1 [ pa(k T
X(X» 7:) = _f pz—()e_ZIkX_le(Xv T, k)dka

7 J o p1(K)
b(x,7)=—-1+ 29 pz—(k)eﬁkﬁ‘z—’k Ma(x, 7, k) dk, (1.16)
7 9T —00 /Ol(k)

where the functions Mand M, are defined as the unique solution of the following system
of linear integral equations:

(—Mz(x, T, k)) _ <O> N 1 /00 ,oz(k/)eZik/H% (Ml(x, T, k’)) dk
Ml(Xv T, k) - 1 2w —00 pl(k/) MZ(Xﬂ T, k,) k' — (k - |O) '
(1.17)
If p1(kp)) =0, j =12,..., Imk; > 0, then the above Riemann-Hilbert problem
reduces to solving a system of linear integral equations similar to (1.17) supplemented

by a system of algebraic equations.
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The system of algebraic equations needegd ) has zeros for Ink > 0 can be found
in [3]. The number of these zeros can be infinite with an accumulation pdintad (see
the discussion in Section 4). However, these zerosmtagple in the leading asymptotic
behavior of the solution ag — oo, which is dominated by the underlying similarity
solution. This is to be contrasted with the usual soliton systems where the number of the
zeros is finite and where they dominate the asymptotic behavior of the solution (the finite
number of zeros gives rise to a finite number of solitons which determine the leading
order behavior of the solution).

The interesting physical question is the computatioAgf, t) andAx(, 7) (i.e., of
bd, r) and ofY(l, 7)) asl — oo. This is given by the next theorem. For simplicity we
concentrate on the more important caseXefy) = 0.

Theorem 1.2. Consider the IBV problem defined in Theorem 1.1, but wigtyX = O.
The leading order behavior gs — oo of the solution of this problem is given by

17 - 1b 1d -
XGoo) = 5 %@, bOrT) = -1+ Z% +3aEbO.  E= v
(1.18)
where
(£) — _i_ Yo(0) * —iE(+1)
X() = 1= bo(0) _ooe YNy (&, M)dA,
S B (AC) N TN
b&) =~ 00 ) € Ny (£, A)dA, (1.19)

and the functions N N, are the unique solution of the system of linear integral equations

<— Na(é, x)) _ <0) L2 0O [ e (Nl@, m) d’
Nig,2) /1 2 1 —bg(0) J_o N2V — (e —i0)
(1.20)
This system is a particular case of a more general system of linear integral equations

which characterizes the general solution of Pai@é\ equation.

We conclude this introduction with some remarks.

1. The solution defined by equations (1.18)—(1.20) is a similarity solution of equations
(1.7). Indeed, ifX(x, 7) = TX(), Y(x,7) = Y(&), b(x, 1) = b§), § = /X7,
equations (1.7) reduce to a system of three ODEs for the funcKoiVs andb.

2. A general method for solving IBV problems for nonlinear integrable equations has
been introduced recently in [3]. The essence of this method is the introduction of
appropriate solutions of both parts of the associated Lax pair that are analytic and
bounded for all values of the complex spectral parantetiéturns out that such solu-
tions are given byb = ¢ explik x o3+ 2 (t — D)ozl and ¥ = v explik x o3+ 4703l
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whereg andy are certain particular solutions of equations (1.8). A significant advan-
tage of this new method is thatthe spectral gati) andp, (k) are always independent

of x and oft (see equations (1.15)). As a result of this fact, the Riemann-Hilbert
problem characterizing the solution of the given nonlinear equation takes a rather
simple form: Itsy andt dependence is determined by the dispersion relationship of
the underlying linearized equation (see equation (1.12a)).

3. The system of linear integral equations (1.20) is the reduction of a certain mateix 2
Riemann-Hilbert (RH) problem. The jump for this RH problem occurs on the real axis
of the complex.-plane and itinvolves the exponential functionsexik (A + %)). This
RH problem is a particular case of a more general RH problem, which is associated
with the general solution of Painlewll (PIIl) equation [4]. The more general RH
problem, in addition to having a “jump” along the reéahxis, also has a jump along
the unit circle of the complex-plane. These jumps involve ekpi & (1 + %)) as well
asi®® anda*?~, wherefdy andf,, are constants appearing in PlIl equation. In the
particular case thaty = 6., = 0, and the solution is real, the general RH problem
associated with PIll reduces to one that can be solved by equation (1.20).

4. The case of frequency mismatch corresponds to the case that the fubgtigrad/or
Yo(7) are singular at = 0. For example, consider the case [5] that in the variables
defined by equations (1.2p:(0, ) =sechr and A»(0, ) = e '*7sech. Then in
the associated normalized variablgs(0, 7) = 1/v/2 andA,(0, 7) = %(fr)“‘”z;
thus, bg(t), Yo(r) are singular. It turns out that in this case the spectral date
and p,(k) are singular ak = 0. This gives rise to the more general solution of PIII
discussed in (3) above, whefig # 0 andd,, = 0. This case is briefly discussed in
Section 3.

5. The iteration of the linear integral equation (1.17) shows that this equation involves
the integral

J(x, 7) =/ 2R3 £ (k) dk. (1.21)

The asymptotic evaluation of such integrals is well established (see for example [6]).
There exist two important cases. (axlf—> oo andz/y = O(1), the stationary phase
method implies thaf ~ O(%). This is what happens in the usual soliton systems:
The solution of these systems involves a Riemann-Hilbert problem similar to (1.12),
which can be reduced to a system of linear integral equations similar to equations
(1.17) and to a system of algebraic equations containing the solitonic part of the
solution. Asy — oo, the contribution from the linear integral equations disperses
away and hence the asymptotic behavior of the system is dominated by solitons. (The
extension of the stationary phase method from integrals to linear integral equations
is given in [7]). (b) If x — oo andz/x = 0(1), then there exists a moving stationary
point and one introduces tls@milarity variablest = ,/7x, k = %\/;x Then

J= 1\/3/ gt f (3\/€A) da, (1.22)
2V x J-o 2V x

and the leading behavior of the integral depends on the limit(kj ask — 0. This
case is also relevant in the usual soliton systems but it only characterizes a certain
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transition zone. It is important to note that in our case [0, 1] andy — oo; thus,
/¥ = 0o(1) and the asymptotic behavior of the system is dominated by the underlying
similarity solution.

6. The Lax pair of equations (1.7) was found in [8]. Some progress towards the solution
of equations (1.7) witkX (x, 0) = 0 was made by Kaup [9] who used the usual inverse
scattering method. He bypassed the difficult problem of determining the evaluation
of the scattering data by using certain indirect asymptotic arguments. The series of
transformations used in [9] makes the relevant analysis rather complicated. As aresult,
it is difficult to extract the larger behavior. Nevertheless, one of the authors was able
to establish formally that any nonsingular initial data tends towards the similarity
solution, using an indirect approach [5]. The approach used here (see the discussion
in (1) and (2) above) not only allows one to obtain the key result directly and far more
simply, but is also rigorous. Furthermore, it allows one to extend the analysis to the
case of singular data (see the discussion in (3) and (4) above). The cas@that
andY (0, t) are constant was studied in [10]. Similarity solutions for equations (1.7)
were first discussed in [11] (see also [10], [12]). The well-posedness of the stimulated
Raman scattering equations is established in [13] using PDE techniques.

7. The inhomogeneously broadened version of equations (1.7) has been solved on the
infinite line in [17]. This solution has been used in [18] for the interpretation of the
experiments of SRS in gas of [19].

This paper is organized as follows: The linearized version of equations (1.7) is dis-
cussed in Section 2. Theorems 1.1 and 1.2 are derived in Section 3. The case of frequency
mismatch is briefly discussed in Section 3. The caselitatr) andY (0, r) are con-
stantis discussed in Section 4. Numerical simulations and experimental observations are
discussed in Section 5.

2. The Linearized Equations

In this section we solve the linearized version of the IBV problem considered in Theo-
rem 1.1, namely,

Y, = —2iX, xfz—'év; re[0,1, xel0l, 1>0 (21

Y (0, ) = Yo(7), X(x, 0 = Xo(x), (2.2)

whereYp(t) and Xq(x) are differentiable functions in [@] and [Q 1], respectively.
Equations (2.1) imply that solves the linearized sine-Gordon equatign + Y = 0.

Equations (2.1) can be obtained from equations (1.7) by assumingtkatO(¢),

Y = O(e), and lettinge — 0. The constrainty |°+b? = 1 impliesthab = +£1+O(&?);
equations (2.1) correspondlio= —1.

We shall solve the above IBV problem by using a Lax pair formulation [3]. This
has the pedagogical advantage of motivating the formalism used in Section 3. We first
assumehat Y (x, t) and X(x, t) exist. After deriving the relevant formulae, we can
verify directly that they solve equations (2.1), (2#ithoutthe a priori assumption of
existence.
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Equations (2.1) admit the Lax pair
oy

— +iky = X, (2.39
dx

oy i Y

o Tk T & (230

wherey (x, t, K) is a complex-valued scalar function, akds a complex parameter.
The essence of the method introduced in [3] is to construct solutions of (2.3) that are
defined in the entire compldxplane. Such solutions are

—ikx 1 | ,
Y (x, T,k = x e x"Y(0, ) dr’
X ) ,
+f e UOX (X, vy dx', ki <0, (2.4)
0
and
e—ik(x—l) T i )
v (x.t.k) = — / e «TY(, ') dt’
% Jo
I 1 A
- / e K=OX (', rydy’, ki = 0. (2.5)
X

The functiony~ defined by equation (2.4) solves equations (2.3) and is analytic and
bounded in the lower-half compléxplane. Indeed;” — r > 0 andy — x’ > 0, which
imply that the exponentials under the first and the second integrals deday-a®,
ki < 0andk — oo, ki < 0, respectively. Also, it is straightforward to verify directly
thaty~ solves equations (2.3). Similarly,* is analytic and bounded in the upper-half
complexk-plane.

We now indicate how equation (2.4) can be derived: Equation (2.3a) yields

) x o ,
Y(x, . k) =e (0,1, k>+/ e OOX (x Ty dy.
0

The functiony/(x, 7, k) solves equation (2.3b) iff7 (0, z, k) solves equation (2.3b)
evaluated at = 0; a particular solution of this equation%;frl e xT=7Y(0, ) dr/,
and the above equation becomes (2.4). Similarly for (2.5).

Sincey~ andyt satisfy both parts of the Lax pair (2.3), it follows that they are
related by

YL T K — v (X, T.K) = —e k¥ pk),  KeR, (2.6)

wherep (k) is some complex-valued scalar functionkofEvaluating equation (2.6) at
t=0,x =1, wefind

| 1
p(k):/ ékXX(X,O)dXJri/ exY(0, 7) dr. 2.7
0 2k Jo
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Equations (2.4) and (2.5) imply that

1

vE(x, 1, k) =0 (E) , k — oo, k # 0. (2.8)

Equations (2.6) and (2.8) define a Riemann-Hilbert problem [6]. Its unique solution is

oo e—i k’)(— \k_r/ ,0 (k/)

“3m | TRk dk, ki #£0. (2.9)

V(x, T,k =

Equation (2.9) yields/ in terms ofp (k). Then equations (2.3), which defikeand
Y in terms ofyr, yield X andY in terms ofp (k). In particular the larg& asymptotic of
equations (2.3) imply

@

. 0
X(x, ) =iyP(x, 1), Y(x,f)=—218p (X, 1),
1 s T (2.10)
v (x 0 = lim ki (1, 7. K)).

ki #0

Equations (2.10) yiel& andY in terms ofp (K), which is uniquely defined in terms of
Xo(x) andYy (7). Although these formulae were obtained under the a priori assumption
that X andY exist, it is possible a posteriori to verify directly that the functiotand
Y defined in the above way satisfy (2.1) and (2.2). This verification can be found in [3].

Theorem 2.1. [3]. Let Xy(x) and Y5(7) be differentiable functions gf and oft for
x € [0,1]andt € [0, 1]. Let X(x, ) and Y(x, t) be defined by

1 o B it
X =5 [ ™ok Yoo =2 X0eo, (21
2r J_ at
wherep (k) is defined by

I H 1 1 it
p(K) =/ € Xo() dx + == [ exYo(r)dr, (212
0 2k Jo

and improper Riemann integrals are assumed if needed. Then X and Y solve the IBV
problem specified by equations (2.1) and (2.2).

3. The Inverse Spectral Method

In order to derive Theorem 1.1, we first assume gt, t) and X(x, t) exist. This
yields a certain construction &f(x, r) andX(x, ) in terms of the initial and boundary
data. We then verify directly that this construction gives ris& tg, ) and X(x, 1),
which solve the IBV problem defined in Theorem ithoutthe a priori assumption
thatY(x, ) and X(x, ) exist. A detailed explanation of all the steps needed can be
found in [3].



Integrability and Self-Similarity in Transient Stimulated Raman Scattering 11

Proposition 3.1. Letb(x,t) € R, Y(x, 1) € C, X(x, t) € C be differentiable func-
tions ofx and oft for x € [0, 1], T € [0, 1]. Assume that Y and X solve equations (1.7).
Let the2 x 2 matrix complex-valued functiors(yx, t, k) and ¥ (x, 7, k) be defined by

_i fl(b(0,$)+1)d$]03
o0 ek — o k()
eikxds ol J_( “b(o,s)ds)o el
Tk e " J: V(0, 7Y (0, 7', ke ® Do d!
X . A
+f e KOy (4 YD (X', T, k) dy’, (3.1)
0

and

W(x, 1,k = oX [f;(b(l-é>+1>ds]a3

e ik(x=Dés pr | o pr . | /
— T/ e4k(fn b(|,§)d§) 3V(|, T/)\IJ(L 'L’/, k)eﬂ(r’f )g3dr,
0
[ »
_ / e—|k(X—X )tTGU(X/7 f)\Ij(X/, 7, k) dX/- (32)
X

In equations (3.1) and (3.2),

0 b(x. 1)
o3 = diag(1, —1), Vix.o)=| _ ;
_b(X7 T) O
0 X(1 33
U(x,7) = - ,
—X(x, 1) 0
and, if A is a2 x 2 matrix,
53A = [o3, A, thus &% A = eX% Ag 1, (3.4)

Then the function® and ¥ have the following properties:

(i) The first column ofb is analytic and bounded in the upper-half complex-k plane,
which will be denoted b¢*, while the second column df is analytic and bounded
in the lower-half complex k-plane, which will be denotedy. The functiond has
complimentary analyticity, i.e., if superscripts and — denote analyticity inC* and
C—, then

® = (dF, &), U= (Y, uh). (3.5)
(i) The functionsd and W are related by

d(x, 7, k) = W(x, 7, ke KRR k),  keR, (3.6)
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where the2 x 2 matrix complex-valued functign(k) is defined by
: 1
—x/| /. bO.£)+1) ds]a
ot = o E L 3

1 Loy o i
o] " (/s 200 %) sy (0, 1) 0(0, 7, ke #7 de
0

|
+ / U (x, 00D (1, 0, k) d. (3.7)
0

(iif) The functions® and ¥ satisfy the “symmetry” condition

;5 (k) = o7 (k), o7 (k) = -5 (k),

_ _ (3.8
W (k) = ¥y (k), U (k) = -5 (k),

where for convenience of notation we have suppresseg dred r dependence.
(iv) The asymptotic behavior @f as k— oo is given by

: 1 .
I (x, t. k) = 1- — [/ (b(O, $)+1)d«§+2/0 X (X, T)Izdx'}

4k
1
X, 1] (% - _
+ _ = / . ik x
o3 (x, 1, k) = ok I U Y0, t')dt’ — 2i X(0, r)i| e?
1
+0 <ﬁ> , K — oo. (3.10)
(v) The asymptotic behavior df as k— 0is given by
O (. 7. K) = aa(x. T) + Bi(x. 1)eF D £ Ok), k-0, (3.12)
®F (x, 7, K) = a2(x, T) + fa(x, DEXTV £ O(K), k-0, (3.12)

whereaq, ay, B1, B2 are certain scalar functions of andz.

Proof. Let¢(x, 1, k) be a 2<x 2 matrix complex-valued function satisfying the Lax pair
(1.8),i.e.,

¢y +ikosp =Ug, (3.13a
[ 1
¢ — @baaqb = —@wp. (3.13b)

Equation(3.13a) implies

. X ,
¢ =e 70, 1, k)+/ e K=y (4, g (x/, T k) dx'.
0
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The functiong (x, , k) defined by the above equation will also satisfy equat®h3b)
iff ¢ (0, 7, k) satisfies equatio(B.13b) evaluated at = 0, i.e., iff ¢ (0, 7, k) satisfies

i R 1 i R
(e5507g0,7,10) = — 2 EFP0UPV (0, 1) (0, 7. ),

1
b, 7) = / b(0, &) dé.
Thus, ifg (x, 7, k) is defined by

¢ = g 1kxos—b(0.1)0

1 . o
+ e o [ e kOO0 BO0mY 0,190, 7' K dr
T

X ,
+ / e KOsy (', g (1, T, k) dy (3.14)
0
theng satisfies equations (3.13). Letting
¢ — q)efik)((m#»jm(lft)(f:;7 (315)
equation (3.14) becomes equation (3.1).

Another solution of equations (3.13) is given by

|
Y = e KaDosy, (| ¢ k) —/ e K=oy (' )Y (x', T, k) dy/,

X

wherey (1, 7, k) satisfies
iRk 1 i R
— < 0(,7)03 - _ —x0(,7)03
(e : v, T, k))r & FIV LY T ),
B, 7) =f bl &) dé.
0
Thus, if¥ (x, 7, k) is defined by
w — e—ik)((73+4i—kl~)(l.t)z73

— ie*ik(X*UGs /f eﬁ(ﬁ(hf)*ﬁ(l-f’))asu (4, Hyd, 7', kdt’
4k 0

X ,
—/ e kO=sy (', Dy (x', T, k) dy, (3.16)
|

thenyr satisfies equations (3.13). Letting
¥ = We Kxos—gos, (3.17)

equation (3.16) becomes equation (3.2).

1 We have chosen the constant of integration to be the identity matrix.
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(i) The Relationship betweeg and v

Since¢ andy satisfy both parts of the Lax pair, it follows that = o (k). Indeed,
since¢ andyr satisfy equation (3.13a), thehn= v f (k, t), wheref is a 2x 2 matrix.
Similarly, sincep andyr satisfy equation (3.13b), theh= v g(k, x); thus,p = ¥p(K).
Using (3.15) and (3.17), this equation becomes (3.6), whékgis some 2x 2 matrix.
Evaluating equation (3.6) at = |, T = 0, we find thato(k) = €%, 0, k), which
yields equation (3.7).

(i) The Symmetry Properties

Equations (3.8) are a direct consequenc® 6f= —V, UT = —U, whereT denotes
transpose.

(iif) The Analyticity Properties

The functionsd andW are entire functions df for all complexk except possibly 0 and
oo. In what follows we concentrate ob; analogous results fob can be obtained in a
similar manner.

In order to determine the behavioréfask — oo, we note that ifA is a 2x 2 matrix,

then
Au Aqpe2K=10
e_ik(X_X/)6’3A — .

A21e2ik(x—x’) Ao

Thus the exponential terms of the first column in the integgéldecay ak — oo,
k, > O (the exponential terms of the second column decdy-as oo, k| < 0). Since
x > 0, similar considerations apply to the teami*x%,

In order to determine the behavior ®fask — 0, we note that

eﬁ(fr b<°f>d5)"3Aeﬁ<fur)o3

o [ 0051 Ay eF [T a-boe) de Au»

ok [ a-bo.6) de Aoy ok [ (DO5 1 de Ay

Since|b(0, &)| < 1, it follows thatf:/(lj: b(0, £))dé > O fort’ > 7, and hence the
exponential terms of the first column in the integfréldecay ak — 0,k > 0. Since

i 1
T < 1, similar considerations apply to the teaﬁ@[fr GO5H+1 d]
The leading behavior ab for k — oo andk — 0 is determined below.
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(iv) The Large k Behavior

The easiest way to determine the behaviodoivhenk — oo andk; # 0 is to use
equations (3.13) and equation (3.15). These equations imply that

®, +ik[os, ®] —Ud =0, (3.18a

i [ 1
‘113‘f — @q)()'g - Ebo’gq) + &Vq) =0. (318b)

Substituting® = | + &P (x, 7)/k + O(k~?) into these equations, we find

X X |X|2
) ) 1)
= -, Oy = —, o] = —,
12 = 5 21 = 5 11x 2

i
o) = Z(b+ 1), o) = -,

Using equations (1.7a) and (1.7¢), it follows that the equation®fgrare compatible.
Also the above equations are consistent with equations (3.9) and (3.18) &0, the
term involvinge?¥ is exponentially small).

To determine the precise behavior®dffor all largek, we use equation (3.1). Substi-
tuting

1 (X, 1 &, 1) | BT o 1
<D+ =1 al(X T) - <D+ — 2 2ik x -
into (3.1) and using integration by parts, equations (3.9), (3.10) follow.

(v) The Small k Behavior

The easiest way to determine the behaviodoivhenk — 0 andk, # 0 is to use
equations (3.18). Substituting

d(x, 1, k) = 2Q(x, 1) + ko (x, 1) + O(K?)

in equations (3.18), it follows tha® = U®© and
_ _b(X’T) _IY(Xaf)
O (x, o3 (@O, 0) = [ .

iY(x,©)  b(x, D)

This equation can be solved fd@r® since the determinant of the Ihs-sl, while the
determinant of the rhs isb? — |Y|?> = —1. Actually, using the above equation together
with det®©@ = 1, it follows that

1-b iY iY
(0) 0) 0) 0)

, =Y, = ) (3.19)
11 24 (202) 12 1 b 22 21 24 (202)

To determine the precise behavior ®ffor all smallk, we use equation (3.1); see
Appendix A. O
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Derivation of Theorem 1.1

(i) Definition of p(k)

Proposition 3.1 suggests that the spectral géka should be defined by equation (3.7),
which involves the known function®0, ), V(0, 7), andU (x, 0), as well asb (0, t, k)
and®(x, 0, k).

We define the functiod (0, z, k) by

®(0, 7. k) o k[ fecora]s
’T7 =

(3.20)
1 1 i (/[ bosde)o o
+@/ e © J: >3V(O, YD (0, 7/, ke (T~ g,

This function is the unique solution of

i [ 1
d, — —do3z — —b(0, d=—-——V(0,1), 321
2% 7 (0, t)o3 K O, 1) (3.21a
®0,1,k =1. (3.21b)
Letting
®(0, 7, k) = pu(r, ke T, (3.22)
it follows thatu(z, k) is the unique solution of
i 1
Mz — @b(ov T)U3M = _&V(Oa T)/-’Lv (323a)
w(@, k) =1. (3.23b
We define the functiod (y, O, k) by the equation
1
— x| J, 005+ dE |03
®(x,0.k) = e “k[f[’ ! ]
—ik o3 1 i T i
+2 e w(fo 00O E)osy 0 190, 7, ke &7 dr
& Jo
X s
+ f e KO=x%y (4 0)d(x', 0, k) dy'. (3.24)
0

This function is the unique solution of

®, +ik[os, @] = U(x, 0)D, (3.259

®(0, 0, k) = u(0, k)e &, (3.25b)
Letting
®(x. 0. k) = v(x, k)e*, (3.26)
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it follows thatv(x, k) is the unique solution of

vy +ikozv = U(x, O)v, (3.2739

(0, K) = (0, k)~ &, (3.27b)

Having obtained (yx, k), p (k) follows from
pk) = X%, 0, k) = e (l, k). (3.28
Using the symmetries df andU, it follows that

pa(t, k) —pa(r, k) vi(x, k) —va(x, k)
u(t, k) = _ | v(x, K = _ |
(T, Ky pa(r, K) va(x, k) vax, k)

1K) —p2(K)
p(kK) = _ |
p2(k)  pa(k)

1K) = €1, k),  pak) = e M, k),

Thus,

which are equations (1.15).

Using equations (3.20), (3.24) and integration by parts, it is straightforward to obtain
the largek and smallk behavior ofp (k). The derivation is similar to the one used to
derive equations (3.9)—(3.12); see Appendix B.

H 1 |
p2(K) = 1— ﬁ [/ (b(07$)+1)d$+2/ IX(X,O)IZdé]
0 0

1
+0 (F) , K — oo, (3.299
_)_((l,O) 72ikl_i /1_ Y, i
p2(K) = e e x|/, YO, 7)dr —21X(0,0) [+ O 2 ) k — oo.
(3.29)
p1(K) = a1+ pre" % +OK), k-0 (3.309
p2(K) = a2 + foe % + O(k),  k— 0, (3.30b)

whereas, as, B1, B are certain constants.
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(ii) The RH Problem

Equations (3.6) suggest that the functichsand & should be defined as the unique
solution of the following Riemann-Hilbert (RH) problem:

(@t (x, 7.k, 2 (x, 7, k)
=0 (x, 7.k, ¥ (x, 1,k)
( p1(K) —pa(kye 2k
X

. , keR (3.31a
p2(K)E K1+ = p1(K)

1 1
<D:|+O<E>’ \IJ:I—i—O(E), k — oo with k; # 0. (3.31b

This RH problem is identical to the one associated with the sine-Gordon equation in
light-cone coordinates (see equations (4.16) of [3] witandt replaced byy andr,
respectively). Details of the analysis of this RH problem can be found in [3]. Here we
only summarize the main points.

(a) Equation (3.31a) can be rewritten as

. _ 1 Z2E ,
(w+,3)=(¢ w) ] Eo@E keR
P1 f1 2E L

o1l
1 (3.32)
Assuming thatoy (k) # 0 for k € C*, the first vector of the above equation implies
(taking the complex conjugate and the plus projection)

b\lbl

WH(x,1,K)
0 1% pa(K) — dk
= —— E Kyw- kK)y—————, keR. (3.33
() 5 [ B 0T b ey KR (639
Using the symmetry conditiong, = \IJl, v = \If , equation (3.33) becomes

equation (1.17) (we have calldd; = ¥, My = W,).
The equations

X i
o) = 2 of) =-(b+1
12 = 5 11, 4( +1

imply

X =2 kIim kv, b=-1—4i 81 lim (k¥).
— 00 T k=0
(b) Equation (1.17) can be solved uniquethout having to assume thab/p; is
small. This is a consequence of the fact that the jump mé&rappearing in equation
(3.32) satisfiessT = —G. This can be used to show that the homogeneous version of
the RH problem with the jump (3.32) has only the trivial solution [14].
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(c) The case thap;(k) = 0fork = kj, j = 1,2,...,Imk; > O, can be reduced
to solving a regular RH problem (i.e., a RH problem witftk) # 0) and a system of
algebraic equations. This system of algebraic equations can be found in [3].

(iii) The Inverse Problem Solves the Direct

We must show that the solution of the above RH problem satisfies the Lax pair (3.18).
Furthermore, we must show that the functidig, ), Y(x, ), X(x, t) defined by
equations (1.16) solve the IBV problem defined in Theorem 1.1. This involves the use of
the so-called dressing method (see [15] for the rigorous implementation of this method):
Let L;® andL,® denote the lhs’s of equations (3.18a) and (3.18b), respectively. The
main idea of the dressing method is the following: (a) Debn¥, X in terms of® in
such a way that th®(k), O(1), O(%) terms ofL;® and ofL ,® are zero. (b) Show that
bothL ; ® andL,® satisfy the jump condition (3.31a). Since the homogeneous version of
the RH problem (3.31) admits only the zero solution, this impliesithdt = L,® = 0.
Details of (a) are given in Appendix C. It is shown there that 2i (WP, b =
—1-4i ()P, where(w;)?1, (U5)! are theO(}) terms of; andW; . These equations,
together with equation (3.33), yield equations (1.16).

Derivation of Theorem 1.2

Let

Then the kernel of equation (3.33) becomes

P2 <%\/§A/) is(x’ﬂ—l,) dx’

—— e _.

pl(%ﬂk/) AN —(—i0)
Thus the leading order behavior of equation (3.33y as> co depends on the limit of
p2(K)/p1(k) ask — 0. Equations (3.30) yield

p2(K) o2+ poe %
/Ol(k) o1+ /3]_972‘_k

, k — 0O,

where ay, B1, az, B2 are certain constants. It is interesting that the terms involving
exp(—i/2k) give no contribution. Indeed,

B _ ﬁ) 2kx—% (1)
I()Z(k)eZik)(-‘r'z—f< ~ % |:eZikx+2—l’< + (O‘2 1 , K — 0.

p1(K) o 1+ be=x

o1

If o + ﬁle*ﬁ # 0 for Imk > 0, then because of analyticity i (sincer < 1, the
exponential terms decay ifit), these terms give zero contribution to equation (3.33)
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(U- and k' — (k —i0)] ! are also analytic it +). If a1 + B1e” % = 0, the extra terms
due to the poles give a contribution that is exponentially small as co.

The above analysis implies that the leading behavior of equation (3.38)-asoco
is characterized by

T 0 1 ooz [ je(v4d)g=(e 5/ dx’
We emphasize that evengfk) has zeros folmk > 0, these zeros do not contribute
to the leading behavior of the solution of the Riemann-Hilbert problem (1.12). Indeed,
if there exist zeros, equation (3.33) has to be supplemented by certain additional terms.
However, these terms vanish exponentiallyas> oo. Consider for simplicity the case
of one zero,p(k;) = 0; the extension to any number of zeros is straightforward. If
p(k1) =0, Imky > 0, the rhs of equation (3.33) also contains the term

otk E Ty e = 9
P (k) (kK —kq) ' PR =k Kk,

whereWw ~ (k;) is given in terms of a certain linear integral equation whose kernel involves
(k' — ky)~2. Since the terne?¥1x, Imk; > 0 is exponentially small, it follows that the
zeros give an exponentially small contributionyas> oo.

The above analysis is valid everXf(x, 0) # 0. In the particular case thxt(y, 0) =
0, equations (B.10) and (B.11) yield

iY(0,0)

o

Equations (3.34), (3.35), together with the symmetry conditibnis= —uf v = \I/—;
yield equation (1.20) (we have calléti = ¥, , N = ¥,'). Equations (1.16) imply

1 /7~ 0 (1 [t~
X = é\/;X(é), b:—l—i—g <§\/;b($)>, (3.36)

whereX (&) andb(¢) are defined by (1.19) (singe/p1 ~ aslas = i Y/(1 — b)). Using

T T 8_1\/?8
x & ot 2V r 9&’

equations (3.36) become equations (1.18).

The Case of Frequency Mismatch

When there exists a frequency mismatch between the physical quadtti@sd A,,
then the transformation (1.4) induces a singularity on the transformed quanfjtasi
A,,. For example, if

A; = secht + 10), A, = e'“"sect + 1),
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then, with an appropriate choice o,

1 1/ ¢ \ 7'
A/ = — A/ = — o —— .
1T 272 (1 — r/>

The mismatch betweeA; and A, occurs in physical systems because the frequency
difference between the pump and Stokes waves does not precisely match the frequency
difference between the Raman levels (to minimize this effect, the experimentalists phys-
ically connect the two cells but this effect can never be completely eliminated).

The rigorous analysis for the case of singular data is rather technical, so here we only
present a brief summary of the main ideas.

Consider first the linear equations (2.1) with the initial and boundary conditions

Xo(x) =0, Yo(z) = ct¥ +0(z”) ast — OF, y €R, y > -1, (337

wherec is a constant. Using the analogue of Watson'’s lemma for Fourier-type integrals,
it can be shown (see for example [6]) that

1 1 it F 1 i
p(k) = E/ et Yo(r)dr = cky%eﬂ””[l + o(k"*h)], k — 0,

° (3.38
wherel" denotes the gamma function. Furthermore, equations (2.4) and (2.5) indicate
thaty— andy* are also singular & = 0.

Similarly, regarding the nonlinear equation (1.7), the eigenfunctipasdV, as well
as the matrix (k) containing the spectral data, are singuldt at 0. Since® andV¥ are
well defined away fronk = 0, itis convenient to definé@ andW¥ for k such thatk| > 1,
and to introduce two new eigenfunctiofiy and Wy that are defined fojk| < 1. This
gives rise to a new RH problem whose “jumps” in the comg{gxane occur along the
real axis and along the unit circle.

The largex behavior of the above RH problem can be obtained by using the following
substitutions:

1 N
kzé\/;’ § =X Q(x, 7. k) = D, ),

N 1 T —Yo3
®o(x. 7, K) = Bo&, 1) (5/9 .

Using equations (3.39), together with the fact that

(3.39

p (k) ~ K", k— 0,
the above RH problem reduces to a RH problem with the following jump condition:
DT (E, 1) = O (£, NEEMTDIY (Ve 0D e RU{A] = 1).
The matrixV (1) is given by (see Figure 1)
Voor = (G 7L, Vo =W7E, Vup = (G,

Vas = A7%(G)HLEGY,
N
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A B

AVAVAVAVAVAW.VWAVAVAVAVAVAW.WaWA

Fig. 1. The Riemann-Hilbert problem for the case of frequency mismatch.

Vao = A"7(GH AT Vo = (7). (GY TR,

where the subscript in Vgo indicates thak”?: is evaluated by considering the limit
from the + region, i.e.,(A)+ = |A|€?™. The constant matriceG$°, G, G?, G are
defined by

1 & 1 0 1 ao 1 0
Gg: . ng . Gioz B G§’°= s
0 1 bo 1 0 1 b 1

andE satisfiesG*Gre 2773 = E-1GIGIEZ777:E. The constant scalagg, by, a,
b.. can be evaluated in terms ¥§(z) andbg(t).
Having obtainedb (¢, 1), the leading behavior ok andb follows from

1beE) 1d -
X ——X b =-1+-——+-—D
x, 1) = 2% é), (x,7) = +2 : +4ds (é),
whereX (¢£) andb(&) can be obtained from the largebehavior ofd (&, 1).
The above RH problem gives rise to a solution of Paialil”

d*u du 1d”+(u+>+ w4 &
dez —ul\dt) " tdf e TerTes
with the following particular values of the constants j = 1, ..., 4:
05122)/, a2=a3=—a4=4.

4. A Particular Example

In this section we consider the particular example,

X(x,00=0, bO1)=eR, Y01 =yeC, p+yP=1
4.0
whereg andy are constants. This example corresponds to data which are initially self-
similar. Thus, it plays a role somewhat analogous to the hyperbolic secant solution in
the usual soliton systems.
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Equations (1.13) yield

T—1 oo fTt—1
wi(t, k) = cos<T) +ip &n(T) , (4.23

1a(T, K) = ysin<f4_kl). (4.2b)
Equations (1.14) yield
vi(x. K) = pa(0. ke &Ry, K) = pup(0, kye &R
Equations (1.15) yield
p1(k) = 10K %, pa(k) = pa(0, ke %,

or, using (4.2),

_1-8 1+8 _y
p1(K) = 5 + > e x, 4.3
)/ _ﬂ
p2(K) = _E + 5 4.9

The terms involvinge™ % give no contribution to the linear integral equation (1.7) (see
the discussion in Section 3). It will be shown below thatgif< 0, thenpi(k) # 0
for Im k > 0. Thus, the function$1; and M, satisfy equation (1.17) wherg/p; =

iy/(1— B). Lettingk = %\/EA,S;' = /T X, equation (1.17) becomes

N6 MY _(0) L7 e (rgmam)L
<Nl@’”>_<l>+2n1—ﬂ © Nog.2)) 77— G -1+

Noting that in this case

YoO v
1-bp(0) 1-p’
and comparing equation (4.5) with equation (1.20), it follows ihétis particular case,
the general solution is given by the similarity solution, (1.18)—(1.20), whe@ énd
bo(0) are replaced by and g, respectively.
We now investigate the zeros pf(k). Using equation (4.3), it follows that (k) =
implies

2n—1Dx7 —iln <l+ﬁ)

(@ vap+ [n(52)]

Thus, p1(k) has zeros with Ik > 0 iff (1 — 8)/(1+ B) < 0, i.e.,iff 8 > 0. ltis
interesting to note that in this case there exist infinitely many such zeros. This property
was first discussed in [10] (see also [5]).

n=0,+142,.... (4.6)
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Self-Similar Solution

1 LA
TERAN B;=0.2
2 [l \Stokes ’ _
)
c
2 i
£ Pum
}/ P
O 1 /1\/\
_--200
B,=02 A

Intensity

Similarity Variable (&) 800

Fig. 2. A similarity solution. This type of solu-
tion is often called an accordion solution. The
squeezing of the accordion from the right &as
increases is visible. (Reprinted from [1].)

5. Numerical and Experimental Results

For completeness, we now discuss numerical solutions of equation (1.1). We also discuss
the experiments performed to date as well as describe an experiment that could verify
the predicted analytical behavior. A more elaborate discussion of these issues is given
in [1] and [5].

In the examples presented here we assume that

b = cospB(x, 1)], Y =isin[8(x, 1)], (5.1)

and thus it is sufficient to study the evolution @€y, 7).2 In the first example, we let

B(0, ) = 0.2 (see Figure 2). In this case, as discussed in Section 4, the exact solution is
given precisely by the similarity solution characterized by PamlévFigure 2 depicts

the numerical evaluation dfA;(£)|2 = co[(B(£))] and of |Ax(£)|?2 = sirP[B(&)],

which are designated as the “pump” and the “Stokes,” respectively. The self-similar

2n generalb = cosg, Y = e71? sing; equations (5.1) correspond &0, r) = 0, which then implies
0(x, ) = 0. An example wheré(0, ) # 0 is discussed in [5].
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TSRS Solution

™ x=200 -
> Stokes
= i
ey
[0)
g -
o il
0 Time (1) 1
1 Self-Similar Solution
2 B Nsokes |
e
Q
£ /Pump T
0 ' , AN\

O Simitarity Variable () 168

Fig. 3. The solution of the transient stimulated
Raman scattering equations (1.1) are compared
to the corresponding similarity solution gt =
200. The soliton leads to significant differences.
(Reprinted from [1].)

nature of the solution is readily apparent. Actually, these solutions are often referred to
in the physics literature as “accordions,” because like an accordion squeezed from the
right, the interesting ripples of the solutions are squeezed towatd. In the second
example, we lep (0, t) = 0.2 — 2z 7. Figures 3 and 4 compare the numerical solution
of the full PDEs (1.1) (labeled TSRS for transient stimulated Raman scattering) with the
numerical solution of the similarity ODE settiffgs = 0) = s = 0.2, where&t = /x7T
is the similarity variable. It was shown in [5] that this comparison is best when the offset
is given by

d
= Sinfo(e) dr/Bo(r) o Bo(z) = B(O, 1),
which, in this case, is approximately32. This offset can be inferred from equations
(1.18). For this reason the solution of the full TSRS equations (1.%) &t 200 and
x = 800 are compared with the similarity solutions in the rangd. @8] and the range
[0, 768], respectively. A soliton is generated initiallyat= 0.2/27, due to the fact that
there is a phase flip at this value of This soliton propagates toward the right, and by

Xoff
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1 TSRS Solution
b x =800 7
> \Stokes
= f
o
9
=
0 i
0 Time (1) 1
Self-Similar Solution
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£ i
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0 Similarity Variable (&) 768

Fig. 4. The same comparison as in Fig. 3is made

at x = 800. The soliton has propagated to the

back of the pulses and the agreement at times
preceding the soliton is excellent. (Reprinted

from [1].)

the pointy = 1000, has “dropped off the edge.” Beyogpd~ 400, there is excellent
agreement between the TSRS solution at times preceeding the soliton and the similarity
solution. Beyondy = 1000, there is an excellent agreement at all times.

In order to observe experimentally the predicted behavior in gases (stizloa®,),
one must generate pulses that are short compared to the molecular de-excitation time
or that have a rapid initial rise [1]. Indeed, self-similar oscillations have already been
observed in the experiments of Duncan et al. [16] where 40ps pulses were used. In order
to carry out a careful comparison of theory and experiments, one must use a multipass
cell, like the one described by MacPherson et al. [2]. This type of cell filters out the
higher-order Stokes and anti-Stokes radiation and also corresponds to a long length (for
this, one needs 10 to 20 passes through the cell [1], [5]).

We conclude this section with two remarks.

1. The SRS system reduces to the sine-Gordon equation in the case that the optical fields
are in phase. However, eveninthis case, the SRS system behaves very differently from
the solutions of the Cauchy problem on the infinite line for the sine-Gordon equation.
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The mathematical difference that reflects the physical difference is in the initial and
boundary conditions. Because of these differences, the asymptotic behavior of the
SRS system is characterized by the similarity solution.

2. If one wants to compare the solution of the SRS system with some particular solution
of Painle\€ Ill, one must choose some initial conditions for the PaialéMéquation
(see the discussion above about the offset). An important advantage of the analysis
presented here is that we have characterir@duelythe particular solution of the
Painle Il corresponding to any initial-boundary conditions of the SRS system.
Indeed, equation (1.20) uniquely specifies the corresponding monodromy data that
in principle characterizes the associated initial data (see [4]).

Appendix A. Small k Behavior of ®(y, 7, k)

Substituting equations (3.11) and (3.12) into equation (3.1), we find that the lsmall
behavior of thg11) and(21) terms of the first integral in equation (3.1) are given by

. a2(0, 1) B2(0,1)
Y@ [1 +b0,1)  1-b(, 1)} Bl
iY(0, )B2(0, 1) L1 iY(0, 1)a2(0, 7)
1—b(0, 1) © 1+b0,1) °’ (A1)
and
(G B1(0,1) a1(0,1)
Y@ [1 +b0,1)  1-b(, 1)} Bl
_iY(0, 1)B1(0, ®) ke iY(0, 7)a1(0, 7) A2)

1+ b0, 1) 1-bO,7) ’

whereE(7/, 7, k) = exp[—ﬁ[ff b(0, £) d¢ + 1 — 7]}. Indeed, the leading behavior of
the (11) term is given by

1 1t —i | [ bo.g) detr—r
@/ Y (O, tHas(0, t')e ‘*[f * ]df/

1 —i| [T b0g) dsra—r—r'
+ 2k | YO )80, 7he * [f ' ]dr/.
T

Integration by parts yields

1 1

| Y (0, tHas(0, T) e—ﬁ [f’ b(o,s)ds+z’—r]

1Y (0. 70520 7)) % [/ boerssizr]
1+b(0, )

—1+b(0, )

’

which upon simplification becomes (A.1).
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Using (A.1), it follows that the leading order behavior of thé) term of equation (3.1)
implies

a1(x. ) + Prlx. DEFY = E(L 7. k)

@2(0,1) B0, 1)
1+b(0,1) 1-Db(0,1)
iY (0, 7)B2(0, 1) ok (D _ 1Y (0, T)ax(0, 7)

1-Db(0, 1) 1+ b0, 1)

+iY (0, 1) [ ] E 7,k
X
+ / X(x', Daa(x', t)dy’
0

X i
- ( / X(x', 0)B2xs f)dx’) ex(D,

0

Thus,
Y 07 01 X ’ / /
() = —% +f0 X, D', ) i, (A.33
_1Y(0,7)B2(0, 7) X , , ,
prter) = SO0 X G opGC D A
. a2(0, 1) B0, |
1+|Y(0’1)[1+b(0,l)_l—b(O,l)}_o' (A.30
Similarly, using (A.2), thg21) term of equation (3.1) implies
Y (O, 0, oo, , ,
o2(x, T) = % —/O X(x's Dar(x’, vy dy’, (A.43
_iYO, a0 [t , ,
Ba(x,t) = T11Db0.7) /0 X(x's Daz(x’, T) dx’, (A.4b)
p1(0, 1) a1(0, 1) (A.40)

1+b0,1) 1-b0 1)

Appendix B. Small k Behavior of the Spectral Data

Using an approach similar to the one used in Appendix A, it can be shown that the small
k behavior of equation (3.20) yields

®1(0, 7,k) = Ay(t) + By(r)ex D, (B.1)

iY(O, iY(0,
0,00, 7. k) = YO D a0y 1'+(b7(0r)f)

2 (T=1)
110, 7) Bi(1)e , (B.2)
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with
1—Db(0,1 1+ b0, 1
Muyz——é—l, &uyz—i%—l. (B.3)
Similarly, the smalk behavior of equation (3.24) yields
®1(x, 0,K) = a1(x) + fr(x)e %, (B.4)
®2(x, 0,K) = aa(x) + Ba(x)e &, (B.5)
where
X
a1(x) = AL(O) + fo X (1. Oca(x') . (B.6a
iY(0,0 X o, N
@200 = b5 MO — [ X0 0ty dr' (B.6D
X
B1(x) = B1(0) + /0 X (', 0y dy . (B.7a
_ —iY(0,0) oo o
Po0 = Trp g o PO fo X' 0By dx. (B.7b)
Equations (3.28) imply
pr(K) ~ ar(l) + pr()e" %, k=0, (B.8)
02(K) ~ ax(l) + Bo(e =&, k — 0. (B.9)
Thus, if X(x,0) =0,
pr(k) ~ A1(0) + By(O)e %,  k—0 (B.10)
iY (0, 0) iY (0, 0) i

Appendix C. The Dressing Method

We will show that it is possible to defif&® x, 7), Y(x, 1), andX(x, t) in terms of the
asymptotic properties ab(y, 1, k) in such a way that: (a) Th®(k), O(1), andO(%)
terms of the Ihs of equations (3.18) vanish. (b) The functlmng X satisfy equations
2.7).

We assume thab,, = &1, 1, = —P14. Substituting

oD p®@ 1
b=+ —+ (E



30 A. S. Fokas and C. R. Menyuk

in equations (3.18) we find

U =i[os, @Y, (C2
oD +ifos, @] =Ud®, C3)
O +ifos, @3] = UG, ©4
and
®P —i(1+bjos = -V, (C.5)
2 —i(@Pog 4 bo@™) = —VoD, (C.6)
O — i (®P03 4 bo3d?) = -V o?, €7
Equation (C.2) yields
0 X
U= < ol X =210, (C.8)
Equation (C.3) yields
y _ IXP
=g €9
X, =407 — 200X (C.10)
The diagonal part of (C.4) implies
o) =-Xof. (C.11)
Equation (C.5) yields
o) =i(1+b), (C12
X, =—2Y. (C.13

Equation (C.13) is equation (1.7c). Also, the compatibility of equations (C.9) and (C.12)
implies equation (1.7a).
Equation (C.6) yields
Y X

O = i1+l — o, (C.14)

~1+b
o = (72)x +Y0l. (C.15
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The compatibility of the equations fab( (equation (C.11)) and foqb( (equation
(C.14)) imply equation (1.7b). S|m|larlythe compatibility of the equat|0ns>¢9|(equa-
tion (C.10)) and forX, (equation (C.13)) also imply equation (1.7b).

In summary: Let the complex-valued functidnsatisfy @y = ®11, ®10 = — P11,
DefineX, b, Y by

X=2103,  b=-1-id{, Y=5X. (C.16)

Then if @ satisfies (C.1), th©(k), O(1) andO(%) terms of equations (3.18) vanish iff
X, b, Y satisfy equations (1.7).
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