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Abstract. It is natural to apply multiple-length-scale methods to the study of optical-fiber transmission because the
key length scales span 13 orders of magnitude and cluster in three main groups. At the lowest scale, corresponding
to micrometers, the full set of Maxwell’s equations should be used. At the intermediate scale, corresponding to
the range from one centimeter to tens of meters, the coupled nonlinear Schrödinger equation should be used.
Finally, at the longest length scale, corresponding to the range from tens to thousands of kilometers, the Manakov-
PMD equation should be used, and, when polarization mode dispersion can be neglected and the fiber gain and
loss can be averaged out, one arrives at the scalar nonlinear Schrödinger equation. As an illustrative example of
multiple-scale-length techniques, the nonlinear Schrödinger equation will be derived, carefully taking into account
the actual length scales that are important in optical-fiber transmission.
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1. Introduction

The history of nonlinear optics dates back nearly forty years to shortly after the invention of
the laser [1, 2], while nonlinear fiber optics dates back more than twenty years to the invention
of low-loss fibers [3, Chapter 1]. Given this long history, which has included a Nobel prize
in Physics, it always surprises mathematicians who are newcomers to this field when they
discover the relatively small impact that twentieth century nonlinear dynamics has had on
nonlinear optics. Nearly all theoretical work until recently has been carried out by experi-
mentalists ‘on the fly’, while conducting their experimental research and has been relatively
simple in character. This situation existed because most optical nonlinearities have been weak
and could be adequately studied by use of simple mode-coupling theories in which one first
treats systems linearly using Fourier mode decompositions and then treats the nonlinearity
as a weak coupling between the Fourier modes. Traditional texts on nonlinear optics such
as Bloembergen’s [1] and Shen’s [2] begin by treating two-mode coupling, then three-mode
coupling and four-mode coupling, at which point one has reached the end of the book! This
theory can be algebraically complex, mostly because of complexities in the dielectric proper-
ties of the nonlinear materials, but there is little of conceptual interest to challenge the applied
mathematician.

There are notable exceptions. It was recognized some time ago that self-phase modulation
could not be treated by a simple mode-coupling approach [3, Chapter 4]. However, the the-
ory is once again very simple from a conceptual standpoint. Solitons are a more important
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exception [4, Chapter 1]. Hasegawa and Tappert [5] recognized over twenty years ago that
with low-loss fibers and sufficiently high input powers, the nonlinearity would be strong and
solitons would propagate in optical fibers. Here, there has certainly been sufficient scope for
the applied mathematician, and a large amount of work has been done, not only on optical fiber
solitons but also on solitons in other optical contexts. While much of this work has been done
for experimentally unrealizable configurations [6] and solitons have yet to be used in commer-
cial high-data-rate communications, this work has led to a much better understanding of how
strong nonlinearity affects signal transmission in commercial optical fiber communication
systems. Moreover, dispersion-managed solitons, which in contrast to standard solitons are
only periodically stationary, are currently being considered for use in optical communication
systems.

It has not been widely recognized in the applied-mathematics community that the in-
vention of the erbium-doped fiber amplifier nearly a decade ago has greatly increased the
potential scope for applications of nonlinear dynamics to optical-fiber communication prob-
lems [7, pp. 196–203]. Prior to the invention of the erbium-doped fiber amplifier, optical-fiber
communication systems used repeaters spaced every twenty kilometers or so to completely
regenerate the communication signal electronically. Thus, there was no opportunity for the
nonlinearity to accumulate and become strong. Maximum data rates were under 1 Gbit/sec
and only one channel at a time could be transmitted. By contrast, systems based on erbium-
doped fiber amplifiers can transmit more than 100 Gbits/sec in a single wavelength channel.
Moreover, the amplifiers have a wide bandwidth of 20 nm or more, so that it is possible to use
wavelength division multiplexing (WDM) in which multiple wavelength channels propagate
[8, pp. XV–XVI]. Systems are currently being studied that can transmit terabits/sec of inform-
ation! However, the amplifiers only compensate for fiber attenuation, allowing the effects of
chromatic dispersion, randomly varying birefringence, and the Kerr nonlinearity to all accu-
mulate. Additionally, the amplifiers emit spontaneous emission noise, setting a lower limit on
the signal intensity that is required for an acceptable signal-to-noise ratio. As a consequence,
strong nonlinearity is inevitable in modern-day, optical-fiber communication systems!

It cannot be sufficiently stressed that strong nonlinearity is important – indeed, nearly in-
evitable – in modern-day optical-fiber communication systems regardless of the format used!
Understanding the effects of nonlinearity is every bit as important in an NRZ (non-return to
zero) system as it is in a soliton system. Thus, the use of the nonlinear Schrödinger equation
and its extensions is becoming increasingly widespread in the engineering community, and
simulation packages are commercially available for solving these equations and are being
bought by major telephone service providers [9]. Understanding and coping with the effects
of strong nonlinearity is crucially important in modern-day optical communication systems,
and the techniques of nonlinear dynamics that have been developed over the last 200 years
have a great role to play.

Multiple-scale methods are among the most important techniques that are available in the
applied mathematician’s arsenal. When Poincaré wroteLes méthodes nouvelles de la méca-
nique céleste[10] a century ago, they had already been in use for nearly a century to study
planetary orbits. As a simple case, we can imagine a system that depends on two variablesθ1

andθ2, so that

dθ1

dt
= f (θ1, θ2),

dθ2

dt
= εg(θ1, θ2), (1)
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Figure 1. Illustration of the key length scales in optical fiber communication systems.

whereε indicates a small parameter so thatθ2 changes slowly compared toθ1. For example,
one could imagine the three-body system that consists of the sun, Jupiter, and one of Jupiter’s
moons. In this case,θ1 designates the angle between the moon and Jupiter, whileθ2 designates
the angle between Jupiter and the sun. To solve (1), one first holdsθ2 fixed while solving
for θ1; one then averages overθ1 to solve forθ2. We have thus decomposed a three-body
problem, which is in general intractable, to two easily solved two-body problems. Multiple-
scale techniques have been used throughout the twentieth century to solve a wide array of
engineering problems [11].

A large range of length scales exists in optical communication systems, as shown in
Figure 1. There are over 13 orders of magnitude that separate the smallest length scale, the
wavelength of light (1·55µm), from the largest scale which corresponds to FLAG (fiber loop
around the globe), the most extensive communication system currently being built (23,000 km).
These scales naturally cluster into three groups. The short scale, on the order of micrometers,
corresponds to the wavelength of light and the core diameter. At this length scale, one should
use the full set of Maxwell’s equations to solve for the evolution. It is at this length scale
that the dispersion relationβ(ω) is determined. The intermediate length scale, on the order
of meters, corresponds to the fiber beat length and to the fiber correlation length – the length
scale on which the orientation of the fiber’s axes of birefringence changes randomly. At this
length scale, one should use the coupled nonlinear Schrödinger equation which is obtained
by appropriately averaging over Maxwell’s equations. The last length scale, on the order of
tens of kilometers and more, corresponds to the length scales for fiber attenuation, chromatic
dispersion, and the Kerr nonlinearity. At this length scale, one obtains the Manakov-PMD
equation after averaging over the coupled nonlinear Schrödinger equation. When polarization-
mode dispersion is negligible, higher-order dispersion is negligible, and the initial signal is in
a single polarization state, one can average over the rapidly varying gain and loss to obtain the
nonlinear Schrödinger equation.

It is remarkable that no derivation of the nonlinear Schrödinger equation that is valid for
physically realistic optical fibers exists within the scientific literature. First, all the derivations
that have been published in textbooks assume that optical fibers are perfectly circular. Not
only is this assumption false, but, in fact, just the opposite is true. The magnitude of an effect
is inversely proportional to its corresponding scale length, and thus relative to the Kerr effect
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and chromatic dispersion, the birefringence must be considered large but rapidly varying. A
conceptually correct derivation must take this essential fact into account. Second, even if a
perfectly round fiber is assumed, most of the published derivations – with notable exceptions
such as Kodama’s elegant derivation [12] – contain contradictory assumptions and errors.

In this article, I will be studying the application of multiple length scale techniques to
optical fiber transmission. Most of the issues treated in this paper can be found scattered
throughout the literature; however, they have never been brought together in a unified context
before and the logical connection between them exposed. In Section 2 of this paper, I will
show how one goes from the short length scale in Figure 1 to the intermediate length scale
by averaging over the rapid transverse variations and carrier oscillations. At the intermediate
length scale, one obtains the coupled nonlinear Schrödinger equation. I previously derived
this equation, neglecting the transverse fiber variations [6] and Kodama [12], for example, has
derived the nonlinear Schrödinger equation keeping the transverse variations, but assuming
a perfectly circular fiber. To my knowledge, the derivation presented here is the first really
complete derivation of the coupled nonlinear Schrödinger equation. In Section 3, I average
over the rapidly and randomly varying birefringence to obtain the Manakov-PMD equation.
From there, I will show how one can average over the rapidly varying gain and loss and rapidly
varying dispersion to obtain the nonlinear Schrödinger equation. This path from Maxwell’s
equations to the nonlinear Schrödinger equation is not only conceptually complete, but makes
clear the limitations on the nonlinear Schrödinger equation that exist in real optical fibers.

Rederiving the nonlinear Schrödinger equation might seem pointless from a practical stand-
point. After all, it is a well-established experimental fact that it works in at least certain con-
texts! Here, I appeal for support to Poincaré’s statement in the Introduction toLes méthodes
nouvelles de la mécanique céleste[10, pp. 1–5]:

‘Le but final de la Mécanique céleste est de résoudre cette grande question de savoir
si la loi de Newton explique à elle seule tous les phénomènes astronomiques; le seul
moyen d’y parvenir est de faire des observations aussi précises que possibles et de
les comparer ensuite aux résultats du calcul. Ce calcul ne peut être qu’approximatif
et il ne servirait à rien, d’ailleurs, de calculer plus de décimales que les observations
n’en peuvent faire connaître. Il est donc inutile de demander plus de précision qu’aux
observations; mais on ne doit pas en demander moins.’1

Celestial mechanics had its origin in the very practical problem of determining the motion
of the celestial bodies for the benefit of navigators, but Poincaré emphasized its value in
determining the validity of Newton’s law of gravitation. In this as in much else he proved
prescient since the evidence for Einstein’s general theory of relativity stemmed in part from
the small deviations of Mercury’s motions from the predictions of Newton’s law. Of course,
Poincaré had great respect for practical applications of mathematical theory. He was trained
as a mine engineer and contributed to the understanding of practical problems throughout his
distinguished career. At one point he even participated in debunking the claims of another
mathematician who had ‘proved’ mathematically that Dreyfus was a liar [13, pp. 100–101]!

1 The final goal of celestial mechanics is to resolve the great question as to whether Newton’s law can explain
by itself all the astronomical phenomena; the only way to arrive at the answer is to make observations that are
as accurate as possible and to compare them to calculations. These calculations can only be approximate and,
besides which, it serves no purpose to calculate more decimals than the observations allow one to know. It is thus
pointless to ask for more accuracy than is available from the observations, but one should not ask for less. (author’s
translation)
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Nonetheless, he held firm in his belief that the greatest value of his work was in the light that it
shed on the fundamental foundations of the science of his day. It is my view that optical fibers
are not only of evident practical value, but are also an unparalleled laboratory for nonlinear
phenomena. Thus, their study has the potential to yield fundamental insights whose impact
can only be imagined.

2. The coupled nonlinear Schrödinger equation

Our starting point is Maxwell’s equation in a dielectric medium which may be written

∇ × [∇ × E(r , t)] + 1

ε0c2

∂2D(r , t)
∂t2

= 0, (2)

where the electric displacement is defined as

D = ε0E+ P (3)

and the polarizabilityP has both a linear and a nonlinear response. One thus writes

P= PL + PNL, (4)

where

PL(r , t) = ε0

∫ t

−∞
dt1XL(r , t − t1) · E(r , t1), (5a)

PNL(r , t) = δ3ε0

∫ t

−∞
dt1

∫ t

−∞
dt2

∫ t

−∞
dt3

×XNL(r , t − t1, t − t2, t − t3): E(r , t1)E(r , t2)E(r , t3). (5b)

The quantitiesXL andXNL are the material dielectric response tensors. We are assuming that
the response is local in space, consistent with the small size of the glass molecules relative to
the wavelength of light, although we are also assuming that it is nonlocal in time, consistent
with the existence of dispersion in glass. The time integrals end att , not∞, to be consistent
with causality. Alternatively, we can demand thatXL andXNL equal zero when any of their
temporal arguments is negative. The parameterδ3 is an ordering parameter that is used to
indicate that nonlinearity is small so that its corresponding length scale is long, being part of
the longest or third group of length scales shown in Figure 1.

We now specialize to the optical fiber geometry by lettingz correspond to distance along
the fiber andr⊥ = (x, y) correspond to the transverse coordinates. To begin the analysis, we
write

E(r , t) = F(δ1z, r⊥, δ1t, ω0)exp{i[β(ω0)z − ω0t]} + complex conjugate, (6)

whereω0 is the carrier frequency of the signal, also referred to as the central frequency. We
will shortly choose the central wavenumberβ(ω0) so thatF is slowly varying relative to the
wavelength of light. The small parameterδ1 is added to indicate that the variation of the
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modal structureF in z andt occurs slowly relative to the light’s wavelength and period. The
corresponding length scale, labeled pulse durations in Figure 1, is on the order of a centimeter
or more, corresponding to the roughly 50 ps or more rise and fall time in an NRZ signal or the
roughly 20–50 ps duration of a soliton signal. The dielectric tensorXL(r , τ ) = XL(δ2z, r⊥, τ )
changes on a slow length scale, on the order of tens of meters and more, shown in Figure 1
as the length scale for the beat length and the fiber autocorrelation length. We designate this
length scale with the small parameterδ2. In our analysis, we will assumeδ1 � δ2 � δ3, cor-
responding inversely to the distinct length scales just noted. The change of the dielectric tensor
on the length scale of meters corresponding to the small parameterδ2 can induce changes in
β(ω0), so that more generally

β(ω0)z→
∫ z

0
β(δ2z1, ω0)dz1, (7)

however, the magnitude of these variations is typically one part in 106 − 107 and leads to no
observable effects. Note thatδ1 andδ2 both correspond to length scales within the middle or
second group of length scales, but we are taking advantage of the separation of scales within
this middle group to specify two parameters. Later in this paper, we will also subdivide the
third length scale, taking advantage of the discrepancy between the length scale corresponding
to the gain and loss and the length scales corresponding to nonlinearity and dispersion.

To make further progress, we will specialize the dielectric responses so that they corres-
pond to the optical fiber physics. To begin with, the nonlinear response can be considered
isotropic so thatXNL → χNL, a scalar, and (5b) becomes

PNL(r , t) = δ3ε0

∫ t

−∞
dt1

∫ t

−∞
dt2

∫ t

−∞
dt3

×χNL(δ2z, r⊥, t − t1, t − t2, t − t3)[E(r , t1) · E(r , t2)]E(r , t3). (8)

While there may be an anisotropic contribution to the nonlinear response, it would presumably
be small, and there is no experimental evidence that it plays any role. By contrast, anisotropies
in the linear response along with axial asymmetry play a crucial role since they lead to fiber
birefringence. [The distinction between anisotropy and asymmetry is that asymmetry implies
that the dielectric tensor is not rotationally symmetric, varying as a function of angle around
the axis of the fiber. Anisotropy implies that the dielectric tensor itself has a preferred orient-
ation. Both are present in real fibers, and it is a matter of some debate which contributes more
to the fiber birefringence.] We therefore need to keep the complete linear response, and we
write

XL(δ2z, r⊥, τ ) = χL(δ2z, ρ, τ)+ δ21XL(δ2z, r , τ ), (9)

where1XL contains both the dielectric anisotropies and asymmetries;i.e., if one expresses
r = (ρ, θ), then one finds that

Trace

(∫ 2π

0
1XL dθ

)
= 0 at all ρ.

In the first stage of the multiple-length-scale expansion, we ignore contributions of orderδ2

andδ3, keeping only the contributions of order 1 and powers ofδ1. The smaller contributions
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will be restored later. From Maxwell’s equation, Equation (2), it follows that

−∂
2E⊥(r , t)
∂z2

+ êz
∂

∂z
∇⊥ · E⊥(r , t)+ ∂

∂z
∇⊥Ez(r , t)+∇⊥ × [∇⊥ × E(r , t)]

+ 1

c2

∂2

∂t2

[
E(r , t)+

∫ t

−∞
χL(r , t − t1)E(r , t1)dt1

]
≡ L̂(E) = 0, (10)

whereE = (E⊥, Ez) with E⊥ = (Ex,Ey). Inserting (6) into (10) and focusing on the positive
frequency component of the electric field, we obtain to lowest order inδ1,

β2F⊥ + iβêz∇⊥ · F⊥ + iβ∇⊥Fz +∇⊥ × (∇⊥ × F)

−ω
2
0

c2
[1+ χ̃L(ρ, ω0)]F ≡ L̂0(F) = 0, (11)

whereF⊥ = (Fx, Fy),

χ̃L(ρ, ω) =
∫ ∞

0
χL(ρ, τ)exp(i ωτ)dτ (12)

is the Fourier transform ofχL(ρ, τ), and the arguments ofβ(ω0) andF(r⊥, ω0) have been
suppressed. Equation (11) determines bothβ(ω0) andF(r⊥, ω0) subject to the boundary con-
dition thatF(ρ, ω0)→ 0 asρ →∞. The solutions to (11) can all be written as a superposition
of solutions of the form

R(m)
o (r⊥, ω0) = êρR(m)ρ (ρ) sin(mθ)+ êθR

(m)
θ (ρ) cos(mθ)

+iêzR(m)z (ρ) sin(mθ), (13a)

and

R(m)
e (r⊥, ω0) = êρR(m)ρ (ρ) cos(mθ)− êθR

(m)
θ (ρ) sin(mθ)

+iêzR(m)z (ρ) cos(mθ), (13b)

wherem is a nonnegative integer and theR(m)j are all real. If the set(F⊥, Fz;β) is a solu-
tion to (11), then so is the set(−F⊥, Fz;−β), corresponding physically to the existence of
both forward and backward propagating waves. In elementary derivations of the nonlinear
Schrödinger equation, it is common to find that∇× (∇ ×E) is replaced by−∇2E+∇(∇ ·E)
and the second term simply dropped. However, as Kodama [12] has pointed out, the second
term is larger in realistic cases than the terms due to birefringence, chromatic dispersion, and
nonlinearity that we are keeping. Thus, its neglect must be carefully justified.

In single mode fibers, which are now used almost universally in high-data-rate optical-fiber
communication systems, it is a physical fact thatF is doubly-degenerate and there are no other
propagating modes in the wavelength range that is used. In this case,F is a superposition of the
two modes with the form shown in (13) andm = 1. By contrast, in multimode fibers there are
typically many modes at the same frequency, corresponding to a range of allowedm-values,
including circularly symmetric modes that are nondegenerate, corresponding tom = 0. The
variation ofχL is less than 1% between the core and the cladding; so, the modes in a single
mode fiber are nearly plane waves with a radially modulated amplitude, andR(m)z is small
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compared toR(m)ρ andR(m)θ by a factor that approximately equals the square root of the index
difference. In special cases, as for example when both the core and cladding have a uniform
index, one can show explicitly that, as the index difference goes to zero, the fiber has a doubly-
degenerate single mode [14, Chapters 8 and 10]. I know of no proof that this result holds more
generally with the complex index profiles, likeW -profiles, that have become commonplace in
modern-day optical fibers, although it is highly plausible physically. In practice, researchers
determine both the parameter regime in which fibers have a single mode and the numerical
variation ofβ(ω0) by solving (11) numerically [14, Chapters 8 and 10].

We next write

F =
(

ω0

2ε0c2β(ω0)

)1/2

[u1R1(r⊥, ω0)+ u2R2(r⊥, ω0)], (14)

whereR1 andR2 are the two orthogonal eigenmodes of a single mode fiber corresponding to
R(1)

o andR(1)
e , shown in (13), normalized so that∫ 2π

0
dθ
∫ ∞

0
ρ dρ|R1⊥|2 =

∫ 2π

0
dθ
∫ ∞

0
ρ dρ|R2⊥|2 = 1. (15)

The quantitiesu1 and u2 are constant coefficients, and the factor[ω0/2ε0c
2β(ω0)]1/2 was

added in keeping with the usual convention in which|u1|2 + |u2|2 equals the signal power in
the weak guiding approximation in whichR(m)z is neglected.

At this point, we include the variation ofF with z and t that is due to the higher-order
contributions inδ1 as shown in (6). In this case,u1 andu2 become slowly varying functions of
z andt , i.e., u1→ u1(δ1z, δ1t) andu2→ u2(δ1z, δ1t), whileF becomes a sum over the narrow
bandwidth of modes that make up the signal. Writing the Fourier transform ofu1(δ1z, δ1t) as
ũ1(δ1z,�) =

∫∞
−∞ dtu1(δ1z, δ1t)exp(i�t) and writing the Fourier transform ofu2(δ1z, δ1t)

similarly, we find that

F =
(

ω0

2ε0c2β(ω0)

)1/2 ∫ ∞
−∞

dω

2π
[ũ1(δ1z, ω − ω0)R1(r⊥, ω)+ ũ2(δ1z, ω − ω0)

× R2(r⊥, ω)]exp[−i(ω − ω0)t]. (16)

Expanding in a narrow bandwidth aroundω = ω0, we find

F =
(

ω0

2ε0c2β(ω0)

)1/2

[
u1(δ1z, δ1t)R1(r⊥, ω0)+ u2(δ1z, δ1t)R2(r⊥, ω0)

+ iR′1(r⊥, ω0)
∂u1(δ1z, δ1t)

∂t
+ iR′2(r⊥, ω0)

∂u2(δ1z, δ1t)

∂t

−1
2R′′1(r⊥, ω0)

∂2u1(δ1z, δ1t)

∂t2
− 1

2R′′2(r⊥, ω0)
∂2u2(δ1z, δ1t)

∂t2
+ · · ·

]
, (17)

wherex′(ω0) ≡ ∂x/∂ω|ω=ω0 andx′′(ω0) ≡ ∂2x/∂ω2|ω=ω0.
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The goal is to determine the evolution ofu1 andu2. We may focus on the evolution of
u1 sinceu1 andu2 are uncoupled and satisfy identical evolution equations, neglecting the
contributions of orderδ2 at this point. Taking the dot product of (11) withR∗1 and integrating
over the transverse profile, we find thatβ2(ω0)+ψ̃(ω0)β(ω0)−(ω0/c)

2[ε̃(ω0)/ε0] = 0, where

ε̃(ω0) = ε0

∫ 2π

0
dθ
∫ ∞

0
ρ dρ R∗1(r⊥, ω0)

·
[
1+ χ̃L(ρ, ω0)− c2

ω2
0

∇⊥ × ∇⊥×
]

R1(r⊥, ω0), (18)

ψ̃(ω0) = i
∫ 2π

0
dθ
∫ ∞

0
ρ dρ

×[R∗1z(r⊥, ω0)∇⊥ · R1⊥(r⊥, ω0)+ R∗1⊥(r⊥, ω0) · ∇⊥R1z(r⊥, ω0)].
Letting ξ = δ1z ands = δ1t , we now insert (6) and (17) into (10), take the dot product of the
result withR∗1, and integrate overρ andθ to obtain∫ 2π

0
dθ
∫ ∞

0
ρ dρR∗1 ·

[
L̂0(R1)u1− iδ1

∂L̂0(R1)

∂β

∂u1

∂ξ
+ iδ1

∂L̂0(R1)

∂ω

∣∣∣∣∣
β

∂u1

∂s

−1
2δ

2
1

∂2L̂0(R1)

∂β2

∂2u1

∂ξ2
+ δ2

1

∂

∂β

∂L̂0(R1)

∂ω

∣∣∣∣∣
β

∂2u1

∂ξ∂s

−1
2δ

2
1
∂2L̂0(R1)

∂ω2

∣∣∣∣∣
β

∂2u1

∂s2
+ · · ·

 ≡ ˆ̀(u1) = 0, (19)

whereL̂0 is defined in (11), and∂nL̂0(R1)/∂ω
n|β indicates thenth derivative ofL̂0(R1),

evaluated atω = ω0 and holdingβ fixed. Noting thatL̂0(R1) = 0 and that

0= dL̂0(R1)

dω
= β ′ ∂L̂0(R1)

∂β
+ ∂L̂0(R1)

∂ω

∣∣∣∣∣
β

, (20)

we obtain at first order inδ1,

i
∂u1

∂ξ
+ iβ ′(ω0)

∂u1

∂s
= 0. (21)

Continuing to second order, one must first note that through this order

∂2u1

∂ξ∂s
= −β ′(ω0)

∂2u1

∂s2
,

∂2u1

∂ξ2
= [β ′(ω0)]2∂

2u1

∂s2
. (22)

We also note that

0= d2L̂0(R1)

dω2
= 1

2β
′′ ∂L̂0(R1)

∂β
+ 1

2(β
′)2
∂2L̂0(R1)

β2

+β ′ ∂
∂β

∂L̂0(R1)

∂ω

∣∣∣∣∣
β

+ 1

2

∂2L̂0(R1)

∂ω2

∣∣∣∣∣
β

. (23)
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After substitution, we then find that

i
∂u1

∂ξ
+ iβ ′(ω0)

∂u1

∂s
− δ1

1
2β
′′(ω0)

∂2u1

∂s2
= 0. (24)

Continuing through arbitrarily high order inδ1 yields

i
∂u1(z, t)

∂z
+ IFT{[β(ω0+�)− β(ω0)]ũ1(z,�)} = 0, (25)

where IFT(·) indicates the inverse Fourier-transform with respect to the Fourier-transform
variable�, and we have returned toz andt coordinates. This result implies that

ˆ̀(u1) = −i[2β(ω0)+ ψ̃(ω0)]

×
(
∂u1(z, t)

∂z
− i IFT{[β(ω0+�)− β(ω0)]ũ1(z,�)}

)
, (26)

where ˆ̀(u1) was defined in (19).
At some point as we expand in powers ofδ1, the additional terms in (25) become less im-

portant than the terms of orderδ2 andδ3 that have been neglected thus far. However, that point
is problem-dependent. To model systems with a narrow bandwidth, such as single-channel
systems, it is usually sufficient to keep only second derivative terms in time which leads to the
usual group-velocity dispersion. When the channel is near the zero-dispersion point or there
are many channels in the system, then it is necessary to keep the third derivative terms that lead
to higher-order dispersion. Typically, that is all that is necessary when modeling optical-fiber
transmission alone.

I will stress thatit is not correct to set∂2u1/∂ξ
2 to zeroas is done in some elementary

derivations of the nonlinear Schrödinger equation that can be found in standard textbooks. If
one does that and carries out the expansion to second order, one does not obtain1

2β
′′ as the

coefficient in front of the second derivative in time. This mistake has led to untold confusion.
A couple of salient points emerge from Equations (25) and (26). First, the slowly-varying

envelope approximation, the physical assumption that there are only forward-going waves in
the optical fiber, and the reduction of the propagation equation from a second-order equation
in z to a first-order equation are all tightly coupled. In fact, when laser light is injected
into an optical fiber, there is a small region about the entry point in the fiber where both
forward-going (transmitted) and backward-going (reflected) waves exist, but the light that is
transmitted quickly sorts itself out into the correct modal pattern. Second, when the additional
contributions due to the birefrigence and the nonlinearity are added, (25) takes on the form

i
∂u1(z, t)

∂z
+ IFT{[β(ω0+�)− β(ω0)]ũ1(z,�)} − 1

2β(ω0)+ ψ̃(ω0)
S(z, t) = 0, (27)

whereS(z, t) contains the additional contributions. However, the magnitude ofψ̃(ω0) is typ-
ically about 10−3 of the magnitude ofβ(ω). Thus, it is safe to ignore it as is always done in
practice.

There is a final issue that we must address before discussing birefringence and nonlinearity.
In the derivation of (25), we implicitly assumed thatβ(ω) is real. In fact,β(ω) has a small
imaginary part that is responsible for fiber attenuation. This attenuation has a well-documented
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frequency dependence [14, Chapter 5]; however, it is usually sufficient in practice to ignore
this variation. In this case, rewriting (6) as

E(r , t) = F(δ1z, r⊥, δ1t, ω0)exp(i{Re[β(ω0)]z − ω0t})+ complex conjugate, (28)

(26) becomes

i
∂u1(z, t)

∂z
+ IFT[{β(ω0+�)−Re[β(ω0)]}ũ1(z,�)] = 0. (29)

After expansion through the third derivative in time, we obtain

i
∂u1

∂z
− ig(ω0)u1+ iβ ′(ω0)

∂u1

∂t
− 1

2β
′′(ω0)

∂2u1

∂t2
− 1

6i β ′′′(ω0)
∂3u1

∂t3
= 0, (30)

whereg(ω0) ≡ −Im[β(ω0)], β ′(ω0) ≡ Re[β ′(ω)]|ω=ω0, β
′′(ω0) ≡ Re[β ′′(ω)]|ω=ω0, and

β ′′′(ω0) ≡ Re[β ′′′(ω)]|ω=ω0. Note that we are redefiningβ ′, β ′′, . . . to assure that they are
real. The imaginary parts are in effect assumed to be small. There are two important practical
cases in which the expansion given in (30) may not be legitimate. The first is when erbum-
doped fiber amplifiers are used in conjunction with WDM and the second is when filters are
used. When the bandwidth of the signal is large enough so that the frequency response cannot
be approximated by a simple Taylor expansion – as often occurs in practice – then the full
response function given in (29) must be used.

We next turn to the effects of fiber asymmetry and anisotropy that lead to birefringence.
Including these effects, (10) becomes

L̂[E(r , t)] + δ2
1

c2

∂2

∂t2

∫ t

−∞
dt11XL(δ2z, r⊥, t − t1) · E(r , t1) = 0, (31)

where1XL is defined in (9) andL̂(E) is defined in (10). Inserting (6), taking the dot product
of (31) withR∗1, and integrating over the transverse profile of the fiber, just as we did when neg-
lecting asymmetry and anisotropy, we obtain an evolution equation foru1. We can similarly
obtain an evolution equation foru2. These equations may be written

ˆ̀(uj )− δ2

∫ 2π

0
dθ
∫ ∞

0
ρ dρR∗j (r⊥, ω0)

×
{
ω2

0

c2
1X̃L(r⊥, ω0) · [u1R1(r⊥, ω0)+ u2R2(r⊥, ω0)]

+ iδ1

[
ω2

0

c2
1X̃L(r⊥, ω0) · R1(r⊥, ω0)

]′
∂u1

∂s

+iδ1

[
ω2

0

c2
1X̃L(r⊥, ω0) · R2(r⊥, ω0)

]′
∂u2

∂s
+ · · ·

}
= 0, (32)

where ˆ̀(uj ) is defined in (19) and (26),j = 1 or 2,1X̃L is the Fourier transform of1XL,
and the prime indicates as usual the derivative with respect toω, evaluated atω = ω0. The
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z-dependence of1X̃L and thez andt dependences of theuj and their derivatives have been
suppressed. We now proceed by analogy with our previous derivation of (29) to find through
second order inδ1

i
∂U
∂ξ
− i

δ1
g(ω0)U+ 1

δ1
1B(ω0)U+ iB′(ω0)

∂U
∂s
− δ1

1
2B′′(ω0)

∂2U
∂s2
= 0, (33)

whereU indicates the two-element column vector
(
u1
u2

)
. The quantitiesB(ω0) and1B(ω0)

are 2× 2 matrices defined asB(ω0) ≡ β(ω0)I+ δ2[ω2
0/2β(ω0)c

2][E(ω0)/ε0] and1B(ω0) ≡
B(ω0)− β(ω0)I, whereI is the unit matrix and

Eij (ω0) = ε0

∫ 2π

0
dθ
∫ ∞

0
ρ dρR∗i ·1X̃L · Rj , (34)

with i = 1,2 andj = 1,2. Note that inverse powers ofδ1 appear at the lowest order in (33).
Hence, it is important that the length scales associated with attenuation and birefringence are
long compared to the pulse durations as is indeed physically the case. Consequently, the ratios
g/δ1 andδ2/δ1 are small. The contribution of1B′′ to the evolution ofU is too small to be
observable in practice, and it will be neglected from hereon. By contrast, the contribution of
1B′ to the evolution ofU is very important since it leads to polarization mode dispersion. We
now make three physical assumptions that are appropriate for optical fibers. The first is that
1B is Hermitian so that there is no polarization dependent loss. While polarization dependent
loss can be present in some discrete components and can play a role over very long distances
[15], there is no evidence that it is present in the optical fiber itself. The second is that there is
no helicity in glass so that we may write

1B = 1β(cos θσ3+ sin θσ1), (35)

where

σ1 ≡
(

0 1

1 0

)
and σ3 ≡

(
1 0

0 −1

)
are standard Pauli matrices, andθ is an orientation angle. Finally, we assume that1B′ is
oriented in the same direction as1B so that

1B′ = 1β ′(cosθσ3+ sin θσ1). (36)

This assumption is valid because physically the birefringence is due to anisotropies and asym-
metries that are very weak functions of frequency. We note that the orientation angleθ =
θ(δ2z) varies on the length scale corresponding toδ2 since by a physical coincidence the beat
lengths and fiber correlation lengths are comparable in magnitude as shown in Figure 1.

We now turn to consideration of the nonlinear contributions. Since the contributions of the
birefringence and the nonlinearity to the evolution ofU simply add through the first order in
δ2 andδ3, which is the only order beyond zero order that it is necessary in practice to keep, we
may consider the nonlinear contributions separately from the contributions due to anisotropy
and asymmetry and then simply add both sets of contributions at the end. Thus, (10) becomes

L̂(E)+ 1

ε0c2

∂2

∂t2
PNL = 0, (37)
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wherePNL is given in (8). We now insert (6) into (37) to determine the evolution ofU. One
immediately finds that components atω = ±3ω0 are produced in addition to the components
at±ω0. Strictly speaking, we should write

E(r , t) =
∞∑
n=0

F(n)(δ1z, r⊥, δ1t, ω0)exp{(2n+ 1)i[β(ω0)z− ω0t]}

+complex conjugate, (38)

whereF(0) ≡ F, and solve self-consistently for all the harmonics. This issue has been thor-
oughly discussed by Kodama [12]. Because all the harmonics atn = 1 and higher are
nonresonant, they are vanishingly small and negligible in practice. Keeping only the first
harmonic contributions we may write

PNL(r , t) = QNL(δ1z, r⊥, δ1t, ω0)exp{i[β(ω0)z − ω0t]} + complex conjugate (39)

and we then find

QNL(δ1t) = δ3ε0

∫ t

−∞
dt1

∫ t

−∞
dt2

∫ t

−∞
dt3χNL(t − t1, t − t2, t − t3)

{2F(δ1t1) · F∗(δ1t2)F(δ1t3)exp[iω0(t − t1+ t2− t3)]
+ F(δ1t1) · F(δ1t2)F∗(δ1t3)exp[iω0(t − t1− t2 + t3)]}, (40)

where the dependences onr⊥ and z have been suppressed for clarity. We have used the
symmetry ofχNL with respect to the exchanget1 ↔ t2 to simplify (40) from three terms
to two.

Physically, there are three major contributions toχNL. The first is the contribution from
the electronic resonances which have a characteristic times scale that is a fraction of a femto-
second; these contributions can be considered instantaneous in practice. The second is the
contribution from the Raman effect due to vibrational resonances of the individual glass
molecules; it has a characteristic time on the order of 100 femtoseconds. This contribution
can usually be considered instantaneous for single-channel communication systems, but that
is not the case for some high-power undersea systems in which the input is hundreds of
milliwatts. It is also not necessarily the case for WDM systems with a large bandwidth [16].
The third major contribution to the nonlinearity is from the Brillouin effect which is due
to vibrational modes of the entire fiber (sound waves); these contributions have a character-
istic time of ten nanoseconds or more. This contribution can become important at powers
of 10 mW or more, which is commonly obtained in practice; however, the Brillouin effect
requires a large degree of coherence in the communication signal to manifest itself, and it
is easily avoided in practice by dithering the signal or otherwise spreading its bandwidth
[16]. Optical fibers have low attenuation because the frequency of propagationω0 is far from
any of the quantum level differences (resonances) in the glass. As a consequence, the non-
instantaneous contributions are limited in their allowed behavior. One can show from either
first quantum-mechanical principles [17] or the uncertainty principle [18] thatχNL differs
significantly from zero only whent = t3 and t1 = t2 to within ω−1

0 in the first term in (40)
and whent = t1 andt2 = t3 or vice versa to withinω−1

0 in the second term. Consequently, we
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may write

QNL(δ1t) = δ3ε0

{
χI[2F(δ1t) · F∗(δ1t)F(δ1t)+ F(δ1t) · F(δ1t)F∗(δ1t)]

+
∫ t

−∞
dt1a(t − t1)F(δ1t1) · F∗(δ1t1)F(δ1t)

+
∫ t

−∞
dt1b(t − t1)F(δ1t)

·[F∗(δ1t1)F(δ1t1)+ F(δ1t1)F∗(δ1t1)]
}
. (41)

We have taken advantage of the slow variation ofF(δ1t) relative toω−1
0 to neglect its changes

on this time scale.
We now proceed by analogy with our previous calculations to determine the evolution

equation forU. We insert (39) and (41) into (37), take the dot product of the result withR∗1,
and integrate over the transverse profile of the fiber to determine an evolution equation foru1.
We then proceed similarly to find an evolution equation foru2. Following convention, we next
define an effective area

1

Aeff
≡
∫ 2π

0
dθ
∫ ∞

0
ρ dρ(R∗j · Rj )

2, (42)

wherej = 1 or 2. This area is approximately but not exactly equal to the fiber core area.
We keep only the lowest-order contribution inδ1 for the nonlinear term since there is no
experimental evidence that the higher-order terms contribute measurably to the evolution. We
now find, adding together the contributions from fiber anisotropy and asymmetry and the
contribution from the nonlinearity, that the evolution ofU is given by

i
∂U(z, t)
∂z

+ IFT({β(ω0+�)−Re[β(ω0)]}Ũ(z,�))

+(cosθσ3+ sin θσ1)

(
1β(ω0)U(z, t)+ i1β ′(ω0)

∂U(z, t)
∂t

)
+ω0

c

n2

Aeff
fI{|U(z, t)|2U(z, t)− 1

3[U†(z, t)σ2U(z, t)]σ2U(z, t)}

+ ω3
0

4ε0β2(ω0)c4Aeff

∫ t

−∞
dt1{a(t − t1)|U(z, t1)|2U(z, t)

+b(t − t1)U(z, t) · [U(z, t1)U∗(z, t1)+ U∗(z, t1)U(z, t1)]} = 0. (43)

The dependence on the ordering parameters has been suppressed. The dependences of the
parametersβ,1β,1β ′, θ , n2, andAeff on z have also been suppressed. The parameter

n2fI = 3ω2
0χI

4ε0β2(ω0)c3
(44)
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has a factorfI ' 0·82 because when the Kerr coefficientn2 is measured experimentally, it
includes contributions of the Raman effect which have been explicitly separated here [19].
InterpretingU as a column matrix

(
u1
u2

)
, the quantityU† is a row matrix(u∗1, u

∗
2) so that

U†σ2U = −i(u∗1u2− u∗2u1), where

σ2 ≡
(

0 −i

i 0

)
is one of the standard Pauli matrices. In obtaining (43), we ignore small corrections that result
from the deviation of the factors

∫ 2π
0 dθ

∫∞
0 ρ dρ (R1 ·R∗1)(R2 ·R∗2) and

∫ 2π
0 dθ

∫∞
0 ρ dρ(Ri ·

Ri)(R∗j · R∗j ) (i = 1,2, j = 1,2) from 1/Aeff. These deviations are less than 1% in all
practical cases and will have no measurable effect. Similarly, we may ignore the deviation
of the factors

∫ 2π
0 dθ

∫∞
0 ρ dρ(R1 · R2)(R∗1 · R∗2) and

∫ 2π
0 dθ

∫∞
0 ρ dρ(Ri · R∗3−i)(Rj · R∗3−j )

(i = 1,2, j = 1,2) from zero.
The Brillouin contribution toa(τ) andb(τ) is on such a long time scale that it must be

studied in conjunction with reduced models that only take into acount some average features
of the signal channel rather than its detailed temporal behavior [16]. By contrast, the Raman
contributions are on a short time scale so that it is often legitimate to make the replacement∫ t

−∞
dt1{aR(t − t1)|U(t1)|2U(t)+ bR(t − t1)U(t) · [U(t1)U∗(t1)+ U∗(t1)U(t1)]}

' [ãR(0)+ b̃R(0)]|U(t)|2U(t)+ b̃R(0)U(t) · U(t)U∗(t)

+iã′R(0)U(t)
∂

∂t
|U(t)|2+ ib̃′R(0)U(t) ·

∂

∂t
[U(t)U∗(t)+ U∗(t)U(t)], (45)

whereaR(τ ) andbR(τ ) are the Raman contributions toa(τ) andb(τ), ãR(�) andb̃R(�) are
their Fourier transforms, whilẽa′R(0) = dãR/d�|�=0 andb̃′R(0) = db̃R/d�|�=0. The first two
terms on the right-hand side of (45) can be absorbed directly into the Kerr coefficient, and
consistency demands thatãR(0) = b̃R(0) = χI(1− fI). Kodama has shown that if instead
of stopping at the zeroth order inδ1 in the expansion of the nonlinear terms, we continue to
first order, then we obtain derivatives of the electric field analogous to the terms on the right-
hand side of (45) [12]. However, these contributions have real coefficients and appear to be
negligible in practice.

It might seem a bit surprising and even contradictory to readers with a background in
soliton physics that one often needs in practice to keep the third and sometimes even higher
derivatives in the dispersive term (second term on the left-hand side) of (43), while it is
possible to neglect the higher-order corrections to the nonlinearity. Textbook derivations of
the nonlinear Schrödinger equation and its modifications typically assume thatδ3 = δ2

1. With
this assumption the third derivative in the dispersive term appears at the same order as the first
derivative contributions to the nonlinearity. This assumption makes physical sense for standard
solitons because there is a direct tie between the soliton’s bandwidth and its peak intensity; as
the pulse duration decreases, increasing the bandwidth, the peak intensity must also increase.
It is important to recognize that this assumption is not true in general, and, in fact, it is not
true for any current communication system. Indeed, the trend has been toward lowering the
signal intensity in current NRZ systems to reduce the nonlinear impairments while raising the
bandwidth through the use of WDM. However, even in short pulse experiments in which one
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might expect to observe the higher-order nonlinear corrections, other effects like the Raman
effect, gain saturation, and geometric effects due to lumped elements appear to overshadow
these terms in practice. Thus, they have never to my knowledge been unambiguously observed.

Equation (43) is the most general form of the coupled nonlinear Schrödinger equation
that is of any use in practice and is the central result of this section. It is usually simplified
further in applications. In most optical-fiber transmission systems the noninstantaneous con-
tributions to the nonlinearity can be neglected. While it is easy to retain the full expression
IFT({β(ω0 + �) − Re[β(ω0)]}Ũ(z,�)) in numerical simulations of transmission systems,
which are typically based on split-step, semi-spectral methods, it is sufficient when simulat-
ing the optical fiber itself to keep terms up to the third derivative in time. While we must
often keep the full expression when dealing with the amplifiers and filters that are inevitably
in any real system, these are normally lumped elements in the transmission line and can
be treated separately from the optical fiber. Finally, it is conventional to use retarded time,
tretarded= t − β ′(ω0)z, rather than standard time. This transformation is of critical importance
in simulations because it allows one to view the signal evolution in a time window of limited
duration. [More generally, this retarded time should be writtentretarded= t−

∫ z
0 β
′(ω0, z1)dz1,

to take into account the slow variations of the fiber on the length scale corresponding to
δ2; however, just as in the case of the variations ofβ(ω0, z), the variations ofβ ′(ω0, z) are
negligible in practice.] With these simplifications, (43) becomes

i
∂U
∂z
− igU+ (cosθσ3+ sin θσ1)

(
1βU + i1β ′

∂U
∂t

)

−1
2β
′′ ∂

2U
∂t2
− 1

6iβ ′′′
∂3U
∂t3
+ γ [|U|2U− 1

3(U
†σ2U)σ2U] = 0, (46)

where t now refers to retarded time andγ = ω0n2/cAeff. Equation (46) is the version of
the coupled nonlinear Schrödinger equation that will be the basis of our analysis in the next
section, although it must be borne in mind that there are practical cases in which one or more
terms of the fuller expression in (43) that have been left out of (46) become important. It
should also be borne in mind that the birefringent coefficientsθ , 1β, and1β ′ all vary on
the length scale corresponding toδ2, while g andβ ′′ vary on the length scale corresponding
to δ3. The variations ofβ ′′′ andn2 are typically negligible. In addition to its variations on
the length scale corresponding toδ3, the dispersionβ ′′ also has variations on the length scale
corresponding toδ2, but the signal averages over these variations, as will be discussed in the
next section, and they are negligible.

3. The Manakov-PMD equation and its reductions

A. The Manakov-PMD equation

We now turn to the next stage of the analysis – averaging over the rapidly and randomly
varying birefringence on the length scale corresponding toδ2 to determine the appropriate
evolution equations on the length scale corresponding toδ3. We begin by first considering
the evolution on the length scale corresponding toδ2, neglecting the evolution on the longer
length scale corresponding toδ3. Thus, only keeping terms of orderδ2 and taking the Fourier
transform, (46) becomes

i
∂Ũ(z,�)
∂z

+ [cosθ(z)σ3+ sin θ(z)σ1][1β(z)+1β ′(z)�]Ũ(z,�) = 0. (47)
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The random variation ofθ , 1β, and1β ′ implies that a complete characterization of the stat-
istical properties of̃U can only be accomplished once the statistical properties ofθ , 1β, and
1β ′ are known. Unfortunately, very little is known about the actual statistical properties of
these quantities. On the other hand, numerical studies [20, 21] supported by analytical work
[22, 23] show that, as long asθ is uniformly distributed, the distribution of1β does not matter
much in determining the statistical properties of the fieldŨ. It has generally been assumed in
theoretical work to date that1β ′ = 1β/ω0, consistent with the observation that the phase
and group velocities are nearly identical in optical fibers [24]. Specifically two very different
models of the fiber statistics have been compared both numerically [20, 21] and using Ito’s
method [23]. In the first model,1β is held fixed, and in the second1β cosθ and1β sin θ are
both assumed to have independent Gaussian distributions. These models yield nearly identical
results for the statistical quantities characterizing the field evolution. Additionally, it has been
shown that a wide range of models will yield Poole’s [25] classic expression for the PMD
length. However, from a mathematical standpoint, there is no proof that the field statistics are
nearly model-independent, and this issue remains open.

We begin the analysis by transforming̃U in a way that would diagonalize its evolution,
were it not for thez-variation ofθ , letting Ṽ = R−1Ũ, whereR−1 = cos(θ/2)I+ i sin(θ/2)σ2.
Equation (47) now becomes

i
∂Ṽ(z,�)
∂z

+ [(1β +1β ′�)σ3+ (θz/2)σ2]Ṽ(z,�) = 0, (48)

whereθz ≡ dθ/dz. We next write

W̃(z,�) = T−1(z)Ṽ(z,�), (49)

whereT satisfies (48) at� = 0, i.e.,

i
∂T

∂z
+ [1βσ3 + (θz/2)σ2]T = 0 (50)

andT (z = 0) = I. It follows that W̃(z,� = 0) = W̃(z = 0,� = 0) is constant. Thus,
the transformationW̃(z,�) = T−1R−1Ũ(z,�) freezes the motion of the frequency� = 0
in SU(2) so thatW̃(z,�) measures the relatively slow motion of the other frequencies with
respect to� = 0. Explicitly, one now finds that

i
∂W̃(z,�)

∂z
+1β ′(z)�σ̄3(z)W̃(z,�) = 0, (51)

whereσ̄3(z) = T−1(z)σ3T(z). One of the important effects of the randomly varying birefrin-
gence is to spread an initial input pulse in the optical fiber. To calculate this spreading, we
first write W̃(z,�) = α(�)Ã(z,�), where|Ã(z,�)|2 = 1. It follows from (51) thatα(�)
is independent ofz. The conventional Stokes parameters on the unit Poincaré sphere that are
used in optics are defined in terms ofÃ as

S1 ≡ Ã†σ3Ã, S2 ≡ Ã†σ1Ã, S3 ≡ −Ã†σ2Ã. (52)

These Stokes parameters together define a Stokes vectorS= (S1, S2, S3).
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We now define a matrixF(z,�) such that

i
∂Ã(z,�)
∂�

+ F(z,�)Ã(z,�) = 0. (53)

Since the transformation relating̃A(z,�) at different values of� is evidently unitary, the
matrix F must be Hermitian. From the compatibility conditions for (51) and (53), we find

∂F

∂z
= i1β ′�(σ̄3F− Fσ̄3)+1β ′σ̄3, (54)

so that the trace is constant as a function ofz. The eigenvalues ofF will be designated as
Toff ± TPMD. The eigenvectors ofF are conventionally referred to as the principal states while
the difference between the eigenvalues, 2TPMD is conventionally referred to as the differential
delay. The matrixF is directly related to the spreading. Defining the mean signal time

T (z) =
∫∞
−∞ t|W(z, t)|2 dt∫∞
−∞ |W(z, t)|2 dt

= −i
∫∞
−∞[α′(�)α(�)+ α2(�)Ã†(z,�)Ã ′(z,�)]d�∫∞

−∞ α2(�)d�
, (55)

where the primes indicate derivatives with respect to�, and the mean square signal time

T 2(z) =
∫∞
−∞ t

2|W(z, t)|2 dt∫∞
−∞ |W(z, t)|2 dt

=
∫∞
−∞ |α′(�)Ã(z,�)+ α(�)Ã ′(z,�)|2 d�∫∞

−∞ α2(�)d�
, (56)

we may define the signal spread as6(z) ≡
[
T 2(z)−T (z)2

]1/2
. By analogy with the definition

of the Stokes vector, it is conventional to write

F(z,�) ≡ Toff(�)I+ 1
2[21(z,�)σ3+22(z,�)σ1−23(z,�)σ2], (57)

which expressesF(z,�) in terms of the Pauli matrices. Writing22 = 22
1 + 22

2 + 22
3, it

follows thatT 2
PMD = 1

42
2. The quantity2 just equals the differential delay, and the vector

2 = (21,22,23) is referred as the dispersion vector. Noting from (53) thatÃ ′(z,�) =
iF(z,�)Ã(z,�) and using the definitions of the Stokes vector in (52) and the dispersion
vector in (57), we obtain

62(z) = 1∫∞
−∞ α2(�)d�

{∫ ∞
−∞

d�[α′(�)]2

+
∫ ∞
−∞

d�α2(�)

[
Toff(�)

(
Toff(�)+2(z,�) · S(z,�)

−
∫ ∞
−∞

d�1α
2(�1)[Toff(�1)+2(z,�1) · S(z,�1)]

)
+ 1

42
2(�, z)

−1
42(z,�) · S(z,�)

∫ ∞
−∞

d�1α
2(�1)2(z,�1) · S(z,�1)

]}
. (58)
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We now specialize to the case in which the initial signal is in a fixed polarization state as
a function of wavelength. This case is common for present-day communication systems,
but there are important exceptions – notably long-distance, undersea systems in which it is
common to scramble the signal’s polarization. The reason for focusing on the case of a single-
input polarization state is that it allows us to unambiguously focus on the spreading due to the
effects of the optical fiber as opposed to the initial signal profile itself. In this case,Toff(�)

and2(z = 0,�) both equal zero, and (58) may be rewritten

62(z) = 62(z = 0)+ 1∫∞
−∞ α2(�)d�

∫ ∞
−∞

d�α2(�)

×
[

1
42

2(�, z)− 1
42(z,�) · S(z,�)

∫ ∞
−∞

d�1α
2(�1)2(z,�1) · S(z,�1)

]
. (59)

Over sufficiently small lengths, before the spreading has become important,2 and S are
nearly constant over the bandwidth of the signal, and (59) reduces to

62(z)−62(z = 0) ' 1
4|2(z,� = 0)× S(z,� = 0)|2. (60)

From a physical standpoint, what happens is that a signal launched in either one of the
two principal states is advanced or retarded byTPMD, while a signal launched in any other
polarization state decomposes into the two principal states, so that part of the signal is ad-
vanced and part is retarded. When this effect is concatenated over a long length of fiber, or
alternatively (but equivalently) the length has become long enough so that the approximation
in (60) is no longer valid, then significant spreading occurs. This length scale is given by
TPMD(z)1ν = 1, where1ν is the bandwidth of the signal (in cycles per unit time). The
definition of the bandwidth is a bit arbitrary. In practice, most workers use the full width at
half maximum, although the root mean square is also occasionally used in theoretical work.
The two are the same within a factor of order one.

To determine the length scale on which the spreading occurs, we may first write

σ̄3 ≡
(

cosθS sin θS exp(iφS)

sin θS exp(−iφS) − cosθS

)
, (61)

which defines the anglesθS andφS . Calculating22
1(z) at� = 0, we find

22
1(z) = 8

∫ z

0
dz1{1β ′(z1) cos[θS(z1)]}

∫ z1

0
dz2{1β ′(z2) cos[θS(z2)]}. (62)

To make further progress, one must know the autocorrelation functionC(z1, z2) ≡ 〈1β ′(z1)

cos[θS(z1)]1β ′(z2) cos[θS(z2)]〉 over an ensemble of fibers. A wide variety of physical models
of the optical fiber all lead to the conclusion that [20–25]

C(z1, z2) = 1
3〈[1β ′(z)]2〉exp[−(z1− z2)/Zc], (63)

whereZc is the characteristic correlation length of the optical fiber shown in Figure 1. So, we
obtain

〈22
1(z)〉 = 8

3〈[1β ′(z)]2〉{Zcz+ Z2
c[exp(−z/Zc)− 1]}. (64)
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Noting that〈22
3(z)〉 = 〈22

2(z)〉 = 〈22
1(z)〉, we find that〈T 2

PMD〉 = 3
4〈22

1(z)〉 which is Poole’s
classic result [25]. Whenz � Zc, then it has been shown (at the same level of rigor as this
paper) that an ergodic theorem holds [22] so that

TPMD(z) = 1

2ν0Zb
(2Zcz)

1/2, (65)

whereν0 is the signal’s central frequency (in cycles per unit time) andZb is the beat length.
We have made the replacement〈(1β ′)2〉 = 1/2ν0Zb which is only true to within about 10%.
However, the beat length is notoriously difficult to characterize accurately over a long length of
fiber; so, this relationship is sufficiently accurate for practical purposes. Using the condition
TPMD(z)1ν = 1, we conclude that the characteristic length scaleZPMD over which PMD
becomes important is given by

ZPMD ' 2
Z2

bν0

Zc1ν
. (66)

In practice, accurate techniques exist for measuringTPMD over an ensemble of frequencies
[24, Chapter 6]. By contrast,Zc is unknown and must be inferred from the measuredTPMD,
the measured beat length, and (66). In practiceZPMD can vary from tens of kilometers to
thousands of kilometers, depending on the bandwidth of the signal and the quality of the
optical fiber. Thus, this effect acts on the length scale corresponding toδ3. By contrast, as
shown in Figure 1, the correlation lengthZc varies from meters, in the best case when the
fiber is rapidly twisted as it is manufactured, to around a hundred meters. When we make the
transformationŨ(z,�)→ W̃(z,�) defined in (49) and just prior, we thus obtain an equation
that only varies on the length scale corresponding toδ3. In effect, we have averaged over the
large but rapidly varying birefringence.

Thus, we turn to (46) in the previous section and make the substitutionU(z, t) =
R(z)T(z)W(z, t) which leads to the equation

i
∂W
∂z
− igW − 1

2β
′′ ∂

2W
∂t2
− 1

6iβ ′′′
∂3W
∂t3
+ γ |W|2W

= −i1β ′σ̄3
∂W
∂t
+ 1

3γ [(W†σ̄2W)σ̄2W − 1
3|W|2W], (67)

whereσ̄2(z) ≡ T−1(z)σ2T(z). A nice feature of this result is that the transformation of (46) into
(67) that separates out explicitly the rapidly from the slowly varying contributions is exact!

The second term on the right-hand side of (67) is referred to as nonlinear PMD and contains
the effect of incomplete mixing on the Poincaré sphere. A careful analysis shows that this term
is always negligible in practice for communication systems [26]. When in additionZPMD is
longer than the system length, then the first term on the right-hand side of (67) due to the usual
linear PMD can be neglected. In this case, the coupling between the two components ofW
disappears, and (67) can be replaced by a scalar equation,

i
∂ψ

∂z
− igψ − 1

2β
′′ ∂

2ψ

∂t2
− 1

6iβ ′′′
∂3ψ

∂t3
+ 8

9γ |ψ |2ψ = 0. (68)

Moreover, ifZPMD is long compared to the nonlinear and dispersive scale lengths, then it is
possible to treat it perturbatively, and in this case its effect is usually small. It should, however,
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be clearly understood that the usual linear PMD plays an important role in many, although not
all modern-day communication systems. When it is important, the two polarization modes
in a single-mode fiber are coupled to each other through the off-diagonal, randomly varying
elements inσ̄3 which is what leads to the spreading discussed earlier. This coupling cannot
be transformed away [22]. Thus, (68) is not valid in this case and, consequently, neither is the
nonlinear Schrödinger equation or any other scalar approximation to (68). One must instead
use the full vector equation, Equation (67). There is no practical barrier to doing so since the
vector equation evolves on the length scale corresponding toδ3 and highly efficient algorithms
exist to solve it.

B. The nonlinear Schrödinger equation

We now turn to the final and conceptually simplest stage of the discussion. As shown in Figure
1, the length scale on which the gain and loss act is typically 30–120 km, while the length scale
on which the nonlinearity and the dispersion act is typically many hundreds or even thousands
of kilometers. We can take advantage of this separation between the length scales to average
over the gain-and-loss variations and dispersion variations that occur on a length scale of about
100 km or less to obtain a new averaged equation. When in addition the third-order dispersion
is negligible, one obtains the nonlinear Schrödinger equation. The average over the rapidly
varying dispersion is conceptually important because, when optical fibers are manufactured,
there are always significant, uncontrolled fluctuations in the dispersion over length scales of
hundreds of meters. This variation should be contrasted with the intentional changes in the
dispersion that are used for dispersion management on a length scale of 100 km or more and
which cannot be averaged over. I will return to this point shortly.

The approach presented here has been described by Mollenaueret al. [27] and by Doran
and Blow [28]. It is based on the observation that gain and loss change the amplitude of the
signal, but do not change its shape. Thus, writing

ψ(z, t) = u(z, t)exp

[∫ z

0
g(z1)dz1

]
, (69)

we find

i
∂u(z, t)

∂z
− 1

2β
′′(z)

∂2u(z, t)

∂t2
− 1

6iβ ′′′(z)
∂3u(z, t)

∂t3
+ 8

9γG(z)|u(z, t)|2u(z, t) = 0, (70)

whereG(z) = exp[2∫ z0 g(z1)dz1]. In almost all communication systems, the amplifiers are
regularly spaced. The gain must integrate to zero over one amplification periodZamp because
otherwise the signal does not propagate stably through the system, but suffers exponential
growth or loss. Amplifiers are usually operated in a regime of gain saturation to avoid this
difficulty. One may now divide the transmission line intoN discrete segments whereN =
Zsystem/Zamp andZsystemis the total length of the system. Then, in thenth segment, we can
write

G(z) = Ḡn(z)+ R(z), (71)

where, for(n− 1)Zamp< z < nZamp,

Ḡn(z) = 1

Zamp

∫ nZamp

(n−1)Zamp

dz exp

[
2
∫ z

(n−1)Zamp

g(z1)dz1

]
. (72)
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In fiber-optic communication sytems,g(z) = −α, whereα is the attenuation coefficient,
except right atz = nZamp, the amplifier locations, whereg(z) becomes large and positive. In
this case, one obtains

Ḡn(z) = 1

2αZamp
[1− exp(−2αZamp)] ≡ Ḡ, (73)

whereḠ is a constant. Similarly, we may write

β ′′(z) = β̄ ′′n (z)+ r(z), (74)

whereβ̄ ′′n (z) is the average value in thenth segment andr(z) is the remainder. It is often the
case, as for example in dispersion-managed systems, thatβ̄ ′′n (z) varies. Then, (70) becomes

i
∂u

∂z
− 1

2β̄
′′
n (z)

∂2u

∂t2
+ 8

9γ Ḡ|u|2u = 1
6iβ ′′′(z)

∂3u

∂t3
− 1

2r(z)
∂2u

∂t2
− 8

9R(z)|u|2u. (75)

When all the terms on right-hand side are negligible and, in addition,β̄ ′′n (z) is constant,
then (75) becomes the nonlinear Schrödinger equation! Note that the nonlinearity has been
effectively lowered by the factor̄G.

Equation (75) can be used as the starting point for a multiple-length-scale analysis to obtain
higher-order corrections [4, Chapter 7]. Assuming that third-order dispersion is negligible and
β̄ ′′n (z) is constant, in order to simplify the arguments, we obtain at lowest order the nonlinear
Schrödinger equation

i
∂u

∂z
− 1

2β̄
′′ ∂u
∂t
+ 8

9|u|2u = 0. (76)

Writing u(z, t) = u(0)(z, t)+ u(1)(z, t)+ · · ·, whereu(0)(z, t) is the solution of (76), we then
find that

i
∂u(1)

∂z
− 1

2β
′′ ∂

2u(1)

∂t2
+ 16

9 γ Ḡ|u(0)|2u(1) + 8
9γ Ḡ[u(0)]2u(1)∗

= −1
2r(z)

∂2u(0)

∂t2
− 8

9γR(z)|u(0)|2u(0). (77)

The solution to (77) yields a rapidly oscillating correction tou(0). Additionally, it can also
yield a slow secular growth becauseu(0) changes slightly over one amplifier period. At the
next order, secularities are inevitable. When considering specific solutions to (76), like soliton
solutions, it is possible to modify the expansion ofu(z, t) in a way that removes the seculari-
ties, and this issue is thoroughly discussed by Hasegawa and Kodama [4, Chapter 7]. For our
purposes here it is sufficient to note that when higher-order corrections including the secular
contributions are negligible, then the nonlinear Schrödinger equation is a valid model of the
signal evolution in the optical fiber. It bears emphasis that, while the averaging approach
just described was first applied to soliton systems, I have made no mention of solitons in
the derivation of the nonlinear Schrödinger equation, and the result is equally valid for any
communication format.
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The derivation that has just been given for the nonlinear Schrödinger equation begs the
question of determining when the higher-order corrections that were neglected become im-
portant. If the separation between the length scale on which the gain and the loss occurs and
on which the nonlinearity and dispersion act had been many orders of magnitude, then we
would expect the corrections to be negligible, but in practice these scales are only separated
by about a factor of ten, so that the spatially varying gain and loss often lead to important
changes in the evolution from what the nonlinear Schrödinger equation would predict. It is
standard, therefore, when using simulations to design communication systems, to use (68)
or possibly (67), often with the effects of spontaneous emission noise added. We should not
conclude from this situation, however, that averaging over the gain and loss is useless. The
nonlinear Schrödinger equation has many special properties, and a large amount of theoretical
work has been carried out based on it – particularly for solitons – that has yielded important
insights for communication systems.

As a final point, I turn to consideration of the case in whichβ̄ ′′n (z) varies along the optical-
fiber transmission line. It has been found in practice that it is very beneficial to use large values
of dispersion with alternating signs in an optical fiber transmission system since the alternating
expansion and contraction of the signal as well as its spatially varying chirp serves to reduce
the deleterious effects of the nonlinearity. In practical systems, the greatest advantage is ob-
tained when the dispersion in each leg of the dispersion map is large enough, so that its scale
length is roughly comparable to the map length, but not larger. However, we must analyze
these systems using numerical techniques, and it is of conceptual interest at least to consider
what happens when the dispersive scale length is short compared to the map length so that
the local dispersion dominates the evolution. In this limit, one can apply multiple-scale-length
techniques directly to (77), lettingβ ′′ vary as a function ofz. This approach has recently
been used by Bronski and Kutz [29] to analyze the onset of the modulational instability in
nonreturn-to-zero systems and independently by Turitsyn [30] and by Kodamaet al. [31] to
investigate the existence of very-long-term radiation in dispersion-managed soliton systems.
Clearly, the story is far from finished!
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