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Calculation of Timing and Amplitude Jitter
in Dispersion-Managed Optical Fiber
Communications Using Linearization

V. S. Grigoryan, C. R. Menyuk, and R.-M. Mu

Abstract—An approach based on linearization that allows us
to calculate the timing and amplitude jitter for arbitrary pulse
shapes in dispersion-managed fibers is developed. We apply this
approach to calculate the jitter for dispersion-managed soliton,
return-to-zero (RZ), and nonreturn-to-zero (NRZ) transmission
formats. We then estimate the bit error rates. The approach
described here yields more precise results than Monte Carlo
simulations at a fraction of the computational cost.

Index Terms—Dispersion management, noise, jitter, optical
fiber transmission.

I. INTRODUCTION

AMPLIFIED spontaneous emission (ASE) noise and in-
terchannel interference cause fluctuations of the time

and energy of signal pulses. The temporal fluctuations are
referred to as timing jitter, while the pulse energy fluctuations
are referred to as amplitude jitter. These fluctuations degrade
the phase and amplitude margins, respectively, leading to
errors. Fundamental parameters determining the timing and
amplitude jitter are the variance of the pulse’s central time
and the variance and average of the pulse energy. The time
variance was calculated for the first time by Gordon and Haus
[1], [2] for a hyperbolic secant soliton pulse propagating in
a fiber with uniform dispersion. One of the key ideas used
in [1] and [2] was linearization of the problem about the
analytically known soliton solution. The linearization was
feasible because the noise power is much weaker than the
signal power. In dispersion-managed fibers one cannot directly
apply the Gordon–Haus theory in most cases because the pulse
shapes may differ significantly from the analytically assumed
hyperbolic-secant shape. For dispersion-managed solitons, the
pulse shapes range from hyperbolic-secant to Gaussian to flat-
top, depending on the strength of the dispersion management
[3], [4], and oscillate periodically. For return-to-zero (RZ) and
nonreturn-to-zero (NRZ) signals, the pulse shapes differ even
more from the hyperbolic secant shape and evolve continually.

For dispersion-managed solitons, it was predicted in [3]
that a corrected Gordon–Haus formula reduced by the en-
hancement factor (the ratio of the dispersion-managed soliton
energy to the energy of a standard soliton in fibers with
equal path-average dispersion) would successfully describe
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the timing jitter. This prediction is roughly correct [4], but
it is intuitively clear that the timing jitter must be sensitive
to pulse bandwidth—the greater the bandwidth of the pulse,
the greater the amount of noise the pulse can incorporate.
Different pulse shapes have different bandwidths. Hence, the
Gordon–Haus formula reduced by the enhancement factor will
not yield exactly accurate results. Recently, a new approach
was suggested [5]–[7] that takes into account the more general
dispersion-managed soliton (DMS) pulse shape. However,
this work still presumes an analytically fixed pulse shape
with quadratic chirp that can change only its duration and
amplitude. This approach yields only a rough approximation
of the jitter for solitons and cannot describe the jitter at all
for RZ and NRZ signals. Another approach that has been used
for NRZ signals is to linearize the noise around an assumed
continuous wave signal to calculate the noise power [8]–[11].
This approach is fairly successful when the pulse evolution is
not too large, but it cannot determine the effect of timing jitter.
Direct Monte Carlo simulations can be used to fill this gap, but
processing the large number of different realizations of random
noise that is required to obtain an accurate solution can be
very numerically time-consuming. Thus, developing a general
approach that allows us, first, to calculate the timing and
amplitude jitter for arbitrary pulse shapes and, second, to avoid
time-consuming Monte Carlo simulations, is vitally important.

We stress that the linearization approach, used in the Gor-
don–Haus theory [1], [2], has a much broader range of
applicability in optical fiber communications than just for
hyperbolic-secant solitons in uniform dispersion fibers, con-
tinuous wave signals [8]–[11], or other analytically known
pulse shapes. The basic idea of the present paper is to use the
linearization approximation around an arbitrary, numerically-
determined solution of the nonlinear Schrödinger equation.
In effect, we break the problem into two steps. In the first,
we determine the signal evolution in the absence of noise.
While this step requires computational methods for arbitrary
pulse shapes, it is fully deterministic and thus does not
require the use of many realizations. In the second step, we
linearize around the numerically determined solution, using
statistical properties of the ASE noise to derive dynamic
equations for the mean and variance of a pulse’s central time
and energy. We show that in the limits of the linearization
approximation the pulse’s central time is Gaussian-distributed
with the variance and average calculated by our method. The
situation with the amplitude jitter is a bit more complex.
In order for the linearization approximation to be valid, the
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spontaneous-spontaneous beat noise of a single noise mode
must be small compared to the signal–spontaneous beat noise.
However, the number of noise modes is approximately equal to

, where is the optical bandwidth and is the bit
window. When this number becomes large, it is not possible to
neglect the spontaneous–spontaneous beat noise even when the
linearization approximation is valid. When the number of noise
modes is small, so that sum of the spontaneous-spontaneous
beat noise contributions from all the noise modes can be
ignored, the signal’s central energy is Gaussian-distributed
with the variance and average calculated by our method.
When the number of noise modes is large, and the amount of
energy that goes into each noise mode is the same, the signal
energy is Rician-distributed [8], [9], [12]. More generally, the
energy is chi-square-distributed [12]. In typical cases that we
considered, the variance of the noise energy is about 1/100 of
the signal energy, while , so that it is reasonable
to ignore spontaneous-spontaneous beat noise which is what
we do in this paper. When either timing jitter or amplitude
jitter becomes the dominant source of errors, it is then possible
to calculate the bit error rate which we show how to do. We
compare our theoretical approach to simulations for a wide
range of pulse formats, including DMS, RZ, and NRZ pulses.

The remainder of this paper is organized as follows. In
Section II, we derive the basic equations for the variance of
the central time and energy of the pulse in the presence of ASE
noise. In Section III, we validate our approach by comparing
the timing and amplitude jitter predicted by theory to the
results of Monte Carlo simulations over a large number of
realizations of the ASE noise. In Section IV, we show how we
estimate the bit error rate probability knowing the variances
of the central time and the energy of the signal pulses.

II. BASIC EQUATIONS

We start from the nonlinear Schrödinger equation written in
Langevin form

(1)

using a formulation due to Haus [2] that is particularly useful
for noise problems. In this formulation is the photon flow,

is unnormalized time, is the product of a scaling
dispersion and the unnormalized distance, while
and are the local dispersion and filtering normalized with
respect to . The quantity is the
nonlinear coefficient, where is the Kerr coefficient, is
the signal’s central frequency, is the effective fiber cross
section, and is the speed of light. The gain may be
written

elsewhere

where and are respectively the gain and loss coefficients
in the optical fiber, is the position of the -th amplifier, and

is the amplifier length. The noise contribution from
the amplifiers has the autocorrelation function

(2)

where is the spontaneous emission factor when
, and we set elsewhere

since there is no noise contribution outside the amplifiers. We
also define the central pulse time, central frequency , and
photon number in the pulse as

(3)

where the subscript designates the partial time derivative, so
that .

A. Timing Jitter and Unfiltered System

Differentiating , and in (3) with respect to and
combining them with (1) where we derive the
following dynamic equations for the central timeand central
frequency of a signal pulse,

(4)

Implicit solutions of (4) are

(5)

where

(6)

is a new field shifted such that its central
frequency is zero, and is the central frequency of the input
pulse. As is seen from (5) the time position deviation is a
superposition of the time shift induced by the frequency
shift and the time shift due to the direct impact of the noise
on the pulse. We represent the solution of (1) as
where is a small noise contribution such that second- and
higher order corrections to , and are negligible. Since

, it follows that one can neglect the contribution of
to the right-hand sides of (6). Using (2), (5), and (6), we can
calculate the variance of the central pulse time

(7)

where, defining a scalar product

(8)
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and the components

(9)

we find that

(10)

Equations (7) and (10) have a simple physical interpretation.
We note that one can always expand the noise in a series of
orthogonal functions such that

(11)

where is made orthogonal to by setting
and is a remainder that is

orthogonal to both and . In this case, substituting (11)
into right-hand side of (6) one can see that generalizes
what Gordon and Haus [1] refer to as the noise field phasor
component that shifts the central frequency. Similarly,
generalizes the component of the noise field that directly shifts
the time. We note that no reference to inverse scattering theory
or soliton perturbation theory is required to obtain either noise
component. All the functions on the right-hand sides of (10),
, , , and , are determined by the unperturbed solution
of (1) with no noise contribution. From the equation for

in (6) we also find that the variance of the frequency in one
amplifier is

(12)

where is the total amplifier gain and
is the amplifier length. Equations (10) and (12) are valid for
any arbitrary pulse shape and represent a key result of the
paper. Integrals on the right-hand sides of (10) can easily
be calculated numerically once is known computationally.
Although (7)–(10) appear complex at first sight, they have
a simple physical meaning. The terms, , and are
responsible for the timing jitter due to the frequency shift,
timing jitter due to the pulse chirp, and the timing jitter due to
direct time offset. Equations (7)–(10) and (12) differ from the
Gordon–Haus theory [1], [2] in two respects. First, the variance
of the frequency shift after an amplifier is proportional to
the ratio of the square of the pulse bandwidth divided by
the pulse energy. This result is physically intuitive because
when the bandwidth of a pulse becomes larger, the pulse
will incorporate a larger amount of the noise radiation. On
the other hand, when the pulse energy becomes larger, then
the influence of the incorporated noise becomes smaller. This
frequency shift translates into a shift of the central time
which is the contribution of the term. Second, the term

represents a contribution to the timing jitter caused by the
pulse chirp. This term contains a new physical effect that is
not in the Gordon–Haus calculation because standard solitons
are unchirped. To understand this effect, we recall that there
exist two sources of the time shift. The first is the frequency
shift, represented by the term in (5), and the second is the
time offset, represented by the termin (5). Consequently, the
term represents the timing jitter induced by the frequency
shift alone, the term represents the timing jitter induced
by the direct time offset alone. The term represents the
interference between the two effects. Physically, theterm
has the following origin. If a pulse has a chirp, then its local
frequency depends on time, so that a time offset leads to a
frequency shift that in its turn translates into an additional
shift in the pulse’s central time. The interference termcan
either increase or decrease the total timing jitter depending on
the sign of the chirp. For example, if we consider a chirped
pulse , then the scalar cross product
becomes

(13)

Hence, it follows from (10) that when the product is
positive then is positive, increasing the jitter; however, if
the product is negative then the opposite occurs.

B. Timing Jitter Filtered System

As in the previous section, we differentiate , and
in (3) with respect to and combine them with (1) to derive
dynamic equations for the central timeand central frequency

of a signal pulse. In this case, which allows us
to include filtering. We note that only quadratic filters are
included in (1), but our results can be generalized without
much difficulty to include more general filters. We now obtain

(14)

where

(15)

Implicit solutions of (14) are again

(16)

where

(17)
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and

(18)

(19)

(20)

(21)

Typically the filtering term is much smaller than the dispersion
term. Substituting (18)–(21) into (17) and then (17) into (16),
linearizing (16) around the unperturbed solution of (1), taking
the square of (16), and using (2) and (8), we find the variance
of the central time,

(22)

where now , , and are

(23)

and where

(24)

We note that all the functions on the right hand sides of (22)
and (23) are deterministic.

C. Amplitude Jitter

Differentiating in (3) with respect to and combining it
with (1) we obtain

(25)

where we define the mean square central frequency of the
pulse . An implicit solution of (25) is

(26)

where is the input photon number of the pulse, and

(27)

represents the mean gain. Linearizing (26) and averaging the
square of (26) using (2), we obtain the variance of the photon
number in the signal pulse

(28)

It will be useful to define a normalized energy variance
. In a system with periodically

distributed lumped amplifiers, in which after each
amplifier, (28) reduces to

(29)

where is number of the amplifiers. Equation (29) implies
that the increase of the normalized energy variance is propor-
tional to the number of the noise photons per mode

added to the pulse by amplifiers. We note that due to
filter losses in (25) the amplifier gain in the filtered
system must be higher compared to an unfiltered system to
compensate for the extra loss in the filter. Consequently, the
growth rate of the amplitude jitter is larger in a filtered system
than in an unfiltered system.

III. COMPARISON WITH MONTE CARLO SIMULATIONS

To validate the use of linearization to calculate the timing
and amplitude jitter, we simulated the propagation of signal
pulses with different signal formats—RZ, NRZ, and DMS—in
a dispersion-managed fiber with alternating spans of normal
dispersion of length and anomalous dispersion of
length . We used the split-step method to solve (1) along
with the Monte Carlo method to generate the ASE noise. We
repeated the same calculations for a hundred different realiza-
tions of the ASE noise, except where stated, and collected
their statistics to find the variance and the average of the
pulse’s central time and energy at the midpoint of anomalous
dispersion span for each set of the system parameters. The loss
coefficient of the fiber was 0.21 dB/km.

A. Dispersion-Managed Solitons

For DMS calculations we propagated single pulses. Fig. 1
compares the timing jitter calculated using Monte-Carlo sim-
ulations to the results of our linearization approach for DMS
pulses with a pulse duration ps at the midpoint
of the anomalous span. For a given average dispersion, the
energy of the dispersion-managed solitons is larger than that
of standard solitons, and this increase in energy is referred
to as the enhancement factor. A simple theoretical approach
to calculating the timing jitter is to use the Gordon-Haus
formula for the timing jitter and to reduce it by the square
root of the enhancement factor [3]. One can see in Fig. 1
that if the profile of the dispersion-managed soliton is nearly
Gaussian, the difference between the reduced Gordon–Haus
formula [3] and the Monte Carlo simulations, though visi-
ble at 10 Mm, remains small. In the case of Fig. 1(a) the
energy enhancement factor is as large as 2.17. However,
for more strongly dispersion-managed fibers with an energy
enhancement factor of 8.16, shown in Fig. 1(b), the shape
of the dispersion-managed soliton becomes more like a flat-
top and its time-bandwidth product becomes larger,

as compared to for a Gaussian. As
the pulse bandwidth increases for a fixed pulse duration,
the frequency shift increases in accordance with (12). The
larger frequency shift translates into a larger contribution
to the term which at long distances makes the largest
contribution to the timing jitter. The Gordon–Haus theory,
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(a)

(b)

Fig. 1. The root-mean-square central time of the pulse versus distance for a
dispersion-managed soliton system. Inserted graphs are intensity profiles of the
dispersion-managed solitons plotted on a logarithmic scale. Circles are results
of Monte Carlo simulations, solid lines are results of our theory, and the broken
lines and dots represent the Gordon–Haus theory and reduced Gordon–Haus
theory, respectively;tFWHM = 20 ps, losses are 0.21 db/km; (a) dispersion
coefficients are�00

1
= �3:0 ps2/km and �00

2
= 2:8 ps2/km, theamplifier

distance is 50 km, amplifiers are placed at the edges and at the midpoints of
normaland anomalous dispersion spans, span lengths areL1 = L2 = 100

km, peak power at the midpoint of the anomalous dispersion span is 4.12
mW and (b) dispersion coefficients are�00

1
= �3:75 ps2/km and�00

2
= 3:55

ps2/km, amplifiers are placed at the edges of the spans, amplifier distance is
100 km, span lengths areL1 = L2 = 100 km, peak power at the midpoint
of the anomalous span is 1.39 mW. Here,�00

j is the dispersion coefficient and
Lj is the length of spanj.

even with the standard reduction factor, does not take into
account the dependence of the jitter on the pulse profile, as it
is based on a hyperbolic-secant pulse shape. That is why the
deviation from the reduced Gordon–Haus formula becomes
considerable in the case of Fig. 1(b). On the other hand, there
is excellent agreement with our theory. For strong dispersion
management, dispersion-managed solitons can exist with zero
and normal path average dispersion [13]. Our calculations
show that despite the complete dispersion compensation there
is a residual timing jitter for zero average dispersion. In this
case, however, the frequency jitter termno longer makes
the largest contribution to the timing jitter.

Fig. 2 shows dependence of the timing jitter on distance
and the different contributions of the, , and terms for
zero average dispersion. We note that, as follows from (10),

and are always positive. However, for this configuration
the term is larger then either and and negative, which
means that the chirp-induced central time shift significantly
suppresses the timing jitter caused by the frequency shift and
time offset. We note that the inner integral for in (10) is
proportional to the chirp due to (13). Hence, amplifiers

(a)

(b)

Fig. 2. (a) Timing jitter�t and (b) amplitude jitter� versus distance for a
dispersion-managed soliton at zero average dispersion. In (a), we also show
the individual contribution of the termsA, B, andC. Solid lines are results of
the theory, dots are results of Monte Carlo simulations; the peak power at the
midpoint of the anomalous dispersion span is 4.33 mW andtFWHM = 20

ps,�00

1
= ��00

2
= �11 ps2/km, L1 = L2 = 100 km. Amplifiers are placed

atthe edges and at the midpoints of the spans every 50 km.

located at the midpoints make a small contribution to
because the chirp at the midpoint is small. However, amplifiers
located at the ends of the spans always yield a negative
contribution to . Thus, locating the amplifiers at the ends
of the spans reduces the timing jitter. The resultant timing
jitter agrees perfectly with the Monte Carlo simulations.

Fig. 2(b) shows the amplitude jitter, i.e., the normalized
variance of the photon number in the pulse, versus distance.
It grows linearly and remains well below 0.028 up to 10 Mm.
From [8], we infer that corresponds to a bit error
rate of 10 9. Fig. 3 illustrates the results for two different
arrangements of the amplifiers. In the first, the amplifiers are
placed at the edges of the spans, and, in the second, the
amplifiers are placed at the midpoints. The peak power and
the pulse duration at the midpoint of the anomalous span are
1.2 mW and 20 ps respectively. Since the chirp is small at
the midpoints, the term is small in Fig. 3(b) in contrast to
Fig. 3(a). The resultant timing jitter is larger in Fig. 3(b) then
in Fig. 3(a), because the term does not partially cancel out
the and terms.

Finally, we compared our linearization approach to Monte
Carlo simulations for the configuration reported in the recent
experiment of Carter and Jacob [14] on ultra-long-distance
propagation of dispersion-managed solitons in a filtered recir-
culating fiber loop consisting of 100 km of fiber in the normal
dispersion regime and about 7 km of fiber in the anomalous
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(a)

(b)

Fig. 3. Dependence of the timing jitter�t and the contributions of the
terms A, B, and C to the central time variance on distance for the
dispersion-managed soliton at zero average dispersion in a system with
L1 = L2 = 50 km, peak power in the midpoint of the anomalous dispersion
span of 1.21 mW, amplifier spacing of 50 km and other parameters being
the same as in Fig. 2 for the amplifier arrangements at (a) the edges and at
(b) the midpoints of the spans.

dispersion regime. Fig. 4 shows the timing jitter in the loop as
a function of propagation distance. The pulse durations in the
midpoints of the anomalous and normal dispersion spans were
9.5 ps and 12.5 ps respectively. The solid curve in Fig. 4 was
calculated based on (22) and (23), the black circles show the
result of Monte Carlo simulations with 200 realizations of the
ASE noise, and the open circles show the experimental results.
We note that the timing jitter grows more slowly than in the un-
filtered case of Fig. 1. We find a remarkable agreement of our
approach with the Monte Carlo simulations and with the ex-
perimental data over the entire propagation distance of 22 Mm.

B. RZ Pulses

We simulated propagation of RZ signals by launching
raised-cosine prechirped pulses of the form

with ps, ps2, and
a peak power of 1.08 mW at the beginning of the anomalous
dispersion span. We studied two neighboring pulses, with
periodic boundary conditions, which allowed us to include
the effect of interpulse interference. In our Monte Carlo
simulation, we calculated the timing jitter and amplitude jitter
using the later pulse. Fig. 5 shows the dependence of the
timing and amplitude jitter on distance. We show the RZ pulse
evolution in the presence of noise in Fig. 6. The dynamics of
the timing jitter is close to that of Fig. 2 for the dispersion-
managed soliton, although the final jitter is a little larger.

Fig. 4. Comparison of the timing jitter calculated using the linearization
approach (solid line) with Monte Carlo simulations (black circles) to the
experiment of Carterand Jacob[14] on ultralong-distance propagation of the
dispersion-managed solitons in a recirculating fiber loop with an average
dispersion of 0.04 ps/nm-km. The experimental results are plotted as open
circles.

(a)

(b)

Fig. 5. Plots of the (a) timing jitter�t and (b) amplitude jitter�2 versus
distance for an RZ pulse at zero average dispersion. Fig. 5(a) shows individual
contributions of theA, B, andC terms to the pulse position variance versus
distance. Solid lines are results of the theory; dots are the results of the
Monte Carlo simulations; pulse duration and peak power at the midpoint
of the anomalous dispersion span aretFWHM = 20 ps and 1.08 mW,
�00

1
= ��00

2
= �11 ps2/km, L1 = L2 = 100 km. Amplifiers are placed

atthe edges and at the midpoints of the spans every 50 km.

As in the previous cases there is a good agreement between
the linearization approach and Monte Carlo simulations. In
this case, timing jitter remains small and the major source
of errors is the amplitude jitter. There is some drift of the
amplitude jitter at large distances which may indicate that the
linearization approach is breaking down.
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Fig. 6. Evolution of the RZ pulse in the presence of noise for the system
in Fig. 5.

C. NRZ Pulses

There are significant pattern dependences in the nonlinear
pulse evolution of the marks (“1’s”) in the NRZ format due
to intersymbol interference. Thus, we must explore different
combinations of the marks and spaces (“0’s”). Anderson and
Lyle [15] have shown that in many cases, the behavior is
dominated by the eight combinations: 0-0-0, 0-0-1, 0-1-0, 0-
1-1, 1-0-0, 1-0-1, 1-1-0, and 1-1-1. Thus, in our study of
amplitude and timing jitter, it is appropriate for us to focus
on the strings 0-1-0, 0-1-1-0, and 0-1-1-1-0. We simulated
propagation of these signals by launching ideal rectangular
pulses with a power of 0.35 mW using the same dispersion
map and amplifier arrangement as in Fig. 2. The time duration
is 100 ps per bit, corresponding to a 10 Gb/s bit rate. While
real NRZ signals have rounded edges, the use of rectangular
pulses provides a more stringent test of our approach. The
results are shown in Figs. 7–12. The frequency jitter given by
the term is significantly larger for the pattern 0-1-0 than for
the patterns 0-1-1-0 and 0-1-1-1-0 because the bandwidth is
largest and the energy is smallest in this case. Similarly, the

and terms decrease in magnitude as we move from the
pattern 0-1-0 to the pattern 0-1-1-0 to the pattern 0-1-1-1-0.
However, the resultant timing jitter is a few picoseconds in all
three cases. The amplitude jitter is the largest for the pattern
0-1-0 and decreases for 0-1-1-0 and 0-1-1-1-0. However, this
result has been normalized to the total pulse energy. If we
examine instead the amplitude jitter per bit, we find that
this value is constant as we change the pattern. We find
good agreement between the linearization approach and Monte
Carlo simulations, although it appears that the linearization
approach may be beginning to break down beyond 5000 km.

IV. ESTIMATES OF THE BIT ERROR RATE

Calculation of the timing and amplitude jitter leads to im-
portant insights into the physical sources of errors in commu-
nication systems. Moreover, these quantities can be measured
experimentally, allowing us to compare theory and experiment
[14]. However, the bit error rate is more important than either
of these quantities for designing systems, and one would
ideally like to use these calculations to infer the bit error
rate. In principle, that is difficult to do accurately. First,
one is typically interested in bit error rates that are 109

(a)

(b)

Fig. 7. Plots of the (a) timing jitter�t and (b) the amplitude jitter� versus
distance for a 0-1-0 NRZ pulse of 100 ps at zero average dispersion. Fig. 7(a)
shows the individual contributions of the termsA, B, andC to the pulse
central time variance versus distance. Pulse peak power is 0.35 mW; system
parameters are the same that in Fig. 3.

Fig. 8. Evolution of the 0-1-0 NRZ pulse in the presence of noise for the
system in Fig. 7.

or even lower, implying that one must accurately know the
tails of the distribution functions for the time shifts and the
amplitudes. Even when the jitter, which corresponds to the
variance of the distribution function is determined accurately
using the linearization assumption, the tails may not be [16],
[17]. Second, actual bit errors depend critically on the receiver
design. Appropriate design of both the optical and electrical
filters can play a crucial role in reducing the errors [18].

In this section, we will show how to estimate the bit error
rate, using a simple integrate-and-dump receiver. We will
assume that spontaneous-spontaneous beat noise is negligible
throughout most of this section, although we will briefly
consider its effect at the end. Even in this case we cannot
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(a)

(b)

Fig. 9. Results for the same system as in Fig. 7, but for a 0-1-1-0 NRZ pulse.

Fig. 10. Evolution of the 0-1-1-0 NRZ pulse in the presence of noise for
the system in Fig. 9.

completely determine the bit error rate from just the timing
and amplitude jitter because the amplitude jitter is typically
accompanied by pulse distortion. For example, in the case of
standard solitons, the pulse duration is proportional to
[19]. However, it is often the case that either the timing or the
amplitude jitter becomes the dominant source of errors. When
the timing jitter dominates, then it is possible to calculate the
bit error rate due to it while neglecting amplitude jitter and the
accompanying pulse distortion. Conversely, when amplitude
jitter dominates over timing jitter and the time window is large
enough to include the entire pulse, then pulse distortion does
not effect the calculation of the bit error rate due to amplitude
jitter.

We begin by making a key observation: The Langevin noise
source can be treated as a Gaussian-distributed white
noise source [20] in each point. The Gaussian noise sources

(a)

(b)

Fig. 11. Results for the same system as in Fig. 7, but for a 0-1-1-1-0 NRZ
pulse.

Fig. 12. Evolution of the 0-1-1-1-0 NRZ pulse in the presence of noise for
the system in Fig. 11.

in different points are statistically independent. Since
and are a linear superposition of contributions from
and , as shown in (4) and (25), it follows that and
must be Gaussian-distributed [12]. Thus, we may write their
probability distribution functions explicitly as

(30)

(31)

where we recall that and are respectively the central
time and photon number in the absence of noise.

Errors occur when the energy of a mark inside the time
window falls below a threshold which is determined
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by the background optical noise in the spaces and electrical
noise in the receiver. We will designate the timing window

. Since receivers use clock recovery
to locate the timing window, the window will be centered
about the overall average . The number of photons in
the timing window may be written

(32)

There is some value of beyond
. We will designate this value as . Then, the bit

error rate is given by

(33)

The factor of two preceding the integral in (33) accounts
for the two-sided nature of the distribution, i.e., errors occur
both when and when

. While the specific shape of the final pulse
plays an important role in determining the dependence of
on , the bit error rate is given by (33) regardless of the
shape given that is fixed. This is a consequence of (30).

We may now calculate the bit error rate due to amplitude
jitter, and we find

Prob

(34)

which again has a very simple form. In obtaining (34), we
set . Since the energy cannot be negative,
it is physically meaningless that the probability distribution
function given by (31) allows negative energies. This result
is a consequence of neglecting the spontaneous-spontaneous
beat noise and will not affect (34) as long as it is genuinely
negligible at the threshold value . However, when there
are many noise modes, then the spontaneous-spontaneous beat
noise may make a significant contribution to the total energy
even though the contribution of a single mode is negligibly
small. Marcuse [8] included this noise, assuming that the noise
energy was equally divided among all the noise modes. The
number of the complex modes is given by ,
where is the optical bandwidth. Thus, if for example,
we consider a system in which a single optical wavelength
channel occupies a bandwidth of 100 GHz and the receiver
window is 100 ps, then there are 10 complex modes. In this
case, the number of photons per mode is given by

(35)

where is the amplifier gain and is the number of in-line
amplifiers just like in (28). One then finds that the probability

distribution function for the energy in a space is given
by [8]

(36)

while the probability distribution for the energy in a mark is
given by [8]

(37)

where is the modified Bessel function of order .
Marcuse [8] has discussed in some detail the consequence of
replacing (37) with (31). For the RZ and NRZ systems that we
studied in Section III, it is possible to estimate that the error
made in determining the threshold value at which the error
rate reaches 109 is about 10–20%, assuming . A
more refined estimate is not possible for the systems that we
considered because a set of modes that is originally orthogonal
is mixed together by the nonlinearity so that they do not
remain orthogonal. Physically, the signal can parametrically
pump some noise modes due to the four-wave mixing (FWM).
Thus, the assumption that the noise energy is equally divided
among the modes in the case when spontaneous–spontaneous
beat noise becomes significant is suspect at best, particularly
in real systems with more complicated receiver filters than we
have considered. In systems with inline filters, as is the case in
many soliton systems [14], this assumption is clearly false. A
careful investigation of this issue remains an important open
topic for future work.

V. CONCLUSION

In conclusion, we have developed an approach, based on
linearizing the modified nonlinear Schrödinger equation (1)
around a numerically determined noise-free solution. This
approach allows us to determine the timing jitter and the ampli-
tude jitter for arbitrary pulse shapes. Its principal advantage is
that it allows us to avoid numerically time-consuming Monte
Carlo simulations. We have applied this approach to DMS,
RZ, and NRZ pulse formats, and we have validated it by
comparison to Monte Carlo simulations. We have shown that
within the limits of validity of the linearization approximation,
the timing jitter is Gaussian-distributed. When, in addition,
spontaneous-spontaneous beat noise may be neglected, the
energy is also Gaussian-distributed. We have used this result
to separately estimate the bit error rate due to timing jitter and
amplitude jitter when one or other is the dominant source of
errors.
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