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Calculation of Timing and Amplitude Jitter
In Dispersion-Managed Optical Fiber
Communications Using Linearization

V. S. Grigoryan, C. R. Menyuk, and R.-M. Mu

Abstract—An approach based on linearization that allows us the timing jitter. This prediction is roughly correct [4], but
to calculate the timing and amplitude jitter for arbitrary pulse it is intuitively clear that the timing jitter must be sensitive
shapes 'r:‘ dlspe|r5||0n-mﬁna_ged ff'be';js‘. is developed. W% apﬁ’.ly thists pulse bandwidth—the greater the bandwidth of the pulse,
approach to calculate the jitter for dispersion-managed soliton, . )
return-to-zero (RZ), and nonreturn-to-zero (NRZ) transmission th'e greater the amount of nqlse the pulse'can incorporate.
formats. We then estimate the bit error rates. The approach Different pulse shapes have different bandwidths. Hence, the

described here yields more precise results than Monte Carlo Gordon—Haus formula reduced by the enhancement factor will

simulations at a fraction of the computational cost. not yield exactly accurate results. Recently, a new approach
Index Terms—Dispersion management, noise, jitter, optical WaS suggested [5]-[7] that takes into account the more general
fiber transmission. dispersion-managed soliton (DMS) pulse shape. However,
this work still presumes an analytically fixed pulse shape
I INTRODUCTION with quadratic chirp that can change only its duration and

o , _amplitude. This approach yields only a rough approximation
A MPLIFIED spontaneous emission (ASE) noise and it the jitter for solitons and cannot describe the jitter at all
terchannel interference cause fluctuations of the tim& Rz and NRZ signals. Another approach that has been used

and energy of signal pulses. The temporal fluctuations gt NRz signals is to linearize the noise around an assumed
referred to as timing j|tt(_ar, wh_l_le the pulse energy_fluctuatlon&mtinuous wave signal to calculate the noise power [8]-[11].
are referred to as amplitude jitter. These fluctuations degrafigis approach is fairly successful when the pulse evolution is
the phase and amplitude margins, respectively, leading fgt too large, but it cannot determine the effect of timing jitter.
errors. Fundamental parameters determining the timing apgtect Monte Carlo simulations can be used to fill this gap, but
amplitude jitter are the variance of the pulse’s central timgocessing the large number of different realizations of random
and the variance and average of the pulse energy. The tififise that is required to obtain an accurate solution can be
variance was calculated for the first time by Gordon and Hauﬁry numerica”y time-consuming_ ThUS, deve|oping a genera]
[1], [2] for a hyperbolic secant soliton pulse propagating igpproach that allows us, first, to calculate the timing and
a fiber with uniform dispersion. One of the key ideas usegmplitude jitter for arbitrary pulse shapes and, second, to avoid
in [1] and [2] was linearization of the problem about théime-consuming Monte Carlo simulations, is vitally important.
analytically known soliton solution. The linearization was We stress that the linearization approach, used in the Gor-
feasible because the noise power is much weaker than tlgh—Haus theory [1], [2], has a much broader range of
signal power. In dispersion-managed fibers one cannot direcflyplicability in optical fiber communications than just for
apply the Gordon—Haus theory in most cases because the phlgserbolic-secant solitons in uniform dispersion fibers, con-
shapes may differ significantly from the analytically assumeathuous wave signals [8]-[11], or other analytically known
hyperbolic-secant shape. For dispersion-managed solitons, laése shapes. The basic idea of the present paper is to use the
pulse shapes range from hyperbolic-secant to Gaussian to flimearization approximation around an arbitrary, numerically-
top, depending on the strength of the dispersion managemeetermined solution of the nonlinear Sétinger equation.
[3], [4], and oscillate periodically. For return-to-zero (RZ) andn effect, we break the problem into two steps. In the first,
nonreturn-to-zero (NRZ) signals, the pulse shapes differ evee determine the signal evolution in the absence of noise.
more from the hyperbolic secant shape and evolve continuaMhile this step requires computational methods for arbitrary

For dispersion-managed solitons, it was predicted in [@]J|Se shapes, it is fully deterministic and thus does not
that a corrected Gordon-Haus formula reduced by the dRguire the use of many realizations. In the second step, we
hancement factor (the ratio of the dispersion-managed solitétearize around the numerically determined solution, using
energy to the energy of a standard soliton in fibers wigfatistical properties of the ASE noise to derive dynamic
equal path-average dispersion) would successfully descriguations for the mean and variance of a pulse’s central time
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spontaneous-spontaneous beat noise of a single noise matere 6(z) is the spontaneous emission factey, when
must be small compared to the signal-spontaneous beat naige.< z < 2z, + Lay,, and we setf(z) = 0 elsewhere
However, the number of noise modes is approximately equaldimce there is no noise contribution outside the amplifiers. We
Bopi T, WhereB, ., is the optical bandwidth and,, is the bit  also define the central pulse timg central frequency?, and
window. When this number becomes large, it is not possible goton numberl/ in the pulse as

neglect the spontaneous—spontaneous beat noise even when the oo .00

linearization approximation is valid. When the number of noise ¢, = / tul?dt/U, Q= / (g™ — uju) dt/2il,

modes is small, so that sum of the spontaneous-spontaneous —oo —oo
beat noise contributions from all the noise modes can be,, [~ luf? dt 3)
ignored, the signal’'s central energy is Gaussian-distributed ™/ __

with the variance and average calculated by our method . . I .
When the number of noise modes is large, and the amountv‘g?ere th_e subscript designates the partial time derivative, so
energy that goes into each noise mode is the same, the sigmgf ur = Ou/0t.
energy is Rician-distributed [8], [9], [12]. More generally, the
energy is chi-square-distributed [12]. In typical cases that v@é
considered, the variance of the noise energy is about 1/100 obifferentiating ¢,,, €2, and U in (3) with respect toz and
the signal energy, whil&,,; 7., < 10, so that it is reasonable combining them with (1) wheré(z) = 0 we derive the
to ignore spontaneous-spontaneous beat noise which is wiedlbwing dynamic equations for the central tirfyeand central
we do in this paper. When either timing jitter or amplituddrequency$2 of a signal pulse,
jitter becomes the dominant source of errors, it is then possibl L oo
to calculate the bit error rate which we show how to do. W&'2 = DQ + / (t — t,)(uF™ — u*F) dt
compare our theoretical approach to simulations for a witid;’2 o OOU —oo | e
range of pulse formats, including DMS, RZ, and NRZ pulses#is _ .3 P i . oo

The remainder of this paper is organized as follows. Indz LU/,OO(U Fouk)di+ U/,Oo(utF+utF )dt.
Section Il, we derive the basic equations for the variance of 4)
the central time and energy of the pulse in the presence of ASE | )
noise. In Section IlI, we validate our approach by comparidIPlicit solutions of (4) are
the timing and amplitude jitter predicted by theory to the t,=F+8 (5)
results of Monte Carlo simulations over a large number of
realizations of the ASE noise. In Section 1V, we show how w&here

Timing Jitter and Unfiltered System

estimate the bit error rate probability knowing the variances # O dy
of the central time and the energy of the signal pulses. F = /0 DSrdz'
Y Y . )
Il. BASIC EQUATIONS §= L/O {ﬁ/m(t_tp)[q Fexp(—i§2t)

We s'Fart from the nonlinear Satdinger equation written in B qF* exp(iQ)] dt b 2’

Langevin form
aU, 1 82u z 1 oo N
g Z1D(2) — ib( )] — 2 _ - % i
2 1 D) (N D+ Ol Q=0+ / { L /_ @ Fep(-in)
=ig(z)u+ F(z,t) (1) T

using a formulation due to Haus [2] that is particularly useful + @I exp(iQt))] dt} dz (6)

for noise problems. In this formulatigm|? is the photon flow,
t is unnormalized timez = |3{|Z is the product of a scaling
dispersiongj and the unnormalized distancg& while D(z)
andb(z) are the local dispersion and filtering normalized wit
respect to|3j|. The quantityC = nohiw?/cAcg|3y| is the
nonlinear coefficient, where, is the Kerr coefficientw is
the signal’s central frequencyl.z is the effective fiber cross
section, andc is the speed of light. The gaip(z) may be

g = uwexp(—iQt) is a new field shifted such that its central
frequency is zero, anf}, is the central frequency of the input
I;?ulse. As is seen from (5) the time position deviation is a
superposition of the time shiff induced by the frequency
shift and the time shifS due to the direct impact of the noise
on the pulse. We represent the solution of (Luas u + éu
whereéu is a small noise contribution such that second- and
higher order corrections t&, S, and$2 are negligible. Since

written §u o I, it follows that one can neglect the contributionéf
_Jg0, <2<z, + Lamp to the right-hand sides of (6). Using (2), (5), and (6), we can
9(z) =97 : :
I, elsewhere calculate the variance of the central pulse titpe
wherego andI" are respectively the gain and loss coefficients of = () = (t,) =A+B+C (7

in the optical fiberz,, is the position of thex-th amplifier, and
Lamp is the amplifier length. The noise contributidn from
the amplifiers has the autocorrelation function [

(6gi,6q5) = 8

g f 8q:8qF + 8¢ 8q;) dt
(F(2, ) F7 (2, 1)) = 2900(2)8(2 — 2 )o(t — ') (2) _(60ibj + 607 8q;)

where, defining a scalar product
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and the components represents a contribution to the timing jitter caused by the
pulse chirp. This term contains a new physical effect that is
b1 =2V 9004/, (9) notin the Gordon-Haus calculation because standard solitons
6g2 = Zi\/go_e(t —t,)q/U are unchirped. To understand this effect, we recall that there
we find that exist two sources of the time shift. The first is the frequency
z shift, represented by the terffd in (5), and the second is the
A= (F) = / D(z1) dz time offset, represented by the tetrin (5). Consequently, the
- 0 2 term A represents the timing jitter induced by the frequency
/ D(zQ)sz/ (Squ, 6q1) db, shift alone, the termC' represents the timing jitter induced
0 0 . by the direct time offset alone. The ter® represents the
2(FS) / D(z) dz / (6q1,68q2) d) interference between the two effects. Physically, théerm
has the following origin. If a pulse has a chirp, then its local
C = (8 = 1 (6q2,6q2)d7 (10) frequency depends on time, so that a time offset leads to a

frequency shift that in its turn translates into an additional
Equations (7) and (10) have a simple physical interpretatioghift in the pulse’s central time. The interference teBtan
We note that one can always expand the noise in a seriesefher increase or decrease the total timing jitter depending on

orthogonal functions such that the sign of the chirp. For example, if we consider a chirped
. ) — ulseq = |q|explia(t — £,)*], then the scalar cross product
Pz, t)exp(—iQt) = dq1(2,t) + 6go(2,8) + 8qr-(2,t)  (11) Eeconzes lal explia( »)’] .

wheredg, = adq + 8¢ is made orthogonal tég; by setting
a = —(6q1,6¢2)/(6q1,6q1) and ég, is a remainder that is
orthogonal to botlfg; andégq. In this case, substituting (11)
into right-hand side of (6) one can see tlfat generalizes Hence, it follows from (10) that when the produfic is
what Gordon and Haus [1] refer to as the noise field phaseositive thenB is positive, increasing the jitter; however, if
component that shifts the central frequerigySimilarly, 6g2  the productDe« is negative then the opposite occurs.
generalizes the component of the noise field that directly shifts

the time. We note that no reference to inverse scattering the@y Timing Jitter Filtered System

or soliton perturbation theory is required to obtain either noise
component. All the functions on the right-hand sides of (10?n
q, U, t,, and (2, are determined by the unperturbed solutio
a2 of (1) with no noise contribution. From the equation for
in (6) we also find that the variance of the frequency in or}o

A
(601,602) = 160555 | (t=,)%lgP dt.  (13)

As in the previous section, we differentiatg, 2, and U
(3) with respect toz and combine them with (1) to derive
Hynamm equations for the central timygand central frequency
Q) of a signal pulse. In this casé(z) # 0 which allows us
include filtering. We note that only quadratic filters are

amplifier is included in (1), but our results can be generalized without
(692) = [(G — 1)/(290)](8q1, 6q1) much difficulty to include more general filters. We now obtain
—20G-1) [ JaPdwt @) d_pg, i s G- il
—o0 dz U
whereG = exp(2go Lamp) is the total amplifier gain and.,.,,, —0qq — ¢*@) + 1] dt

is the amplifier length. Equations (10) and (12) are valid for@ _ 1 e bl 201,17 + b
any arbitrary pulse shape and represent a key result of thg, — U /___ ™ + (th“ 9 qee) | + I>
paper. Integrals on the right-hand sides of (10) can easily (14)
be calculated numerically once is known computationally.

Although (7)—(10) appear complex at first sight, they havghere

a simple physical meaning. The terma, B, and C are . . .
responsible for the timing jitter due to the frequency shift, L = qexp(iQt) F™" — ¢" exp(—iQt)F

timing jitter due to the pulse chirp, and the timing jitter due to By = g exp(—iQ)F + q, exp(iQt) ™. (15)
direct time offset. Equations (7)—(10) and (12) differ from the

Gordon—Haus theory [1], [2] in two respects. First, the varianggplicit solutions of (14) are again

of the frequency shift after an amplifier is proportional to

the ratio of the square of the pulse bandwidth divided by t,=F+S (16)
the pulse energy. This result is physically intuitive because

when the bandwidth of a pulse becomes larger, the puls@ere

will incorporate a larger amount of the noise radiation. On

the other hand, when the pulse energy becomes larger, then F = DQ dz'

the influence of the incorporated noise becomes smaller. This o oo
frequency shift translates into a shift of the central time S — _/ {_/ (t—tp)[b|qt|2+iﬁl] dt} dZ (17)
which is the contribution of thed term. Second, thé3 term 0
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and distributed lumped amplifiers, in whick = 0 after each
ib .. amplifier, (28) reduces to
D=|D-— (t - tp)(QQt —q"q)dt By (18)
UJ_ o?, G-1
(g oo X P’ = UDQ =2n0 K (29)
=0+ [ {55 [ batne - adt) + 200 dt | 0 ) °
0 —0o0

(19) where K is nhumber of the amplifiers. Equation (29) implies
. that the increase of the normalized energy variance is propor-
By = eXp|:_2/ W25 (Z) dz/} (20) tional to the number of the noise photons per medg(& —

0 1)K added to the pulse bt amplifiers. We note that due to
filter lossesbA? in (25) the amplifier gain& in the filtered
system must be higher compared to an unfiltered system to
compensate for the extra loss in the filter. Consequently, the

rowth rate of the amplitude jitter is larger in a filtered system
San in an unfiltered system.

1
%= [ lalde 1)

Typically the fllterlng term is much smaller than the dispersion

term. Substituting (18)—(21) into (17) and then (17) into (16
linearizing (16) around the unperturbed solution of (1), takin
the square of (16), and using (2) and (8), we find the variance

of the central time, [ll. COMPARISON WITH MONTE CARLO SIMULATIONS
To validate the use of linearization to calculate the timing
={t2 —{t,))=A+B+C 22 ) " ) ) .
<”> {t) i (22) and amplitude jitter, we simulated the propagation of signal
where nowA, B, andC are pulses with different signal formats—RZ, NRZ, and DMS—in

s : a dispersion-managed fiber with alternating spans of normal
(F9) / D(z d71/ D(z d72/ (6q1,6q1) dzy  dispersionD; of length L; and anomalous dispersia, of
length L,. We used the split-step method to solve (1) along

2(FS) / D(z d72/ (6q1,6q2) d7, (23) with the Monte Carlo method to generate the ASE noise. We

L 0 repeated the same calculations for a hundred different realiza-

C=(8%) = _/ (6g2,6q2) d7’' tions of t_hg ASE noise, except where stated, and collected

2Jo their statistics to find the variance and the average of the

and where pulse’s central time and energy at the midpoint of anomalous
A 2/g00 dispersion span for each set of the system parameters. The loss

bq1 = (24) coefficient of the fiber was 0.21 dB/km.

UB; qt
We note that all the functions on the right hand sides of (22). Dispersion-Managed Solitons

and (23) are deterministic. For DMS calculations we propagated single pulses. Fig. 1

) ) compares the timing jitter calculated using Monte-Carlo sim-
C. Amplitude Jitter ulations to the results of our linearization approach for DMS
Differentiating U in (3) with respect toz and combining it pulses with a pulse duratiafywmv = 20 ps at the midpoint

with (1) we obtain of the anomalous span. For a given average dispersion, the
dU ) N ” energy of the dispersion-managed solitons is larger than that
= (29 — bA )U+'L/ (ub™ —u™ 1) dt (25) of standard solitons, and this increase in energy is referred
e to as the enhancement factor. A simple theoretical approach

where we define the mean square central frequency of @€ calculating the timing jitter is to use the Gordon-Haus

pulseA? = [ |w|* dt/U. An implicit solution of (25) is  formula for the timing jitter and to reduce it by the square

= 1 oo . root of the enhancement factor [3]. One can see in Fig. 1
U= <Uo +i/ —— {/ (uF™* —u*I) dt} dz’)g(z) that if the profile of the dispersion-managed soliton is nearly
0o G(#) L/ Gaussian, the difference between the reduced Gordon—Haus
(26) formula [3] and the Monte Carlo simulations, though visi-
whereUj is the input photon number of the pulse, and ~ ble at 10 Mm, remains small. In the case of Fig. 1(a) the
. energy enhancement factor is as large as 2.17. However,
G(z) = exp{/ (29 — bAQ)dz’} (27) for more strongly dispersion-managed fibers with an energy
0 enhancement factor of 8.16, shown in Fig. 1(b), the shape
represents the mean gain. Linearizing (26) and averaging ffethe dispersion-managed soliton becomes more like a flat-
square of (26) using (2), we obtain the variance of the phott®p and its time-bandwidth product becomes larger At =
number in the signal pulse 0.661 as compared tAArAt = 0.424 for a Gaussian. As
= oy the pulse bandwidth increases for a fixed pulse duration,
op ={(U%) — (U)? = 4U09092(z)/ ~~d. (28) the frequency shift increases in accordance with (12). The
o 9(2') larger frequency shift translates into a larger contribution
It will be useful to define a normalized energy variancto the term A which at long distances makes the largest
p? = o J(U)? = 0%, JUZG?(2). In a system with periodically contribution to the timing jitter. The Gordon-Haus theory,
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Fig. 1. The root-mean-square central time of the pulse versus distance for a ()

dispersion-managed soliton system. Inserted graphs are intensity profiles offftg 2. (a) Timing jittero; and (b) amplitude jittep versus distance for a
dispersion-managed solitons plotted on a logarithmic scale. Circles are resditpersion-managed soliton at zero average dispersion. In (a), we also show
of Monte Carlo simulations, solid lines are results of our theory, and the brokgte individual contribution of the term4, B, andC'. Solid lines are results of
lines and dots represent the Gordon—Haus theory and reduced Gordon—Hagsheory, dots are results of Monte Carlo simulations; the peak power at the
theory, respectivelytpwun = 20 ps, losses are 0.21 db/km; (a) dispersiormmidpoint of the anomalous dispersion span is 4.33 mW @nghmy = 20
coefficients are3; = —3.0 ps’/km and 8} = 2.8 ps’/km, theamplifier ps, 3/ = —g = —11 p/km, L, = Ly = 100 km. Amplifiers are placed
distance is 50 km, amplifiers are placed at the edges and at the midpointattfie edges and at the midpoints of the spans every 50 km.

normaland anomalous dispersion spans, span lengthdare Lo = 100

km, peak power at the midpoint of the anomalous dispersion span is 4.12

mW and (b) dispersion coefficients af = —3.75 ps/km and3y = 3.55 |ocated at the midpoints make a small contribution &o
ps?/km, amplifiers are placed at the edges of the spans, amplifier _dlste_mc%ls . . - i
100 km, span lengths a®, = L, = 100 km, peak power at the midpoint PE€Cause the chirp at the midpoint is small. However, amplifiers
of the anomalous span is 1.39 mW. He#, is the dispersion coefficient and located at the ends of the spans always yield a negative
Lj is the length of spap. contribution to B. Thus, locating the amplifiers at the ends
of the spans reduces the timing jitter. The resultant timing
even with the standard reduction factor, does not take inttier agrees perfectly with the Monte Carlo simulations.
account the dependence of the jitter on the pulse profile, as ifig. 2(b) shows the amplitude jitter, i.e., the normalized
is based on a hyperbolic-secant pulse shape. That is why Wagiance of the photon number in the pulse, versus distance.
deviation from the reduced Gordon-Haus formula becomisgyrows linearly and remains well below 0.028 up to 10 Mm.
considerable in the case of Fig. 1(b). On the other hand, thé&m@m [8], we infer thatp? = 0.028 corresponds to a bit error
is excellent agreement with our theory. For strong dispersioate of 107 °. Fig. 3 illustrates the results for two different
management, dispersion-managed solitons can exist with zareangements of the amplifiers. In the first, the amplifiers are
and normal path average dispersion [13]. Our calculatioptaced at the edges of the spans, and, in the second, the
show that despite the complete dispersion compensation thaneplifiers are placed at the midpoints. The peak power and
is a residual timing jitter for zero average dispersion. In thifie pulse duration at the midpoint of the anomalous span are
case, however, the frequency jitter tettnno longer makes 1.2 mW and 20 ps respectively. Since the chirp is small at
the largest contribution to the timing jitter. the midpoints, theB term is small in Fig. 3(b) in contrast to
Fig. 2 shows dependence of the timing jitter on distandg€g. 3(a). The resultant timing jitter is larger in Fig. 3(b) then
and the different contributions of thé, B, and C terms for in Fig. 3(a), because thB term does not partially cancel out
zero average dispersion. We note that, as follows from (1&e A and C terms.
A andC are always positive. However, for this configuration Finally, we compared our linearization approach to Monte
the B term is larger then eithed and B and negative, which Carlo simulations for the configuration reported in the recent
means that the chirp-induced central time shift significantgxperiment of Carter and Jacob [14] on ultra-long-distance
suppresses the timing jitter caused by the frequency shift gmebpagation of dispersion-managed solitons in a filtered recir-
time offset. We note that the inner integral fér in (10) is culating fiber loop consisting of 100 km of fiber in the normal
proportional to the chirpr due to (13). Hence, amplifiersdispersion regime and about 7 km of fiber in the anomalous
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dispersion-managed soliton at zero average dispersion in a system with L B "'\,,\ §
Ly = Ly = 50 km, peak power in the midpoint of the anomalous dispersion r T
span of 1.21 mW, amplifier spacing of 50 km and other parameters being 20" . =~
the same as in Fig. 2 for the amplifier arrangements at (a) the edges and at 0 5000 10000
(b) the midpoints of the spans.
(@
dispersion regime. Fig. 4 shows the timing jitter in the loop as 0.0157
a function of propagation distance. The pulse durations in the
midpoints of the anomalous and normal dispersion spans were & I
9.5 ps and 12.5 ps respectively. The solid curve in Fig. 4 was ﬁ_ﬂ 0.017
calculated based on (22) and (23), the black circles show the &
. . . . . =
result of Monte Carlo simulations with 200 realizations of the =} .
ASE noise, and the open circles show the experimental results. £ 0.005
Lo . < i
We note that the timing jitter grows more slowly than in the un- [
filtered case of Fig. 1. We find a remarkable agreement of our o L L
approach with the Monte Carlo simulations and with the ex- 0 5000 10000
perimental data over the entire propagation distance of 22 Mm. Distance (k)
(b)

B. RZ Pulses _ o _ o
) ] ] _ Fig. 5. Plots of the (a) timing jitter¢ and (b) amplitude jittep? versus
We simulated propagation of RZ signals by launchingjstance for an RZ pulse at zero average dispersion. Fig. 5(a) shows individual

raised-cosine prechirped pulses of the fom@ t) — A[l __ contributions of the4, B, andC' terms to the pulse position variance versus
I

. . distance. Solid lines are results of the theory; dots are the results of the
42 /42 _ 2 _ ’
cos(t/to)] exp(—it? /t2) with to = 32 ps, 2 = 1000 ps’, and  ponte Carlo simulations; pulse duration and peak power at the midpoint

a peak power of 1.08 mW at the beginning of the anomalouofthe anomalous dispersion span digyuym = 20 ps and 1.08 mW,

dispersion span. We studied two neighboring pulses, wiffy = ~f = —11 pS/km, L; = L, = 100 km. Amplifiers are placed
.. L. . . atthe edges and at the midpoints of the spans every 50 km.

periodic boundary conditions, which allowed us to include

the effect of interpulse interference. In our Monte Carlo

simulation, we calculated the timing jitter and amplitude jitteAs in the previous cases there is a good agreement between

using the later pulse. Fig. 5 shows the dependence of the linearization approach and Monte Carlo simulations. In

timing and amplitude jitter on distance. We show the RZ puldbis case, timing jitter remains small and the major source

evolution in the presence of noise in Fig. 6. The dynamics of errors is the amplitude jitter. There is some drift of the

the timing jitter is close to that of Fig. 2 for the dispersionamplitude jitter at large distances which may indicate that the

managed soliton, although the final jitter is a little largetinearization approach is breaking down.
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Fig. 6. Evolution of the RZ pulse in the presence of noise for the system
in Fig. 5. r
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C. NRZ Pulses 2
[}
There are significant pattern dependences in the nonlinear E 001l
pulse evolution of the marks (“1's”) in the NRZ format due E‘ Tl
to intersymbol interference. Thus, we must explore different <
combinations of the marks and spaces (“0’s”). Anderson and

Lyle [15] have shown that in many cases, the behavior is 0
dominated by the eight combinations: 0-0-0, 0-0-1, 0-1-0, O-

1-1, 1-0-0, 1-0-1, 1-1-0, and 1-1-1. Thus, in our study of

amplitude and timing jitter, it is appropriate for us to focus ()

on the strings 0-1-0, 0-1-1-0, and 0-1-1-1-0. We simulatédh. 7. Plots of the (a) timing jittes» and (b) the amplitude jittep versus

; ; ; ; istance for a 0-1-0 NRZ pulse of 100 ps at zero average dispersion. Fig. 7(a)
propagation of these Slgnals by Iaunchlng ideal reCtanguE'#gws the individual contributions of the terms B, and C' to the pulse

pulses with a power of 0.35 mW using the same dispersi@éhtral time variance versus distance. Pulse peak power is 0.35 mW; system
map and amplifier arrangement as in Fig. 2. The time duratiparameters are the same that in Fig. 3.

is 100 ps per bit, corresponding to a 10 Gb/s bit rate. While
real NRZ signals have rounded edges, the use of rectangular
pulses provides a more stringent test of our approach. The
results are shown in Figs. 7-12. The frequency jitter given by
the A term is significantly larger for the pattern 0-1-0 than for
the patterns 0-1-1-0 and 0-1-1-1-0 because the bandwidth is
largest and the energy is smallest in this case. Similarly, the
B and C terms decrease in magnitude as we move from the
pattern 0-1-0 to the pattern 0-1-1-0 to the pattern 0-1-1-1-0. o
However, the resultant timing jitter is a few picoseconds in all ’d‘@) 5000
three cases. The amplitude jitter is the largest for the pattern &
0-1-0 and decreases for 0-1-1-0 and 0-1-1-1-0. However, this
result has been normalized to the total pulse energy. If we
ex.amme In.s'tead the amplitude jitter per bit, we find th.%tl . 8. Evolution of the 0-1-0 NRZ pulse in the presence of noise for the
this value is constant as we change the pattern. We flg@tem in Fig. 7.

good agreement between the linearization approach and Monte

Carlo simulations, althou_gh it appears that the IinearizatiQ” even lower, implying that one must accurately know the
approach may be beginning to break down beyond 5000 k[[%ils of the distribution functions for the time shifts and the

amplitudes. Even when the jitter, which corresponds to the
variance of the distribution function is determined accurately
Calculation of the timing and amplitude jitter leads to imusing the linearization assumption, the tails may not be [16],
portant insights into the physical sources of errors in comm([i7]. Second, actual bit errors depend critically on the receiver
nication systems. Moreover, these quantities can be measutedign. Appropriate design of both the optical and electrical
experimentally, allowing us to compare theory and experimetiiters can play a crucial role in reducing the errors [18].
[14]. However, the bit error rate is more important than either In this section, we will show how to estimate the bit error
of these quantities for designing systems, and one woulte, using a simple integrate-and-dump receiver. We will
ideally like to use these calculations to infer the bit errcssume that spontaneous-spontaneous beat noise is negligible
rate. In principle, that is difficult to do accurately. Firstthroughout most of this section, although we will briefly
one is typically interested in bit error rates that are 10 consider its effect at the end. Even in this case we cannot

0 5000 10000
Distance (km)

Intensity

IV. ESTIMATES OF THE BIT ERROR RATE
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Fig. 9. Results for the same system as in Fig. 7, but for a 0-1-1-0 NRZ pulﬁg. 11. Results for the same system as in Fig. 7, but for a 0-1-1-1-0 NRZ
pulse.
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10000

Fig. 10. Evolution of the 0-1-1-0 NRZ pulse in the presence of noise for

the system in Fig. 9. Fig. 12. Evolution of the 0-1-1-1-0 NRZ pulse in the presence of noise for
the system in Fig. 11.

completely determine the bit error rate from just the timing

and amplit_ude jitter becguse _the amplitude jitte_r is typically, different points: are statistically independent. Sinds, /dz
accompanied by pulse distortion. For example, in the case{q j1//4: are a linear superposition of contributions frdin
standard solitons, the pulse duration is proportional/td2 and £, as shown in (4) and (25), it follows thay, and U

[19]. However, it is often the case that either the timing or the, st be Gaussian-distributed [12]. Thus, we may write their
amplitude jitter becomes the dominant source of errors. WhBbeabiIity distribution functions explicitly as

the timing jitter dominates, then it is possible to calculate the

bit error rate due to it while neglecting amplitude jitter and the Pt,) = ox [_ (tp — (%))1 (30)
accompanying pulse distortion. Conversely, when amplitude P V2r0o; P 202 ’

jitter dominates over timing jitter and the time window is large 1 (U — (U))?

enough to include the entire pulse, then pulse distortion does W) = N [—T} (31)

not effect the calculation of the bit error rate due to amplitude
jitter. where we recall tha{t,) and(U) are respectively the central
We begin by making a key observation: The Langevin noisine and photon number in the absence of noise.
sourceﬁ(z,t) can be treated as a Gaussian-distributed whiteErrors occur when the energy of a mark inside the time
noise source [20] in each poiat The Gaussian noise sourcesvindow falls below a threshold/;, which is determined
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by the background optical noise in the spaces and electrid@tribution function for the energy in a spagg(U) is given
noise in the receiver. We will designate the timing windovy [8]

-T,/2 < t—{(t,) < T,/2. Since receivers use clock recovery

to locate the timing window, the window will be centered 1 uM-1 U

about the overall average= (¢,,). The number of photons in Po(U) = M-DI UM eXp(‘ Umode> (36)
the timing window may be written mese

{(tp)+Tw /2 while the probability distribution for the energy in a mark is
Ualty — () = | (e — ) de given by [3]
(tp)—Tw/2
Ty /2 (M—1)/2
_ - 1 U U+ (U)
= |a(t’ —t, — )2 dt. (32) PU)= — [ — v\
/—Tw /2 g g ! (U) Umode <U> =P Uvmode
There is some value df, — (t,,)| beyondU,,(t, — (t,)) < 7 5 U 37
Uy,. We will designate this value ds ., — {t,). Then, the bit X AN -1 ode (37)
error rate is given by
Prob[U, (t, — (t,)) < Ul wherely,;_; is the modified Bessel function of ordé# — 1.
.00 1 Marcuse [8] has discussed in some detail the consequence of
= 2/ Taros exp(—t*/207) dt replacing (37) with (31). For the RZ and NRZ systems that we
trm—(tp) VST studied in Section Ill, it is possible to estimate that the error
_ erfc(tp’“‘ - (tp>>. (33) made in determining the threshold value at which the error
V20, rate reaches I0° is about 10-20%, assuminy/ = 10. A

The factor of two preceding the integral in (33) account¥0ré refined estimate is not possible fo_r thg systems that we
for the two-sided nature of the distribution, i.e., errors occgPnsidered because a set of modes that is originally orthogonal
both whent, — (t,) > t,m — (t,) and whent, — (t,) < is mixed together by the nonlinearity so that they do not
—(tpun — (£p)). While the specific shape of the final pu|Séemain orthogqnal. Physically, the signal can pgr_ametrically
plays an important role in determining the dependenag,gf PUMP Some noise modes due to the four-wave mixing (FWM).
on Uy, the bit error rate is given by (33) regardless of th&hus, the assumption that the noise energy is equally divided
shape given that; is fixed. This is a consequence of (30). @mong the modes in the case when spontaneous—spontaneous

We may now calculate the bit error rate due to amplitucféeat noise becomes significant is suspect at best, particularly

jitter, and we find in real systems with more complicated receiver filters than we
U ) have considered. In systems with inline filters, as is the case in
Prob(U < Us) = o1 exp|— (U—(U)) Ju  Mmany soliton systems [14], this assumption is clearly false. A
' o V2moy 20} careful investigation of this issue remains an important open
1 Uy = U topic for future work.
= —erfc<<>—t}> (34) p
2 V201
which again has a very simple form. In obtaining (34), we V. CONCLUSION

set (U)/oy — oo. Since the energy cannot be negative

it is physically meaningless that the probability distributioInearizing the modified nonlinear Sadinger equation (1)

function given by (31) allows negative energies. This res ?ound a numerically determined noise-free solution. This
is a consequence of neglecting the spontaneous-spontan%g)

' In conclusion, we have developed an approach, based on

beat noise and will not affect (34) as long as it is genuine "bsroach allows us to determine the timing jitter and the ampli-
L de jitter for arbitrary pulse shapes. Its principal advantage is
negligible at the threshold valu€;;,. However, when there J yp P P P 9

. that jt allows us to avoid numerically time-consuming Monte
are many noise modes, then the spontaneous-spontaneous £A) simulations. We have applied this approach to DMS

noise may make a significant contribution to the total energy; -4 NRZ pulse formats, and we have validated it by

even though the contribution of a single mode is negligibl?;(omparison to Monte Carlo simulations. We have shown that
small. Marcuse [8] included this noise, assuming that the noi

p . fthin the limits of validity of the linearization approximation,
energy was equally divided among aI_I the noise modes. T e timing jitter is Gaussian-distributed. When, in addition,
number i/ O.f the complex modeg IS given tM = BopiTw, spontaneous-spontaneous beat noise may be neglected, the
where B, is the optical bandwidth. Thus, if for example, ergy is also Gaussian-distributed. We have used this result

k : . . . n
we consider a system in which a single optical wavelengﬁ;l separately estimate the bit error rate due to timing jitter and

channel occupies a bandwidth of 100 GHz and the reCeIVé?r[nplitude jitter when one or other is the dominant source of
window is 100 ps, then there are 10 complex modes. In trﬂ?rors

case, the number of photons per mdde, . is given by

Usnode = nsp(G — 1)K (35) ACKNOWLEDGMENT

whereG is the amplifier gain and( is the number of in-line  The authors are grateful to M. Shtaif and R. Tkach for
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