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Historically, physicists and engineers have always portrayed wave transmission using 
line diagrams in which the amplitude is shown as a function of time and distance. 
This sort of drawing tells us what is happening to the wave amplitude. However, 
waves are characterized by their phase as well as their amplitude, and these drawings 
tell us nothing about the phase evolution. The advent of modern computers with col
or monitors and inexpensive color printers allows us to solve this problem in a visu
ally appealing way by using a periodic color map to portray phase information. We 
can also portray information about the local frequency, the phase derivative with 
respect to time, using an aperiodic color map. We apply this approach to study light 
propagation in optical fibers. 
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From the earliest days of scientific discovery, 
scientists have used illustrations to under
stand and explain natural phenomena. How
ever, even though we see and think in color, 
most illustrations in textbooks and scientific 
publications are simple black-and-white line 
drawings. Historically, the high cost of pre

senting images in color has been a barrier to using color 
to present scientific results. However, the advent of rela
tively inexpensive color monitors and color printers has 
led to a dramatic change in the last decade. Color presen
tations are now quite common in scientific meetings, and 
it is our view that scientific journals and textbooks cannot 
be far behind. The publication by the Optical Society of 
America of Optics Express—an entirely on-line journal 
that allows the easy incorporation of multimedia images 
and color—is an important step in this direction. While 
the technology now exists to make greater use of color, 
our concepts of how to use color have not really kept 
pace. For the most part, we still use simple line drawings, 
employing changes in color in the same way we previous
ly used a change in the line—from straight to dashed to 
dotted—to indicate a change in the parameters. 

The use of line drawings is particularly ineffective when 
discussing wave propagation. A wave is characterized by 
both its amplitude, or its intensity, and its phase. Phase 
varies periodically, so it is hard to represent it well using line 
diagrams. Moreover, one would ideally like to present the 
amplitude and phase information simultaneously, since 
both are important. Here, we will describe an approach in 
which we use a periodic color map to represent phase while 
the height of the colored bar represents the intensity at each 
point in time. We will use a similar approach to represent 
the local frequency, which is just the time derivative of the 
phase. In contrast to the phase, which varies between - Π 
and Π , the local frequency can have any value; for this rea
son, it is most appropriate to use an aperiodic color map. 

We will apply this approach to studying simple exam
ples from optical fiber transmission systems. The practical 
importance of these systems is well known. Data transmis
sion rates have increased by four orders of magnitude in 
the last decade, largely powered by improvements in optical 
transmission technology.1 This immense increase in data 
rates has in turn led to the rapid growth of the Internet and 
the World Wide Web, creating new paradigms for global 
communications.2,3 It is less well known but equally true 
that optical fibers present us with a remarkable opportunity 
for studying nonlinear wave phenomena. Under some cir
cumstances, light transmission in an optical fiber is 
described by the nonlinear Schrödinger equation4 

where U(z,t) = A(z,t)exp[iφ(z,t)] is the complex wave 
envelope, while A(z,t) is its amplitude and φ(z,t) is its 
phase. In Equation 1, the variable z is distance along the 
fiber and t is the retarded time defined as t = τ - z/V g, 
where Τ is the physical time and Vg is the group velocity. 

The quantity β"(z) is the dispersion. The nonlinear coef
ficient γ equals n 2 ω 0 /A e f f c, where n 2 is the Kerr coeffi
cient, ω0 is the central radial frequency of the wave, A e f f 

is the effective area of the core, and c is the speed of light. 
In modern-day communications systems, the dispersion 
β"(z) often varies periodically, but when it is constant, 
Equation 1 falls into that special class of nonlinear equa
tions that mathematicians refer to as "integrable." It can 
be solved using the inverse scattering method, and it has 
soliton solutions. It also has a rich set of other solutions, 
particularly when we allow β"(z) to vary. 

In the remainder of this paper, using a set of increasing
ly complex examples, we will apply our approach for rep
resenting intensity along with the phase or local frequency. 
We will begin by neglecting the nonlinearity, setting γ = 0. 
In this case, our system is purely dispersive. We next 
neglect the dispersion, setting β"(z) = 0, and observe non
linearly induced self-phase modulation.5 - 7 In both these 
cases, there is a simple analytical expression for the solu
tion in the frequency domain and the time domain, 
respectively. We then 
consider a case with 
both non-zero disper
sion and non-zero non-
linearity, in which an 
initial pulse breaks up 
into a soliton and a dis
persive background. 8 , 9 

Finally, we consider an 
example in which β"(z) 
varies periodically so 
that dispersion-man
aged solitons can propa
gate. These periodically 
stationary pulses have 
been the subject of 
intensive study in recent 
years 1 0 , 1 1 and may be of 
use in communication systems. 

Linear dispersive waves 
If we neglect the nonlinear term in Equation 1, it 
becomes simply 

which is the linear dispersive wave equation. This equa
tion applies to optical fiber transmission when the pulse 
power is low and the distances are short. In this case, the 
refractive index of the medium is not affected by the 
optical pulse. Equation 2 can be solved using Fourier 
transform methods, as shown in Figure 1. The equation 
governing the Fourier transform of U(z,t), which we 
will write as Ũ(z,ω), is 

Figure 1. Illustration of the procedure for calculat
ing the evolution of linear, dispersive waves. Rather 
than directly calculating the behavior in the time 
domain, as shown by the dashed line, it is more 
efficient to find the initial Fourier transform. From 
the initial Fourier transform, the next step is to 
determine the evolution at any z using Equation 4 . 
Finally, one determines the evolution in the time 
domain by taking the inverse Fourier transform. 

Optics & Photonics News/August 2000 45 



where Ũ(z,ω) = ∫∞

-∞U(z, t)exp(iωt)dt. The solution of 
Equation 2 may be written explicitly as 

where Ũ0(ω) = Ũ(z= 0, ω) is the Fourier transform of the 
initial pulse shape U0(t) = U(z, t). We then calculate the 
inverse Fourier transform using the expression U(z, t) = 
(1/2π) ∫-∞

∞ Ũ (z, ω) exp (-iωt)dω. This solution proce
dure is possible because each frequency component is a 
mode of the system. That is to say, each frequency evolves 
independently of all the others. By contrast, the different 
points in time are linked to each other through the second 
derivative in time in Equation 2. 

To show how phase and local frequency behave in this 
system, let us consider propagation of a Gaussian pulse 
through a linear dispersive medium as shown in Figure 2. 
Figure 2 shows the evolution of the pulse in the frequency 
(Figures 2a-c) and time domains (Figures 2d-f) respec
tively. The intensity of the pulse does not change in the 
frequency domain, but the phase does. This phase change, 
which is not visible in standard line diagrams, is clearly 
visible in Figures 2a-c. By contrast, both the intensity and 
the phase undergo changes in the time domain, as shown 
in Figures 2d-f. The expected spreading of the pulse is 
clearly visible as would be the case in a line drawing, but 
we can obtain even more information by observing the 
phase. In particular, it is possible to use the stationary 
phase method or the steepest descent method to show 
that any pulse that propagates in a linear dispersive medi
um ultimately looks like its Fourier transform. 1 2 - 1 5 The 
formula that relates U(z, t) to Ũ0(ω) when z is large is 

For the example we are considering, in which the pulse is 
Gaussian-shaped, an exact analytical solution that is valid 
for any z, not just large z, exists. We use Equation 5 instead 
because it applies to arbitrary pulse shapes and reveals the 
behavior of the pulses more clearly. If we make the identi
fication ωs = t/β"z, corresponding to the point of station
ary phase, we see that U(z, t) equals Ũ0(ωs) 
exp(-iω2

sβ"z/2) to within a factor that decreases like z1/2 

and a π/4 phase rotation. In the example we are consider
ing, β" < 0; so the expected π/4 phase rotation is negative. 
Both the stretching in the time domain proportional to z, 
and the decrease in the intensity proportional to z, are vis
ible in Figures 2d-f. To observe the phase behavior we 
turn to Figures 3a-c, where we show the normalized 
intensity so that the phase variation is more visible. The 
predicted phase rotation as a function of time, as well as 
the -π/4 phase rotation, are clearly visible. We can gain 
further insight into what is happening by plotting the 
local frequency as a function of time, as shown in Figures 
3d-f. We calculate the local frequency ω l o c a l by writing 
U(z, t) = A(z, t)exp[iФ(z, t)], where A and Ф are real and 
using the definition ω l o c a l = -dФ/dt. It is apparent that 

lower frequencies lag behind the higher frequencies. From 
this standpoint, we can interpret the stretching due to dis
persion as a consequence of the group velocity difference 
between higher and lower frequencies. The color dia
grams that we are using make the time dependence of the 
local frequency visually apparent. We connect this result 
to the steepest descent calculation by noting that ωs(t) 
ω l o c a l (t), as is apparent from Figures 3d-f. 

Nonlinear waves 
When the dispersion is negligible in Equation 1, but the 
nonlinearity is not, Equation 1 becomes 

This equation applies to an optical fiber when the pow
er is high and distances are short, so that the effect of 
dispersion can be completely neglected. Equation 6 has 
an exact solution that may be written as 

where U0(t) = U(z = 0, t). The intensity-dependent fre
quency rotation that appears in Equation 7 is referred to 
as self-phase modulation. In this case, each point in time 
is a mode in the sense that each point in time evolves 
independently of other points in time, while different 
points in frequency are coupled by the nonlinearity. In 
contrast to linear dispersive waves, for which the pulse 
spectrum is fixed but the pulse expands in the time 
domain, we find that the pulse shape does not change in 
the time domain, but the pulse spectrum expands due to 
the self-phase modulation. 

Figures 4 and 5 show the nonlinear propagation of a 
pulse through an optical fiber. One can see in Figure 4 that 
the pulse shape is constant in the time domain, while the 
phase varies. On the other hand, both the amplitude and 
phase of the frequency spectrum vary throughout the 
propagation as shown in Figure 5. While the variation of 
the frequency spectrum is regular, it is also somewhat com
plex. Beyond 5,000 km, for the example that we are consid
ering, the spectral intensity oscillates as the frequency varies 
and develops sidebands. At the same time, the phase does 
not linearly increase. At 10,000 km, it is apparent that it is 
also oscillating. We can understand the behavior in the fre
quency domain by again using the method of stationary 
phase. 1 2 - 1 5 Writing the complex frequency amplitude as 

where I(f) = |U0(t)|2 is the intensity in the time domain, we 
find that the stationary phase points are given by үI'(t)z + 
ω = 0, where I'(t) = dI(t)/dt. For a single-humped pulse, 
like the Gaussian pulse that we are considering, there will 
be two stationary phase points when |ω/үz| < |I'(t)|max, the 
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Figure 2. Propagation of a Gaussian pulse through a linear dispersive 
medium. The dispersion is β" = -0.20 p s 2 / k m , and the full width at half 
maximum (FWHM) is 20 ps. Figures 2a, 2b and 2c show the pulse profile 
in the frequency domain at 0, 5,000, and 10,000 km from the launching 
point. Figures 2d, 2e, and 2f show the pulse profile in the time domain at 
0, 5,000, and 10,000 km from the launching point. Color represents 
phase. 

maximum value of |I'(t)| Conversely, when lω/γzl > 
|I'(f)|max, there are no stationary phase points, and we 
expect the spectral intensity to rapidly diminish when |ω| 
becomes larger than its allowed value, as shown in Figure 
5. When two stationary phase points exist, we may write 
the complex frequency amplitude approximately as 

when z is large, where I"(t1) and I"(t2) are the second 
derivatives of I(t) evaluated at the stationary phase 
points. We see that the contributions from the two sta
tionary phase points will interfere, leading to the ampli
tude and phase oscillations visible in Figure 5. Moreover, 
Equation 9 implies that the spectral intensity will dimin
ish on average as 1/z while it spreads proportional to z. 
Both these trends are visible in Figure 5. 

An important feature of self-phase modulation is that it 
induces a chirp in the time domain. Due to the nonlinear 
phase rotation, apparent in Equation 7 and in Figure 4, the 
phase varies quadratically near the peak of the pulse. This 
quadratic variation of the phase translates into a linear vari
ation of the local frequency, as is visible in Figure 6. This 
chirp can interact in important ways with dispersive ele

ments. For example, it is possible to at least partially cancel 
the effect of the nonlinearity with a dispersive element that 
moves the local frequencies in just the opposite way as the 
chirp. In the case of solitons, this cancellation is total.4,16 We 
will have more to say on this subject in the next section. 

Nonlinear dispersive waves and solitons 
In the previous two sections, we discussed the effects of dis
persion and nonlinearity separately. Both these effects con
tinually change the phase of the field, as was clearly visible in 
our color plots, so that there is no stable pulse solution. In 
the case of linear dispersive waves, the sign of the dispersion 
determines the sign of the phase change. By using dispersion 
with β" < 0, it is possible for the dispersion and the nonlin
earity to induce opposite phase changes that compensate for 
each other and lead to a stable solution for U(z, t) in which 
there is no spreading in either the time domain or the fre
quency domain. This solution to Equation 1 is 

where A and ω are free parameters proportional to the 
soliton energy and frequency offset. This solution is 
called a soliton.8 ,9 ,16 Solitons have the same local fre
quency at all points in time. 
A remarkable properly of the soliton is that if the 

-

Figure 3. Propagation of a Gaussian pulse through a linear dispersive medium. 
The dispersion is the same as in Figure 2. Figures 3a, 3b, and 3c show the 
pulse profile in the time domain at 0, 5,000, and 10,000 km from the launching 
point. Color in these figures represents phase. Figures 3d, 3e, and 3f show the 
pulse profile in the time domain at 0, 5,000, and 10,000 km from the launching 
point. Note that 1 Hz = 2 π rad/s, and the color represents local frequency. 
Intensities in all figures are normalized to the maximum intensity of the pulse. 
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tial pulse differs somewhat from a soliton, the pulse tends 
to acquire the soliton shape and a uniform phase by shed
ding dispersive radiation. Figure 7 illustrates the propaga
tion of a pulse generated as a coherent sum of three 
Gaussian pulses slightly shifted with respect to each other. 
One can see that the input pulse gradually reshapes, 
approaching the hyperbolic secant soliton shape with a 
constant local frequency across its profile. The color plots 
are effective in showing the evolution of the pulse's shape 
and local frequency as the pulse sheds radiation. Figure 8 
shows the corresponding frequency domain evolution. 
There is no long-term stability in this case because the 
soliton and the dispersive wave radiation interfere, 
although the oscillations in the frequency domain become 
faster and faster with longer propagation distances. The 
frequency spectrum converges very slowly because the 
soliton and the dispersive wave radiation interfere. More
over, we use periodic boundary conditions in our numeri
cal solutions, and, in this case, the frequency spectrum 
never converges. To avoid this problem, it is necessary to 

actually damp out the dispersive waves in order for the 
pulse profile to stabilize in the frequency domain. We used 
a time domain much larger than the time domain shown 
in our simulations, along with a numerical damper at the 
edges, to avoid boundary interactions. 

Dispersion managed soliton 
Dispersion by itself causes the different frequency com
ponents of a pulse to travel with different velocities so 
that a propagating pulse may compress or expand in the 
time domain. Whether higher or lower frequencies move 
faster depends on the sign of the dispersion. A fiber with 
alternating spans of normal (β" > 0) and anomalous 
(β" < 0) dispersion thus leads to alternating stages of 
expansion and compression of an optical pulse. When 
nonlinearity is present, this effect can lead to a periodi
cally stationary pulse whose shape and local frequency 
return to their original values after one period. This 
pulse is called a dispersion managed soliton.10,11 

Figure 9 shows one example of the evolution of a dis-

Figure 4 . Propagation of a Gaussian pulse through 
a nonlinear medium without dispersion. The medi
um's nonlinear coefficient is γ = 2.1 W-1 k m - 1 , cor
responding to a fiber with n 2 = 2.6 x 10-20 m 2 / W , 
Aeff = 50 μ m 2 , and λ 0 = 2 π c / ω 0 = 1.55 μ m . The 
peak power is 0.38 mW, and the F W H M is 20 ps. 
Figures 4a , 4b, and 4c show the pulse profile in 
the time domain at 0, 5,000, and 10 ,000 km from 
the launching point. Color represents phase. 

Figure 5. Propagation of a Gaussian pulse through 
a nonlinear medium without dispersion. Parame
ters are the same a s in Figure 4. Figures 5a , 5b 
and 5c show the pulse profile in the frequency 
domain at 0, 5 ,000, and 10 ,000 km from the 
launching point. Color represents phase. 

Figure 6. Propagation of a Gaussian pulse through a 
nonlinear medium without dispersion. Parameters 
are the same a s in Figure 4. Figures 6a , 6b and 6c 
show the pulse profile in the t ime domain at 0, 
5 ,000, and 10 ,000 km from the launching point. 
Color represents local frequency. 
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persion managed soliton. Figure 10 shows the dispersion 
map for this example. It consists of equal length spans of 
normal and anomalous dispersion with almost but not 
quite the same absolute values of dispersion. We first com
pare the pulse at the beginning and at the end of the dis
persion map (Figures 9a and 9e). It is apparent that the 
pulse conserves its shape and that the frequency distribu
tion remains uniform. Hence, the pulse is periodically sta
tionary. Since the first quarter of the dispersion map 

(0 < z < L/4) consists of fiber with anomalous dispersion, 
the pulse should expand in the time domain, as is observed 
in Figure 9b, which represents the pulse at the interface of 
the anomalous and normal spans (z = L/4). The local fre
quency range is about ± 100 GHz, and the pulse expands 
to about twice its initial duration. The next two quarters of 
the map (L/4 < z < 3L/4) consist of normal dispersion 
fiber. As expected, the pulse first compresses and then 
expands again with the opposite phase and local frequency 

Figure 7. Propagation of a pulse through a medium 
with both dispersion and nonlinearity. The parame
ters are: β" = - 2 0 p s 2 / k m and γ = 1.3W-1 Km-1, cor
responding to a fiber with Aeff = 8 0 μ m 2 and the oth
er parameters as in Figure 4. Figures 7 a - 7 e show 
the pulse profile in the t ime domain at 0, 20 , 50 , 
500, and 10 ,000 km respectively from the launch
ing point. Color represents local frequency. The ini
tial pulse is a coherent sum of three Gaussian puls
es. The central pulse has an initial peak power of 
14 mW and a F W H M of 4 6 ps. Another pulse is 
delayed by F W H M / 3 and its power is reduced by √2 
with respect to the central pulse. The third pulse is 
analogous to the second one except that it is ahead 
of the central pulse by F W H M / 3 . 

Figure 8. Propagation of a pulse through a medi
um with both dispersion and nonlinearity. Parame
ters are the s a m e a s in Figure 7. Here, we show 
the evolution in the frequency domain. Color rep
resents phase. 

Figure 9. Propagat ion of a d ispers ion-managed soli-
ton through the d ispers ion m a p shown in Figure 
1 0 . The nonlinear coef f ic ient γ = 1.3 W-1 k m - 1 . Co l 
or represents local f requency. The initial peak pow
er of the pulse is 3.2 mW. 
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Figure 10. Dispersion map used for the example in Figure 9 . The total 
length L = L1 + L2 is 200 km. It c o n s i s t s of equal lengths of normal 
and anomalous dispersion s p a n s (L1 = L2 = 1 0 0 km). The dispersion 
coef f ic ients in the normal and anomalous dispersion s p a n s are 
respectively β"1 = -10 .99 ps2/km and β"2 = 11 .01 ps2/km. The 
average dispersion for this map is β" = 0 .001 ps2/km. 

at any point in time. Figure 9c shows the pulse in the mid
dle of the normal dispersion span. It is compressed and has 
a uniform frequency distribution. Figure 9d shows the 
pulse at the end of the normal span (z = 3L/4). The pulse 
has expanded and its local frequency distribution is just the 
opposite of what is observed in Figure 9b at z= L/4. Final
ly, the last quarter of the map consists of anomalous dis
persion fiber. Hence, as seen in Figure 9e, the pulse com
presses back to its original shape and regains its original 
uniform frequency distribution. 

Conclusion 
Any wave is characterized by both its amplitude and its 
phase. Standard line drawings are fine for representing 
amplitude but do a poor job of representing phase. By 
using false color to represent the phase or the local fre
quency underneath an envelope that represents the inten
sity, it is possible to obtain an immediate, visual insight 
into the total wave evolution. Comparing these color plots 
to the formulae produced by standard analytical tools like 
the stationary phase method or the steepest descent 
method allows us to better understand these well-known, 
classical formulae. It is our view that as color monitors, 
video projectors, and color printers become increasingly 
accessible, the approach that we have outlined should 
become a paradigm for how to effectively represent the 
evolution of waves. 

References 
1. L.G. Kazovsky, et al., Optical Fiber Communication Sys

tems, (Artech House, Boston, 1996). 
2. A. Hill, "Enabling continued internet growth at the speed 

of light," PennWell, 17(6), (May 2000). See also 
www.light-wave.com. 

3. S. Clavenna, "The expanding optical-network market: 
More carriers, more diversity," PennWell, 17(6) (May 
2000). See also www.light-wave.com 

4. G.P. Agrawal, Nonlinear Fiber Optics (Academic, San Diego, 
1995). 

5. Y.R. Shen, Principles of Nonlinear Optics (Wiley, New York, 
1984). 

6. F. Shimizu, "Frequency broadening in liquids by a short 
light pulse," Phys. Rev. Lett., 19, 1097 (1967). 

7. T.K. Gustafson, et al., "Self-modulation, self-steepening, 
and spectral development of light in small-scale trapped fil
aments," Phys. Rev., 177, 306 (1969). 

8. A. Hasegawa and F. Tappert, "Transmission of stationary 
nonlinear optical pulses in dispersive dielectric fibers. I. 
Anomalous dispersion," Appl. Phys. Lett., 23, 142 (1973). 

9. L.F. Mollenauer, et al., "Experimental observation of 
picosecond pulse narrowing and solitons in optical fibers," 
Phys. Rev. Lett., 4 5 , 1095 (1980). 

10. N.J. Smith, et al., "Enhanced power solitons in optical 
fibers with periodic dispersion management," Electron. 
Lett., 32, 54 -5 (1996). 

11. I. Morita, et al., "20 G b / s single-channel soliton transmis
sion over 9000 km without inline filters," Photon. Technol. 
Lett., 8, 1573-4 (1996). 

12. P.M. Morse and H. Feshbach, Methods of Theoretical Physics, 
Part / (McGraw-Hill, New York, 1953), Chap. 4.6, pp. 434-43. 

13. G. Arfken, Mathematical Methods for Physicists (Academ
ic, San Diego, 1985), Chap. 7.4, pp. 428-34 . 

14. N. Bleistein and R.A. Handelsman, Asymptotic Expansions 
of Integrals (Dover, New York, 1986), Chap. 6.1, 
pp. 219-24 and Chaps. 7.1-7.2, pp. 252-80 . 

15. F.W.J. Olver, Asymptotics and Special Functions (A.K. 
Peters, Wellesley, MA, 1997), Chap. 3.11-3.13, pp. 
96-104 and Chap. 4.10, pp. 135-7 . 

16. A. Hasegawa and Y. Kodama, Solitons in Optical Communi
cations (Clarendon, Oxford, 1995). 

17. M. Nakazawa and H. Kubota, "Optical soliton communication 
in a positively and negatively dispersion allocated optical fiber 
transmission line," Electron. Lett., 31(3), 216-17 (1995). 

G.V. Grigoryan, I.T. Lima, Jr., T. Yu, V.S. Grigoryan and C.R. Menyuk all contributed to 
this paper while at the Department of Computer Science and Electrical Engineering, 
University of Maryland Baltimore County (UMBC). G. Grigoryan is an undergraduate 
at UMBC, majoring in computer science and biology. I. Lima is a graduate research 
assistant in the electrical engineering program at UMBC. T. Yu is a research scien
tist at Qtera Corporation and V. Grigoryan is a research scientist at Corvis Corpora
tion. C. Menyuk, a professor in the Computer Science and Electrical Engineering 
Department at UMBC, is currently on leave, working at the Laboratory for Telecom
munications Sciences in Adelphi, MD. To contact the first author, use the email 
address: ggrigo1@gl.umbc.edu. 

50 Optics & Photonics News/August 2000 

How we did it 
There are many ways to generate color plots like the ones 
shown here. In this article, we proceeded as follows. 

The numerical solutions that we show were obtained 
from Equation (4) for linear, dispersive transmission and 
from Equation (7) for non-linear transmission without dis
persion. When both dispersion and non-linearity were pre
sent, we solved Equation (1) with the split-step Fourier 
method using computer codes written in FORTRAN and 
C++. Once we had the data, we used the function PCOL
OR in the widely used, commercial software package 
MATLAB. To use PCOLOR, one must specify a color map, 
but MATLAB has several built-in color maps to make the 
job easier. We used HSV for our periodic color map to 
represent phase, and we used JET for our aperiodic color 
map to represent the local frequency. 

We have been presenting animated versions of the fig
ures shown here at scientific meetings. To generate the 

animations, we create a series of JPEG files using MAT
LAB, labeled sequentially as fig1.jpg, fig2.jpg, fig3.jpg, 
etc. Using QuickTime Pro 4.0, available commercially 
from Apple, we generate .mov files. A word of caution: we 
typically include the animations inside PowerPoint files 
for presentation at meetings. To do that successfully with 
a Microsoft operating system, one must first install an 
older version of QuickTime, QuickTime 2.1, on the sys
tem. The older version of QuickTime is not downloadable 
from Apple's web site. We obtained it from an Adobe Illus
trator CD. (No doubt, the incompatibility of QuickTime 4.0 
and PowerPoint is a feature, not a bug.) 

The MATLAB script files that we used to create the 
figures and animated versions of some of the figures are 
available at the URL: http://www.photonics.umbc. 
edu/UsingColors.html. 
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