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Polarization mode dispersion probability distribution
for arbitrary distances
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The probability distribution of the differential group delay (DGD) at any fiber length is determined by use
of a physically reasonable model of the fiber birefringence. We show that if the fiber correlation length is of
the same order as or larger than the beat length, the DGD distribution approaches a Maxwellian in roughly
30 fiber correlation lengths, corresponding to a couple of kilometers in realistic cases. We also find that the
probability distribution function of the polarization dispersion vector at the output of the fiber depends on the
angle between it and the local birefringence vector on the Poincaré sphere, showing that the DGD remains
correlated with the orientation of the local birefringence axes over arbitrarily long distances. © 2001 Optical
Society of America
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Polarization mode dispersion (PMD) is caused by
the random birefringence that is present in op-
tical f ibers. It can lead to pulse spreading and
depolarization, and it is detrimental to system perfor-
mance. As transmission rates continue to increase,
the PMD has become an increasingly important
fiber impairment, thus motivating extensive ex-
perimental and theoretical study over the past few
years.

PMD is characterized by a three-component dis-
persion vector, V. Its magnitude, jVj, gives the
differential group delay (DGD) between the principal
states, and its direction gives the orientation of the
slow principal state of polarization at the output on
the Poincaré sphere.1 At short distances, PMD is de-
terministic, and the DGD probability distribution is a
d function. At long distances, however, previous work
in which a weak random birefringence model was used
showed that the three components of V are indepen-
dent and Gaussian distributed, so the DGD distribu-
tion is Maxwellian.1 Similar results are also obtained
if one assumes that the fiber birefringence completely
randomizes the polarization state over the Poincaré
sphere.2

Both analysis and numerous numerical and experi-
mental studies have lead to the generally accepted
wisdom that the asymptotic (long-length limit) dis-
tribution function of the DGD resulting from PMD
is Maxwellian. The transient behavior of the distri-
bution, however, is not so well elucidated. In this
Letter we study the fundamental question of deter-
mining the probability distribution of the DGD that
is due to PMD at any fiber length with general fiber
correlation and beat-length parameters. The results
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of our analytical work indicate that current systems
approach a Maxwellian distribution in just a few
kilometers, confirming the experimental work of Gisin
et al.3 and placing on a firm theoretical foundation
the widely used approach of calculating the penalties
on transmission that are due to PMD by assuming
that the distribution of the DGD is Maxwellian.
Moreover, our results indicate when this assumption
breaks down, which may be of use in future systems.
In addition, we find, for what is to our knowledge the
first time, that the probability distribution function of
the polarization dispersion vector at the output of the
fiber depends on the angle between it and the local
birefringence vector on the Poincaré sphere, showing
that the DGD remains correlated with the orientation
of the local birefringence axes over arbitrarily long
distances.

In this Letter we adopt the first birefringence
model of Wai and Menyuk.4 Even though the second
birefringence model of Wai and Menyuk4 is more
realistic in f ibers,5 Wai and Menyuk pointed out that
both models lead to nearly the same diffusion rates
for the polarization states on the Poincaré sphere.
Thus, it follows that the evolution of the distribution
predicted by the f irst model would be nearly the
same as that of the second model. In the f irst model,
the f iber is assumed to have a linear birefringence
of f ixed strength 2b but with an orientation of the
birefringence axes that varies randomly with distance
along the f iber. Our approach is to solve numeri-
cally the Fokker–Planck equation for the probability
density function of the polarization dispersion vec-
tor V associated with this model, which is a non-
trivial task.
© 2001 Optical Society of America
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We begin with the basic dynamic equation for dis-
persion vector V (Ref. 1):
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where the vector W represents the local polarization
state in the fiber. As stated above, the birefrin-
gence strength 2b is fixed. In addition, the rate of
change of the polarization orientation is assumed to
be driven by a white-noise process.4 In other words,
W � �2b cos u, 2b sin u, 0�, and du�dz � gu�z�, where
�gu�z�� � 0 and �gu�z�gu�z0�� � s2d�z 2 z0�. The
parameter s2 is related to the f iber correlation length,
hfiber, by the equation s2 � 2�hfiber. To help simplify
the analysis, we employ two variable transformations:

Ṽ � �1�z�V , Ṽ � �2�z�Ṽ . (2)

Here, matrix �1 represents a rotation through an angle
u in the �V1,V2� plane, and �2 is a rotation through
an angle 2bz in the �Ṽ2, Ṽ3� plane. Physically, Ṽ is
the dispersion vector measured in terms of the local
axes of birefringence, and V̂ is the dispersion vector
measured relative to axes rotated by the birefringence.
Note that jVj is invariant under these rotations. The
equation for V̂ after transformation (2) is then
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where b0 � db�dv.
In what follows, we assume that 2b .. s2�2, i.e.,

4phfiber .. LB , where LB is the beat length. This as-
sumption is correct for most modern-day fibers. For
instance, a typical correlation length is 50 m, and a
typical beat length is 15 m in high-PMD fiber, implying
that 4phfiber�LB � 42 .. 1. With this assumption,
the Fokker–Planck equation associated with Eq. (3)
can be averaged over the rapidly rotating polariza-
tion states, with the result that the probability density
function P for V̂ satisfies the reduced equation6,7
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Here, Z � z�hfiber and V̄k � V̂k�2b0hfiber �k � 1, 2, 3�
are dimensionless variables. With a PMD coefficient
of 1 ps�

p
km and a fiber correlation length of 50 m,

the normalizing coefficient for the DGD �2b0hfiber� is
approximately 0.16 ps. It is important to note that
Eq. (4) no longer has any free parameters. Thus,
the probability distribution function P is the same
for all fiber parameters as long as the assumption
4phfiber�LB .. 1 is valid. We have considered the
result of eliminating this restriction, and we will
report the results in the future.

It is convenient to write Eq. (4) in spherical coordi-
nates:

V̄1 � t cos f , V̄2 � t sin f cos c ,

V̄3 � t sin f sin c , (5)

where the V̄1 axis corresponds to the slow birefrin-
gence axis on the Poincaré sphere, t � jV̄j, f is the
angle between V̄ and the V1 axis, and c is the azi-
muthal angle. In these coordinates, Eq. (4) becomes
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To model the evolution of the PMD distribution
along the fiber, we solve Eq. (6) numerically, starting
from a d function initial condition. Numerically, we
chose P jZ�0 to be a very sharp d-like function:

P �t,f,c, 0� �
D3

p3�2 exp�2D2t2� , (7)

where D .. 1. Since the initial condition for P is in-
dependent of the azimuthal angle, c, it is easy to see
from Eq. (6) that P will be independent of c for all Z.
Thus, all c derivatives in Eq. (6) can be dropped, sim-
plifying the numerical solution significantly.

We use a split-step method to solve Eq. (6). The
terms on the right-hand side are of two types: a
diffusion term and a convection term. The solution
to the equation that contains just the diffusion term
may be obtained by expansion of the solution in
terms of Legendre polynomials. The solution to the
equation that contains just the convection term is a
translation that is performed numerically by use of a
two-dimensional spline interpolation. A second-order
(Strang-splitting) scheme is used to integrate along
the Z direction.8 This split-step method is uncondi-
tionally stable and efficient.

The results of simulations in which we set D �
50 are shown in Fig. 1. For larger D values, the
results are almost the same, except at very short
distances �Z , 0.2�. Figures 1(a)–1(g) show the
DGD distribution averaged over all angles, P �t,Z� �
2pt2

R
p

0 P sin fdf, at several distances. In Figs. 1(f )
and 1(g), we also show a Maxwellian distribution for
comparison. We observe that, initially, the distribu-
tion is a very sharp Maxwellian function because of
our choice of initial condition (7) [see Fig. 1(a)]. As Z
increases, p becomes more or less symmetric in shape
[see Fig. 1(b)]. As Z increases further, p becomes
skewed toward large t values [see Figs. 1(c) and 1(d)],
as observed in experiments.3 At Z � 9, p becomes
almost symmetric again [see Fig. 1(e)]. For larger
values of Z, p is skewed toward smaller t values and
tends toward the asymptotic Maxwellian distribution
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Fig. 1. (a)–(g) Probability distribution function p�t,Z� of
the DGD at various distances. The dashed curves in (f )
and (g) are Maxwellian distributions. The distance is nor-
malized to the f iber correlation length, hfiber, and the DGD
is normalized to 2b0hfiber. (h) Contour plot showing the
angular dependence of probability distribution P for dis-
persion vector V̄ at Z � 100.

[see Figs. 1(f ) and 1(g)]. At Z � 30, p is already very
close to the Maxwellian distribution (but deviation
is still apparent at large DGD values). For larger
distances, the difference is even smaller. To interpret
these results, let us take a relatively large f iber corre-
lation length of 100 m. Then, the results presented
above simply indicate that, if the distance is hundreds
of meters, then the DGD distribution is quite different
from Maxwellian, but in a couple of kilometers the
distribution becomes Maxwellian. This theoretical
result is consistent with previous experiments.3 It is
noted that the DGD probability distribution at large
DGD values (the tail region) is of particular interest
to the prediction of outrage probabilities. Figure 1(g)
indicates that this tail distribution takes much longer
to approach Maxwellian. Indeed, our numerical
results show that it takes over 100 fiber correlation
lengths for the tail to approach Maxwellian.

Our numerical results also reveal an angular �f�
dependence of the probability distribution, P , that per-
sists over arbitrarily long distances. A contour plot of
P on the �t,f� plane at Z � 100 is shown in Fig. 1(h).
We find that the DGD is larger along f � 0 and smaller
along f � p. This angular dependence implies that
at the output of the f iber the expected DGD will be
correlated with the angle between polarization disper-
sion vector V and the local birefringence vector on the
Poincaré sphere; in particular, the expected DGD will
be larger when V is aligned with the slow axis of local
birefringence on the Poincaré sphere.

The amount the probability distribution shifts when
f varies from 0 to p in Fig. 1(h) is 2 units in dimen-
sionless variables. In dimensional quantities this is
4b0hfiber, which for the example parameters discussed
above totals 0.32 ps. An interpretation of this follows
if one thinks of the f iber as sections of length hfiber ran-
domly oriented with respect to one another and DGD
accumulates at the rate 2b0; then, the last section in-
creases the total DGD by an additional 2b0hfiber if V is
aligned with the slow birefringence axis but decreases
it by the same amount if V is aligned with the fast
axis.

In summary, we have determined the PMD proba-
bility distribution for arbitrary distances with a
realistic birefringence model. First, we have shown
that for a f iber with a correlation length that is of
the same order as or larger than its beat length, the
Fokker–Planck equation governing the evolution of
the probability density function is independent of all
parameters. In addition, by numerically solving this
equation, we have shown that the probability den-
sity function for the DGD approaches a Maxwellian
distribution in �30 fiber correlation lengths, i.e., a
couple of kilometers for typical parameters. We also
find that the probability distribution function for the
polarization dispersion vector at the output of the
fiber depends on the angle between it and the local
birefringence vector on the Poincaré sphere, showing
that the DGD remains correlated with the orientation
of the local birefringence axes over arbitrarily long
distances.
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