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Dynamics of the Chirped Return-to-Zero Modulation
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Abstract—We numerically simulated long-distance,
high-bit-rate, wavelength division multiplexed (WDM) trans-
mission in dispersion-managed systems. We investigated
return-to-zero (RZ) and nonreturn-to-zero (NRZ) modulation
formats with amplitude and phase modulation. Consistent with
earlier experiments, we find that the chirped return-to-zero (CRZ)
modulation format has significant advantages over the NRZ
modulation format in WDM systems. We elucidate the physical
reasons for these advantages. We then discuss, in detail, the dy-
namics of the CRZ systems, carefully distinguishing noise effects,
single-channel nonlinear effects, and multichannel nonlinear
effects. In this way, we provide a physical basis for understanding
CRZ systems that should prove useful for future system design. In
particular, we find that the pulse evolution is dominated by linear
dispersion and that the spread in the eye diagrams is dominated
by signal-spontaneous beat noise, just like in linear systems.
However, we also find that symmetric dispersion compensation
performs better than asymmetric dispersion compensation, due to
the effects of nonlinearity. Additionally, we find that interchannel
nonlinearities spread the eye diagrams without changing the dy-
namical behavior. Thus, the system is quasilinear in the sense that
its properties resemble those of linear systems, but nonlinearity
plays an important role.

Index Terms—Amplified spontaneous emission (ASE) noise,
chirped return-to-zero (RZ), nonlinearity, quasilinear, slope com-
pensation, symmetric, wavelength division multiplexing (WDM).

I. INTRODUCTION

H ISTORICALLY, optical communications systems used
the nonreturn-to-zero (NRZ) modulation format for

transmitting information. This modulation format was easier
to generate than the return-to-zero (RZ) modulation format
and has a smaller bandwidth per bit. However, the advent of
long-haul wavelength division multiplexed (WDM) systems
operating at distances greater than 5000 km and individual
channel bit rates of 10 Gb/s has made it essential to effectively
mitigate the nonlinearities and other impairments that accu-
mulated during the transmission [1]. Recent experiments have
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indicated that an RZ modulation format with an initial chirp
(CRZ) performs better than the traditional NRZ modulation
format [2]–[4]. In this paper, we present a series of simulations
whose purpose is to compare NRZ, RZ, and CRZ systems,
and then to systematically study the dynamics of the CRZ
systems. The goal is to better understand the evolution of CRZ
pulses and to carefully distinguish the impact of amplified
spontaneous emission (ASE) noise, single-channel nonlinear
effects, and multichannel nonlinear effects. Thus, we provide
a physical basis for understanding CRZ systems that should
prove useful in system design.

We begin our investigation by examining the power margins
for the NRZ, RZ, and CRZ modulation formats in Section II
at several map lengths in which it is possible to achieve an
error-free transmission distance up of 10 000 km. We find that
the lowest power level, which is set by ASE noise, is nearly the
same for all three modulation formats. By contrast, the upper
level, which is set by single-channel nonlinearity, is substan-
tially higher for the CRZ modulation format than the other two
modulation formats at any given distance. In Section III, we
discuss the evolution of a single CRZ pulse in a channel that
is several nanometers away from the zero-dispersion point. We
find that the pulse duration stretches and shrinks by many times
its initial amount as it passes through each period of the dis-
persion map. This stretch is far larger than a traditional peri-
odically stationary dispersion managed soliton (DMS) system
can tolerate [5], [6]. We also find that the initial chirp and the
overall dispersion in the line must balance in order for the pulse
to reach a minimum pulse duration at the end of the transmis-
sion line. Dispersion compensation at the beginning, at the end,
or at both ends of the transmission line is required because of
the dispersion slope. The final pulse duration is about a factor of
two smallerthan the initial pulse duration for practical values of
chirp. The balance between initial chirp, overall dispersion, and
the final pulse duration is accurately calculated when nonlinear
effects are ignored, indicating that the nonlinear contribution to
the pulse evolution is small. Moreover, we find that a Gaussian
pulse approximation yields useful analytical estimates for the
relationship between initial chirp, overall dispersion, and the
final pulse duration. In Section IV, we discuss the evolution of
a train of CRZ pulses in a single channel. We find that the noise
accumulation is dominated by signal-spontaneous beat noise,
just as would be the case in a linear system. At the same time, we
also find that symmetric dispersion compensation yields more
open eyes than does asymmetric compensation. We explain the
physical origin of this difference as a consequence of the system
nonlinearity. Finally, we consider full WDM simulations in Sec-
tion V. We observe that the nonlinear interchannel interactions
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increase the spread of the eye diagrams, limiting our ability to
decrease channel spacings. Nonetheless, the interchannel non-
linearity does not change the basic dynamic behaviors of the
pulses that is essentially linear.

Section VI contains our conclusions. We find that the CRZ
system is quasilinear in that the single-pulse evolution and the
noise accumulation behave as one would expect in a linear
system. At the same time, the nonlinearity plays an important
role in designing the overall dispersion map and the channel
spacings.

Our studies of this system are based on a variant of the non-
linear Schrödinger equation that we may write in the form [7]

(1)

The quantity is the complex wave envelope,and are
distance along the fiber and retarded time, and are
the second- and third-order dispersions, respectively,is the
nonlinear coefficient, and is the gain–loss coefficient. The
quantity is the contribution of the ASE noise. We may
write , where cm is the
Kerr coefficient, is the central radial frequency of the light,

is the speed of light, and is the effective area of the fiber.
For most of our simulations, we chose m , which
is a typical value for standard fiber, but for some of our simu-
lations in Section V, we chose m , corresponding
to large effective area fiber (LEAF). We assume a fiber loss of
0.21 dB/km, and we assume that gain in the amplifiers balances
the loss, so that we do not take into account gain saturation. The
Langevin coefficient is defined by its autocorrelation
function

(2)

where spontaneous emission factor at an amplifier
and is zero elsewhere, is the amplifier gain, and is the
Planck’s constant. We solve (1) using the split-step method. Our
approach is standard and was described in [7].

We are using the following approach to evaluate the per-
formance of the systems. From our calculated eye diagrams,
which include the effect of a square-law-detector and a fifth-
order electrical Bessel filter with an 8-GHz full-width at half-
maximum (FWHM) bandwidth, we calculate the signal-to-noise
ratio (SNR)

SNR (3)

where is the average received current for the marks andis
the average received current for the spaces. In our simulations,
we typically use 64 bits in each channel and six runs with dif-
ferent ASE noise realizations. We have verified that the SNR is
a stable measure of the performance when we increase the bit
string or the number of realizations. From the SNR, we can es-

Fig. 1. Schematic illustration of the WDM transmission system used by
Berganoet al. [2], [4].

timate the bit error rate (BER) using the formula [8]

SNR
(4)

(5)

where is the bandwidth of the optical filter in the system
and is the bandwidth of the electrical filter at the receiver.
The estimates in (4) and (5) are not expected to be accurate
because they are based on the assumption that both the marks
and spaces are Gaussian-distributed noise; it is known that their
distribution is more complex [8]. However, these estimates do
provide a useful measure of system performance.

II. COMPARISON OFRZ AND NRZ MODULATION FORMATS

To begin our studies, we consider a dispersion map that con-
sists of two equal spans of fiber with alternating signs of the
dispersion. We chose ps/nm-km and
ps/nm-km, corresponding to ps /km and

2.54 ps/km. Although these alternating dispersion values are
not currently realistic, we have found that as long as the disper-
sion management strength parameter [5]

(6)

remains constant, where and are the lengths of the two
spans of the dispersion map, and is the FWHM pulse
duration, then the behavior does not change much in the systems
that we studied. The total propagation distance was 10 000 km,
and we studied maps with periods of 100, 200, 500, 1000, 2000,
and 10 000 km. The amplifier spacing is 50 km. There is no
filter in the transmission line. The other parameters are the same
as described in Section I. The structure of the WDM system is
shown in Fig. 1.

Phase modulation and amplitude modulation may be used to
decrease nonlinearly induced intersymbol interference [9]–[16].
The prechirp technique is relatively easy to use because it is only
necessary to add a lithium-niobate phase modulator after the am-
plitude modulator. If a directly modulated signal is transmitted,
it is only necessary to add a sinusoidal modulation current to the
laser diode [9]. Assuming that the phase modulationand the
amplitude modulation are bit synchronized, we may write

(7a)

(7b)
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Fig. 2. Modulation formats and the corresponding bit-synchronized phase
modulation for the bit string “111.” (a) NRZ intensity modulation. (b) RZ
intensity modulation. (c) Phase modulation for both amplitude modulation
formats.

where is the modulation depth, is the bit rate of the
signal, is time, and is the initial pulse amplitude. Fig. 2
shows the bit-synchronized phase modulation for both the NRZ
and RZ modulation formats with the bit string “111.” The vari-
ation of the phase modulation is very similar to the variation of
the amplitude modulation of the RZ format.

We first investigated the power margin for each of the
dispersion-map periods. We define the power margins as the
power range in which , corresponding to a BER 10 ,
where we have used the definitions in (4) and (5). In Fig. 3,
we show our results. Fig. 3(a) shows the margins when there is
no phase modulation on the initial pulse trains, and Fig. 3(b)
shows the results when there is phase modulation. Two salient
points emerge. First, the power margins are consistently better
with RZ than they are with NRZ. Second, phase modulation
improves performance. We investigated a range of chirp
parameters, , where is defined as in (7a), and
we found that over this range, the improvement was roughly
the same. Beyond the value , the signal bandwidth
becomes unacceptably large for WDM applications.

A number of physical phenomena are occurring that lead to
these results. First, we note that the lower power level at which
the system performance becomes unacceptable is almost inde-
pendent of whether RZ or NRZ is used, whether the pulses are
chirped or unchirped, or the length of the dispersion map. In
all cases, it is approximately 0.3 mW. By contrast, the upper
levels depend sensitively on these choices; thus, we conclude
that a correct choice of these parameters allows us to manage
the nonlinearity successfully. Second, receiver sensitivity to RZ
pulses is several decibels better than it is for NRZ when passed
through standard receivers. We found, during our investigation,
that when the RZ pulses are appropriately chirped, they com-
press over the propagation distance, which increases this advan-
tage. This compression occurs in a quasilinear fashion that has
a simple analytical description, as we will discuss in the next
section. A similar quasilinear behavior has been observed pre-

Fig. 3. Power margin of the output signal (a) without phase modulation and
(b) with phase modulation, settingA = 0:5.

viously by Georgeset al. [17], although the system parameters
are quite different.

Given the clearly superior power margins that RZ signals
have relative to NRZ signals, we focused the remainder of our
studies on RZ signals.

III. D YNAMICS OF SINGLE-CHANNEL RZ PULSE PROPAGATION

A. Pulse Compression

Next, we focus on single-channel RZ propagation in order to
better understand the RZ signal evolution. We describe a case
in which the average dispersion in the transmission line dif-
fers significantly from zero, which is the case for most chan-
nels in a WDM system, and allows us to discuss the dynamics
of dispersion compensation. The dispersion map that we used
for this study has one segment of length km with

ps/nm-km and a second segment of length
km with ps/nm-km at m, corresponding to

the point at which the average dispersion is zero. We assume a
dispersion slope ps/nm -km, and we assume
that the channel is displaced4.8 nm from the point of zero av-
erage dispersion. After the appropriate conversions, we find that

ps /km, corresponding to ps/nm-km,
and we find that ps /km, corresponding to

ps/nm-km. Hence, the average dispersion of each dis-
persion map equals 0.423 ps/km, corresponding to

ps/nm-km. The amplifier spacing is 45 km, and the total
propagation distance is 5040 km. These parameters correspond
to the experiments of Berganoet al.[2], [4], except that our
is smaller, and our dispersion map period is smaller. We chose it
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Fig. 4. Eye diagrams in the optical domain of (a) the input and (b) the output
for the chirped RZ pulse when the average dispersion is undercompensated.

Fig. 5. Output eye diagram in the electrical domain under the same conditions
as in Fig. 4.

so that the dispersion management strength parametercorre-
sponds to the value at which our studies in Section II showed the
largest margin. We verified that this value also corresponds to
nearly the largest eye opening once other parameters like the dis-
persion compensation are optimized. For our simulations in this
section, we chose a phase modulation depth , which
our previous studies indicated was within the optimal range, and
an average power of 0.5 mW at the input, which, again, yielded
nearly the largest eye openings.

Fig. 4 shows the optical eye diagrams for an optimized case.
We use this case as a baseline to study the effects of parameter
variations. We calculate the optical eye diagrams by superposing
the optical power for all the bits in our simulation. For the case
shown here, we compensate for the dispersion symmetrically. In
other words, we add equal amounts of compensation at the be-
ginning and at the end of the link. We will show later in this sec-
tion that this choice is better than using just precompensation or
just postcompensation. After the dispersion compensation, the
overall average dispersion of the whole transmission line
equals 0.025 ps/nm-km ( ps /km). Thus, the
line is undercompensated, which our simulations show yields
optimal results. Later in this section, we present a theory that
allows us to explain the desirability of under- or overcompensa-
tion and to calculate its approximate magnitude. The dispersion
parameters that we chose here correspond to a typical case in
a WDM system that requires dispersion compensation. Fig. 5
shows the electrical eye diagrams at the receiver.

A salient point that emerges from examination of Figs. 4 and
5 is that the principal contribution of the ASE noise from the
amplifiers is to the amplitude jitter of the marks, also referred
to as signal-spontaneous beat noise. In this respect, the system
resembles standard NRZ systems far more than standard soliton

Fig. 6. Evolution of the chirped RZ pulse (a) along the entire propagation
length and (b) inside the third dispersion map.

Fig. 7. Evolution of the pulse duration at the end of each map period.

systems that are typically dominated by timing jitter [18], [19] or
filtered dispersion-managed soliton systems that are dominated
by the growth of noise in the spaces [20].

A second salient point that emerges from examination of
Fig. 4 is that at the end of the transmission, the pulse duration
has compressed so that it is slightly smaller than half the
original amount. This compression occurs after a complex
evolution, as shown in Fig. 6. In Fig. 6(a), we show the evolu-
tion of a single CRZ pulse after every 360 km, which is twice
the dispersion map period. The first and the last pulse shape
correspond to the CRZ pulse before and after the dispersion
slope compensation. This single chirped pulse first stretches
after the initial slope compensation by a factor of about five
or six times its initial duration. During the propagation, the
opposite sign of the residual dispersion in the transmission
fiber, combined with the pulse chirp, leads to a gradual pulse
compression until the pulse reaches its minimum duration at
the midpoint of the propagation. Then, the pulse stretches out
again until it resumes a pulse duration of five or six times the
original amount before the final compensation. After the final
compensation, the pulse is, once again, narrow. In Fig. 6(b),
we show the evolution of the pulse shape during the third
map period where the pulse is most stretched. We find that
the maximum pulse duration is only a factor of 1.2 larger
than the minimum duration inside this dispersion-map period.
In general, the ratio of the maximum to the minimum pulse
duration in each dispersion map is never larger than a factor of
two or three. In Fig. 7, we summarize the evolution by showing
the pulse duration at the end of each map period.

This evolution differs significantly from the evolution of pe-
riodically stationary dispersion-managed solitons. Their max-
imum stretching factors must be less than a factor of about
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three to avoid large nonlinear impairments [5], [6]. The large
stretching factor in the CRZ system reduces the effect of non-
linearity.

B. Gaussian Linear Theory

We may better understand the behavior seen in Fig. 4 by com-
parison to linear pulse propagation of a Gaussian-shaped pulse.
First, we expand the bit-synchronized phase modulation using
a Taylor series as

(8)

The first term on the right-hand side of the equation corre-
sponds to a constant phase shift, the second term corresponds to
a quadratic phase term that leads to a linear chirp, and the rest
corresponds to higher order terms. An initial chirped Gaussian
pulse at may be written as

(9)

where is the wave envelope, and and are the initial pulse
duration and chirp coefficient. The approximate linear evolution
of the pulse is governed by the equation

(10)

where is the group velocity dispersion. The analytical
solution for this Gaussian chirped pulse at distance may
be written as [21]

(11)

Then the dependence of the pulse duration on the total
distance in the linear dispersive medium is

(12)
If we define the average dispersion from the relation

, one can see that when , the
pulse will initially compress. In this case, the minimal pulse
duration occurs at the end of the propagation, and its value is
given by

(13)

(14)

Fig. 8. Compression of the input pulse under different conditions. (a)A =

�0:3, CD= 86.1%, (b)A = 0:6, CD= 107.9%, and (c)A = �0:3, CD=

91.8% with a transmission distance of 10 080 km. All other parameters are the
same as in Fig. 4.

Comparing (8) and (9), we find that

(15)

Now, we compare the predictions of this simple linear
theory to the actual optimized evolution that we have already
shown in Fig. 4. We recall that, for this system, the system
parameters are , and ps /km (

ps/nm-km). The quantity equals 5040 km, which
is the total length. It is useful to characterize this kind of system
using the compensation degree (CD)

CD (16)

where is the average dispersion over one dispersion map.
Undercompensation corresponds to CD1, whereas overcom-
pensation corresponds to CD 1. In this case, CD 92.7%,
so the system is undercompensated. We find, from Fig. 4, that

. However, (12)–(15) predict
ps /km ( ps/nm-km), corresponding to CD
93.6% and . Linearly, there is a discrepancy
because the initial phase modulation is sinusoidal rather than
quadratic and because the initial pulse shape is raised-cosine
rather than Gaussian. There is also an additional discrepancy
due to the nonlinearity. If we solve (10) using the actual pulse
shape and keeping CD the same, so that the only discrepancy is
due to the nonlinearity, then we find that . Thus,
the portion of the discrepancy that is due to the nonlinearity is
relatively small.

C. Parameter Variations

Now, we consider the effect on the evolution of varying the
system parameters and examine the validity of (12)–(15).

In Fig. 8, we show output eye diagrams when we vary the
phase modulation depth and the system length. In Fig. 8(a),
we increase the phase modulation depth from to

, and in Fig. 8(b), we increase it again to .
For the case shown in Fig. 8(a), the optimal compensation de-
gree CD equals 86.1%, whereas, for the case shown in Fig. 8(b),



52 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 20, NO. 1, JANUARY 2002

Fig. 9. Dependence on the modulation depthA of (a) the optimal dispersion
and (b) the final pulse compression. The dotted line with squares is the result of
complete simulations, while the solid line with circles is the result of neglecting
nonlinearity. The dashed line in (b) is the result of Gaussian linear theory.

it equals 107.9%. By contrast, the values predicted by (12)–(15)
are CD 87.5% in Fig. 8(a) and CD 106.4% in Fig. 8(b). Al-
though these values differ somewhat from the actual values, the
trends are correct. Similarly, we find that the values of
in Fig. 8(a) and (b) are 0.39 and 0.29, whereas the predicted
values are 0.26 and 0.133. The deviations are larger for this pa-
rameter, but, again, we find that the trends are correct. Finally,
in Fig. 8(c), we show the impact of doubling the system length
to 10 080 km while other parameters are the same as in Fig. 4.
It is clear that the optical eye diagram has deteriorated substan-
tially. Because has increased by a factor of two, must
decrease by approximately a factor of two, and, indeed, we find
that CD 91.8%. The predicted value is CD93.7%. The ac-
tual and predicted values of are 0.40 and 0.26. Again,
the trends are correct.

In Fig. 9, we show the actual values of and as a
function of the phase modulation depthwhen the pulses are
optimally compressed at the end of the transmission. We also
show the predictions of (12)–(15) and the predictions of linear
theory. We find that the Gaussian approximation is qualitatively
useful, but it is not quantitatively exact. However, when we use
the modified linear theory, the predictions agree with the pre-
dictions of the complex nonlinear theory within 10% to 15%,
indicating that the nonlinearity contributes little to the pulse evo-
lution.

In order to verify our conclusion that the pulse evolution is
dominated by the linear dispersion, with the nonlinearity only
making a small contribution, we studied the pulse evolution
for a wide variety of values of the initial modulation depth
and of the average dispersion in one period of the dispersion
map . We note that changes in correspond to changes
in the central wavelength. The evolution differs significantly,
depending on our choice of parameters. For example, as
increases, corresponding to an increasing wavelength separa-
tion from the zero dispersion point, the maximum pulse expan-
sion increases from approximately twice the pulse duration at
a wavelength corresponding to the zero dispersion point to ap-
proximately five times the pulse duration at a wavelength cor-
responding to 4.8-nm separation from the zero dispersion point,
assuming a net dispersion slope ps/nm -km,
with the other parameters the same as in Fig. 4. Nonetheless,

Fig. 10. Pulse interactions in a single channel with the same parameters as in
Fig. 4, except without ASE noise and fiber loss.

the evolution is well described by the modified linear theory, as
long as the signal average power is less than 1.0 mW, where we
recall that the m . At higher powers, nonlinearity
substantially affects the pulse evolution, but, at the same time,
the eye diagrams degrade significantly. Therefore, at the power
levels associated with the experiments by Berganoet al.[2], [4],
the pulse shape evolution is always close to linear.

IV. PATTERN DEPENDENCE ANDAMPLITUDE JITTER

A. Pulse Interactions

In Fig. 6(a), we showed a single CRZ pulse propagating in
a transmission system. The stretching factor of the pulse was
large enough to lead to a significant overlap with its neighbors.
Hence, one must ask how the nonlinear pulse interactions will
affect the pulse dynamics. In dispersion-managed soliton sys-
tems, the pulse interactions are periodic, and significant interac-
tions ultimately destroy the pulses [5]. Using a pseudorandom
bit sequence of 64 bits and the same parameters, as in Fig. 6(a),
we show the evolution of CRZ interactions in a single channel
in Fig. 10. The pulses stretch by a factor of five to six times their
original pulse durations, just as in the single pulse propagation,
shown in Fig. 6. However, they could be recompressed without
difficulty. Indeed, we find that their evolution is little affected by
the nonlinear pulse interactions. We did not include ASE noise
in this figure, but when we include it, the behavior is unchanged.
The low nonlinearity limits the interpulse interference because,
during most of the transmission line, the pulse trains act as a CW
wave. As in the transmission of a single pulse, the pulses achieve
their first minimum pulse durations in the center of the transmis-
sion. At the end of the propagation, the pulse durations are once
again smaller. At intermediate points except the center, it is al-
most impossible to distinguish the marks from the spaces due to
overlap of adjacent pulses. Nonetheless, the pulse stretching is
not large enough for the nonlinear pulse interactions in a single
channel to be attributed only to intrachannel four-wave mixing,
and we see no evidence of ghost-pulse formation [22], [23].

B. Amplitude Jitter

The evolution of the CRZ pulses has a pattern dependence,
as shown in Fig. 11. From the figure, one sees that the behavior
of two consecutive marks “11” is different from “01.” A long
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Fig. 11. Pattern dependence of the chirped RZ pulse. (a) Input signal. (b)
Output signal with the same parameters as in Fig. 4.

sequence of marks evolves differently from a short sequence of
marks. A pattern in which a mark is followed by a sequence of
spaces will have a better SNR than a mark that is followed by
other marks. This behavior is a consequence of interpulse inter-
ference in the transmission system due to the large stretching
factor of the CRZ pulses. Adjacent pulses significantly overlap
each other. ASE noise and the small nonlinearity combine to
cause pulse interaction and energy exchange. Thus, the output of
the CRZ modulation format is highly pattern dependent. By con-
trast, other NRZ or RZ modulation formats in which the pulses
are not strongly stretched suffer from much less pattern depen-
dence because the pulses do not overlap as dramatically as they
do in CRZ systems.

As noted previously, the amplitude jitter of the marks is
much larger than that of the spaces. To investigate the origin of
the amplitude jitter, we tested the contribution of ASE noise,
nonlinearity, and dispersion compensation to the jitter. In this
set of simulations, we used 1.5452m as the wavelength of
the channel, and, like in Fig. 4, the results are obtained for
a map with an average dispersion of ps/nm-km
( ps /km). We sequentially turn off the ASE noise
and the nonlinearity, and vary the dispersion compensation.
We obtain the results shown Fig. 12. Fig. 12(a) shows the eye
diagram with nonlinearity and the same undercompensation as
in Fig. 4 [ ps/nm-km ( ps /km)],
but without ASE noise. Fig. 12(b) shows the eye diagram with
ASE noise and nonlinearity, but with complete compensation.
Fig. 12(c) shows the eye diagram with ASE noise and the
same undercompensation, but without nonlinearity. Fig. 12(d)
shows the eye diagram without ASE noise or nonlinearity and
with complete compensation. Comparing these figures with
Fig. 4(b), where both ASE noise and the nonlinearity are taken
into account and the dispersion is undercompensated, we note
that ASE noise is the dominant factor that contributes to a large
amplitude jitter of the marks. Fig. 12(a) shows that, without
the ASE noise, the amplitude jitter of the marks is significantly
reduced, implying that spontaneous-signal beat noise induces
most of the amplitude jitter. Although nonlinearity and chro-
matic dispersion do contribute to the amplitude jitter as well
as the timing jitter, these contributions can be made very small

Fig. 12. Amplitude jitter of the chirped RZ pulse. (a) Eye diagram with
nonlinearity and the same undercompensation as in Fig. 4 [D = �0:025

ps/nm-km (� = 0:0321 ps /km)], but without ASE noise. (b) Eye diagram
with ASE noise and nonlinearity, but with complete compensation. (c) Eye
diagram with ASE noise and the same undercompensation, but without
nonlinearity. (d) Eye diagram without ASE noise or nonlinearity, and with
complete compensation.

Fig. 13. Dependence on the modulation depthA of optimal path average
dispersion andQ. The dashed lines with squares correspond to theQ values.
Filled circles represent the optimal dispersion values calculated through
numerical simulation, and solid lines are the optimal dispersion values
calculated using Gaussian linear theory.

by appropriately choosing the overall dispersion and the initial
chirp. In a transmission system based on the CRZ modulation
format, it is important to diminish the effect of the ASE noise.
One approach is to use LEAF fiber. Another is to use inline
Raman amplification.

As we noted in Sections IV-A and IV-B, we can achieve op-
timal compression at the output by choosing correctly to
match the initial chirp. Different initial chirps lead to different
stretching factors of the pulses, but the qualitative behavior is
the same in all cases, as long as is correctly chosen. The
stretching factor can be reduced by decreasing the initial chirp,
however; it is useful to achieve the largest possible stretching
factor in order to maximally reduce the four-wave mixing and
intersymbol interface. We have found that it is possible to main-
tain for a modulation depth , as shown
in Fig. 13.

C. Dispersion Compensation

Dispersion compensation is quite common in conventional
NRZ transmission systems because the NRZ modulation format
can only operate with nearly zero average dispersion over the
whole transmission line. Dispersion compensation can be done
by using dispersion-shifted fiber, optical gratings [24]–[26],
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Fig. 14. Asymmetric dispersion compensation (a) before the transmission and
(b) after the transmission. Compare this figure to Fig. 4.

or optical phase conjugation [27]. Dispersion compensation of
the RZ modulation format is less important over a given length
because the RZ modulation format is less degraded than the
NRZ modulation format by nonlinearities. Nevertheless, as we
previously showed, the CRZ modulation format operates best
with dispersion compensation, and it is required to achieve the
largest possible propagation length. For the central channel in
the WDM system, the dispersion is periodically compensated
and the average dispersion should be set close to zero. For the
side channels, the transmission average dispersion was
achieved by compensating the slope at the beginning and at
the end of the transmission line. From a physical standpoint,
it is possible to recompress the individual pulses at the end
of the transmission because different overlapped pulses each
have a different local frequency at the same point in time, so
that they remain individually distinguishable. At each end,
we compensated half of the net dispersion because, if we
compensated the whole net dispersion only before or after
the transmission, the results would be worse. In Fig. 14, we
show the final eye diagrams when the dispersion compensation
is done entirely before or entirely after the transmission.
The parameters are the same as in Fig. 4. Comparing these
results to symmetric compensation in Fig. 4, it is clear that
symmetric compensation yields a better eye diagram than does
asymmetric compensation. This result is in agreement with that
of Ding et al. [16] and Hayeeet al. [28]. They found that the
accumulated dispersion and stretching factor with asymmetric
compensation are larger than those with symmetric compensa-
tion. As discussed in Section III [Fig. 6(a)] and Section IV-A
(Fig. 10), symmetric compensation cuts the transmission into
two parts. This observation is important because it clearly
indicates the important role that nonlinearity plays in these
systems. Despite the nearly linear evolution of the CRZ pulses
as they propagate along the fiber, and despite the domination of
spontaneous-signal beat noise, which is one of the signatures
of linear signal propagation, the system is definitely affected
by nonlinearity. If the system was purely linear, it would not
matter where the dispersion compensation occurred. We have
studied the physical origin of this nonlinear effect. It occurs
because when CRZ pulses overlap, their frequencies shift in
just such a way that the pulses attract each other. This effect is
well known in the theory of solitons [29]. The exact evolution

is somewhat complex in dispersion-managed systems like
the ones that we are considering [30]. In brief, the sign of
the time shift is determined by the sign of the product of the
cumulative dispersion at the end of each map period times
the frequency shift. When the compensation is symmetric,
the cumulative dispersion changes sign midway through the
propagation, so that the product of the cumulative dispersion
times the frequency shift changes its sign. Hence, pulses that
had previously attracted begin to repel. When the propagation
has finished, the time shift returns nearly to zero. By contrast,
when the compensation is asymmetric, the pulses always attract
during the propagation because the sign of the product of the
cumulative dispersion times the frequency shift is unchanged,
leading to a large time shift. The magnitude of this time shift
depends on the amplitude of the pulses, which in turn varies due
to spontaneous-signal beat noise. Thus, this effect transforms
amplitude jitter into timing jitter. The resulting timing jitter is
clearly visible in Fig. 14.

Asymmetry due to the dispersion compensation in each map
length, as well as the gain and loss variation along the transmis-
sion line, imply that the evolution is somewhat more complex
than we just outlined. In practice, we find that the compensa-
tion at the beginning and at the end should be in approximately
a 60 : 40 ratio for optimal performance.

V. WDM STUDIES

There are many studies of WDM systems that focus on soli-
tons, the NRZ modulation format, or the RZ modulation format.
However, the performance of these systems is not acceptable at
10 Gb/s over transoceanic distances of 5000 km or more, or, in
the case of some recent soliton experiments, the systems are cur-
rently considered by system engineers to be too complex to be
built in practice. It was this observation that motivated Bergano
et al. [2], [4] to introduce the CRZ modulation format. In this
section, we will study the performance of the CRZ modulation
format in WDM systems and the dependence of its performance
on key parameters such as the dispersion slope and the effective
area of the fiber core.

Kerr nonlinearity leads to interactions among WDM chan-
nels. It is desirable to suppress this interaction by properly ad-
justing the channel spacing and choosing the dispersion map.
We study multichannel systems with seven or eight channels.
Previous work [31] indicates that this number is sufficient to
study the channel interactions in a full WDM system. Chan-
nels that are far away do not affect each other much because
they pass through each other quickly, due to dispersion. In the
WDM systems that we modeled, the channels are evenly spaced
in wavelength, and each wavelength has a slightly different av-
erage dispersion. In all of our WDM simulations, we assumed
that the EDFA has the same gain for all the WDM channels.
In reality, the EDFAs may have a wavelength-dependent gain
profile. Different channels will experience different gain. This
effect can be extremely harmful in long-haul WDM systems.
The accumulated gain difference must be avoided in practice by
using passive, gain-equalizing filters [11], [32].

We consider systems with multiple channels using the CRZ
modulation format. As in Fig. 4, we use the same dispersion
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Fig. 15. Spectral intensity, plotted logarithmically, of the CRZ seven-channel
system using standard fiber at the (a) input and the (b) output.

map as in Section III with the following parameters:
ps/nm-km ( ps /km); km,
ps/nm-km ( ps /km); and km

at 1.55 m. The dispersion slope is 0.075 ps/nm-km, and the
total propagation distance is 5040 km. WDM systems are af-
fected by intersymbol interference due to ASE noise and non-
linearity in a single channel. They are also affected by nonlinear
interchannel interactions. In previous sections, we focused on
single-channel intersymbol interference. Comparing the results
of this section to those of the previous sections allows us to
determine the importance of the interchannel interference. We
noted in Section III-C that, as long as we keep the average dis-
persion over the entire transmission line the same, we can
obtain an optimally compressed pulse with a fixed chirp almost
regardless of how the dispersion is distributed. In the WDM
simulations that we describe here, we used the same average
dispersion in every other channel, so that the chirp is the same
in every other channel. In adjacent channels, we use the same
magnitude of the chirp but with the opposite sign. Hence, the
sign of also changes. This choice is not critical, and the
results are almost unchanged if we use a chirp with the same
sign in each channel. We used a channel spacing of 0.6 nm, and
we kept seven channels. The channel spacing is larger than in
practical systems, but we do not use orthogonal polarizations
in neighboring channels or forward error-correction coding, as
in practical systems. Our goal is to study the additional impair-
ments due to interchannel interactions.

The simulated results are shown in Figs. 15–17. The results
are qualitatively the same as in the case of the single channel
studies, but the channels are degraded. The eye diagrams are
similar to the eye diagrams of the single-channel system, but
with more amplitude jitter. As shown in Fig. 16, the pulses are
all compressed at the end of the transmission, just as was the
case with a single channel. Figs. 18–20 show the results using
the same system parameters, except that we employ LEAF
fibers. If we used this kind of fiber, the effective area changes
from 50 m to 85 m , but the dispersion slope changes
from 0.075 ps/nm-km to 0.1 ps/nm-km. We observed a
significant reduction of the amplitude jitter, especially in the
central channel, indicating that using LEAF fiber will benefit

Fig. 16. Optical eye diagrams of the CRZ seven-channel WDM system using
standard fiber. The eye opening is smaller than in a single channel system with
the same system parameters.

Fig. 17. Electrical eye diagrams of the CRZ seven-channel WDM system
using standard fiber.

Fig. 18. Spectral intensity, plotted logarithmically, of the CRZ eight-channel
system using LEAF fiber at the (a) input and the (b) output.

Fig. 19. Optical eye diagrams of the CRZ eight-channel WDM system using
LEAF fiber. The eye opening is better than with standard fiber, especially the
central channel.

the system performance, because the larger core area reduces
the effect of nonlinearity.

From these simulations and others that we have made, we
conclude that the interchannel interactions degrade the eye di-
agrams of the individual channels, but they do not greatly af-
fect the pulse dynamics. The pulse evolution in each channel is
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Fig. 20. Electrical eye diagrams of the CRZ seven-channel WDM system
using LEAF fiber.

still dominated by the dispersion; the noise accumulation is still
dominated by amplitude jitter due to signal-spontaneous beat
noise; the nonlinearity still implies that symmetric compensa-
tion yields better eye diagrams than asymmetric compensation.
The simulations with LEAF fiber show that there are signifi-
cant advantages to reducing the nonlinearity while keeping the
signal power the same. We conclude that nonlinearity plays an
important role in CRZ systems, and its effect is always delete-
rious with this pulse modulation format.

VI. CONCLUSION

In this paper, we studied WDM systems with single-channel
data transmission rates of 10 Gb/s. We began by comparing
three different modulation formats: NRZ; RZ without initial
chirp; and CRZ. We found that, in order to obtain a transmis-
sion distance greater than 5000 km with reasonable power mar-
gins, we had to use the CRZ modulation format. The remainder
of our studies were based on this modulation format. Next, we
studied the evolution of individual CRZ pulses. We found that
their evolution is dominated by the chromatic dispersion and
is only slightly affected by the nonlinearity at optimal power
levels. Studying trains of pulses, we found that the spread in
the eye diagrams was primarily due to amplitude jitter gener-
ated by spontaneous-signal beat noise—a signature of linear
systems. At the same time, we found that it was important to
use symmetric dispersion compensation rather than asymmetric
compensation to minimize the effects of the nonlinearity. Like-
wise, we found that interchannel nonlinearities lead to addi-
tional spreading of the eye diagrams, although they do not alter
the CRZ pulse dynamics.

Because the dynamics of the CRZ system is primarily linear,
and because nonlinearity plays an important role in both design
of the dispersion maps and in limiting the channel spacing, we
believe that it is appropriate to refer to these systems as quasi-
linear. This term captures the reality that these systems evolve
like linear systems, but the pulse modulation format, the disper-
sion map, and the channel spacing are all chosen to reduce the
impact of nonlinearity to an acceptable level.
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