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We determine the transient evolution of the probability distribution of the polarization dispersion vector both
analytically and numerically, using a physically reasonable model of the fiber birefringence. We show that, for
all practical birefringence parameters, the distribution of the differential group delay (DGD), which is the mag-
nitude of the polarization dispersion vector, becomes Maxwellian in just a few kilometers, except in the tail
region, where the DGD is large. In this limit, the approach to a Maxwellian distribution takes much longer,
of the order of tens of kilometers. In addition, we show that in the transient regime the DGD distribution is
very different from Maxwellian. We also find that the probability-distribution function for the polarization-
dispersion vector at the output of the fiber depends upon the angle between it and the local birefringence vector
on the Poincaré sphere, showing that the DGD remains correlated with the orientation of the local birefrin-

gence axes over arbitrarily long distances. © 2002 Optical Society of America
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1. INTRODUCTION

Polarization mode dispersion (PMD) is caused by the ran-
dom birefringence present in optical fibers. It can lead to
pulse spreading and depolarization, and it is detrimental
to system performance. As transmission rates continue
to increase, PMD has become a major impairment, thus
motivating extensive experimental and theoretical study
over the past few years.

PMD is characterized by a three-component polariza-
tion dispersion vector . Its magnitude |Q| gives the dif-
ferential group delay (DGD) between the principle states,
and its direction gives the orientation of the slow prin-
ciple state of polarization at the output on the Poincaré
sphere.'2  For short distances, PMD is deterministic,
and the DGD probability distribution is a §function. For
long distances, however, previous research using a weak
random birefringence model has shown that the three
components of the vector  are independent and Gauss-
ian distributed, so that the DGD distribution is
Maxwellian.! Similar results are also obtained if one as-
sumes that the fiber birefringence completely randomizes
the polarization state over the Poincaré sphere.?

Both analysis and numerous numerical and experimen-
tal studies have led to the generally accepted wisdom that
the asymptotic (long-length limit) distribution function
for the DGD due to PMD is Maxwellian. The transient
behavior of the distribution, however, is not as well eluci-
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dated. Models based upon an analogy with Brownian
motion* or upon the assumption of random mode
coupling® have produced distributions with average char-
acteristics that are consistent with more detailed stochas-
tic analysis,® but experimental results have shown that
the actual transient probability distributions themselves
do not necessarily follow such models.” In particular, if
the total fiber length is of the same order as the fiber cor-
relation length, the DGD distribution appears skewed to-
ward larger DGD values. If the fiber length is ten times
longer than the correlation length, however, the main
part of the DGD distribution appears to be well approxi-
mated by a Maxwellian.”

While these results are significant, there have been no
careful studies of the length required for an asymptoti-
cally valid Maxwellian probability distribution to be
reached. This question is especially relevant at large
DGD values, in the tails of the distribution. These DGD
values are the ones most significant for determining out-
age probabilities due to PMD, since large DGD events are
the ones most likely to produce bit errors.

Numerous previous experiments, based on both direct
observation®® and observation of the ratio of the nonlin-
ear self- and cross-phase modulation,'®!! have estab-
lished that optical fibers are primarily linearly birefrin-
gent. Recent experimental research!? based upon actual
measurements of a real fiber’s local birefringence has fur-
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ther explored these issues. This experimental research
has shown that Wai and Menyuk’s second birefringence
model® is the one most appropriate for real fibers. This
model assumes that the fiber birefringence is linear with
two orthogonal components that are identical, indepen-
dently distributed Gaussian random variables having a
fixed correlation length with respect to distance. Be-
cause the ramifications of this birefringence model have
not been fully explored, the transient approach to the
asymptotic DGD distribution remains an open question.

Here we study the fundamental question of determin-
ing the probability distribution of the polarization disper-
sion vector at any fiber length with general fiber
correlation- and beat-length parameters. We will adopt
the slightly simpler first birefringence model of Wai and
Menyuk.® Although the second birefringence model of
Wai and Menyuk® is more realistic in fibers,'> Wai and
Menyuk have pointed out that both models lead to nearly
the same diffusion rates for the polarization states on the
Poincaré sphere. Thus it follows that the evolution for
the distribution predicted by the first model will be nearly
the same as for the second model. In the first model, the
fiber is assumed to have a linear birefringence of fixed
strength 25, and the orientation of the birefringence axes
varies randomly with distance along the fiber. Our ap-
proach is to numerically solve the Fokker—Planck equa-
tion for the probability-density function of the
polarization-dispersion vector  associated with this
model, which is a nontrivial task.

The results of our analytical and numerical studies in-
dicate that in current systems, the main part of the DGD
probability distribution (i.e., the small and moderate
DGD regions) becomes Maxwellian in just a few kilome-
ters, consistent with previous experimental research.’
The results also show that the tail distribution takes
much longer (tens of kilometers) to approach a Maxwell-
ian. Thus the widely used approach of calculating the
penalties due to PMD by assuming a Maxwellian DGD
distribution should be applied with caution when the fiber
length is not long enough to guarantee that the transient
behavior has completely died out. Specifically, it will be
shown that in the transient regime, the Maxwellian dis-
tribution overestimates the probability of large DGD val-
ues. In this case, the PMD-induced penalty calculated
assuming a Maxwellian distribution will therefore actu-
ally be higher than the true penalty due to PMD. In ad-
dition, our results also show that the probability-
distribution function for the polarization dispersion
vector at the output of the fiber depends upon the angle
between it and the local-birefringence vector on the Poin-
caré sphere, even after a distance long enough for the
transient behavior to completely decay away. Conse-
quently, the amount of DGD remains correlated with the
relative orientation between the output-principal state
and the local birefringence axes over arbitrarily long dis-
tances.

2. DERIVATION OF THE
POLARIZATION-MODE-DISPERSION
FOKKER-PLANCK EQUATION

The basic dynamical equation for the polarization disper-
sion vector Q is>1?
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0Q(z, w) IW(z, w)
z  dw

+ W(z, ) X Qz, w), (1)

where the vector W represents the local fiber bire-
fringence. As stated earlier, the birefringence strength
2b is assumed to be fixed. In addition, the rate of
change of the birefringence orientation is assumed to be
driven by a white-noise process.® In other words, W
= (2bcos 6,2bsin 6,0), and d0/dz = g,z), where

(84(2)) = 0, (gy(2)g4(z")) = a8z — 2').

The parameter o2 is related to the fiber correlation

length A, through the relation o2 = 2/hg,.,. To help

simplify the analysis, we employ the transformation O
= H(2)Q, where

cosf sinf O
Hi(z)=| —sinf cosf 0], (2)
0 0 1

so that the dispersion vector will be measured in a coor-
dinate system that follows the local birefringence vector
on the Poincaré sphere. With this transformation, the
dynamical equation for O becomes

d & Q, 20’
(9— Oy | = -0, |g(z) + -2bQ; |. (3)
“\ 0, 0 250,

From this stochastic differential equation, one can de-
rive a Fokker—Planck equation' that describes the evo-
lution of the probability-distribution function P associ-

ated with the local polarization dispersion vector €,

JP JP P P
— +2b'—— = 2b| Q5—— — OQp—
Jz a0 a0y Q4
1 d 9 \?
- -0 0—-0—| P=0. 4
2 a0, FIo

We can simplify this equation by introducing the normal-
ized variables

1 z 4b 47Thﬁber
Z = _0-22 = > B = ) = ’
2 D iber o Lg
~ Oy 0y
Qk (k = 19 25 3)’ (5)

T 4670 2b'hge

where the distance is scaled by the fiber correlation
length A gy, and the DGD is scaled by 26'hg,.,. With a
PMD coefficient of 1 ps/\km and a fiber correlation length
of 50 m, the normalizing coefficient for the DGD,
2b'h g, 1s approximately 0.16 ps. Note the PMD coef-
ficient is defined to be"®1? \/8hgp.b', and the mean accu-
mulated DGD is this coefficient times the square root of
the total distance.

Using these normalized variables, we obtain the
Fokker—Planck equation,
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P =0. (6

Note that this equation depends only on one dimension-
less parameter B, which measures the relative sizes of the
correlation and beat lengths. The fiber beat length Ly is
usually in the range of 3 to 30 meters, and the correlation
length A g, is typically between 3 and 100 meters. For
these lengths, B falls between 1.2 and 400. Thus B is
moderate or large for most fibers. Nevertheless, we also
allow B to be small, so that our results will cover all pos-
sible fiber parameter values.

The Fokker—Planck equation (6) is difficult to solve
analytically. Results are possible in the asymptotic limit
of large distance, as shown in Section 3. In addition, av-
eraged quantities can be readily obtained for all dis-
tances. First of all, we can show from Eq. (6) that the to-
tal probability is conserved,

as expected. Secondly, we can show from Eq. (6) that the
mean-square DGD is

(19%) = (|Qf) = 2[exp(=2) + Z - 1],  (8)
in agreement with previous results.>!®> Equation (8)
shows that, at short distances (Z < 1), {|Q|%) = Z?, i.e,,
the mean-square DGD grows quadratically. At large dis-
tances (Z > 1), however, we find that (|]Q|%) = 2Z, show-
ing only linear growth.

Simplification of the Fokker—Planck equation occurs
when B> 1, i.e., the fiber correlation length is larger
than the beat length. As mentioned earlier, most fibers
fall into this regime. When B > 1, the fast rotation rep-
resented by the third term in Eq. (6) can be averaged
out.’® Here we present an alternative averaging tech-
nique that is simpler. We start with Eq. (3) and employ
another variable transformation, Q = H,(z)Q, where

1 0 0
Hy(z) = |0 cos2bz sin2bz |, (9)
0 —sin2bz cos2bz
to recast the equation in a coordinate system that rotates

with the polarization state on the Poincaré sphere. Un-
der this transformation, Eq. (3) becomes

P Ql 62 cos2bz — fl3 sin 2bz 2b'
— Qz =g(2) —Ql cos 2bz + 0
9z \ . A 0
Q4 Q;sin2bz
(10)

The resulting Fokker—Planck equation for the
probablhty-dens,lty function P of the polarization disper-
sion vector Q is

Tan et al.

P 1 . A
P 502 (Qycos 2bz — Q35in2b2)°Pg g,
2

+ ﬂ%(cosz 20zPg 6, + sin? 20zPg 0,
- 2(QIQ2P)(11@2 cos? 2bz

— 2(0,03P); g, sin? 2bz

+ sin4bz[(Q,Q3P)g o, + (0:0,P)g 4,

- 03P o 1+ (04P)g, + cos?2b2(0,P)g,

1

+ sin? 2b2(Q3P)g, — Esin4bz(ﬁ3P()2

+ QQPQS)J ~2b'Py. (11)

When the system is in the limit 8> 1, ie., 2b > ¢2/2,
only the averages of the rapidly oscillating coefficients are
significant. Replacing these terms by their averages, the
reduced Fokker—Planck equation is

P o[ . 0o AR
— = || Q= Qo
gz 4 a0y FIoN
. L9\ JP
+ | Q— - Qs—| |[P—20'—. (12)
904 FION FIoN

Now employing the same variable scalings (5) with ), re-
placed by O, and @, replaced by ), , the normalized form
of Eq. (12) is then

oP  1[/ . 4 .9 )2
— = 5| QY Qo
iz 2 a0, a0,
. d .o \? oP
Q== Qy—| [P~ —. (13
904 904 904

It is important to note that this dimensionless equation
no longer has any free parameters. Thus the probability-
distribution function P is the same for all fiber param-
eters as long as the assumption 8 > 1 is satisfied. This
result shows that even though the full Fokker—Planck
equation (4) has two length scales, hg,, and Lg, in the
limit Lp < hg,, the beat length averages out. In this
limit, therefore, only A4, is important for the evolution
of the probability distribution.

It may appear that Eq. (13) is not much simpler than
Eq. (6), but this is not true. Consider the spherical coor-
dinates,

()1 = 7CO0S ¢, ﬁz = 7sin ¢ cos ¢, ﬁg = 78in ¢ sin ¢,
(19)

where the Ql axis is aligned with the orientation of the
birefringence vector on the Poincaré sphere, 7 = ||, ¢ is
the angle between Q and the Ql axis (i.e., ¢ is the angle
between the dispersion vector and blrefrmgence vector on
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the Poincaré sphere), and ¢ is the azimuthal angle. In
this coordinate system, Eq. (13) becomes

JP 1 d ( aP) 1( 1 )32P
— = ——|sing—| + = | —— - 1|—5
dZ  2sin¢ 9 P 2 | sin? ¢ P
( dP  sin ¢ ﬂP)
- — - —1. 1
cosd)aT T d¢ (15)

This equation shows that if the initial condition is inde-
pendent of the azimuthal angle ¢, then P will be indepen-
dent of the azimuthal angle ¢ at all distances. In this
case, all ¢ derivatives in Eq. (15) can be dropped, and Eq.
(15) simply reduces to

P 1 d ( aP) ( dP  sin ¢ P

— = ——— —|sing—| — | cosp— — —.

oz 2sin¢ do do ar T d
(16)

Since this reduced equation has one less dimension than
the full Fokker—Planck equation (6), it is much easier to
study, particularly in numerical simulations.

3. ASYMPTOTIC ANALYSIS OF THE
REDUCED FOKKER-PLANCK EQUATION

In this section we show analytically that the DGD prob-
ability distribution determined by the reduced Fokker—
Planck equation, Eq. (15) or Eq. (16), approaches a Max-
wellian distribution as Z — ». We will also demonstrate
that the probability-distribution function for the PMD
vector at the output of the fiber depends upon the angle ¢
between it and the local birefringence vector on the Poin-
caré sphere. For convenience, we will work with Eq. (16),
but similar results can be obtained by use of Eq. (15) as
well. The mathematical technique we will use is the
standard multiple-scale perturbation method.'®

When the distance Z is large, the DGD values ralso be-
come large. In addition, the dependence of the probabil-
ity distribution P upon 7becomes smoother and flatter so
that the size of derivatives with respect to 7 decreases.
Thus the terms inside the last parentheses of Eq. (16) be-
come small compared with the other terms in the equa-
tion. This observation is the basis of our perturbation
analysis. To specifically examine this limit, we first let
# = €%, where # is O(1) and € is a small parameter.'®
Equation (16) then becomes

P 1 J ( aP) ( dP  sin¢ aP)

— = - — | sin¢p—| — €| cos ¢ - —.

0z 2sin ¢ d¢ a¢ ar T do
17

We then expand the solution of Eq. (17) using a multiple-
scale perturbation series.®

P =Py# ¢, Z, Zy) + €P1(%, &, Z, Zy) + €2Py + ...,

(18)
where Z, = €2Z is the slow length scale.
At the zeroth order in €, we obtain
P, 1 d P,
— = - —| sin p —|. (19)
0z 2sin ¢ d¢ d¢

The exact solution to this equation is
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Py = ZO Py, (7, Zy)exp[—n(n + 1)Z/2]L,(cos ¢),
(20)

where L, (x) is the nth-order Legendre polynomial. As
we can see from this formula, all terms with n = 1 decay
rapidly with distance. Thus the solution P, rapidly ap-
proaches the first term Pyo(#, Z5), which is independent
of the angle ¢ and fast distance variable Z. Since we are
considering the large distance limit, we will simply ne-
glect the transient and take Py, = Pyo(7, Z5) in the analy-
sis that follows. The evolution of P, on the slow-distance
scale Z, will be determined when we carry out the pertur-
bation expansion to order €2.
At the next order, order €, we have

P 1 d ( P oP

. _ 0
9Z  2sind i sm(ﬁﬁ)_ AT

To suppress linear growth in Z of the solution P, the
right-hand side of the above equation must be orthogonal
to sin ¢, ie.,1®

m P,
J sin ¢ cos p —d ¢ = 0. (22)
0 ks
This condition is automatically satisfied here. Again, ne-
glecting the initial transient, the bounded solution for P,
is

P,
P, = —cos¢p—. (23)
aT
Note that this solution is dependent of the local polariza-
tion angle ¢ on the Poincaré sphere.
At order €2, the equation for P is

P, 1 4 P,
—_— = - — | sin ¢p —
/A 2sin ¢ do do
(9P0 ﬁPl SinQ’) 8P1
= —|— 4+ cos ¢ - — . (24)
0Z,, aT T d¢

The condition for suppression of linear growth in P, is
now

7707P0 0”P1 Sind)&Pl
f — + coOSp—— — Esinq’)dd)zo.

(25)

When Eq. (23) for P; is substituted into the above condi-
tion, the evolution equation for P is obtained, namely,

dP, 1((92P0 2(9P0)

0 2

_+
i & 9t

— 26
iZy 3 (26)

In terms of the original variables Z and 7, the equation is

aP, 1((92P0 Z&PO)

27

0z 3\ 972 T o7

Equation (27) governs the evolution of the leading order
probability-density function P, at large distances. When
a delta-function initial condition is used for P, it is easy
to check that the solution that satisfies Eq. (27) is
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3 3/2 37_2
Py(7, Z) = oz ) Z>1 (28

Recalling Eq. (23), the leading two-term approximation to
the probability-density function P is then

dP(7, Z)
P(r, ¢, Z) ~ Po(7, Z) — cos d)&—, Z>1,
T

(29)

where P, is given by Eq. (28). To obtain the DGD prob-
ability distribution p(7, Z), we need only to average the
full probability-distribution function P for the polariza-
tion dispersion vector over a sphere of radius 7 to obtain
the marginal distribution

p(r, Z) = 27772pr sin ¢d . (30)
0

When approximation (29) is substituted into Eq. (30), the
second term drops out because it has a zero average, and
the first term shows that the DGD distribution is Max-
wellian:

3\/57'2 372
p(r, Z) ~ 2\/;Zwexp ) pul7r, Z), Z> 1.

(31)

This result is consistent with previous research based on
other birefringence models.3'3 A new feature of our re-
sults, however, is that the probability-density function P
for the polarization dispersion vector depends on the
angle ¢ between it and the birefringence vector on the
Poincaré sphere. Indeed, rewriting approximation (29)
as

P(r, ¢, Z) ~ Po(r — cos ¢, Z), Z>1, (32

shows that the probability distribution is shifted toward
larger 7values when ¢ = 0 and toward smaller 7 values
when ¢ = 7. The amount of shift when ¢ varies from 0
to 7 is 2 DGD units in dimensionless variables. In di-
mensional quantities this amount is 4b'hg,.,., which is
0.32 ps for the example parameters discussed earlier, i.e.,
for a PMD coefficient of 1 ps/\km and hgp., = 5m). In-
tuitively, if we think of the fiber as consisting of sections
of length A g, randomly oriented with respect to one an-
other, the differential group delay accumulates at the rate
2b’ in any constant birefringence section. Hence the last
section increases the total DGD by an additional 25’ A gy,
if Q is aligned with the birefringence vector on the Poin-
caré sphere and decreases it by the same amount if Q
points in the opposite direction.

The above asymptotic analysis has shown that at large
distances, the DGD probability-density function becomes
Maxwellian, and the probability-density function of the
polarization dispersion vector depends upon the angle be-
tween it and the direction of the birefringence vector on
the Poincaré sphere at the fiber output. One question
that cannot be resolved by this asymptotic analysis, how-
ever, is how long it takes for the DGD to approach a Max-
wellian distribution and for the probability P of the PMD
vector to approach the approximation given by approxi-
mations (29) or (32). This question will be addressed in
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the next two sections by means of direct numerical simu-
lations of the reduce and full Fokker—Planck equations.
These direct numerical simulations will also serve to
verify the above analytical results.

4. SIMULATION OF THE REDUCED
FOKKER-PLANCK EQUATION

In this section, we simulate the reduced Fokker—Planck
equation, Eq. (16), using a split-step method. The terms
on the right-hand side of this equation are of two types:
a diffusion term and a convection term. The solution to
the equation containing just the diffusion term may be ob-
tained by expanding the solution in terms of Legendre
polynomials [see Eq. (20)]. The solution to the equation
containing just the convection term is a translation that
can be performed numerically with a two-dimensional
spline interpolation. A second-order (Strang-splitting)
scheme'” is used to combine these two methods and thus
integrate Eq. (16) in Z. For numerical efficiency, we have
also used adaptive gridding along the 7 direction. The Z
step size changes accordingly to maintain high accuracy.
This split-step method is unconditionally stable and effi-
cient.

Ideally, the initial condition for Eq. (6) would be a &
function. Practically, we take the initial condition to be

3
Plz—o = ﬁexp(—lﬁlﬁp), (33)

where D is large, so that P|,_, simulates a & function.
Note that the coefficient in this initial condition is chosen
so that the total probability (7) integrates to 1.

The results of simulations for D = 50 are shown in Fig.
1. For sufficiently large D values, the results are virtu-
ally identical, except at very short distances (Z < 0.2).
Figures 1(a)-1(g) shows the DGD probability function as
determined by Eq. (30) at various distances. In Figs. 1(f)
and 1(g), a Maxwellian distribution, Eq. (31), is also
shown (dashed curves) for comparison. We observe in
Fig. 1 that, initially, the distribution is a very sharp Max-
wellian function due to our choice of initial conditions, Eq.
(33) [see Fig. 1(a)l. As Z increases, p becomes more or
less symmetric in shape [see Fig. 1(b)]. As Z increases
further, p becomes skewed toward large 7values [see Egs.
1(c) and 1(d)], a behavior in contrast to that for a Max-
wellian distribution. At Z ~ 9, p becomes almost sym-
metric again [see Fig. 1(e)]. For larger values of Z, p be-
comes skewed toward smaller 7 values, finally tending
toward the asymptotic Maxwellian distribution [see Figs.
1(f) and 1(g)]l. At Z = 30, p is close to the Maxwellian
distribution, except in the tail region where DGD is large,
as described below and shown in Fig. 2.

To interpret these results in physical units, let us take
a relatively large fiber correlation length, e.g., 100 m.
Then the results in Fig. 1 indicate that, for this birefrin-
gence model, if the distance is hundreds of meters, then
the DGD distribution is quite different from Maxwellian.
Within a couple of kilometers, however, the distribution
approaches a Maxwellian except in its tail region. We
note that at large distances, the above numerical results
confirm the analytical results obtained in Section 3,
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Fig. 1. (a)—(g) Probability-distribution function p(7,Z) of the differential group delay at various distances when g > 1. The dotted

curves in (f) and (g) are Maxwellian distributions.

The distance is normalized to the fiber correlation length Ag,,, and the DGD is

normalized to 2b'hg,.,.. (h) Contour plot showing the angular dependence of the probability distribution P for the dispersion vector Q

at Z = 100. The contour levels have been magnified 40 000 times.

(a) (b)

0 10 20 T 0 20

© (d)

Fig. 2. Comparison of the true DGD probability distribution
(solid curves) with a Maxwellian approximation (dashed curves)
at various distances with a log scale to emphasize the behavior in
the tails of the distributions. Differences at large DGD values
are clearly seen, showing that hundreds of correlation lengths
can be required for the distribution’s tail to become Maxwellian.

40 T

which showed that the DGD probability distribution ap-
proaches a Maxwellian asymptotically.

The DGD distribution function in the tail region where
the DGD is large is important for the assessment of sys-
tem penalties due to PMD. The tail of the distribution
function takes much longer to approach a Maxwellian
than does the main part. To better illustrate the differ-

ence in the tails between our numerically obtained DGD
distribution and the Maxwellian distribution, we have
plotted both curves on a logarithmic scale at distances of
Z = 15, 30, 50, and 100 in Fig. 2. Here the numerical
distribution is shown with solid curves, and the Maxwell-
ian distribution is denoted with dashed curves. Again,
the distance is in terms of fiber correlation lengths, A 4, -
We see that at each distance, the difference between the
true DGD distribution and Maxwellian distribution is
most pronounced in the tails, and this difference can be
many orders of magnitude larger. This difference is vis-
ible even at hundreds of fiber correlation lengths, corre-
sponding to tens of kilometers [see Fig. 2(d)]. Thus the
assessment of system penalties due to PMD based on the
assumption that the DGD obeys a Maxwellian distribu-
tion may not be accurate. The use of a Maxwellian dis-
tribution overestimates the system penalty as the true
probability of large DGD events is much smaller than the
Maxwellian distribution predicts.

Consistent with our analytical results, our numerical
simulations also reveal an angular (¢) dependence of the
probability function P even after hundreds of fiber corre-
lation lengths. To demonstrate this dependence, we
show in Fig. 1(h) a contour plot of P in the (7, ¢) plane at
Z = 100. We see that P is larger along the ¢ = 0 direc-
tion (positive ; axis) and smaller along the ¢ = 7 direc-
tion (negative (), axis). The amount that the probability
distribution shifts when ¢ varies from 0 to 7 in Fig. 1(h) is
almost exactly 2 DGD units in dimensionless variables, in
agreement with the analysis in Section 3. This angular
dependence indicates that at the output of the fiber the
DGD will be correlated with the angle between the polar-
ization dispersion vector  and the local birefringence
vector on the Poincaré sphere. In particular, the ex-
pected DGD will be larger when Q is aligned with the bi-
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refringence vector on the Poincaré sphere. A heuristic
interpretation of this angular dependence has already
been given in Section 3.

5. SIMULATION OF THE FULL
FOKKER-PLANCK EQUATION

The reduced Fokker—Planck equation (16) is valid only
when 8> 1. Even though most installed fibers fall into
this parameter regime, there are cases where 8 ~ 1. For
instance, if we take the fiber correlation length to be 3 m
and beat length to be 30 m, then B8 = 1.26. Thus to com-
pletely determine the DGD probability distribution for all
fiber parameters, we are motivated to solve the full
Fokker—Planck equation (6) for arbitrary values of g.

As before, we use a split-step method to solve Eq. (6)
numerically. This equation can again be split into two
parts: a convection and a rotation part corresponding to
the second and third terms, and a diffusion part corre-
sponding to the fourth term. The equation that contains
just the diffusion term is solved by the pseudospectral
method in spherical coordinates:

O, =71sin®cos®, Oy =r7sinOsin®, Q3= rcosO.
(34)

Here, 7 = |Q|, O is the longitudinal angle, and ® is the
azimuthal angle. In these coordinates, the diffusion part
of Eq. (6) is simply

JP P

— = —. 35
oZ D2 35)

The equation that contains just the convection and rota-
tion terms is solved in Cartesian Q coordinates by a
translation and rotation of the axes with a semi-
Lagrangian method.'® The interpolation involved in this
solution is handled by a reduced cubic interpolation.®
We have also used the Strang-splitting method!” so that
our scheme is second-order accurate in Z. This split-step
method is unconditionally stable and is insensitive to the
size of the parameter value 8. To further improve simu-
lation efficiency, we have used adaptive gridding along
the 7 direction. The Z step size changes accordingly to
maintain accuracy. We have tested our code by compar-
ing the numerically determined and exact values of the
total probability (which is one) and the average of 72 [see
Eq. (8)], and have found that the code performs very well.
We have also performed convergence tests to make sure
that the parameters used in the numerical scheme were
properly chosen; varying them to increase the accuracy
did not significantly affect the results.

We have performed numerical simulations of the full
Fokker—Planck equation (6) for various B values. In
each case, we used D = 50 in the initial condition (33).
For larger D values, the results are the same except at
very short distances. We chose the grid numbers, 257
X 111 X 111, on the following domain:

X 0 X 7=[027) X [0,7] X [0,7],

with 7; initially taken to be 0.1. Note that our code is
adaptive along the 7 direction. The 7 interval [0,7;] is
doubled when the solution P becomes nonnegligible on
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the spherical surface of radius 7;. The Z step size was
initially taken as AZ = 0.0005 and changed to 1.5 AZ
when 7; doubles. The quantities monitored in our simu-
lations are the DGD probability-density function p(7, Z),
which is P(7, ®, O, Z) averaged over a spherical surface
of radius 7,

27 (1
p(r, Z):f fP7-2sin®d®d<I>, (36)
0 0

and the distribution of P on the spherical surface of ra-
dius 7,,(Z), where p(7, Z) attains its maximum value at
a given distance Z.

We take first 8 = 10. In this case, the averaging of
Section 2 applies, so we expect that the DGD distribution
function p(7, Z) remains the same as that shown in Fig. 1
except at very short distances where the averaging is not
yet valid. This is indeed the case. Numerically, we
found that for Z > 0.5, the DGD distribution of the full
Fokker—Planck equation is almost indistinguishable from
that in Fig. 1. To demonstrate, we plot p(7, Z) deter-
mined from the full Fokker—Planck equation at Z = 30
(squares) in Fig. 3(a). In the same plot, p(7, Z) from the
reduced Fokker—Planck equation (16) is simultaneously
shown with the solid curve for comparison [see Fig. 1(g)].
It can be seen that the two results agree with each other
very well in both the tail and bulk regions. This agree-
ment verifies that the averaging in Section 2 for 8 > 1 is
justified. In view of Fig. 1, the DGD distribution for
large B values indeed approaches a Maxwellian in ~30
correlation lengths, except in the tail where the approach
to Maxwellian is much slower (see Fig. 2).

At the same distance, Z = 30, the angular dependence
of the probability P on a sphere of radius 7,,,, = 6.5 in the
(7, ®, O) space is shown in Fig. 3(b). At this value of
Tmaxs the DGD distribution p(7) reaches its maximum
[see Fig. 3(a)]. We note that, on this spherical surface, P
is maximal at ® = 7/2 and ® = 0 (or 27), which is along
the direction of the positive {; axis. The minimum of P
occurs at ® = 7/2 and ® = 7, which is along the direc-

0.3 27 \3& 34’ 348}
Z=30 2.6 i
24
0.2
0.1 24 52
z-ﬁ_‘ .8
382
o 558 0 / 2700
0 10 T 0 Y
©
(a) (b)

Fig. 3. Simulation result for the full Fokker—Planck equation
(6) with B8 = 10 and Z = 30. (a) DGD probability distribution
p(71) (squares). Also plotted in this figure is the same quantity
from simulation of the reduced Fokker—Planck equation (16)
(solid curves) for comparison [see Fig. 1(g)]. (b) Contour plot of
P(7,0,0) at 7 = 7, = 6.5, where p(7) reaches maximum [see
(a)l. The contour levels have been magnified 10 000 times.
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Fig. 4. DGD probability distribution p(7,Z) at various distances
for B=1. In (¢) and (d), the Maxwellian distribution (31)
(dashed curves) is also shown for comparison.

tion of the negative ); axis. This result is consistent
with the reduced Fokker—Planck analysis and the simu-
lation in Sections 3 and 4.

Next we take B8 = 1, where the averaging of Section 2
is not necessarily expected to be valid. In this case, we
are interested to know if the DGD distribution still ap-
proaches a Maxwellian at large distances, and, if so, is the
approach faster or slower? To answer these questions,
we plot the DGD distribution function p(Z, 7) at various
distances (Z = 0.5, 5, 15, and 30) in Fig. 4. In Figs. 4(c)
and 4(d), the Maxwellian distribution [approximation
(31)] is also plotted for comparison (dashed curves). We
find in this case that the DGD distribution still ap-
proaches a Maxwellian asymptotically, and that, even at
this value of B, the approach to a Maxwellian distribution
occurs roughly at the same rate as for large B values.
The similar rates of approach are visible in the compari-
son of Fig. 1 with Fig. 4. Our numerical simulations at
B = 1 also show that the probability distribution P of the
polarization dispersion vector depends on the angles ®
and O in a way that is similar to that shown in Fig. 3(b),
but the contours in this case are slightly skewed. This
angular dependence again persists at all distances.

Our simulations for other B values between 1 and 10
produced similar results. Thus we conclude that, for g8
= 1, the DGD distribution approaches a Maxwellian dis-
tribution in ~30 correlation lengths, except in the tail re-
gion, where the approach to Maxwellian occurs of the or-
der of hundreds of correlation lengths.

For the sake of completeness, we have also explored the
parameter regime 0 < B <1, or, equivalently, Agp.,
< Lpg/4m. Although fibers manufactured by traditional
means do not typically fall within this regime, this pa-
rameter range may be relevant for low-PMD fiber manu-
factured by spinning the fiber during the drawing
process.2*?!  Such spinning is likely to reduce the effec-
tive fiber correlation length. Since spin rates of the order
of 20 turns per meter have been reported,??23 short corre-
lation lengths can be expected.
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Analytically, it can again be shown that when g8 < 1,
the DGD probability distribution approaches a Maxwell-
ian asymptotically at large distances. Our method is
similar to that used in Section 3, and so the details will
not be presented here. The main difference is that in
this limit both A4, and Lp are important, and neither
averages out. A careful analysis of a closely related prob-
lem, the Fokker—Planck equation for the evolution of the
polarization state’s probability distribution, shows that in
this limit, behavior on both a fast and a slow length scale,
namely, A gpe, and L2/4m%hgy,,, is seen.515%%  Note that
when Ag., is small, the second length scale can be much
larger than the first. These two length scales are also ex-
pected to be visible in the evolution of the DGD’s probabil-
ity distribution. Numerically, our simulation results for
Eq. (6) verify that for very small B values, the approach of
the DGD distribution to a Maxwellian can be much slower
when measured in terms of the fiber correlation length
than for large B values. For instance, if g8 = 0.1, the
DGD distribution approaches Maxwellian in the bulk re-
gion only after over 250 fiber correlation lengths. This
observation is in contrast with Figs. 1 and 4 for moderate
and large B values. However, this slow approach does
not necessarily mean that the approach to a Maxwellian
distribution is slower in physical distance units. The
reason is that smaller 8 values typically correspond to
shorter fiber correlation lengths. For instance, let us
suppose that the beat length is 30 m; then 8 = 0.1 im-
plies Ag, = 0.24 m. As a result, the Maxwellian distri-
bution is reached in the bulk region after 250 hgp.,
= 60 m, which is still a short distance. This result also
compares reasonably well with the theoretical estimate,
L%/47%hgpe, ~ 95 m.  For even smaller fiber correlation
lengths, however, the distance required for the DGD dis-
tribution to become Maxwellian might be expected to be
even longer.

6. SUMMARY AND DISCUSSION

In this paper we have studied the transient evolution of
the probability distribution of the polarization dispersion
vector using a realistic model of the fiber birefringence.
First, we have shown analytically that when the fiber cor-
relation length is of the same order or larger than the
beat length, the DGD distribution becomes Maxwellian at
large distances. Second, we have simulated numerically
the Fokker—Planck equation for the probability function
of the polarization dispersion vector and found that, for
all practical fiber parameters, it becomes Maxwellian
within a couple of kilometers, except in the distribution’s
tails where the DGD values are large. The tail of the
DGD probability distribution also becomes Maxwellian,
but much more slowly. Lastly, we have shown that the
probability distribution for the polarization dispersion
vector depends upon the angle between it and the local bi-
refringence vector on the Poincaré sphere, showing that
the amount of DGD remains correlated with the orienta-
tion of the local birefringence vector over arbitrarily long
distances.

Generally speaking, the transient evolution of the type
observed here is to be expected because linear fiber bire-
fringence does not produce isotropic mixing on the Poin-
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caré sphere.> Here we have demonstrated this effect us-

ing the first model of Wai and Menyuk,® where the
magnitude of the birefringence is constant but its orien-
tation varies randomly. In practice, the second model of
Wai and Menyuk, where both the orientation and magni-
tude of the birefringence are randomly distributed, is a
more appropriate description of the behavior of optical
fibers.'> Because the analysis of this second model is sig-
nificantly more complicated, it has not been performed
here. The same basic picture is still expected to hold for
the second model, but the numerical factors are not likely
to be precisely the same.
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