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Analysis of four-wave mixing between pulses in high-data-rate
quasi-linear subchannel-multiplexed systems
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We study four-wave mixing between pulses in two subchannels of a quasi-linear 40-Gbit�s subchannel-
multiplexed system. For a pseudorandom bit string there are resonances in the mean of the ghost pulse
energy and in the jitter of the energy in the marks as functions of the subchannel frequency spacing.
However, away from these resonances the effect of four-wave mixing decreases as the subchannel spacing
increases, permitting propagation over longer distances. © 2002 Optical Society of America
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Intrachannel four-wave mixing has been identified as
the major nonlinear effect that limits the propagation
distance in long-haul quasi-linear f iber-optic commu-
nication systems operating at data rates of 40 Gbits�s
and above.1 In these systems four-wave mixing
transfers energy from triples of pump pulses into the
bit slots of the spaces, generating ghost pulses, and
into the bit slots of the marks, inducing jitter in the
energy of the marks. Studies have shown that intra-
channel four-wave mixing can be reduced by use of
appropriate dispersion precompensation and Raman
amplification.2 –4 In this Letter we study four-wave
mixing between pulses in two closely spaced frequency
subchannels of a high-data-rate quasi-linear system.
Our main goal is to analyze four-wave mixing in a sub-
channel-multiplexed system in which each 40-Gbit�s
wavelength-division multiplexing channel is replaced
with two 20-Gbit�s subchannels. We note that these
subchannels are not separate channels, which would
require them to be separately demultiplexed and
detected. Instead, at the end of the transmission the
pulses in the two subchannels must not overlap in
the time domain. We show that four-wave mixing
can be reduced by use of two subchannels for each
wavelength-division multiplexing channel, provided
that one chooses the subchannel spacing to avoid
resonances between the nonlinear four-wave mixing
perturbations as a result of different triples of pump
pulses. This method relies on trading off decreased
spectral efficiency for increased propagation distance.

We study the subchannel multiplexing method
by use of noise-free simulations of a single-channel
40-Gbit�s dispersion-managed system with D1 and
D2 fiber. We compute the mean energy of the ghost
pulses in the spaces and the jitter in the marks,
which equals the standard deviation of the energy
in the marks, in the optical domain as functions of
the frequency spacing, DV, and the relative phase
difference between the two subchannels. We find
that there are strong resonances in the mean ghost
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energy and the jitter in the marks as functions of the
subchannel spacing and that at the resonant frequency
spacings the ghost energy and jitter vary significantly
as the relative phase between the two subchannels
is varied. We also present an analytical formula for
the nonlinear perturbation resulting from three pump
pulses with different central times and frequencies.
We apply this formula to explain the physical origin
of the resonance phenomenon and to obtain equations
describing the nonresonant dependence of the mean
ghost energy and the jitter in the marks on the
subchannel frequency spacing.

We use a standard perturbation analysis to
represent quasi-linear solutions of the nonlinear
Schrödinger equation in the form u 1 q, where u
is a solution of the linear dispersive equation and
q represents the perturbation resulting from non-
linearity.2,5 In this approximation the perturbation
q satisfies the forced linear dispersive equation
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1 iG�z�q � 2g�z�F �u� , (1)

where z is propagation distance, t is retarded time,
b00�z� is the group-velocity dispersion, G�z� describes
the fiber attenuation, g�z� is the nonlinear coeff icient,
and F �u� � juj2u is the forcing function. Suppose that
um, un, and ul are three pump pulses that are centered
at times t � mT , t � nT , and t � lT , where T is the
bit period, and whose relative central frequencies are
Vm, Vn, and Vl, respectively. Suppose that these
pulses are Gaussians that are initially of the form
uk�z � 0, t� � P 1�2

0 exp�2�t 2 kT �2�2t2
0 �exp�22piVkt�,

where P0 is the peak power and the pulse width is
tFWHM � 2

p
ln 2t0. Let t� � t�t0, T� � T�t0, Vk,� �

Vkt0, Tk,� � kT� 2 iVk,�, and B��z� � B�z��t0
2,

where B�z� �
Rz
0 b00�s�ds is the accumulated disper-

sion. Also, let G�z� be the gain and loss function,
where G�0� � 1. Then, at a distance L for which
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B��z� � 0 and G�L� � 1, the formula for the nonlinear
perturbation qm, n, l that is due to the forcing function
Fm,n, l � umunul is

qm,n, l�t� � iP 3�2
0 exp�2ifm,n, l�
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Equation (2) is a simple extension of the formula
in the single-channel case.2 Numerical simulation
shows that in the case of four-wave mixing qm,n, l�t� is
centered at the phase-matching time t � �m 1 n 2 l�T
and is almost Gaussian in shape.

We now focus on the case of subchannel multiplexing.
The subchannel-multiplexed signal is obtained by re-
placing each wavelength-division multiplexing chan-
nel with a pair of subchannels that are created by
shifting of the central frequencies of the pulses in the
even-numbered bit slots by 1DV�2 and those in the
odd bit slots by 2DV�2. For a 40-Gbit�s signal this
procedure produces two 20-Gbit�s signals whose pulse
widths are appropriate for a 40-Gbit�s signal and that
are spaced DV apart in frequency with a time offset
of half a 20-Gbit�s time slot. At the receiver the two
subchannels are treated as though they were a single
40-Gbit�s channel. To ensure that at the end of the
transmission the pulses in the two subchannels do not
overlap in the time domain, we assume that the total
accumulated dispersion and dispersion slope are zero.

To analyze the method we performed noiseless,
single-channel simulations on a 40-Gbit�s disper-
sion-managed system with a dispersion map of
length L � 48 km. The dispersion map consisted
of D1 f iber of length 2L�3, followed by D2 f iber of
length L�3 and an amplif ier. The D1 fiber had a
dispersion of D1 � 20 ps�nm km and a dispersion
slope of 0.06 ps�nm2 km at 1550 nm. The average
dispersion and dispersion slope of the map were zero.
For the D1 and D2 fibers, the effective areas were
110 mm2 and 30 mm2, respectively, and the losses
were 0.19 dB�km and 0.25 dB�km, respectively. The
nonlinear Kerr coeff icient was 2.6 3 10220 m2�W.
The input 40-Gbit�s return-to-zero signal consisted
of Gaussian-shaped pulses with a carrier frequency
of 1550 nm, tFWHM � 5 ps, and P0 � 4 mW. Since
intrachannel four-wave mixing is reduced by use of an
accumulated dispersion function that is approximately
symmetric about the zero dispersion axis,4 we used
linear dispersion precompensation of 2D1L�3 and
linear postcompensation of 1D1L�3.

To examine how the ghost pulse energy in the spaces
and the jitter in the marks depend on the subchannel
spacing we performed simulations in which the spac-
ing between the two subchannels was increased from
0 to 200 GHz in 1-GHz increments. Since the ghost
energy grows quadraticaly and the jitter in the marks
grows linearly with the number of map periods,5 it
was sufficient to use a single map period. If all three
pump pulses belong to the same subchannel we call
qm,n, l an intrasubchannel perturbation; otherwise,
we call it an intersubchannel perturbation. First,
we consider the ghost pulse that is due to the bit
pattern 1 1 0 1, where the ghost is centered at time
t � 62.5 ps in the third bit slot. This ghost pulse is
the sum of three intersubchannel perturbations. In
Fig. 1 we plot the relative ghost pulse energy versus
the subchannel spacing in gigahertz. The thick solid
curve is the energy of the total ghost pulse computed
with Eq. (2). The circles show the same total energy
computed with the nonlinear Schrödinger equation
with DV increments of 20 GHz, where the bit pattern
was 1 1 010 0 . . . and the time window was 25,600 ps.
The thin solid curve is the sum of the energies of the
three intersubchannel perturbations, and all ghost
energies in the f igure are given relative to the value
of this sum when DV � 0. The sum of the energies
is well approximated by the dashed curve given by
the formula Einter�DV� � Einter�0�exp�22/3 �2pDVt0�2�.
This approximation of the energy of an intersub-
channel perturbation is obtained from Eq. (2) under
the assumption that the integral I �t� is indepen-
dent of the subchannel spacing. Consequently,
Einter�DV��Einter�0� depends only on the subchan-
nel spacing relative to the spectral bandwidth of a
single-channel 40-Gbit�s signal and is independent of
the dispersion and power maps. The reason for the
large oscillations in the total energy is that the three
perturbations that contribute to the ghost pulse move
in and out of phase with each other as DV increases.

Next, we performed simulations based on the non-
linear Schrödinger equation, using a pseudorandom

Fig. 1. Ghost pulse energy for the bit pattern 1 1 0 1.
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Fig. 2. Mean ghost energy for a pseudorandom bit
sequence.

Fig. 3. Jitter in the marks for a pseudorandom bit
sequence.

bit string of length 210. We computed the mean ghost
energy in the spaces as a function of both the subchan-
nel frequency spacing and the relative phase difference
between the two subchannels. In Fig. 2, the two thick
solid curves are the minimum and maximum of this
ghost energy as functions of DV, where the optima
are taken with respect to the phase difference between
the two subchannels. All ghost energies in Fig. 2
are given relative to the phase-averaged mean ghost
energy when DV � 0. There are strong resonances
in the ghost energy when DV � 10, 30, . . . , 190 GHz,
and at these resonances there is a large variation
in the ghost energy as a function of the phase dif-
ference between the subchannels. The behavior of
the ghost energy away from the resonances is well
approximated by the dashed curve given by the for-
mula E�DV��E�0� � R 1 �1 2 R�exp�22/3 �2pDVt0�2�,
where R is the ratio of the mean ghost energy for a
signal consisting of only one of the 20-Gbit�s subchan-
nels relative to the phase-averaged mean ghost energy
at DV � 0. This formula was derived under the
assumption that, for all subsets of perturbations with
approximately the same energy, the phases of these
perturbations are uniformly distributed. The thin
solid curve is the nonresonant energy, E�DV�, for a
dispersion map of length L � 96 km, normalized with
respect to the 48-km map. The circle and diamond
are the mean ghost energies for the 48-km and 96-km
maps, respectively, at DV � 0 when there is no phase
difference between the two subchannels. The reso-
nances are �50% weaker for the 96-km map than for
the 48-km map and occur at different DV. In Fig. 3
we show analogous results for the jitter in the energy
of the marks.

To investigate the physical origin of the resonances
we compared the energies of all nonlinear perturba-
tions that could potentially contribute to a given ghost
pulse by performing simulations for the isolated space
in the bit sequence . . . 1 1 1 011 1 . . ., using Eq. (2).
For the 48-km map the two largest contributions to the
ghost energy are q61,61,62, which have energies that
are 26% of the phase-averaged mean ghost energy in
Fig. 2. By contrast, for the 96-km map, the 18 largest
contributions each have energies that are 3–5% of
the phase-averaged energy. Moreover, for both maps
these large perturbations are all intersubchannel
perturbations whose energies decrease smoothly as
DV increases. Consequently, we conclude that the
strong resonances for the 48-km map occur at those
DV for which the largest two possible perturbations
q61,61,62 in each space are in phase with each other,
whereas the resonances are weaker for the 96-km map
because of the greater amount of the pulse overlap.

In conclusion, we have studied four-wave mixing in a
quasi-linear 40-Gbit�s subchannel-multiplexed system
and analyzed the dependence of the mean ghost pulse
energy and the jitter in the marks on the frequency
spacing between the two subchannels. We found that
it is possible to increase the propagation distance by
use of subchannel multiplexing as long as special reso-
nance frequencies are avoided.
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