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Polarization-state evolution in recirculating loops with
polarization-dependent loss
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We analyze the evolution of the polarization state of a signal in a recirculating loop with polarization-
dependent loss. We show that the polarization-state evolution in experiments is in qualitative agreement
with our analysis, and we discuss the relationship between the polarization-state evolution and the Q fac-
tor. © 2002 Optical Society of America
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Fiber recirculating loops have been extensively used
as a relatively inexpensive way to study the accumu-
lation of chromatic dispersion and nonlinearity and
their interaction with other physical phenomena in
long-haul transmission systems. Whereas loops have
often been successful predictors of the behavior of
straight-line systems with comparable parameters, it
has been known for some time that, because of the
periodicity of the system, the behavior of polarization
phenomena in a loop can be quite different from that
in a comparable straight line system. For example,
it has been demonstrated that, when polarization
controllers in a loop are properly set, polarization-
dependent loss (PDL) can lead to the polarization of
noise and to the elimination of noise that is orthogonal
to the signal.1 To break the periodicity, loop-syn-
chronous polarization scrambling has been used
to emulate more closely the polarization behavior of
straight-line systems.2 So far, most research reported
in the literature has focused on the difference in per-
formance between recirculating loops and straight-line
systems. In this Letter we explain this difference
by performing an analysis of the evolution of the
polarization state of a signal in loops and comparing
the results with those of simulations and experiments.

We have experimentally characterized the polariza-
tion behavior of our recirculating loop, which consists
of 100 km of dispersion-shifted f iber compensated by
7 km of standard single-mode fiber, in which we prop-
agate a 10-Gbit�s single-channel dispersion-managed
soliton signal.3,4 To understand the evolution of the
polarization state of the signal and its effect on perfor-
mance, we vary three polarization controllers—one at
the input and two in the loop.1 Once the three polar-
ization controllers have been set to optimize the per-
formance of the system, we systematically vary the
orientation of one of the in-loop polarization controllers
and collect values of the Q factor at 5000 km. Al-
though the specific shape of the resultant Q distribu-
tion depends on the particular type of f iber used, in
general we find that here the shape is more spread
out and includes higher values than is the case in
straight-line systems with comparable parameters and
that it is often double-humped.1 We have also repro-
duced this behavior in simulations. In both simula-
tions and experiments we measured the polarization
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state once per round trip of the loop. For trials from
the upper end of the Q distribution, the polarization
state on the Poincaré sphere spirals inward to a point
and converges quickly. Trials from the lower end of
the distribution exhibit outward spirals that can con-
verge on the opposite side of the Poincaré sphere. Tri-
als from the central portion of the distribution show
nearly circular evolution on the sphere, which con-
verges slowly if at all. Each type of behavior is ex-
plained in the analysis presented here.

In our system signal degradation comes principally
from noise buildup and not from pulse distortion due to
polarization mode dispersion (PMD), because the PMD
is very small. Therefore, we model our system by us-
ing a polarization rotation followed by a PDL element.

Because a recirculating loop system is inherently pe-
riodic, we may write its Jones transfer matrix after n
round trips as TTT � MMMloop

n, where MMMloop is the general
Jones matrix for one round trip of the loop, including
polarization rotation and PDL. This 2 3 2 Jones ma-
trix has a pair of complex eigenvectors u6 and corre-
sponding eigenvalues l6. An eigenvector of MMMloop is
also an eigenvector of TTT, and, if l is an eigenvalue of
MMMloop, then ln is an eigenvalue of TTT. It follows that, if
our input is an arbitrary f ield of the form

uin � c1u1 1 c2u2 , (1)

then the output field vector is

uout � TTTuin � c1l1
nu1 1 c2l2

nu2. (2)

If we let l6 � jl6jexp�if6� and c6 � jc6jexp�ic6�,
then the corresponding output Stokes vector is sout �
�uout

ys3uout,uout
ys1uout,2uout

ys2uout�T , yielding

sout � jc1j
2jl1j

2ns1 1 jc2j
2jl2j

2ns2

12jc1j jc2j �jl1j jl2j�nRe�scexp�2i�nDf 1 Dc��� , (3)

where s6 � �u6
ys3u6, u6

ys1u6,2u6
ys2u6�T , sc �

�u1
ys3u2, u6

ys1u2,2u1
ys2u2�T , Df � f1 2 f2,

and Dc � c1 2 c2. In the above expressions, sk rep-
resent the standard Pauli spin matrices. In Eq. (3),
if the eigenvalues have different magnitudes, then
© 2002 Optical Society of America
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one obtains spiral motion. The spiral centers are
given by one of the polarization eigenstates, s 6, and
the rotation is described by the third term, where the
rotation angle of the spiral that is due to one round
trip of the recirculating loop is given by the phase
difference of the eigenvalues, Df. The ratio of the
magnitudes of the eigenvalues gives the relative decay
rate of each of the coeff icients, thus yielding the rate
of convergence to a spiral center.

To understand the spiral behavior in a loop with PDL
we consider a transfer matrix of the form

MMMloop � MMMPDLMMMrot, (4)

where MMMrot is a unitary matrix representing a fixed ro-
tation on the Poincaré sphere and MMMPDL represents the
effect of PDL in one round trip of the loop. Inasmuch
as an arbitrary rotation on the Poincaré sphere can be
expressed as a rotation through an angle 2g about an
axis given by a unit vector ŝrot � �x, y, z�T , matrix MMMrot
can be expressed in the form

MMMrot �

"
cos g 1 ix sin g 2�z 2 iy�sin g

�z 1 iy�sin g cos g 2 ix sin g

#
.

(5)

The effect of PDL is modeled by the Jones matrix

MMMPDL �

∑
1 0
0 1 2 e

∏
. (6)

where the strength of the PDL is given by a small non-
negative parameter e that is less than 1. Note that,
in this notation, the low-loss axis of the PDL is given
by ŝPDL � �1, 0, 0�T in Stokes space.

We exploit the fact that e is small by using
standard perturbation methods to expand our eigen-
vector in powers of e, solving for corrections at
each order.5 We begin by seeking eigenvalues and
eigenvectors that satisfy �MMMloop 2 lIII�u � 0, where III
is the 2 3 2 identity matrix, and expand l and u
in power series in e as l6 � l0 1 el1 1 O�e2� and
u6 � u0 1 eu1 1 O�e2�. From these expressions we
can compute the Stokes eigenvector in powers of e

as well, obtaining s6 � s6
�0� 1 es6

�1� 1 O�e2�. The
O�1� problem �MMMrot 2 l0I�u0 � 0, which we obtain
by setting e � 0, corresponds to a rotation when the
effect of PDL is neglected. The leading-order eigen-
values are l0 � exp�6ig�, and the leading-order eigen-
vectors are

u0 � �2 7 2x�21�2

"
z 2 iy
i�x 7 1�

#
, (7)

where we have normalized these eigenvectors such that
they have unit length. It is straightforward then to
show that these eigenvectors in Jones space yield the
corresponding Stokes vectors s6

�0� � 6ŝrot, as expected
in the O�1� problem.

The O�e� eigenvalue correction is given by
l1 � 21/2 �1 7 x�exp�6ig�. Similarly, the O�e�
correction to the eigenvector satisfies the generalized
eigenvector equation

�MMMrot 2 l0III�u1 �

Ω∑
0 0
0 1

∏
MMMrot 1 l1III

æ
u0, (8)

which yields

u1 � iku0 1 u1
0

� iku0 1
csc g

2
p
2

exp�6ig�
p
1 7 x

µ
0
1

∂
, (9)

where k is a real constant whose value is not deter-
mined until the O�e2� level. The O�e� correction to the
eigenvector in Stokes space is then given by

s6
�1� � 2 Re

0
B@ u0

ys3u1
0

u0
ys1u1

0

2u0
ys2u1

0

1
CA �

1
2

0
B@ 1 7 x

z cot g 7 y
2y cot g 6 z

1
CA .

(10)

To O�e�, we may concisely write the Stokes eigenvec-
tors as

s6 � 6 ŝrot 1 1/2 e�ŝPDL 7 ŝrot

1 �ŝrot 3 ŝPDL�cot g� 1 O�e2� . (11)

Note that, because of the O�e� corrections, the eigen-
states in Stokes space are not antiparallel in the pres-
ence of PDL, unlike the principal states for PMD.6

To obtain the explicit form of the output Stokes vec-
tor in the loop model we still need expressions for jl6j
and sc. We use the asymptotic expansion; the coeffi-
cients in Eq. (3) are given by A6 � jl6j

2 � 1 2 e�1 7

x� 1 O�e2� and B � jl1j jl2j � 1 2 e 1 O�e2�. As
A6 and B are less than 1, A6

n and Bn decay as n !
`. The slowest-decaying term of the three terms in
Eq. (3) is the dominant term, which determines the at-
tracting eigenstate. The relative decay rate of each
of the terms in Eq. (3) is determined by the inequali-
ties A1 _ B _ A2, which hold when x _ 0. Thus, if
the low-loss axis of the PDL ŝPDL is in the same hemi-
sphere as rotation axis ŝrot, then the s1 eigenstate is
the attracting eigenstate. The converse is also true.
We conclude that, if x fi 0, we have spiral motion to-
ward one of the eigenstates but, if x � 0, all terms
remain comparable and we observe nearly circular be-
havior on the Poincaré sphere. From the expressions
for l0 and l1 it follows that

exp�if6� � l6�jl6j � exp�6ig� 1 O�e2� , (12)

so that, to O�e2�, Df � 2g. We also obtain

sc � �it̂1 2 t̂2� �1 2 �e�2 � �1 1 i cot g�� 1 O�e2� , (13)

where t̂1 � �ŝrot 3 ŝPDL��jŝrot 3 ŝPDLj and
t̂2 � �ŝrot 3 �ŝrot 3 ŝPDL���jŝrot 3 ŝPDLj. There-
fore the output Stokes vector is
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Fig. 1. Experimentally measured evolution of the polarization state on the Poincaré sphere, showing spiral behavior
that corresponds to (a) a high Q value with a spiral inward, (b) a low Q value with an outgoing spiral, and
(c) a medium Q value with a nearly circular trajectory around the sphere. The gray scale denotes transmission distance,
where dark to light indicates increasing propagation distance.
sout � A1
njc1j

2s1 1 A2
njc2j

2s2

1 2Bnjc1j jc2j ���t̂1 sin zn 2 t̂2 cos zn

1 �e�2� �t̂1�cot g cos zn 2 sin zn�

1 t̂2�cos zn 1 cot g sin zn����� 1 O�e2� , (14)

where zn � 2ng 1 Dc.
Neglecting the e contributions in Eq. (14), we note

that the Bn term contains sinusoidal pieces that corre-
spond to the spiral or circular motion on the Poincaré
sphere. We compare the spiral behavior from the ex-
perimental results shown in Fig. 1 with the analytical
result in Eq. (14). In Eq. (14) we have an inward spi-
ral evolution if A6 . B . A7 and the input polariza-
tion state is closer to the attracting s6 eigenstates, i.e.,
jc6j . jc7j, so the signal’s polarization state remains
on the same hemisphere as the low-loss axis of the
PDL throughout transmission, corresponding to high
Q. This situation is illustrated in Fig. 1(a), in which
the center of the spiral is the attracting eigenstate.
Conversely, we have an outward spiral if A6 . B . A7

and the input polarization state is close to the repelling
s7 eigenstate, i.e., jc6j , jc7j. In this case the signal’s
polarization state can remain for a long time on the
same hemisphere as the high-loss axis of the PDL, par-
ticularly if jc6j,, jc7j, corresponding to a low Q. This
situation corresponds to Fig. 1(b), in which the cen-
ter of the spiral is the repelling eigenstate. Finally, if
A1 	 B 	 A2, then there is a slow convergence because
no single term dominates. In this case the circle’s cen-
ter is orthogonal to the low-loss axis of the PDL, and
the signal passes alternately through the high-loss and
low-loss axes of the PDL, corresponding to a medium
Q. This situation corresponds to the polarization evo-
lution shown in Fig. 1(c), in which there seems to be no
attracting or repelling state.

The experimental and theoretical results show
that PDL plays a major role in the loop performance
and polarization-state evolution. In recirculating
loop systems, the PDL will unrealistically improve
the performance when the polarization evolution is
optimized by use of a polarization controller. The
noise tends to polarize in the polarization state of the
signal, and the noise that is orthogonal to the signal
is reduced.1 We have characterized the behavior of
the polarization state as a spiral evolution on the
Poincaré sphere and have associated different types of
spiral with different system performance.
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