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Polarization mode dispersion of spun fibers with randomly
varying birefringence
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We show analytically how periodic spinning affects the polarization mode dispersion of a fiber in three different
practical regimes that are determined by the values of three length scales: the beat length, the birefringence
correlation length, and the spin period. We determine in which limits the spin is effective in reducing the
mean differential group delay. © 2003 Optical Society of America
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Polarization mode dispersion (PMD) can be effectively
reduced by spinning of a f iber during the drawing pro-
cess. Several papers that focused on this topic were
published recently.1 – 3

The PMD of randomly birefringent unspun fibers is
characterized by two length scales: the beat length,
LB , that is inversely proportional to the mean bire-
fringence strength, and the birefringence correlation
length, LF , that describes the length scale over which
an ensemble of fibers with randomly varying birefrin-
gence becomes uncorrelated. When a fiber is spun pe-
riodically, two other quantities come into play: the
spin period, p, and the spin amplitude, A0.

A spin function A�z� corresponds to applying a
torque while the fiber is still at a temperature close
to the silica melting point. Thus a spin does not
induce torsional stresses, and its effect is to rotate
the orientation of fiber birefringence. Intuitively, if
one periodically exchanges the fast and slow axes, it
should be possible to cancel out the differential group
delay (DGD), at least when the beat length is long
compared with the spin period such that the polariza-
tion state of the light does not evolve significantly in
one spin period.

The authors of Refs. 1–3 focused mainly on the spin
effects in the short-period limit, in which the spin pe-
riod is much shorter than the beat length. Only in
Ref. 3 was random birefringence considered, and it was
modeled with a fixed strength and varying orientation,
according to one of the two physical models proposed by
Wai and Menyuk.4

However, it is diff icult in general to predict the beat
length and the correlation length of a fiber. Moreover,
measurements performed to date5 show that both LB
and LF can vary over a wide range of values, from ap-
proximately 1 m to tens of meters, depending on the
fiber type and whether it is wound on a bobbin or
deployed in a cable. Thus it is of interest to char-
acterize the behavior of spun fibers when the short-
period assumption is not satisfied and to understand
in which regimes the spin is effective in reducing the
mean DGD.

In this Letter we consider three asymptotic limits.
We show by means of perturbation techniques6 how the
introduction of a periodic spin inf luences the PMD of
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a fiber in the different regimes when one of the three
length scales is much shorter than the others.

We begin by considering a model of birefringence4 in
which the magnitude of the birefringence is constant.
If one considers a rotating reference frame that com-
pensates for the rotations that are due to both the
intrinsic birefringence and the spin, the local birefrin-
gence vector is b � �b, 0,22a�z� 1 sh�z��T , where b �
2p�LB is the f ixed birefringence strength, a�z� is the
z derivative of spin function A�z�, h�z� is a white-noise
process that drives the random variation of the
birefringence axes, and 2s2 � 1�LF . Exploiting the
theory of stochastic differential equations,7 we can
determine the evolution of the mean-square DGD,
which reads as3

d�Dt2�z��
dz

� 2bv�V1�z�� , (1)

where bv is the frequency derivative of b and V1�z�
represents the first component of V�z�, the polariza-
tion dispersion vector. Similarly, we find the follow-
ing system of differential equations3:

d�V1�
dz

� 22s2�V1� 1 2a�z� �V2� 1 bv ,

d�V2�
dz

� 22a�z� �V1� 2 2s2�V2� 2 b�V3� ,

d�V3�
dz

� b�V2� . (2)

In general, it is possible to solve Eqs. (2) only numer-
ically; however, we still analytically calculate their
asymptotic solution in different limits.

Because of the relative scaling of the quantities of
interest, we introduce a useful change of notation. If
we consider a spin function with period p and ampli-
tude A0, then spin rate a�z� is proportional to the ratio
2pA0�p, so we write a�z� � A0nq�z�, where jq�z�j is of
order 1, and n � 2p�p, is the spatial frequency. Thus,
in what follows, we calculate the effect of spinning on
the mean DGD, depending on the relative magnitudes
of A0n, 2s2, and b. We use a straightforward pertur-
bation expansion.6 Although straightforward expan-
sions frequently can lead to a nonuniform asymptotic
© 2003 Optical Society of America
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expansion,6 we have verif ied that all the asymptotic
expansions reported in this Letter for the mean DGD
are uniform.

In the f irst case that we study, we explore the limit
when the spin period is much shorter than the other
two length scales, i.e., A0n .. 2s2 and A0n .. b. Un-
der these conditions we expand the solution of Eqs. (2)
by assuming that all terms that do not contain a�z�
drop out at lowest order, except for the inhomogeneous
term, which is required for nonzero values of Vi to
be obtained. Then the averaging brackets may be
removed, and the resultant equations may be inte-
grated by the method of variation of parameters along
with the initial conditions Vj � 0 for j � 1, 2, 3. By
substituting

V1�z� � k1�z�sin�2A�z�� 1 k2�z�cos�2A�z�� ,

V2�z� � 2k2�z�sin�2A�z�� 1 k1�z�cos�2A�z�� , (3)

we find that

k1 � bv

Z z

0
sin�2A�z0��dz0 � bvS ,

k2 � bv

Z z

0
cos�2A�z0��dz0 � bvC , (4)

from which we conclude that

Dt2 � bv
2�C2 1 S2� � bv

2
Ç Z z

0
exp�i2A�z0��dz0

Ç2
. (5)

The agreement of Dt2 predicted by Eq. (5) with Dt2

reported in Ref. 2 and also with Dt2 that might be cal-
culated following the procedure explained in Ref. 1 con-
firms the validity of the procedure that we followed.
Additionally, Eq. (5) is obtained in a more straightfor-
ward and general way.

Next, we consider the case when LF is shorter than
p��2pA0�, such that, in terms of spatial frequencies,
2s2 ..A0n. To apply the perturbation technique it is
necessary also to fix the relationship between A0n and
b. The expansion that we perform holds in both cases,
A0n 	 b and A0n .. b (or p�A0 	 LB and p�A0 ,, LB ),
that are of practical interest because the spinning is ex-
pected to be more effective when its period is shorter
than the beat length. So, considering a spin ampli-
tude of a few radians, this limit may be written as
LF ,, �p, LB �. Under these conditions, we obtain the
leading-order solution by solving the system

d�V1��0�

dz
� 22s2�V1��0� 1 bv ,

d�V2��0�

dz
� 22s2�V2��0�,

d�V3��0�

dz
� 0 . (6)

The solution of Eqs. (6) is that of the unspun
fiber: �V1��0� � bv�2s2�1 2 exp�22s2z��, �V2��0� �
�V3��0� � 0. Then the f irst-order correction is the
solution of the system
d�V1��1�

dz
� 22s2�V1��1� 1 2a�z� �V2��0�,

d�V2��1�

dz
� 22s2�V2��1� 2 2a�z� �V1��0� 2 b�V3��0�,

d�V3��1�

dz
� b�V2��0�. (7)

Consequently, at this order, there is no correction to
the f irst and third components of the average polar-
ization dispersion vector. While solving the second
of Eqs. (7) for �V2��1�, we introduce the spin function
A�z� � A0 sin�nz� and obtain

�V2��1� � 2
A0bw

s2�4s4 1 n2�

2s2n cos�nz� 1 n2 sin�nz�

2exp�22s2z� �2s2n 1 �4s4 1 n2�sin�nz��� . (8)

The equation for the second-order correction has the
same form as Eqs. (7). After substitution of Eq. (8)
into the equation for �V1��2�, it follows that

�V1��2� 	 2
A0

2n2bw

s2�4s4 1 n2� �s4 1 n2�

s4�1 1 cos�2nz��

1n2 1 s2n sin�2nz� 2 �2s4 1 n2�exp�22s2z�� , (9)

which is simplif ied under the condition that z ..LF .
We also f ind that �V2��2� � �V3��2� � 0. Then the sum
�V1��0� 1 �V1��2� can be integrated over a distance to
yield the mean-square DGD, according to Eq. (1), yield-
ing the following simple expression:

�Dt2� 	 �Dtun
2�

µ
1 2

2A0
2n2

4s4 1 n2

∂
, (10)

where �Dtun
2� is the mean-square DGD of the corre-

sponding unspun fiber. Relation (10) is always posi-
tive in the limit 2s2 ..A0n, in which the derivation is
carried out. To better estimate the limits of validity
of relation (10) we compared it to the complete nu-
merical integration of Eqs. (2), and we calculated the
relative error of the mean DGD. Figure 1 shows
the relative error, expressed in percent, as a function
of the spin amplitude for several values of beat length,
spin period, and correlation length. Note that the
error is bigger when p 	 LB (dashed–dotted curve), in
which case the error is less than 5% if p��2pA0� $ 6LF .
Conversely, when p # LB we find that p��2pA0� does
not have to be as large as 6LF for the error to be less
than 5%.

Relation (10) yields another important piece of in-
formation. In this regime the DGD of a spun fiber
is not strongly affected by the spinning. For example,
whenp��2p�A0 � 6LF with A0 � 1, we find that �Dt� 	
0.9�Dtun�.

Finally, we explore the limit of large birefringence,
i.e., b ..A0n and b 	 2s2, or, in terms of length scales
p�A0 ..LB and LB 	 LF . From a physical point of
view, a large birefringence corresponds to a rapid rota-
tion on the Poincaré sphere. This effect can be treated
more easily if the following transformation is made8:
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Fig. 1. Evolution of the relative error of the mean-square
DGD made with relation (10) instead of the complete so-
lution of Eqs. (2) as a function of spin amplitude, in the
limit of short correlation length. Solid curve, LB � 24 m,
p � 18 m, and LF � 0.5 m. Dashed curve, LB � 20 m,
p � 15 m, and LF � 0.5 m. Dashed–dotted curve, LB �
15 m, p � 14 m, and LF � 0.5 m.

�y � �

2
41 0 0
0 cos�bz� sin�bz�
0 2sin�bz� cos�bz�

3
5�V� . (11)

Because Eq. (11) is an orthogonal transformation, it
does not affect Eq. (1); i.e., d�Dt2��dz � 2bv�y1�. How-
ever Eqs. (2) are transformed into

d�y1�
dz

� bv 22s2�y1�12a�z� ��y2�cos�bz�2 �y3�sin�bz�� ,

d�y2�
dz

� 2 s2�y2� 2 2a�z� �y1�cos�bz�

2 s2��y2�cos�2bz� 1 �y3�sin�2bz�� ,

d�y3�
dz

� 2 s2�y3� 1 2a�z� �y1�sin�bz�

1 s2��y3�cos�2bz� 1 �y2�sin�2bz�� . (12)

The sinusoidal terms in Eqs. (12) oscillate rapidly, and
at lowest order only their average matters.8 They
have zero mean value, and, after introducing the
initial condition Vj � 0 for j � 1, 2, 3, we ob-
tain again the solution for the unspun fiber4:
�y1��0� � bv�2s2�1 2 exp�22s2z��, �y2��0� � �y3��0� � 0.
Then the equations for the f irst-order correction have
the form

d�y1��1�

dz
� 22s2�y1��1�,

d�y2��1�

dz
� 2s2�y2��1� 2 2a�z� �y1��0�cos�bz� ,

d�y3��1�

dz
� 2s2�y3��1� 1 2a�z� �y1��0�sin�bz� . (13)

In this case there is also no correction to the first com-
ponent of the average polarization dispersion vector,
whereas we have to solve two similar differential equa-
tions for �y2��1� and �y3��1�.

The complete solution for �y2��1� and �y3��1� is quite
complex and is not presented here. However, the sec-
ond-order correction for �y1� is

d�y1��2�

dz
� 2 2s2�y1��2� 1 2a�z� ��y2��1�cos�bz�

2 �y3��1�sin�bz�� . (14)

Equation (14) can be solved under the assumption that
A�z� � A0 sin�nz�, and neglecting terms that tend to
zero for z ..LF , we obtain

�y1��2� 	 2
2A0

2n2bv

2s2b2 �1 1 cos�2nz� 2 2 exp�22s2z�� .

(15)

The sum �y1��0� 1 �y1��2� can then be integrated
over distance to produce an approximate ex-
pression for the mean-square DGD: �Dt2� 	
�Dtun

2� �1 2 �2A0
2n2��b2�. This result demonstrates

that the spin does not help in reducing PMD when its
period is significantly longer than the beat length.

In conclusion, we have analytically calculated the
mean DGD of periodically spun, randomly birefringent
fibers in three limits of practical interest that depend
on the ratio among LB , LF , and spin period p. The
theoretical results are obtained in a general way and
are a proof that spinning is effective in reducing PMD
effects only if the spin rate is at least as fast as the
evolution of the intrinsic birefringence and random
perturbations.
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