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Abstract—in this paper, we study the effects of different ASE and a narrow-band filter [6], [7]. For simplicity, the chi-square
noise models on the performance of turbo code (TC) decoders. distributions are often approximated with Gaussian distributions
A soft-decoding algorithm, the Bahl, Cocke, Jelinek, and Raviv i, characterizing optical-fiber channels [2]—[5]. Moreover, most

(BCJR) decoding algorithm [1], is generally used in the TC de- - . .
coders. The BCJR algorithm is a maximuma posterioriprobability existing FEC codes are developed and evaluated with the addi-

(MAP) algorithm, and is very sensitive to the noise statistics. The tive white Gaussian noise (AWGN) assumption. Thus, the pre-
Gaussian approximation of the ASE noise is widely used in the vious applications and performance evaluations of FEC codes
study of optical-fiber communication systems [2]-{8], and there in gptical-fiber transmission systems are mostly based on the
exist standard TCs for additive white Gaussian noise (AWGN) Gaussian noise approximation or AWGN assumption with little

channels. We show that using a MAP decoding algorithm based ffortt ¢ del ofth tical-fiber ch |
on the Gaussian noise assumptions, however, may significantlye ortio use amore accurate model orthe optical-iber channeis.

degrade the TC decoder performance in an 0ptica|_ﬁber channel It haS been ShOWﬂ that the theoretical and Simulation reSUItS Of
with non-Gaussian ASE noise. To take full advantage of TC, the the RS code performance in [3], using BSC and AWGN assump-
accurate noise statistics in optical-fiber transmissions should be tions, agree well with the experimental measurements. How-

used in the MAP decoding algorithm. ever, RS codes or any other FEC codes using hard-decision al-
Index Terms—Amplified spontaneous emission noise, forward gebraic decoding are not sensitive to the exact noise statistics.
error correction, MAP decoding, optical-fiber communication. Because tha priori knowledge of the channel noise statistics

is not used in algebraic decoding, as long as the channel model
assumption gives a good estimate of the uncoded bit error rate
(BER), italso gives a good estimate of the algebraic block coded
URBO codes (TCs) based on soft-decision iterative dggR.
coding have been shown to be a very powerful of forward gy contrasta priori knowledge of the channel noise statistics
error correction (FEC) code achieving near-Shannon limit pgg- essential for soft-decision FEC codes that use probabilistic
formance [9]. As FEC codes have become a practical solutlondgcoding algorithms such as the BCJR algorithm (MAP proba-
improving system capacity in fiber communications, the appljjity). We show in this paper that the Gaussian approximation
cation of TC in fiber transmissions has begun to attract reseaggfynhe ASE noise distributions after passing through the pho-
interest [4], [3], [10]. _ todetector and filter or the AWGN assumption may significantly
A soft-decision decoding algorithm, the Bahl, Cocke, Jgfegrade the performance of TC in optical-fiber channels when
linek, and Raviv (BCJR) algorithm [1], is generally used in thgsed with the BCJIR decoding algorithm.
TC decoders. The BCJR algorithm is a maximarposteriori | the following section, we describe and compare three dif-
probability (MAP) algorithm and requires prior knowledge oferent channel models for the optical-fiber channels with domi-
the noise statistics in the communication channels and, hengging ASE noise. Section Il describes the modifications of the
is very sensitive to the accuracy of the noise statistics in thg jR algorithm according to the chi-square noise distribution.
channel model. _ _ Simulation results for the performance of TC decoders based on
In both undersea and terrestrial systems, the optical amp}e different channel models are shown and discussed in Sec-

fiers are critical components, and amplified spontaneous emign, |v. Finally, Section V concludes the paper.
sion (ASE) noise in the optical amplifiers is the major source of

nois_e _in optical-fiber channe!s. ASE nqise_ ha§ an asym.metric II. OPTICAL-FIBRER CHANNEL MODELS
statistical nature, and the chi-square distribution model is cur- L ) . )
rently a commonly used model of the ASE noise statistics jnASE noise in optical amplifiers is the major source of errors

the receiver after passing through a square law photodetedfbpPtical-fiber systems with a low signal-to-noise ratio (SNR).
Generally, the ASE noise leads to asymmetric distributions of

marks and spaces after passing through the receiver in the sense
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is widely used as a SNR measure in optical-fiber channels,

. — Chi-square
where I, Iy, o1, and oy represent means and variances of . .
. : 4 ~ - Asymmetric Gaussian
the marks and the spaces, respectively. In the following, we \ s AWGN

describe and compare three different channel models: the
chi-square, the asymmetric Gaussian, and the AWGN channel
models for ASE noise channels.

A. Chi-Square Channel Model

The pdf of the detected signalis a function of the energy
E of the transmitted optical pulse as well as the power spectral
density, Ny, of the ASE noise, as described in [6], [7]. The re-
ceived marks and spaces have different pdfs that are given by

Probability density function

[7] Received signal / (Q* = 6.8 dB)
1 /1 (M-1)/2 I+ F VIE Fig. 1. Probability density functions of the chi-square, asymmetric Gaussian,
pi(l) = Fo E eXp _To Inp—a| 2 N, and AWGN forM = 3, Q? = 6.8 dB, where(I; — I) is normalized to 1.
M1 (2:2) Thus, our work in this paper is based on the assumption that the
po(I) = 1 (I/No)” " exp(—1/No) (2.3) chi-square model is accurate.

- N (M —1)!
whereM = B,/B. is the number of modes per poIarizationB' Asymmetric Gaussian Channel Model
state in the received optical spectrum, and B. are the op-  For simplicity of analytical studies of the noise and the in-
tical bandwidth and the electrical bandwidth, respectively, of tisiticed error probability, Gaussian pdfs with the same means and
system at the detector, arfigh_; denotes th¢ M/ — 1)th modi- variances as the chi-square distributions are commonly used.
fied Bessel function of the first kind. The means and variancdfe Gaussian approximation is given by
of the received marks and spaces can be derived from the pdfs
givenin (2.2) and (2.3J; = MNy + E, 0} = MNE + 2E Ny,

2

Iy = M Ny, 02 = MNZ, respectively [7]. We can also obtain pi(I) = ! exp <_(I _211) ) (2.5)
0? = 2(I11y — 13)/M + o3 from the above formulae fof,, V2rot 203
o1, Iy, andog [7]. With these results and the definition &f 1 —(I = I,)?
in (2.1), we can evaluatd, Iy, o1, ando, as functions of the po(l) = = exp < 5 ) (2.6)

\/ 270 204
system parameteiB,, B., and@, as [11] 0

B B B Note that the detected signglas shown in [6] and [7], is a sum
I =204/ =2 +2Q% + =2, Iy== of 2M independent random variables. From the central limit
= B B B theorem, the Gaussian approximation can be a good model for

o [ Do 20, oo = B, (2.4) bothp, (T) andpo(T) for large M. However, for smallM/, as is
B, ' B, the case for DWDM systems, and at l6yy the Gaussian distri-
bution is not a good approximation of the chi-square distribution
s shown in Fig. 1. Because the marks and spaces have different
riances in this model, we call it the asymmetric Gaussian
nnel model to distinguish it from the AWGN channel model.

whereN is normalized to 1.

We see that the marks have a noncentral chi-square distris
tion, the spaces have a central chi-square distribution, and b8
are asymmetric pdfs witBM degrees of freedom [7]. Thus,
we call this model the chi-square channel model. We note that
this model does not take into account signal distortion due 6 AWGN Channel Model
optical-fiber transmission, and it assumes an ideal integrate and’he AWGN channel model is the most widely used channel
dump receiver. Itis possible to obtain a more accurate characteedel in error correction code analysis and development. In
ization of the noise distributions by using more accurate mode@8VGN channels, marks and spaces have Gaussian distributions
of the transmission and the receiver [12], [13]. However, numesith the same variance. This property can significantly simplify
ical methods must be used to generate the pdfs. By contrast,ttheelog likelihood ratio (LLR) calculations in the MAP or other
chi-square assumption yields a simple analytical form for trseft-decision decoding algorithms. In optical-fiber channels,
pdfs of the marks and the spaces and is a substantially betterfapwever, the computational simplification due to the AWGN
proximation to the actual noise statistics than is the often-usassumption for the noise diminishes the accuracy of the channel
Gaussian approximation. Thus, this model is sufficient to estainodel and, thus, degrades the decoder performance.
lish the deficiencies in the Gaussian approximation when usedro relate a given chi-square channel to an AWGN channel, we
in the turbo decoder, which is the main point of our paper. Moréfst calculate the bit error rate (BERF.y;, of the chi-square
over, it is a useful starting point for carrying out more sophighannel with optimal hard-decision detection. Then, we con-
ticated analyses based on the considerations of [12] and [18fuct an AWGN model with the same means and BER as that
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of the chi-square channel. Thus, the standard deviatigc
in the corresponding AWGN model is given by

VE
2erfc™! (2P.)

8]

OAWG = (2.7)

where E is the energy of the transmitted optical pulse and
erfc ! (x) is the inverse complementary error function.

Log likelihood ratio
o

-5, — Chi-square
D. Comparison of the Three Models - - Asymmetric Gaussian
As described above, the asymmetric Gaussian and AWGN 10 " AWGN ‘
models are actually Gaussian approximations for the chi-square 0 1 2
noise distributions, while the first one keeps the same signal (a)
means and Variances as the Chi-Square distribution' the Second 2 -— - .,,

one keeps the same means and hard-decision BER as the chi-
square distribution.

Fig. 1 plots the pdfs of the chi-square, the asymmetric
Gaussian, and the AWGN distributions in an optical-fiber
transmission system witfp> = 6.8 dB andM = 3. It shows
that the asymmetric Gaussian pdfs look more similar to the
chi-square pdfs than the AWGN pdfs. But we still see that the
central chi-square pdf of the spaces is quite different from the
asymmetric Gaussian approximation, even in the central part

" — Chi-square
- = Asymmetric Gaussian

Log likelihood ratio
o

of the pdfs. The difference between the pdfs of the marks, * AWGN
although not as significant as that between the pdfs of the —20 ' 1 >
spaces, is clearly observed. Because the optical detector is (b)

a square-law device and its output is thus always a positive

electrical voltage, the probability of a negative output voltageg. 2. LLRs based on the chi-square, asymmetric Gaussian, and AWGN for

is zero. The chi-square pdfs have zero probability density f&f = 3:(2)@* = 6.8 dB and (b)Q* = 0 dB, where(/, — Io) is normalized

an output voltage less than zero. By contrast, the Gaussian

approximation yields distributions that are not zero when the

output voltage is less than zero. chi-square model. The size of the shadowed area can be
Fig. 1 also clearly shows the asymmetric distribution of thiatuitively used as a measure of how close the Gaussian

marks and spaces. For both the chi-square and the asymmetriziels approximate the chi-square model in terms of the LLR

Gaussian pdfs, the variance of the marks are much larger tlidnthe received signal. The area hatched with vertical lines

that of the spaces. The difference between the variances com@msesponds to the asymmetric Gaussian approximation, and

from the signal/noise beat term [6], [7]. the area hatched with oblique lines corresponds to the AWGN
Fig. 2 compares the three channel models from another paamproximation. In Fig. 2(a), the system hag)a = 6.8 dB.
of view, the LLR of the received signal defined as We find that the area hatched with oblique lines is significantly

larger than the area hatched with vertical lines. Hence, we
L(I) = log (P(U: 1|I)> (2.8) predict that the asymmetric Gaussian model approximates
p(u = 0[I) the chi-square channel better than the AWGN model @2a
of about 6.8 dB and, hence, use of the asymmetric Gaussian
model will lead to better MAP decoder performance. However,
%T‘g. 2(b) shows that in a system with> = 0 dB, the two
Baussian models have almost identical hatched areas. Outside
the hatched areas, the LLRs of the AWGN model are more
(1) similar to that of the chi-square channel and, hence, use of the
po(I)> (2.9)  AWGN model will result in better MAP decoder performance
than will use of the asymmetric Gaussian model.
The MAP decoder performance highly depends on the accu-The above LLR comparisons of the two Gaussian models
racy of the LLR of received signals. Therefore, the accuracy siiow that neither one is always better than the other one in ap-
the approximated LLR is more critical than the accuracy of ti@roximating a chi-square channel, and which approximation is
approximated pdf in choosing a proper channel model usedhietter depends on th@-factor. Moreover, we observe in Fig. 2
MAP decoding. that the use of either Gaussian approximation may significantly
In Fig. 2, we show hatched areas in which the Gaussiakew the ASE noise statistics in MAP decoding and, thus, de-
approximations have different LLR signs from that of thgrade the TC performance.

wherew represents the transmitted signal ancepresents the
received signal. For equally likely transmitted marks and spac
i.e.,p(u =1) = p(u = 0), L(u) can be expressed as the rati
of the pdfs as

L(I) = log (
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Ill. BCJIR ALGORITHM WITH NON-AWGN DISTRIBUTIONS  rithm. Hence, the performance of the BCJR algorithm depends
strongly on the accuracy of the noise model.
A. Standard Rate _1/3 T_C _ ) As shown in Fig. 1, the differences between the pdfs of the
The BCJR algorithm is a recursive algorithm for the MAR\gse with the chi-square distribution and the Gaussian approx-
decoding of the received noisy codewod = (yi, ..., ¥x, imations are not negligible, especially at IGhas in the case of
y's - Yno - - ) [11 [14], wherey;, represents a received infor-)2 — 6.8 dB. An obvious question is, therefore, can better TC
mation bit corresponding to the transmitted information&it  performance be achieved by modifying the standard formula of
andy;” represents a received parity-check bit corresponding 49 s/ s), which uses the AWGN model, to a new formula using

the transmitted parity-check hit” generated by théth con-  the more accurate chi-square distribution model given by (2.2)
stituent encoder. We note that= 1,2 for our rate 1/3 TC, and (2.3), rewritten here as

where each constituent convolutional encoder has rate 1/2. In
theith constituent MAP decoder for TC, the informationbit  »(Yx|zr = 1)

in the transmitted codewo™ = (uy, ..., un, lep x?{?, 1y \(M=D)/2 yr + FE 7 9 Vi
...) is estimated based on the received noisy codelbiy A (E) AP\ TN, )M No )
. 1, if L(ug)>0 yr >0 (3.7)
= {0, if L(ug) <0 (3.1)
(w) p(yk|zr = 0)
where L(uy) is the LLR given the received codewold, de- 1 ( M-1 _
\ Yi/No)™ " exp (—yx/No)
= — > .
fined as No = 1! ye 20 (3.8)
L(ux) = log Pluy = 1Y) 0<k<N. (32) wherey, representg; ory?, z; represents,, or z¥, F is the
P(up =0Y) )’ == Yk k OV Y, Tk k k?

_ _ ~ transmitted signal energi, /2 is the two-sided power spectral
The key to the BCJR algorithm is to decomposeaipsteriori - density of the ASE noise, arV/ is the dimensionality of the
probability into three factoray.—1, vx, andj; (we refer to the optical signal space. When we substitute (3.7) and (3.8) into

subscribek as “time £” in the following discussions). These (3.6), we obtain (3.9), as shown at the bottom of the next page.
factors relate the decision an, to the previous, current, andDefining

future observations, respectively, as

P(uj, = u causing ftate transitior} to s[Y) L*(ug) = log <7P(uk = 0)> (3.10)
= W Z ap—1(8)ve(s’, 8)Br(s). (3.3) we may write
s', s€S
—Le¢ 2 2ug — 1)L (uy
Here: 1)S = {s1, ..., s, ..., sn } is the set of all constituent P(u;) = (16Xp[ : <Z’€“(>/ ])]> exp (—( Yk 2) (u")> .
encoder states, the state pair, s) represents a state transition T expl— Lo (ug
from (sx—1 = &) t0 (sx, = 5); 2) ap—1(s") = plsp—1 = &, (3.11)

(y§, . wyi_1 v, .-y )] is a probability measure for state
s’ at timek — 1 that depends only on the past observation
i.e., the received information and parity-check bits before ti

ki 3) Br(s) = pl(Wigrs - YR Yiprs - UN) sk = s]is

a probability measure for stateat time &k that depends only

on the future observations, i.e., the received information agd(y’ s) ~

parity-check bits after timé; and 4)~.(s’, s) is a probability ¢ erexp (L (up)) Tns—1
measure connecting staté at time £ — 1 to states at time
k that depends only on the present observatigh y.”). The (ay/y;) Tni—1 (a yZ) ;oup =12 =1
vk(s', s) can be written as exp (L (ux)) Tni—1

Note that (3.9) and (3.11) can be substituted into (3.2) and
3.3) to calculate the LLR. Thus, all the common terms in the
our cases in (3.9) can be removed to simplify the calculations.
Then, they,(s’, s) can be calculated with

(s 5) = Plur)p(u}. v ur) = P )p(uilu)p(u)ah) (av/55) WD), w=1,a0 =0 12
(3.4)
andag—1(s’) and B (s) can be computed recursively as func- Inr—y (a\/ ?/Z) (?JZ)Z’7 up =0, 2, =1
tions of ! iven b >
(s’ 5) 0 y co(yzyi’,)b, up =0, 2 =0.
ag(s) = Z ar—1(s") (s, 5) (3.5) wherea, b, ¢y, ande; are constants given by
s'eS
and W 2@ ) M-1
Bror(s') = Y Bil(s)m(s’, 5) (3.6) No' 2
= Ny M—1 E
) a=(M-1){—= exp | ——
respectively [14]. E Ny
1

We observe thaty(s’, s) depends on the conditional pdfs . M- E |
of the received signals and is the key factor in the BCJR algo- ~ “° ~ (\/E/ NO) exp () / (M—1)L
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Defining cision detection error probability, is the crossover point of the
two pdf curves, i.e.Jopt = Icross-
s eI (a yi) , ab =1 Supposel,,y # Ieross, there are only two possible cases,
(s =9 . (313) It < Ieross OF Iopt > Ieross. First, consider the case when
co ()" 2 =0 Iopt < Ieross- With condition (a), we have(z[0) > p(x|1) for

x € [Lopt, Leross). Then, the minimum hard-decision detection

the LLR can be calculated iteratively to yield o
error probability can be expressed as

L(uy) = log <M) + L (u)

Iopt oo
(W) Pmin:/ p(1|1)dl+/ p(110)dI
X2 a1 (5950, 5)Bu(s) o ot
+log | 22— = (3.14) :/ p11d1+/ p(I]0)dI
> (5 5) (o) L f o)
5= Leross
| , - + [ o) - plaar
where St is the set of(s’, s) caused by, = 1, andS~ is Iopt
similarly defined foru; = 0. The first term on the right side =P.ross + Poxt (3.15)

of (3.14), which depends on the currently observed information
bit and the channel SNR, is sometimes called the channel valu%. . - .

S . whereP.,.s is actually the hard-decision detection error proba-
The second terni®(u;) represents ang priori information ...~ . s

rovided (extrinsic information received) by the other decodebrlmy With Icros, as the decision threshold, aiftl,, > 0. Thus,
gnd the third term represents extrinsic inforymation assed to the ObtaINPrin > Peross, Which contradicts the definition of
other decoder P P min- HeNce lone < Ieross IS NOt possible. Similarly, with con-
’ dition (b), we can prove thal,,; > Icross IS also not possible
B. Punctured TC and, hencelopt = leross: - _
This proof leads to the straightforward likelihood ratio result,

_ Punctured TC is more practical than the standard TC in 0p5 it we set punctured bits to the same value as the optimal
tical-fiber transmission systems because of the higher code rgigsy_qecision threshold, ., then
pts

that can be obtained from lower code rate codes. Puncturing can

be implemented by deleting some parity and/or information bits ) _ ]

at the output of the encoder [14], [15]. At the input of the de2(Preset signal value for punctured|pitnctured bit= 0)
coder, the signals corresponding to the punctured bits are septgreset signal value for punctured|pitinctured bit= 1)

the same value as the optimal hard-decision threshgld14]. _ Popt|0) _ p(Leross|0) _ 1. (3.16)
The reason follows. If we assume that the pdfs of the spaces and PLopt|1)  P(Leross|1) '
the marksp(z|0) andp(z|1), cross at the point/.,oss, Peross)
and satisfy the conditions Obviously, a likelihood ratio equal to 1 (and LLR 0) is the
best guess for the punctured bits in the sense of achieving min-
(@) p(x]0) > p(x[1), forall z < Ieross imum error probability. Hencd,,,. is the best value to use for
(b) p(z]0) < p(x|1), forall x > Iross those virtual signals corresponding to the punctured bits. Note

that the chi-square, the asymmetric Gaussian, and the AWGN
then (a) and (b) are sufficient conditions to imply thigf:, distributions all satisfy the two conditions mentioned above and,
which is optimal in the sense of yielding the minimum hard-dérence, the proof and statements made above are valid for them.

s (M-1)/2 s p s D
L (yiue yp +yh +2E yi b y
P — - R N SR Taro112 R =1.2P=1
<uk>N§ < 2 exp Ny M-—1 No M—1 Ny , Uk , T
M—1
1 (yit (M-1)/2 yi+yb + E yiE (\/ yi/No)
P(ug) 5 < : > eXP<—%>[M—1 2 , ug =1, 28 =0
. N\ E No No (M —1)!
(s, 8) = (M—-1)/2 M-1
L (vivn it +E B\ (\/Yi/No) )
Pl (Ui exp ~ TN =0t =1
N\ E No No (M —1)!
i L (wiwh/NG) " exp (— 2L NP
L (uk‘)N_g [(M—l)']2 Uy = 7.Tk—
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For the AWGN model, we find,,¢ = (Ip + I1)/2. For the iy
chi-square and asymmetric Gaussian models, we find/that u, _1,(-+ —
is given by the solutions to the transcendental equations ‘/1 ETDS D* Ye |
M_1/2 400-bit AN encoded
<I°Pt> exp <_£> Inr—1l2 Vopi B interleaver - N, data
E No No L< X [v Isequence
M-1 +) B
_ (opt/No) (3.17) ) —Tiﬂ Puncturing
(M-1)! X
\I/
I — I \” Iope — In\”
<¢> +lno? = <pt—°> +Ino? (3.18) ()
o1 g0

respectively. We see that for the chi-square distribution, there it ,400'bit
deinterleaver

no closed-form formula in evaluating the optimal hard-decision Le
threshold. For the asymmetric Gaussian case, the solution i Le -
quite complex. Therefore, in addition to the Gaussian approxi- Y™ — MAP | =12 . 400-bit MAP
decoder 1 interleaver | decoder 2

mation of the ASE noise distribution, the hard-decisionthreshold y*
T 400-bit

21

is customarily set so that the two transition probabilities are

equal, which implies a binary symmetric channel assumption.

Then, the hard-decision threshold can be simplified to [6] M
y*®
Iy, = M_ (3.19) (b)
oo + 01

. : Fig. 3. (31, 27, 400) Turbo code: der and (b) decoder structure.
However, it has been shown in [16] and [17] that evalualing 9 ( ) Turbo code: (a) encoder and (b) decoder structure

with (3.19) in the asymmetric Gaussian model may significant . .
degrgde t%e perforr?;ance of punctured TCs Henge ?n the pul Whicheach columnrepresents an outputblock with the element

tured TC simulations discussed in Section IV, we used the épi_theﬂrst row corresppndmg tothe !nformatloq b|tar‘1‘d"the other
elements corresponding to the parity check bits. A “0” element
curatel,p for each of the three channel models.

in the puncturing matrix means that the corresponding informa-
tion bit or parity check bit is deleted according to the puncturing
mechanism. Similarly, a “1” means that the corresponding bit
In this section, we use simulations to show the result of usimgtransmitted. The puncturing matrices for the rate 1/2 and rate
each of the three models on the TC decoder performance in 8% punctured TCs are shown in (4.1) and (4.2), respectively

IV. SIMULATION RESULTS

tical-fiber channels. We assume chi-square distributed noise at . _ 11
the output of the optical-fiber transmission system, including Puncturing Matrix _ 0 1 (4.1)
the receiver, and compare the performance of the TC decoders (rate 13torate 1/2) | = '
based on different channel models. -

Weusea(31,27,400) parallel-concatenated-convolutional TC Puncturing Matrix 110
with the encoder and decoder structure as depicted in Fig. 3. The (rate 1/3 to rate 3/4): 10 0. (4.2)
(31, 27, 400) TC is a rate 1/3 code, where the first two parame- [0 0 1

ters, 31and 27, are octal numbers representing the structure of th&s shown in Fig. 3(b), the iterative turbo decoder consists of
constituentencoders. Ifwe transformthe octal numbers 31 and@io serially concatenated constituent decoders, between which
into binary numbers 11 001 and 10111, then the digits of the birere is a 400-bit interleaver identical to the one in the turbo
nary numbers represent the coefficients of the parity-check gemcoder of Fig. 3(a). The first decoder uses MAP decoding on
erator polynomial$+ D+ D*andl+D?+ D3+ D*. Asdepicted the received information sequengeand parity check sequence

in Fig. 3(a), “31/27" corresponds to the recursive parity-chegk!? generated by the first encoder, and passes the soft extrinsic
generator polynomidll + D + D*)/(1 + D? + D? + D%). informationL¢, to the second MAP decoder via the interleaver.

A 400-bit interleaver is used between the two constituent efkhen, the second decoder uses MAP decoding on the interleaved
coders shown in Fig. 3(a). The major motivations for using danformation sequence and the parity check sequgdtgener-
interleaver are [15]: 1) to generate a long block code from smalled by the second encoder, with an improved estimate of the
memory length convolutional codes and 2) to decorrelate theoriori probabilities of the information sequence. The soft ex-
two parity check sequences so that an iterative suboptimal deasic informationZs; produced by the second MAP decoder
coding algorithm based on information exchange between tisethen transferred to the first decoder as improgedriori
two constituent decoders can be applied. knowledge of the information sequence. Thus, iterative MAP

In the turbo encoder, for each input original information bilecoding is realized via the information exchange between the
uy, there are two parity check bits,lt” anda:ip , generated by the two constituent MAP decoders.
two parallel concatenated convolutional encoders, respectivelyWe simulate the performance of the TC with BCJR (MAP) de-
Thus, we have a code rate of 1/3. To achieve higher code ras]ing algorithms designed based on the chi-square, asymmetric
a puncturer can be added at the output of the turbo encoder. Gaussian, and AWGN models of the optical-fiber channel. In the
puncturing operation can be represented by a puncturing matsimnulations, the chi-square distributed ASE noise is added to the
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“Rate 1/3_O Rate 1/2 A Rate 3/4 applied the BCJR algorithm to non-AWGN noise distributions.

We simulated the performance of TC decoders assuming the
chi-square, asymmetric Gaussian, and AWGN distributions,
respectively, for a channel that actually has a chi-square noise
distribution. We showed that the Gaussian approximations of the
chi-square noise distribution might significantly degrade the TC
decoder performance. Specifically, the performance degradation
forthe punctured rate 3/4 TC can be more than 2 dBimt 10—6

BER. We also showed that the decoder using the AWGN model
outperforms the one using the asymmetric Gaussian model at
@Q? around 0 dB, but the latter one outperforms the former one
\ at Q2 around 7 dB.

Based on these results, we conclude that using accurate
channel noise statistics in the iterative MAP decoding algorithm
is critical to achieve the expected coding gain from a turbo code.
Therefore, we should take into account the accuracy of channel
Fig. 4. Output BER of the turbo code (31, 27, 400) decoder based on modgls in soft-decision FEC system designs. To_ac_hie_ve the pest
chi-.sq.uare (solid), asymmetric Gaussian (da:shec'i), and AWGN (dotted) mo&%&SS'ble code perfor.mance, accurafce 'n0|se statistics is required.
of the ASE noise. The rate 1/2 (circles) and rate 3/4 (triangles) codes &1 the other hand, if accurate statistical model cannot be ob-
punctured versions of the rate 1/3 (stars) turbo code. tained in a practical implementation, we need to consider a

design margin for an approximated or assumed noise statistics.
optical-fiber transmission line. We repeat the simulations for In Section Il of this paper, we proposed an intuitive way
different code rates by puncturing the 1/3 turbo code. to measure how close the Gaussian models approximate the

Fig. 4 plots the decoded BER with TCs based on differeghi-square model in terms of the LLR of received signals. A
channel models as a function of tiefactor. In all the simula- more complete and accurate measure of LLR approximation
tions, the@ factor is evaluated based on the encoded data séould be developed in future research. Moreover, more accu-
quence instead of the original uncoded data sequence, i.e.,r&fe channel models taking into account signal distortion during
penalty caused by lower code rate is not taken into accounttiBnsmission and the effects of a realistic low pass filter in the
the evaluations (which turns the performance curves of the I&ceiver [12], [13] should be incorporated in FEC code studies.
TCs into a region with negative values @f in decibels). We

10°

T

BER

1071

— Chi-square
- = Asymmetric Gaussian
I | L |

1071
-4 0

Q? (d4B)

only use Fig. 4 to compare the relative performance, at a given
code rate, of the TC decoders that are based on different channel
models, which is the major concern in this paper. The results
show that the TC decoder based on the chi-square model always
performs better than the decoders based on the Gaussian appr gl
imations. For the rate 3/4 punctured TC, the chi-square model,
when used in the BCJR decoding, provides about 1.5- and 3-d
coding gain over the asymmetric Gaussian and AWGN models,
respectively, at BER arouni) 6.

Comparing the two Gaussian models, we see that the perfor-
mance of the decoder based on the AWGN model is better aty;
rate 1/3 (lowQ), but worse at rate 3/4 (relatively high) than
that of the asymmetric Gaussian model. This observation agreeg;
with the predictions made in Section Il about the accuracy of the
two Gaussian approximations for chi-square distributions. Com-
pared to the chi-square model, the AWGN model results in sim-
ilar decoder performance for the regular rate 1/3 TC where the
operating@-factor is around 0 dB. This result is also consistent [7]
with the LLR comparison of the two models shown in Fig. 2(b).

(8]

3]

(6]

V. CONCLUSION

In this paper, we discussed the effects of three different noisd”
models: the chi-square, asymmetric Gaussian, and AWGN,
on the performance of a TC decoder. We compared the thrd&0]
channel models from two different points of view, the pdf and
the LLR of received signals. We showed that the asymmetric
Gaussian model is better than the AWGN model in approxi{11]
mating chi-square pdfs, but is not always better than the AWGN
model in approximating the LLR of chi-square distributions. We
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