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Abstract—Polarization-mode dispersion (PMD) is a serious im-
pairment for high-bit-rate optical telecommunication systems. It
is known that spinning the fiber during the drawing process dras-
tically reduces the PMD. However, the analysis of pulse propa-
gation through a randomly birefringent spun fiber is still at an
early stage. In this paper, we derive an analytical formula for the
mean differential group delay of a periodically spun fiber with
random birefringence. We model the birefringence with fixed mod-
ulus and a random orientation under the condition that the spin
period is shorter than the beat length. Finally, we numerically com-
pare the analytical results with those given by the random-modulus
model of birefringence, and we obtain good agreement as long as
the short-period assumption is satisfied.

Index Terms—Beat length, birefringence correlation length,
fiber birefringence, polarization-mode dispersion (PMD), spun
fibers.

I. INTRODUCTION

T HE INTEREST in polarization-mode dispersion (PMD)
dates back more than 20 years [1], and, since then, this

interest has grown as the capacity of optical telecommunication
systems has increased. Indeed, PMD is currently considered to
be one of the most serious impairments in high-bit-rate systems
[2].

Various aspects of PMD have been studied. These aspects in-
clude theoretical studies of its origin, its theoretical and experi-
mental characterization, experimental measurement techniques,
evaluation of its detrimental effects, and its mitigation. In this
paper, we focus on its mitigation [2].

There are two different basic approaches to mitigation. The
first is to compensate the PMD in already installed systems
[3], [4]. Because the PMD fluctuates in time, the compensation
must be active, greatly complicating the development of com-
pensators and adding substantially to their expense. Nonethe-
less, commercial compensators are now available for systems at
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10 Gb/s and are being developed for systems at 40 Gb/s. The
second approach is to design low-PMD fibers, which may be
done by spinning the fiber as it is drawn [5]. While it has been
found empirically that it is more effective to spin fibers at a rate
that changes periodically as they are drawn [6]–[8], rather than
spinning them at a constant rate, the reasons for the advantage
of periodic over constant spinning have not been clear. A great
part of the analysis to date has treated spun fibers with a con-
stant birefringence and no random variations [5]–[9]. This case
is a useful starting point for the study of spun fibers because the
analysis is simple; however, it does not correspond to the usual
case in telecommunication fibers.

In a recent paper [10], we provided, without proof, a formula
[(9) in this paper] for the calculation of the mean differential
group delay (DGD) of a periodically spun fiber. In this paper, we
report the complete demonstration of this formula, which is ob-
tained assuming that the spin period is short compared with the
fiber beat length and also that the strength of the birefringence
is constant, while its orientation is random and the fiber corre-
lation length for the random orientations can have any value.

In Section II, we introduce two different models for de-
scribing fiber birefringence. Then, in Section III, we calculate
analytically and numerically the mean DGD of periodically
spun fibers. In particular, we discuss the implications of (9) for
the DGD, which holds in the short period limit, and we discuss
the consequences of choosing one model of birefringence over
the other. Finally, Section IV contains a derivation of (9).

II. TWO MODELS FOR THEBIREFRINGENCE

The evolution along the fiber of the polarization dispersion
vector is governed by the dynamical equation [11]

(1)

where is the angular frequency and T

is the local birefringence vector. In standard telecommunication
fibers, is a random function of, whose properties may
be described by appropriate statistical models. In this paper, we
consider the two models proposed in [12], which are described
here briefly for completeness.

First of all, we remark that both models assume that no cir-
cular birefringence is present, i.e., T. This as-
sumption is not restrictive, because usually circular birefrin-
gence of telecommunication fibers is negligible [13]. Moreover,
these models also assume that only the modulus of birefringence
depends on , so that we can write ,
where is the modulus and the direction. From a
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theoretical standpoint, it is not necessary to further specify the
dependence of the modulus of birefringence on the optical fre-
quency. In fact, in the analysis that we carry out, we denote
the derivative of as , without making any assump-
tions about it. Nevertheless, in our numerical simulations, we
must specify the frequency evolution of the birefringence, and,
as usual, we assume that

(2)

The first model that we consider is therandom-modulus
model(RMM), in which the two components of the birefrin-
gence and are independent Langevin processes
[12]

(3)

where and are independent white-noise sources. As
a consequence, the modulus is a Rayleigh distributed
random variable. Parameters and define the statistical
properties of the birefringence. In particular, the birefringence
correlation length equals , and the beat length
equals . Furthermore, in the long-length
regime, the mean DGD may be written [12]

(4)

where the last equality is obtained using (2).
The RMM is the only fiber model that has been proposed

to date that is consistent with experimental results [14], [15].
However, its analysis is complex. For this reason, we consider
also the simplerfixed-modulus model(FMM), which assumes
that the local birefringence vector equals

T (5)

where is a Wiener process, i.e., it obeys the equation
. In this expression, is a constant param-

eter, and is a white-noise source [12]. In this model,
the birefringence correlation length and the beat length are

and , respectively, and in the
long-length regime, the mean DGD equals [12]

(6)

Upon comparing (6) with (4), we note that the final expres-
sions for the mean DGD are the same [12].

The two models that we have introduced, describe the random
evolution of the intrinsic birefringence of a fiber before it is
spun. When a spin is applied, the local birefringence vector un-
dergoes a rotation. If we denote as the spin function, i.e.,
the amplitude of the rotation imposed on the fiber, then the new
birefringence vector readsR , where

R (7)

represents a rotation of amplitudearound the vector T.
Moreover, as we already stated, only a periodic spin is con-
sidered in this paper, and hereafter,represents the spin period.

III. M EAN DGD OF SPUN FIBERS

In this section, we introduce the expression for the mean DGD
of a randomly birefringent periodically spun fiber. We obtain the
result using the FMM model of birefringence with the short-pe-
riod assumption . We also compare the results ob-
tained with the FMM to those obtained numerically with the
RMM, both when the short-period assumption is satisfied and
when it is not.

In order to analyze the spin effects on fiber DGD, it is con-
venient to define aspin-induced reduction factor(SIRF), as the
ratio between the DGD of a spun fiber and the DGD the same
fiber would have if it were not spun, as follows:

(8)

A. Within the Short-Period Assumption

Let us consider a randomly birefringent fiber with a local bire-
fringence vector that is modeled using the FMM, introduced
in (5). If that fiber is spun according to a periodic function

of period , it may be shown (see Section IV) that in the
long-length regime, the mean DGD of the spun fiber equals

(9)

In (9), is the mean DGD that the same fiber would have
if it were not spun, and and are defined as

(10)

where and . We
remark that the expressions given in (10) depend only on the
ratio . To prove this result, it suffices to normalizeand
with respect to .

The derivation of (9) will be given in Section IV. Here, we
focus on some important aspects and consequences.

In the case that we are considering, the SIRF equals

(11)

It can be noted that depends on and on the ratio between
the spin period and the birefringence correlation length, while
it is independent of because of the short-period assumption.
To evaluate (11), we calculate numerically the integrals given
in (10) [16]. Fig. 1 refers to a sinusoidal spin profile

with 4 m. The solid curves represent the
evolution of calculated according from (11) as a function of
the spin amplitude . From the upper curve to the lower curve,
they correspond to 0.1, 0.3, 0.8, and 3 m, respectively,
while the lowest solid curve corresponds to .

We may notice that is always less than 1, implying that the
spin reduces the DGD in all cases. We confirmed numerically



GALTAROSSAet al.: ANALYTICAL FORMULA FOR THE MEAN DGD OF RANDOMLY BIREFRINGENT SPUN FIBERS 1637

Fig. 1. Evolution of the SIRF as a function of spin amplitude, for a sinusoidal
spin function withp = 4 m andp � L . The curves are obtained from (11).
The solid curves, from the upper to the lower, correspond toL = 0.1, 0.3, 0.8,
and 3 m, respectively. The lowest solid curve represents the caseL ! +1.
Triangles and circles are numerical estimates of the SIRF obtained from the
FMM and the RMM, respectively, forL = 17.7 m.

that this physically reasonable result holds for every spin func-
tion that we checked. Nevertheless, we have not been able to
prove it analytically. From Fig. 1, we also see that the spin is
less effective in reducing the DGD when is very short; in
fact, in this case, the intrinsic random fluctuations of birefrin-
gence are very fast and tend to decrease the spin effect. For the
same reason, we find that when is fixed and the spin ampli-
tude increases, tends to decrease.

As the birefringence correlation length increases, the varia-
tion of versus presents well-defined minima and tends
toward the case . As was already observed for po-
larization-maintaining spun fibers [9], this result implies that if

is known, it is much more effective to choose the spin rate
properly, rather than spinning as fast as possible.

The expression for in the case may be sim-
plified. If , then in both integrals (10), we may set

, and . As a consequence, one finds
(see Appendix C) , and, therefore, the SIRF simplifies to

, where can be rearranged as

(12)

This specific case of polarization-maintaining fibers has been
analyzed also by Chenet al.[17], using a different approach and
yielding the same result. As we see from Fig. 1, when

, there exist values of for which the reduction factor
vanishes. It may be proved that these amplitudes correspond to
those spins that make the DGD of a deterministic fiber a peri-
odic function [18]. This result explains the numerical observa-
tion [9] that spin functions optimized for a polarization-main-
taining fiber allow quasioptimal DGD reduction, even when the
fiber birefringence evolves randomly. For example, we may cal-
culate the mean DGD of a polarization-maintaining fiber spun
according to the function . According to
what is stated above, we have , and using
(12), we find , where is the zero-order
Bessel function of the first kind. This result enables us to readily
identify the optimal values of the spin amplitude.

It may be shown that there are two classes of spin functions
for which (11) simplifies. The first of them is the class of spin

Fig. 2. Numerical estimates of the evolution of the SIRF with the RMM as a
function of spin amplitude for a sinusoidal spin function withp = L = 4 m.
The solid curves, labeled with letters from a tof , correspond toL = 0.9,
1.3, 1.8, 2.7, 4.4, and 17.7 m, respectively. The dashed curve is obtained by
calculating the SIRF using (11).

functions whose Fourier series contains only odd harmonics, for
which one finds [9]. The second class
consists of those functions that satisfy ,
where is an arbitrary quantity. If the spin function belongs to
one of these two classes, then, exploiting the symmetry prop-
erties of , we show in Appendix C that . So that

, notwithstanding that, in this case,is still given by
(10).

We tested the validity of (9) numerically and verified that it
also holds for the more realistic RMM. To accomplish these
tasks, we performed several numerical simulations for different
spin functions and different values of birefringence parameters,
and in all cases, we obtained a very good agreement for both
the birefringence models. As an example, Fig. 1 shows numer-
ical estimates of the mean DGD (circles and triangles) com-
pared with (9) (solid curve). We implemented FMM and RMM
and performed Monte Carlo simulations, solving (1) using the
wave-plate model [19] over an ensemble of 6000 fibers 10 km
long with 10 plates and 17.7 m. Triangles refer to mean
DGD values calculated with the FMM. Conversely, circles rep-
resent the mean DGD obtained from the RMM. We note the
very good agreement with theoretical predictions, which ex-
tends the practical validity of (9) also to the RMM, at least in
the short-period case.

B. Without the Short-Period Assumption

We have not been able to find an analytical expression for the
mean DGD when the short-period assumption does not hold.
In order to investigate the system’s behavior in this case, we
performed numerical simulations for both the FMM and RMM
fiber models, and we calculated the SIRF as defined in (8). We
used the sinusoidal spin function reported in Section III-A and
estimated the average DGD over an ensemble of 6000 fibers
10 km long with 10 plates, as explained before. We calculated
the evolution of the SIRF as a function of spin amplitude for

4 m and for different values of the beat length.
Namely, we set 0.9, 1.3, 1.8, 2.7, 4.4, and 17.7 m. We
report results for the RMM in Fig. 2 and for the FMM in Fig. 3.

In both figures, the solid curves labeled with letters from a to
f refer to increasing values of the beat length, while the dashed
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Fig. 3. Numerical estimates for the evolution of the SIRF with the FMM as a
function of spin amplitude, for a sinusoidal spin function withp = L = 4 m.
The solid curves, labeled with letters from a tof , correspond toL = 0.9,
1.3, 1.8, 2.7, 4.4, and 17.7 m, respectively. The dashed curve is obtained by
calculating the SIRF using (11).

curve is obtained calculatingwith (11). We find that there is an
agreement between the numerical simulations and the theoret-
ical results of the short-period assumption only for the longest
value of . For shorter values of the beat length, the SIRF
shows a significant difference, and it is no longer independent
of .

Another remarkable result is the difference between the SIRF
curves obtained from the FMM and the RMM. In fact, we see
that when the short-period assumption does not hold, the SIRF
of the FMM has marked minima, which do not appear when
the RMM is used. These differences deserve further investiga-
tions, since it seems that the two models of birefringence yield
comparable results only in the short-period limit, implying that
knowledge of the correct statistical model for fiber birefringence
is essential in the design and analysis of spun fibers. For unspun
fibers, the mean DGD is independent of the statistical model
[12], [20].

IV. DERIVATION OF (9)

In this section, we describe the derivation of (9) for the FMM
fiber model. This derivation, which is somewhat lengthy, is pre-
sented in Sections IV-A–D. The point of this derivation is not
only to obtain the form of (9). It is also to show that for any
value of , and , and in the reference frame that rotates
with the spin rate, the mean polarization dispersion vector of a
periodically spun fiber is asymptotically periodic, hence asymp-
totically stable, when . In order to facilitate the reading
of our proof, we summarize the main sections below:

1) Section IV-A. By means of (1) and using the FMM, we
derive an equation for the evolution of the mean-square
DGD. We find that depends on , whose
evolution is described by the three-dimensional differen-
tial (15).

2) Section IV-B. It is proved that for any periodic spin func-
tion and for any initial condition , tends
asymptotically to a periodic orbit with the same peri-
odicity. As a consequence, upon finding such orbit, we
determine the behavior of in the long-length
regime.

3) Section IV-C. Owing to the existence of a periodic solu-
tion for (15), we may expand this equation in a Fourier se-
ries. We then apply the short-period assumption, which al-
lows us approximate (15) with the two-dimensional (2-D)
(22).

4) Section IV-D. We solve (22) analytically and find the
evolution of in the long-length regime.

A. Equation of the Mean-Square DGD

We start by transforming the reference frame to compensate
for both the intrinsic rotation of and the rotation induced by
the spin. This transformation is achieved by the matrixT
R , whereR is defined in (7). In the new frame,
the dynamical equation reads

(13)

where is the frequency derivative of , and is the
derivative of . Note that the rotation matrixT is an

orthogonal matrix so that the modulus ofis still equal to the
DGD after transformation.

By means of the theory of stochastic differential equations
(SDE), we can deduce from (13) an equation for the evolution
of the mean-square DGD. Using the Dynkin’s formula, we find
[21]

(14)

where , the infinitesimal generator associated with (13), is

Using Dynkin’s formula again, we also find the differential
equation

(15)

which must be solved in order to determine the evolution of
. To accomplish this task, we will use the theory

of differential equations with periodic coefficients, which is
briefly reviewed in Appendix A. For a thorough treatment of
this theory, we refer to [22].

B. Asymptotic Behavior of (15)

We now prove that (15) has a unique periodic solution with
a period of and that, for any initial condition, the solution of
(15) converges asymptotically to the periodic one.

First of all, let us define the quantities

B
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Recalling that the solution of (15) with generic initial condition
is given by (A2), and using the Floquet–Lyapunov the-

orem (A4), we may show that reads

X

K I K F (16)

whereX F K is the fundamental matrix. Notice
that the term between curly brackets is bounded and indepen-
dent of so that the asymptotic behavior of is gov-
erned byX .

We now prove thatX tends to zero as ; conse-
quently, tends to be periodic with period, and, as ex-
plained in Appendix A, (15) has a unique periodic solution.

To analyze the stability ofX , we use Lyapunov’s second
method [22]. First, we define , and we
assume that is finite. We now letB C Q ,
where

C

Q

and so that for every . The
eigenvalues ofC are

so that, since and , the real parts of are
negative, as required by Lyapunov’s second method.

We now define the diagonal matrixG
, where and are arbitrary real numbers that satisfy

so thatG is positive definite. LetH be the solution of

the equationHC CTH G so that

H

We next define the matrixG HQ Q TH. The
principal minors of the matrixG G are

By Lyapunov’s theorem, the trivial solution of (15) is asymptoti-
cally stable if for any and for 1, 2, 3. Re-
calling that , we see that indeed
for 1 and 2. For 3, we have

(17)

Since , (17) holds if , i.e.,

This result states that if is sufficiently small so that the
spin function evolves sufficiently slowly, thenX is asymptot-
ically stable, and tends to be periodic. Note, however,

that, since the number can be arbitrarily large,
X is asymptotically stable in any case, and (15) always has a
unique periodic solution with a period of.

We conclude that the asymptotic evolution of is
determined by the periodic solution of (15). In fact, let
be the first component of such solution, then owing to (14), the
mean-square DGD may be written

(18)

where we assume, without loss of generality, that
. The next step is to find the unique periodic solution of (18).

C. Fourier Expansion of (15)

Since (15) has a periodic solution with a period of, and since
B is periodic with that same period, we are allowed to expand
the terms of (15) in a Fourier series. Therefore, we may write

where is the fundamental frequency. We now insert
these expressions in (15), and we equate the harmonics of the
same order . The result is

(19)

where is the Kronecker delta. In the case , (19) becomes

(20)

where we have already used the property , which is a
result of the third equation of (19). As a consequence, the second
equation yields

(21)

When , we can solve for , the third equation of (19),
and then insert the result in the second one, finding
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If we assume that , i.e., , then the pre-
vious expression may be simplified as

This result, combined with (20), implies

We see that this equation, together with the first one of (19),
form a new system, completely decoupled from the third equa-
tion of (19). This 2-D system corresponds to the differential
equation

(22)

where T. Upon solving (22), we find
the evolution of and, hence, the evolution of .

D. Solution of the 2-D System (22)

In order to solve (22), we start by considering its fundamental
matrix Y , which obeys the equation

Y
Y

with the initial conditionY I (the identity matrix). As a
consequence, the explicit solution ofY reads as

Y

Note thatY is asymptotically stable as long as so that
(22) has a unique periodic solution with a period of, which
may be written as (see Appendix A)

I R R

where T andR Y Y .
Explicitly, we now find

(23)

with .
Equation (23) is not self-consistent, because is still un-

known. However, this obstacle may be overcome by inserting
(23) into (21) and solving for , to obtain

(24)

where

In this way, we have completely determined the first component
of the periodic solution of (15).

From (18), it follows that we must determine the average over
a period of , which can be calculated from (23) and (24),
to yield

with and being defined as in (10). By means of some algebra
that we defer to Appendix B, we find that

(25)

so that the average over a period of is

Then, owing to (18), we obtain

(26)

Finally, recalling that the DGD is a Maxwellian random vari-
able, we arrive at (9).

V. CONCLUSION

In this paper, we have derived an analytical formula for the
mean DGD of randomly birefringent spun fibers, in the case
of periodic spin functions with period that obey the short-pe-
riod assumption, . The analysis has been carried out
in the framework of the fixed-modulus model of birefringence,
which assumes that only the birefringence orientation varies
randomly, while its modulus is fixed. However, for complete-
ness, the results provided by the FMM have been numerically
compared with those given by the random-modulus model of
birefringence.

It turns out that the two models yield the same result for the
DGD, as long as the short-period assumption is satisfied. On the
contrary, when the short-period assumption is not satisfied, there
is a remarkable difference in the results that are yielded by the
two models. This difference implies that, in order to analyze in
more detail the effects of the spin process, we must know which
model of birefringence best describes a fiber.

When the short-period assumption holds,(9) shows that
there exist spin amplitudes such that the DGD reaches a local
minimum. This result is indeed useful for optimized design
of low-PMD fibers. Moreover, (9) is a first step in a more
comprehensive analysis of transmission through spun fibers.
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APPENDIX A
LINEAR DIFFERENTIAL EQUATIONS

WITH PERIODIC COEFFICIENTS

Consider a first-order linear differential equation

A (A1)

where and are -dimensional vector functions, and
A is a matrix function. The solution of (A1) with initial
condition is [22]

Y Y (A2)

where Y is the fundamental matrixassociated with (A1),
which is an matrix function obeying the homogeneous
equation

Y
A Y (A3)

with initial conditionY I (the identity matrix).
When bothA and are periodic with period , (A1)

belongs to the class of Hill equations that are linear differential
equations with periodic coefficients [22]. We must determine
whether there are conditions such that the corresponding solu-
tions of (A1) are periodic with the same periodby examining
the properties of the fundamental matrix.

By the Floquet–Lyapunov theorem [22], the fundamental ma-
trix of a system of differential equations with periodic coeffi-
cients may be expressed as

Y F K (A4)

whereF is a periodic nonsingular matrix function with period
, such thatF I andK is a constant matrix. The eigenvalues

of K are known as thecharacteristic exponentsof (A1).
For what concerns our problem, we consider only the case

where all the characteristic exponents have negative real parts.
Then, it may be shown that (A1) has a unique periodic solution,
corresponding to a definite initial condition [22]. Consequently,
such solution can be written as

I R R (A5)

whereR Y Y . Note that in (A5), the
initial condition does not appear explicitly because the solution
is unique

We remark also that when all the characteristic exponents
have negative real parts, thenY is asymptotically stable,
meaning that it converges to zero as . Conversely, ifY
is asymptotically stable, then all the characteristic exponents
have negative real parts, and (A1) has a unique periodic solution
with period .

APPENDIX B
CALCULUS OF AND

In this appendix, we prove (25). We only explicitly calculate
, because one can calculate in exactly the same way.

As a first step, we derive a relationship forthat will be used
later. Let us perform the change of variable and ,
so that (10) reads

(B6)

where we set

Let us define the bidimensional areas

(B7)

(B8)

(B9)

Note that so that (B6) can be rearranged as
follows, recalling that the spin function has a period of:

(B10)

Consider now ; by making the change of variables
above, and using the definition of , we may write

(B11)

where

To solve the first integral of (B11), we start by changing the
order of integration, finding

Then, the innermost integral may be evaluated by parts, yielding

The second integral of (B11) can be evaluated with the same
procedure, and the result is

Finally, recalling the , we obtain
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so that, upon comparing this expression with (B10), the property
is proved.

APPENDIX C
SIMPLIFICATION OF (10)

In some cases, the integrals (10) can be simplified.
The first case that we consider is when so that

for all , and ; this case was
considered also by Chenet al. [17] using secular perturbation
theory. Then, reads as

By introducing the new variables and , this
integral can be rearranged as

where the last equality holds because
is a periodic function with a period of. Finally, using

the properties of trigonometric functions, we obtain

Under the same hypothesis and using the same technique, we
find

We now consider the case of periodic spin functions with only
odd harmonics. This class of functions satisfies the symmetry

. It is easy to see that also the function
is characterized by the same

symmetry, i.e., . Using , the
double integral, in (10) can be rearranged as

then, in the second of the inner integrals, we introduce the new
variable , obtaining

and consequently, .
Finally, we consider the spin functions that satisfy the sym-

metry and show that this property yields
. In the following, we report the proof for the case ,

but it can be extended in a straightforward way to the case
which differs only for a translation. By introducing again the
variables and , the quantity reads as in (B6) and
can be rearranged as reported in (B10), withand defined
in (B9). We note that the two bidimensional areasand are
both symmetric with respect to the straight line . As a
consequence, both the integrals in (B10) are zero if the function

presents an odd symmetry with respect to that straight
line, as is the case for the spin functions that belong to the par-
ticular class we are considering. In fact, any point on the
plane is the symmetric dual of the point
with respect to the straight line . Then, the function

can be rearranged as

where and the last equality holds
because, in the case we are considering, .
As a consequence, and .
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