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Abstract—Polarization-mode dispersion (PMD) is a serious im- 10 Gb/s and are being developed for systems at 40 Gb/s. The
pairment for high-bit-rate optical telecommunication systems. It second approach is to design low-PMD fibers, which may be
is known that spinning the fiber during the drawing process dras- done by spinning the fiber as it is drawn [5]. While it has been

tically reduces the PMD. However, the analysis of pulse propa- - . . -
gation through a randomly birefringent spun fiber is still at an found empirically that it is more effective to spin fibers at a rate

early stage. In this paper, we derive an analytical formula for the that changes periodically as they are drawn [6]-[8], rather than
mean differential group delay of a periodically spun fiber with  spinning them at a constant rate, the reasons for the advantage
random birefringence. We model the birefringence with fixed mod-  of periodic over constant spinning have not been clear. A great
ulus and a random orientation under the condition that the spin part of the analysis to date has treated spun fibers with a con-

period is shorter than the beat length. Finally, we numerically com- oo o .
pare the analytical results with those given by the random-modulus stant birefringence and no random variations [5]-[9]. This case

model of birefringence, and we obtain good agreement as long as S @ useful starting point for the study of spun fibers because the
the short-period assumption is satisfied. analysis is simple; however, it does not correspond to the usual
Index Terms—Beat length, birefringence correlation length, Case in telecommunication fibers.
fiber birefringence, polarization-mode dispersion (PMD), spun In a recent paper [10], we provided, without proof, a formula
fibers. [(9) in this paper] for the calculation of the mean differential
group delay (DGD) of a periodically spun fiber. In this paper, we
report the complete demonstration of this formula, which is ob-
tained assuming that the spin period is short compared with the
HE INTEREST in polarization-mode dispersion (PMD)iber beat length and also that the strength of the birefringence
dates back more than 20 years [1], and, since then, tiisconstant, while its orientation is random and the fiber corre-
interest has grown as the capacity of optical telecommunicatigfiion length for the random orientations can have any value.
systems has increased. Indeed, PMD is currently considered tf, Section II, we introduce two different models for de-
be one of the most serious impairments in high-bit-rate syste®gibing fiber birefringence. Then, in Section IlI, we calculate
[2]. analytically and numerically the mean DGD of periodically
Various aspects of PMD have been studied. These aspectsjsun fibers. In particular, we discuss the implications of (9) for
clude theoretical studies of its origin, its theoretical and expethe DGD, which holds in the short period limit, and we discuss
mental characterization, experimental measurement techniqygg.consequences of choosing one model of birefringence over
evaluation of its detrimental effectS, and its m|t|gat|0n In thlﬂ]e other. Fina”y, Section IV contains a derivation of (9)
paper, we focus on its mitigation [2].
There are two different basic approaches to mitigation. The II. TWO MODELS FOR THEBIREFRINGENCE
first is to compensate the PMD in already installed systems ) i L . .
[3], [4]. Because the PMD fluctuates in time, the compensationThe evoluho_n along the fiber of the p_olarlzanor_l dispersion
must be active, greatly complicating the development of co€Ctor{2(z, w) is governed by the dynamical equation [11]
pensators and adding substantially to their expense. Nonethe- 0N(z,w) IP(z,w)
less, commercial compensators are now available for systems at 92 T ow
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theoretical standpoint, it is not necessary to further specify the [ll. M EAN DGD OF SPUN FIBERS
dependence of the modulus of birefringence on the optical fre-

qhuencdy In fact, '?b the analg/ sis thhat we clilrry out, we deno(tJ arandomly birefringent periodically spun fiber. We obtain the
thew derivative ofb(z, w) asb,,, without making any assump- result using the FMM model of birefringence with the short-pe-

tions about it. Nevertheless, in our numerical simulations, x@d assumption? < L%. We also compare the results ob-
must specify the frequency evolution of the birefringence, a ined with the FMM to those obtained numerically with the
as usual, we assume that RMM, both when the short-period assumption is satisfied and
bolz) = Ob(z,w) _ b(z.w) (2) Whenitis not.
ow w In order to analyze the spin effects on fiber DGD, it is con-
The first model that we consider is thendom-modulus venient to define apin-induced reduction factdSIRF), as the

model(RMM), in which the two components of the birefrin-ratio between the DGD of a spun fiber and the DGD the same
gencef;(z) and 3»(z) are independent Langevin processefiber would have if it were not spun, as follows:

[12]

Inthis section, we introduce the expression for the mean DGD

SIRF = (A7) ®)

dp; (ATyn(2))

5, = ~PPi(z) tomi(z), i=1.2 3
wherern; (z) andny(z) are independent white-noise sources. Ag- Within the Short-Period Assumption
a consequence, the modulks,w) is a Rayleigh distributed  Letus consider arandomly birefringent fiber with a local bire-
random variable. Parametegs and o define the statistical fringence vector that is modeled using the FMM, introduced
properties of the birefringence. In particular, the birefringende (5). If that fiber is spun according to a periodic function
correlation lengthLyr equals1/p, and the beat lengtiL.z  A(z) of periodp, it may be shown (see Section IV) that in the
equals2r/(b%)1/2 = 27, /p/o. Furthermore, in the long-length long-length regime, the mean DGD of the spun fiber equals

regime, the mean DGD may be written [ 12] 5 3
C2+S$
IGZLF <AT> = C <A7—un>~ (9)
V b wLB V In (9), (AT,,) is the mean DGD that the same fiber would have
where the last equallty is obtained using (2). if it were not spun, and andsS are defined as
The RMM is the only fiber model that has been proposed D P
to date that is consistent with experimental results [14], [15]. c=" / /exp —942 u
However, its analysis is complex. For this reason, we consider p? J
also the S|mple_f|xe.d—modulus modgFMM), which assumes cos[2A(L) — 2A(t — u)]dtdu
that the local birefringence vector equals b P
B(z,w) = b(w)(cos 20(z), 5in 26(z), 0) " ) S :% / / exp (—20%u)
where 6(z) is a Wiener process, i.e., it obeys the equation 00
(=) P y . X Sin[2A(t) — 2A(t — u)]dtdu (10)

df/dz = on(z). In this expressiong is a constant param-
eter, andn(z) is a white-noise source [12]. In this modelwherey = 202%p/[1 — exp(—202p)] and202 = 1/Lp. We
the birefringence correlation length and the beat length agemark that the expressions given in (10) depend only on the

Ly = 1/(20%) and Lg = 2r/b, respectively, and in the ratiop/L ;. To prove this result, it suffices to normalizandu
long-length regime, the mean DGD equals [12] with respect top.
167LF The derivation of (9) will be given in Section IV. Here, we
=4/ o / —zLF (6) focus on some important aspects and consequences.

In the case that we are considering, the SIRF equals
Upon comparing (6) with (4), we note that the final expres-

sions for the mean DGD are the same [12]. SIRF = & = ¢+ 52. (11)
The two models that we have introduced, describe the random C

evolution of the intrinsic birefringence of a fiber before it idt can be noted thab depends oni(z) and on the ratio between

spun. When a spin is applied, the local birefringence vector uire spin period and the birefringence correlation length, while

dergoes a rotation. If we denote 4§z) the spin function, i.e., itis independent of z because of the short-period assumption.

the amplitude of the rotation imposed on the fiber, then the néle evaluate (11), we calculate numerically the integrals given

birefringence vector read®;[2A(z)]B(z), where in (10) [16]. Fig. 1 refers to a sinusoidal spin profilgz) =
cos¢p —sing 0 Apsin (2wz/p) with p = 4 m. The solid curves represent the
Rs3(¢) = (sin</> cos ¢ 0) @) evolution of® calculated according from (11) as a function of
0 0 1 the spin amplitudel,. From the upper curve to the lower curve,

they correspond td. = 0.1, 0.3, 0.8, and 3 m, respectively,
represents arotation of amplituderound the vectq(o, 0, 1)T. while the lowest solid curve correspondsitp — +oc.
Moreover, as we already stated, only a periodic sfin) is con- We may notice tha® is always less than 1, implying that the
sidered in this paper, and hereafferepresents the spin period.spin reduces the DGD in all cases. We confirmed numerically



GALTAROSSAEet al: ANALYTICAL FORMULA FOR THE MEAN DGD OF RANDOMLY BIREFRINGENT SPUN FIBERS 1637

SIRF
SIRF

Fig. 1. Evolution of the SIRF as a function of spin amplitude, for a sinusoidal A0 [rad]
spin function withp = 4 m andp? < L%. The curves are obtained from (11).
The solid curves, from the upper to the lower, correspond;ioc= 0.1, 0.3, 0.8,
and 3 m, respectively. The lowest solid curve represents thelcase> +oc.
Triangles and circles are numerical estimates of the SIRF obtained from
FMM and the RMM, respectively, fof. 5 = 17.7 m.

Fig. 2. Numerical estimates of the evolution of the SIRF with the RMM as a
gction of spin amplitude for a sinusoidal spin function with= L » = 4 m.
e solid curves, labeled with letters from afpcorrespond td.; = 0.9,
1.3, 1.8, 2.7, 4.4, and 17.7 m, respectively. The dashed curve is obtained by
calculating the SIRF using (11).

that this physically reasonable result holds for every spin func-
tion that we checked. Nevertheless, we have not been abléunactions whose Fourier series contains only odd harmonics, for
prove it analytically. From Fig. 1, we also see that the spin ighich one findsA(z) = —A(z + p/2) [9]. The second class
less effective in reducing the DGD whédhy- is very short; in consists of those functions that satisfyz + q) = A(—z + q),
fact, in this case, the intrinsic random fluctuations of birefrinvhereq is an arbitrary quantity. If the spin function belongs to
gence are very fast and tend to decrease the spin effect. Fordhe of these two classes, then, exploiting the symmetry prop-
same reason, we find that whés is fixed and the spin ampli- erties of A(z), we show in Appendix C tha§ = 0. So that
tude increasesp tends to decrease. ¢ = /C, notwithstanding that, in this cas@,is still given by
As the birefringence correlation length increases, the varig-0).
tion of ® versusA, presents well-defined minima and tends We tested the validity of (9) numerically and verified that it
toward the caséd r — +oo. As was already observed for po-also holds for the more realistic RMM. To accomplish these
larization-maintaining spun fibers [9], this result implies that ifasks, we performed several numerical simulations for different
L is known, it is much more effective to choose the spin ratgin functions and different values of birefringence parameters,
properly, rather than spinning as fast as possible. and in all cases, we obtained a very good agreement for both
The expression fo in the casel.r — +oo may be sim- the birefringence models. As an example, Fig. 1 shows numer-
plified. If Lr > p, then in both integrals (10), we may seical estimates of the mean DGD (circles and triangles) com-
exp(—20?u) ~ 1, andy ~ 1. As a consequence, one findgpared with (9) (solid curve). We implemented FMM and RMM
(see Appendix C§ = 0, and, therefore, the SIRF simplifies toand performed Monte Carlo simulations, solving (1) using the

® ~ +/C, whereC can be rearranged as wave-plate model [19] over an ensemble of 6000 fibers 10 km
» 9 » 9 long with 1d plates and.g = 17.7 m. Triangles refer to mean

1 1 . DGD values calculated with the FMM. Conversely, circles rep-

C~ ;/ cos2A(u)du| + ]—7/ sin2A(u)du| . (12) resent the mean DGD obtained from the RMM. We note the

0 0 very good agreement with theoretical predictions, which ex-

This specific case of polarization-maintaining fibers has beéends the practical validity of (9) also to the RMM, at least in
analyzed also by Chest al.[17], using a different approach andthe short-period case.
yielding the same result. As we see from Fig. 1, whlign — ] )
+o0, there exist values ofl, for which the reduction factor B- Without the Short-Period Assumption
vanishes. It may be proved that these amplitudes correspond téVe have not been able to find an analytical expression for the
those spins that make the DGD of a deterministic fiber a periean DGD when the short-period assumption does not hold.
odic function [18]. This result explains the numerical observdn order to investigate the system’s behavior in this case, we
tion [9] that spin functions optimized for a polarization-mainperformed numerical simulations for both the FMM and RMM
taining fiber allow quasioptimal DGD reduction, even when thiiber models, and we calculated the SIRF as defined in (8). We
fiber birefringence evolves randomly. For example, we may calsed the sinusoidal spin function reported in Section IlI-A and
culate the mean DGD of a polarization-maintaining fiber spugstimated the average DGD over an ensemble of 6000 fibers
according to the functiod (z) = Ay sin(27z/p). According to 10 km long with 16 plates, as explained before. We calculated
what is stated above, we hayA7) = /C(Ar,,), and using the evolution of the SIRF as a function of spin amplitude for
(12), we findC = JZ(2A,), where Jo(x) is the zero-order p = Lr = 4 m and for different values of the beat length.
Bessel function of the first kind. This result enables us to readiNamely, we set.z = 0.9, 1.3, 1.8, 2.7, 4.4, and 17.7 m. We
identify the optimal values of the spin amplitude. report results for the RMM in Fig. 2 and for the FMM in Fig. 3.

It may be shown that there are two classes of spin functionsln both figures, the solid curves labeled with letters from a to
for which (11) simplifies. The first of them is the class of spiti refer to increasing values of the beat length, while the dashed
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3) Section IV-C. Owing to the existence of a periodic solu-
tion for (15), we may expand this equation in a Fourier se-
ries. We then apply the short-period assumption, which al-
lows us approximate (15) with the two-dimensional (2-D)
(22).

4) Section IV-D. We solve (22) analytically and find the
evolution of (A7(z)) in the long-length regime.

SIRF

A. Equation of the Mean-Square DGD

We start by transforming the reference frame to compensate
0 ' ' ‘ ‘ 5 for both the intrinsic rotation g8(z) and the rotation induced by

Ay [rad] the spin. This transformation is achieved by the mafifix) =
R3[2A(z) +6(2)], whereRs3 is defined in (7). In the new frame,
the dynamical equation reads

Fig. 3. Numerical estimates for the evolution of the SIRF with the FMM as
function of spin amplitude, for a sinusoidal spin function wite= L; = 4 m.

The solid curves, labeled with letters from afocorrespond td s = 0.9, b b

1.3, 1.8, 2.7, 4.4, and 17.7 m, respectively. The dashed curve is obtained by 92 w

calculating the SIRF using (11). 5 0 xQ+1 0 (13)
—2[a(2) + on(z)] 0

curve is obtained calculatingwith (11). We find that there is an Whereb,, is the frequency derivative dflw), anda(z) is the
agreement between the numerical simulations and the theoregerivative of A(z). Note that the rotation matriX(z) is an
ical results of the short-period assumption only for the longegtthogonal matrix so that the modulus@fis still equal to the
value of L. For shorter values of the beat length, the SIRPGD after transformation.
shows a significant difference, and it is no longer independentBy means of the theory of stochastic differential equations
of Lp. (SDE), we can deduce from (13) an equation for the evolution
Another remarkable result is the difference between the SIRFthe mean-square DGD. Using the Dynkin’s formula, we find
curves obtained from the FMM and the RMM. In fact, we se21]
that when the short-period assumption does not hold, the SIRF O(AT2)
of the FMM has marked minima, which do not appear when _
the RMM is used. These differences deserve further investiga- 9z
tions, since it seems that the two models of birefringence yielthere A, the infinitesimal generator associated with (13), is
comparable results only in the short-period limit, implying that P
knowledge of the correct statistical model for fiber birefringence A =(—202Q; + 208 + b)) =——

= (AAT?(2)) = 20, (1 (2)) (14)

: ! . . . o
is essential in the design and analysis of spun fibers. For unspun P P
fibers, the mean DGD is independent of the statistical model + (—2a8); — 2020, — bQ3)8T + b(baT
[12], [20]. 92 822 823
+ 202 <Q‘{— — 20— + 92—> )
IV. DERIVATION OF (9) Fo0t 0082 03
In this section, we describe the derivation of (9) for the FMI\}IJS'ng. Dynkin’s formula again, we also find the differential

fiber model. This derivation, which is somewhat lengthy, is préz_quanon
sented in Sections IV-A-D. The point of this derivation is not . Q) —202  2a(z) O b,
only to obtain the form of (9). It is also to show that for any ——* = | —2a(z) —20%2 —b | {(Q)+ | 0 (15)
value ofp, Lg and L, and in the reference frame that rotates # 0 b 0 0

with the spin rate, the mean polarization dispersion vector of

- L . . Which must be solved in order to determine the evolution of
periodically spun fiber is asymptotically periodic, hence asym;z—ATz(Z)> To accomplish this task, we will use the theory
totically stable, wherz — oo. In order to facilitate the reading . o : ) L - L

. . ; . of differential equations with periodic coefficients, which is
of our proof, we summarize the main sections below:

, . briefly reviewed in Appendix A. For a thorough treatment of
1) Section IV-A. By means of (1) and using the FMM, weyiq theory, we refer to [22].

derive an equation for the evolution of the mean-square
DGD. We find that{ A7*(z)) depends oi€2(z)), whose B, Asymptotic Behavior of (15)
evolution is described by the three-dimensional differen-
tial (15).

2) Section IV-B. Itis proved that for any periodic spin func-
tion and for any initial conditionQ2(0)), (Q(z)) tends
asymptotically to a periodic orbit with the same peri-

We now prove that (15) has a unique periodic solution with
a period ofp and that, for any initial condition, the solution of
(15) converges asymptatically to the periodic one.

First of all, let us define the quantities

odicity. As a consequence, upon finding such orbit, we —20%  2a(z) 0 b
determine the behavior qfA72(z)) in the long-length B(z) = | —2a(z) —202 —b|, v=|0
regime. 0 b 0 0
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Recalling that the solution of (15) with generic initial conditiorthat, since the number; /(g1 — g2) can be arbitrarily large,
(£2(0)) is given by (A2), and using the Floquet—-Lyapunov theX(z) is asymptotically stable in any case, and (15) always has a

orem (A4), we may show thdf2(z + p)) reads unique periodic solution with a period pf
_ We conclude that the asymptotic evolution (@72(z2)) is
(= +p)) = (=) +X() 0 determined by the periodic solution of (15). In fact, (€t (z))
' 1 be the first component of such solution, then owing to (14), the
[exp(Kp) — 1] (€2(0)) + / exp(—KHF ™ (t)vdt (16)  mean-square DGD may be written
-Pp

z p

whereX(z) = F(z) exp(Kz) is the fundamental matrix. Notice (A 2()) = 2p, /(91(t))dt ~ wazl /(Ql(t>>dt (18)
that the term between curly brackets is bounded and indepen- . p

dent ofz so that the asymptotic behavior @®(z + p)) is gov-
erned byX(z). where we assume, without loss of generality, that?(0)) =

We now prove thaX(z) tends to zero as — oo; conse- 0. The next step is to find the unique periodic solution of (18).
quently, (£2(z)) tends to be periodic with perigd and, as ex- ) )
plained in Appendix A, (15) has a unique periodic solution. C- Fourier Expansion of (15)

To analyze the stability aX(z), we use Lyapunov’s second Since (15) has a periodic solution with a perioghpéind since
method [22]. First, we definey,., = max{|a(z)|}, and we B(z) is periodic with that same period, we are allowed to expand
assume that,,.y is finite. We now [etB(z) = C + @maxQ(2), the terms of (15) in a Fourier series. Therefore, we may write
where

0

+oo
—2% 0 0 (Qn(2)) = Y Qunexp(—j2mvnz), m=1,23
C= 0 —202 b n=—oo
0 b 0 +oo
0 2(z) 0 a(z) = Z an exp(—j2rvnz)
Q(z) =1 —2q(2) 0 0 n=Tee
0 0 0 wherev = 1/p is the fundamental frequency. We now insert
and a(z) = amaxq(z) SO that|g(z)] < 1 for everyz. The these expressions in (15), and we equate the harmonics of the
eigenvalues of are - same ordek:. The result is
—+oo
AL = _20'27 A2z = —20% £ /ot — b2 J2mvkQy i, ZQUzﬂl’k — Z 20 -nSlo 5 — by, 0k
so that, sincex? > 0 andb® > 0, the real parts of\; are n=-00 .
negative, as required by Lyapunov’s second method. p o2 =
We now define the diagonal matri®, = diag(g1, 92,91 — 32k e =207 Qo ke + b3k + Z 20k —n{,n
g2), whereg; andg, are arbitrary real numbers that satigfy> ) . =
g2 > 0 so thatGy, is positive definite. LeH be the solution of vk = — bk (19)
the equatiorHC + CTH = —Gy so that wheredy, is the Kronecker delta. In the cake= 0, (19) becomes
Zo0 0 +oo
H= 0 4&112 g12—b92 . 20291’0 — Z 200,802, = by,
0 gl;l)gz % + (917)322)02 nj_;oo
We next define the matri@,(z) = —HQ(z) — Q(z) TH. The W0+ Y 20001 =0
principal minors of the matrixGg + a,.xG1 are n=-00
b0 =0 (20)

Al(z7 O5max) =41, A2<Z7 amax) = 9192 . .
92(91 — 92) where we have already used the propétty, = 0, which is a

As(z, tnax) =75 (0291 — opax(91 — 92)8°(2)] - resultof the third equation of (19). As a consequence, the second

By Lyapunov’s theorem, the trivial solution of (15) is asymptoti?quat'on yields

cally stable ifA;(z, amax) > 0foranyz andfori = 1, 2, 3. Re- 1 4 1 p
calling thatg; > g2 > 0, we see that indeef;(z, ayax) > 0 =030 = —b— [ (Q3(2))dz = — /Za(z)(Ql(z»dz. (21)
fori = 1 andi = 2. Fori = 3, we have py L
o2 (g1 — g2)¢%(2) < b%g1. (17) Whenk # 0, we can solve fof2; 1, the third equation of (19),
since|q(2)| < 1, (17) holds ifa2.. (g1 — g) < b%g1, ie., and then insert the result in the second one, finding
2
ol < 9t i 1 b _ 9 2
max g1 — go J27Tl/k 1 ok QZ,k =20 Q2,k
This result states that if ... is sufficiently small so that the too

spin function evolves sufficiently slowly, thet(z) is asymptot- + Z TN T
ically stable, and2(z)) tends to be periodic. Note, however, oo ’
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If we assume thal? < (27v)?, i.e.,p? < L%, then the pre- where
vious expression may be simplified as

PP
g 2
too [?//20[ exp(—20“u)
J2mvkQy = 20292,k + Z 20 - 0 0
n=—oo cos[2A(t) — 2A(t — u)]dudt

4

p
This result, combined with (20), implies 12//20[ exp(—202u)
+oo P 0 0
G2k g = 20"k + Y 206-n Q1 + b 08k 0. x sin[2A(t) — 2A(t — u)]dudt.

In this way, we have completely determined the first component
We see that this equation, together with the first one of (19)f the periodic solution of (15).
form a new system, completely decoupled from the third equa-From (18), it follows that we must determine the average over
tion of (19). This 2-D system corresponds to the differentia period of(Q2; (z)), which can be calculated from (23) and (24),
equation to yield

Y30 e ()

wherey(z) = ((Q21(2)), <QQ(2)))T, Upon solving (22), we find with C andS being defined as in (10). By means of some algebra
the evolution ofQ; (z)) and, hence, the evolution ¢h72(z)). that we defer to Appendix B, we find that

Co = 2028, S, =20%(1-2C) (25)

= 202 202 - S,

SRR

p
/ b 202C — CS,, + SC,
0

D. Solution of the 2-D System (22)

In order to solve (22), we start by considering its fundamenta? that the average over a period(h (2)) is
matrix Y(z), which obeys the equation P

2 2
> [oumar= 555
ay —20?  2a(z) D 20 C
—_ = 2 Y(Z) 0
dz —2a(z) —20 ) )
Then, owing to (18), we obtain
with the initial conditionY(0) = I (the identity matrix). As a b2 C2 4+ S2
.. . 2 w
consequence, the explicit solution'6fz) reads as (AT(2)) = S—F = (26)
) cos2A(z)  sin2A(z) Finally, recalling that the DGD is a Maxwellian random vari-
Y(2) = exp(—20°2) (_ sin2A(z) cos 2A(z)> able, we arrive at (9).
Note thatY(z) is asymptotically stable as long as# 0 so that V. CONCLUSION

(22) has a unique periodic solution with a periodpofwhich

i : In this paper, we have derived an analytical formula for the
may be written as (see Appendix A)

mean DGD of randomly birefringent spun fibers, in the case
P of periodic spin functions with perioglthat obey the short-pe-
y(z) = [ = R(z,0)] 7" / R(z,p—t)fdt riod assumptionp? < L%. The analysis has been carried out
70 in the framework of the fixed-modulus model of birefringence,
which assumes that only the birefringence orientation varies
randomly, while its modulus is fixed. However, for complete-
ness, the results provided by the FMM have been numerically
P compared with those given by the random-modulus model of
/ —20%t) cos[2A(z) — 2A(z — t)]d¢ ~ birefringence.
, It turns out that the two models yield the same result for the
DGD, as long as the short-period assumption is satisfied. On the
contrary, when the short-period assumption is not satisfied, there
is a remarkable difference in the results that are yielded by the
two models. This difference implies that, in order to analyze in
more detail the effects of the spin process, we must know which

Equation (23) is not self-consistent, becaf¥sg is still un- model of birefringence best describes a fiber.

known. However, this obstacle may be overcome by insertingVhen the short-period assumption holds,(9) shows that
(23) into (21) and solving for-b<23 o, to obtain there exist spin amplitudes such that the DGD reaches a local

minimum. This result is indeed useful for optimized design
C of low-PMD fibers. Moreover, (9) is a first step in a more

—08230 = be, 202 — S, (24) comprehensive analysis of transmission through spun fibers.

wheref = (b, —b3,0) T andR(z,t) = Y(z + p)Y L (z + 1).
Explicitly, we now find

b
202

Q30 /exp(—QUZt) sin[2A(z) — 2A(z — t)]dt  (23)
0

with v = 202p/[1 — exp(—202p)].
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APPENDIX A As a first step, we derive a relationship ®that will be used
LINEAR DIFFERENTIAL EQUATIONS later. Let us perform the change of variable- t andy = ¢ —u,
WITH PERIODIC COEFFICIENTS so that (10) reads
Consider a first-order linear differential equation £ 2
dy / / x,y)dydx (B6)
=AMyt + £(1) (A1) )2

wherey(t) and f(t) aren-dimensional vector functions, andwhere we set
A(t) is an x n matrix function. The solution of (A1) with initial g(a,y) = 17 exp|=202(z — y)]sin[2A(z) — 2A(y)].

conditiony(0) is [22]
Let us define the bidimensional areas

t
y(t) =Y() |y(0) + /Yl(T)f(T>dT] (A2) Ty ={(z,y): 0<z<p0<y<uz} (B7)

0 Ty={(z,y):0<z<par—-p<y<0} (B8
where Y(t) is the fundamental matrixassociated with (Al), Ts={(z,9):0<z<px<y<p}. (B9)
which is ann x n matrix function obeying the homogeneous
equation Note thatT, = T3 — (p,0) so that (B6) can be rearranged as

follows, recalling that the spin function has a periocgof
ay
a = AOY() A9 s [y mdyde + exp(-20) [ g(o.dyds. (©10)
with initial conditionY(0) = I (the identity matrix). T Ts

When bothA(t) and f(t) are periodic with periog, (Al) Consider novZ,, ; by making the change of variablgsu) —
belongs to the class of Hill equations that are linear differentiél, y) above, and using the definition @f;, we may write
equations with periodic coefficients [22]. We must determine
whether there are conditions such that the corresponding soléx = | f(z,y)dydz + exp(—207p) /f(ﬂ?: y)dydz (B11)
tions of (A1) are periodic with the same peripdy examining T, I
the properties of the fundamental matrix. wher

By the Floquet-Lyapunov theorem [22], the fundamental ma- 5
trix of a system of differential equations with periodic coeffi- f(z,¥) = FQOK(QT) exp[—20%(z,y)] cos[24(x) — 2A(y)].

cients may be expressed as . .
To solve the first integral of (B11), we start by changing the

Y(t) = F(t) exp(Kt) (A4)  order of integration, finding

whereF(¢) is a periodic nonsingular matrix function with period ~ P
p, suchthaF(0) = landK is a constant matrix. The eigenvalues| f(z,y)dydz = — /exp(ZUZy) /Ea(a:)
of K are known as theharacteristic exponentsf (Al). T P Y

For what concerns o.ur_problem, we consider o_nly the case exp(—2022) cos|A(z) — A(y)]dzdy.
where all the characteristic exponents have negative real parts. _ _ o
Then, it may be shown that (A1) has a unique periodic solutiohhen, the innermost integral may be evaluated by parts, yielding

corresponding to a definite initial condition [22]. Consequently, ) v )
such solution can be written as [z, y)dyde = 20 /g(:}:, y)dzdy + 2 exp(—207p)
p T, T,
y(0) =1 -REOI™ [Ritp=nfe=r)ir  (5) ?
/ [ expleay)sinf2ar) - 24w)ldy,

0
whereR(t,s) = Y(t 4+ p)Y (¢ + s). Note that in (A5), the _ .
initial condition does not appear explicitly because the solution '€ Second integral of (B11) can be evaluated with the same
is unique procedure, and the result is

We remark also that when all the characteristic exponen ~ A
have negative real parts, théf(¢) is asymptotically stable, ff(z,y)dyd:r = 202/g(x7y)d:pdy — P/exp(ZUQy)
0

meaning that it converges to zerotas: co. Conversely, ifY(t) ¢, Ts
is asymptotically stable, then all the characteristic exponents sin[24(0) — 2A(y)]dy.
have negative real parts, and (A1) has a unique periodic solution ]
with periodp. Finally, recalling thed(0) = A(p), we obtain
APPENDIX B Ca = 20° /.0(177y)dyd:r
CALCULUS OFC,, AND S, T
In this appendix, we prove (25). We only explicitly calculate +20% exp(—207%p) /g(a;./ y)dydx

C., because one can calculag in exactly the same way. Ty
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so that, upon comparing this expression with (B10), the propedand consequentlys = 0.

Co = 202S is proved. Finally, we consider the spin functions that satisfy the sym-
metry A(z+q) = A(—z+ ¢) and show that this property yields
APPENDIX C S = 0. In the following, we report the proof for the cage= 0,
SIMPLIFICATION OF (10) but it can be extended in a straightforward way to the gage)

. P which differs only for a translation. By introducing again the
I , the int Is (10 b lified. . . .
n some cases, the integrals (10) can be simplifie variablesr = ¢t andy = t—u, the quantitys reads as in (B6) and

The first case that we consider is whé > p so that . N
exp(—202u) ~ 1 forall u € [0,p], andvy =~ 1; this case was can be rearranged as reported in (B10), wWithand T 3 defined

considered also by Cheat al. [17] using secular perturbation in (B9). we no.te that the two bldlmenspnal .aréi’qsandTP, are
theory. Thens reads as both symmetric with respectto thg straight lipe- —z+p. Asa _
consequence, both the integrals in (B10) are zero if the function
1 N g(z,y) presents an odd symmetry with respect to that straight
S= 3 / / sin[2A4(t) — 2A(t — u)]dtdu. line, as is the case for the spin functions that belong to the par-
00 ticular class we are considering. In fact, any pdinty) on the
By introducing the new variables = ¢ andy = ¢ — u, this plane is the symmetric dual of the poiat, y') = (p—y,p—1)
integral can be rearranged as with respect to the straight ling= —x + p. Then, the function
g(z’',y') can be rearranged as

g(z",y") =g9(p —y,p — x)
v
=2 exp[—20°(p—y —p+2)]s(p — y.p — )

1 T .
:2?0//0 sin[2A(z) — 2A(y)]dydz _

S :]% 0/p /ﬂ:p sin[2A(z) — 2A(y)]dydx

=3 exp[—202(z — y)|s(—y, —z) = —g(z,7)

where the last equality holds becaudg) = sin[2A(z) —
2A(y)] is a periodic function with a period gf. Finally,
the properties of trigonometric functions, we obtain

) wheres(z,y) = sin[2A(x) — 2A(y)] and the last equality holds
USING " hecause, in the case we are consideritigy, —z) = s(z,y).
As a consequencs, = 0 and® = /C.

P P

1 )

S = ?{/sm 2A(x)dx /cos 2A(y)dy ACKNOWLEDGMENT
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