
1716 IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 15, NO. 12, DECEMBER 2003

Statistical Analysis of the Performance of PMD
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Abstract—In this letter, we evaluate the performance of fixed
and variable differential group delay (DGD) polarization-mode
dispersion (PMD) compensators as the first- and second-order
PMD varies using multiple importance sampling. We show that
importance sampling yields estimates of the average penalty
with low variance over the entire region of interest of first- and
second-order PMD. We also show that there is little advantage in
using a compensator with a variable-DGD element and that the
performance of a compensator that minimizes the residual DGD
at the central frequency of the channel is considerably worse than
a compensator that maximizes the eye opening.

Index Terms—Monte Carlo methods, optical communications,
outage probability, polarization-mode dispersion (PMD).

I. INTRODUCTION

POLARIZATION-MODE dispersion (PMD) is one of the
barriers to upgrading the current per-channel data rates to

10 Gb/s and beyond in a large number of terrestrial optical fiber
transmission systems. Therefore, in recent years a considerable
effort has been devoted to mitigating the effects of PMD, based
on optical, electrical, and optoelectrical compensators [1]–[3].
Many performance studies of compensators have focused on
the average pulse spreading reduction, and hence, the average
bit-error rate (BER) of optical systems. However, reducing the
average BER may not significantly reduce the outage proba-
bility in the range of where real systems must
operate [2]. Previous studies relying on average BER reduction
have also not addressed how the penalty is explicitly related to
the first- and the second-order PMD.

In this contribution, we evaluate the performance of single-
section PMD compensators in a large region of the plane of
the magnitude of first- and second-order PMD using multiple
importance sampling applied to first- and second-order PMD
[4]. As our performance measure, we use the average value of
the eye-opening penalty as a function of the magnitude of the
first- and second-order PMD.

The use of multiple importance sampling applied to PMD al-
lows one to efficiently study important rare events with large
first- and second-order PMD. Therefore, one can accurately cal-
culate outage probabilities for the PMD-induced penalty on the
order of or less in compensated or uncompensated sys-
tems. We note that third- and higher order PMD are also in-
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cluded in our simulations, but we do not specifically bias our
simulations toward values of third- and higher order PMD other
than the moderately large values that appear naturally when one
biases the first- and second-order PMD values. In this study, we
extend the work in [3], where only outage probabilities larger
than could be efficiently computed due to the use of stan-
dard unbiased Monte Carlo simulations. We also extend the
work in [2], where importance sampling was only applied to
first-order PMD.

In order to compensate for PMD, we consider two types of
single-section PMD compensators. The first type consists of a
polarization controller (PC) followed by a polarization-main-
taining fiber that has a fixed differential group delay (DGD) el-
ement. The second type also uses a PC, but has a variable-DGD
element. The parameters of the PC’s orientation are the only
free parameters that a compensator with a fixed-DGD element
possesses, while the value of the DGD is an extra free param-
eter that the variable-DGD compensator has to control. The sim-
plicity of the implementation of these compensators and their
reduced number of free parameters to control, as opposed to
compensators with multiple sections, make them attractive as
PMD compensators.

II. THEORY

In this letter, we study a 10-Gb/s nonreturn-to-zero system
with a mean DGD of 30 ps. The fiber model uses 80 sections of
birefringent fiber with the coarse step method, which reproduces
first- and higher order PMD distortions within the probability
range of interest. Our results may be applied to 40-Gb/s systems
by scaling down the time quantities by a factor of four.

For performance evaluation, we use the eye opening, which
is defined as the difference between the currents in the lowest
mark and the highest space at the decision time. To define the
decision time, we recovered the clock using an algorithm based
on one described in [5]. The eye-opening penalty is the ratio
between the back-to-back and the PMD-distorted eye opening.
We compute the joint probability density function (pdf) of the
magnitude of first- and second-order PMD, and , using
multiple importance sampling applied to first- and second-order
PMD [4], and the average value of eye-opening penalty given
a value of and , where the subscript represents the
derivative with respect to the angular frequency.

The main idea of Monte Carlo simulations with multiple im-
portance sampling is that multiple biased simulations are used
to generate arbitrary combinations of first- and second-order
PMD, effectively covering the regions of the plane
of statistical significance. The approach that we use closely re-
sembles that of [4]. To adequately cover the plane,
we combine nine biased simulations and one unbiased simula-
tion with samples each, using balanced heuristics [4]. For
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each fiber realization, we compute, , and the eye-opening
penalty. Dividing the plane into
evenly spaced bins, we then determine the estimator of the av-
erage eye-opening penalty value and the expected variance of
this estimator in each bin, using the estimators

(1)

where , with

. Using (1), we can generate one-standard-deviation
confidence intervals for the average penalty in each bin,
which is computed using importance sampling. is the
number of samples drawn from theth biased distribution

. The vector is the set of biased parameters in the
th fiber realization of the th distribution, where is

the associated eye-opening penalty, andis equal to ten,
which comprises nine biased and one unbiased simulation. The
likelihood ratio of the th fiber realization in the th biased
distribution is , where is the
indicator function whose value is one in a bin of interest and
zero outside this bin, and are the weights associated
with each individual distribution [4]. The distributions
and are the unbiased and biased pdfs of a random vector

, respectively. Finally

(2)

(3)

It is important to note that the estimators for the mean eye-
opening penalty and the variance of the estimator given
by (1) are biased estimators. We obtain the expression for the
variance by using the law of propagation of errors, where in
first-order approximation . The bias

in the estimation of and can be reduced by computing
with a much larger number of samples than are used to compute

. This approach is practical because the computational cost
of generating fiber realizations to calculateis much smaller
than the cost to compute penalties after compensation, which
are required to compute . Here, we reduce the uncertainty in

by computing using samples per biased simulation,
while is computed using samples per biased simulation.
Using this approach, we note that is, in general, two or-

ders of magnitude smaller than . The maximum value

for is . The maximum value for is
0.14, but it is much smaller in almost all bins, typically around
0.001 and 0.002.

III. RESULTS

Fig. 1 shows contour plots (dotted lines) of the joint pdf of
the magnitude of first- and second-order PMD,and for
an uncompensated system, which have been obtained as in [4].

Fig. 1. Uncompensated system. The dotted lines are the contour plots of
the joint pdf of the normalized first-j��� j and second-order PMDj��� j. The
solid and the dashed lines are the contour plots of the conditional expectation
of the eye-opening penalty and the confidence interval of the contour plots,
respectively. The contours of the joint pdf are at3 � 10 , N = 1; . . . ; 7

and 10 , N = 1; . . . ; 11. The curves of the conditional expectation of
the eye-opening penalty in decibels are at 0.1, 0.2, 0.4, 0.6, 0.9, 1.2, 1.6, 2.2,
and 3.2.

Fig. 2. Same set of curves in Fig. 1 for a compensated system with a
fixed-DGD compensator with constant DGD element equal to 2.5hj��� ji. The
penalty curves in decibels are at 0.1, 0.2, 0.3, and 0.4.

We also show contours of the eye-opening penalty (solid lines)
for an uncompensated system and the eye-opening penalty
with one-standard-deviation added and subtracted (dashed
lines). These three sets of curves are then smoothed using an

th-order Bezier approximation, where is the number of
points in the contour. The dashed lines represent the one-stan-
dard-deviation confidence intervals for the penalty, given by

in (1), and are quite narrow except at the edges of the plot,
demonstrating the effectiveness of importance sampling in
reducing the variance of the estimator of the penalty in this
case. It is important to note that the region of the
plane that is the dominant source of a given penalty is where
the corresponding penalty level curve intersects the contour of
the joint pdf of and with the highest probability. The
contour plots for penalties beyond 1.2 dB are approximately
parallel to the second-order PMD axis, indicating the expected
result that first-order PMD is the dominant cause of penalty in
this uncompensated system.

Figs. 2–4 show the contours of the eye-opening penalties
when different PMD compensators are used. The eye-opening
penalty contours are plotted as a function of the uncompen-
sated and , and we show the same contours of their
joint pdf, as in Fig. 1. Fig. 2 shows the eye-opening penalty
with a fixed-DGD compensator with a 75-ps DGD element,
in which the polarization transformation produced by the PC
has been optimized to maximize the eye opening. Fig. 3 shows
the eye-opening penalty with a variable-DGD compensator, in
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Fig. 3. Same set of curves in Fig. 1 for a compensated system with a
variable-DGD compensator with eye opening maximization. The penalty
curves in decibels are at 0.1, 0.2, 0.3, and 0.4.

Fig. 4. Same set of curves in Fig. 1 for a compensated system with a
variable-DGD compensator with minimized DGD after compensation at the
central frequency of the channel. The solid lines are the contours of the penalty
in decibels, at 0.1, 0.2, 0.3, 0.4, 0.6, and 0.9.

which, once again, the eye opening has been maximized. Fig. 4
shows the eye-opening penalty with a variable-DGD compen-
sator, in which the residual DGD of the system at the central
frequency of the channel has been minimized after compensa-
tion.

The first observation that we make, comparing Figs. 2 and 3,
is that for penalties above 0.2 dB, the performance of the
fixed-DGD compensator is comparable to the variable-DGD
compensator as long as . The domain

corresponds to an outage probability in the
uncompensated system of less than , which is usually
negligible. As expected, we also observe that the penalty
with the variable-DGD compensator is dominated by higher
order PMD. We infer this result by noting that the contour
lines of the penalty are nearly parallel to the axis,
indicating that the penalty is nearly independent of. Perhaps
a bit more surprisingly, we observe the same result with the
fixed-DGD compensator as long as the penalty is above 0.2 dB
and . Comparing Figs. 3 and 4, we observe
that a variable-DGD compensator that minimizes the residual
DGD performs significantly worse than a compensator that
maximizes the eye opening. This result indicates once again
the importance of higher order PMD in the compensator
performance.

In Fig. 5, we plot the outage probability as a function
of the eye-opening penalty for the compensators that we study.
The outage probability is the complement of the cumulative
density function (cdfc) of the eye-opening penalty, where
cdfc , and is the corresponding pdf.

The maximum relative error for the curves shown

Fig. 5. Outage probability as a function of the eye-opening penalty margin.
The outage probability(P̂ ) is the probability that the penalty exceeds the
value displayed on the horizontal axis. 1) Dashed–dotted line: uncompensated
case. 2) Dashed line: variable-DGD compensator with the compensated DGD
minimized at the central frequency of the channel. 3) Solid line: fixed-DGD
compensator with DGD element equal to 2.5hj��� ji and maximized eye opening.
4) Solid–dotted line: variable-DGD compensator with maximized eye opening.
The error bars show the confidence interval for the curves that have at least one
bin whose relative error(�̂ =P̂ ) exceeds 10%. For those curves, we show
the error bars for one out of three consecutive bins.

in this plot equals 0.14. This plot confirms the results that we
inferred from Figs. 2–4. The performance of the fixed- and
variable-DGD compensators is comparable. The performance
of a variable-DGD compensator that minimizes the residual
DGD is significantly worse than the performance of a vari-
able-DGD compensator that maximizes the eye opening. This
result, which demonstrates the importance of higher order PMD
in determining the penalty, is consistent with [6], where it is
shown that a feedback signal provided by a frequency-selective
polarimeter is better correlated to the PMD-induced penalty
when extracting more values of the polarization dispersion
vector over the spectrum of the signal. Because second- and
higher order PMD dominate the penalties after compensation,
biasing the first-order PMD alone, as was done in [2], does not
yield correct quantitative values for the penalty because the
statistical variances are large, although the qualitative results
remain correct. This issue will be discussed in detail in a future
publication. Here, we simply note the importance of calculating
the expected statistical variance, as we do throughout this letter.

The outage probability curve referring to a variable-DGD
compensator does not equal 1 at 0 dB because higher order PMD
in the transmission line will chirp the pulses. In most cases,
the DGD of the line is small and the variable-DGD element of
the compensator can then compress the pulses, which produces
an eye opening at the sampling time that is larger than in the
back-to-back case.
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