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Abstract—Spun fibers are increasingly used in telecommunica-
tion systems because their polarization-mode dispersion (PMD) is
lower than that in unspun fibers. In this paper, we investigate the ef-
fects of a periodic spin on the PMD of fibers with randomly varying
birefringence. Numerical simulations show that when the spin pe-
riod is of the same order as or larger than the beat length, the mean
differential group delay of a spun fiber depends on the model used
for the random birefringence. We then carry out a general theo-
retical analysis using the second Wai–Menyuk model, which is the
only model of fiber birefringence to date that is consistent with
polarization optical time domain reflectometry data. Finally, we
consider some particular regimes by means of a perturbative ap-
proach.

Index Terms—Beat length, birefringence correlation length, dif-
ferential group delay, fiber birefringence, polarization-mode dis-
persion (PMD), spun fibers.

I. INTRODUCTION

W ITH the increase in bit rate and transmission distance of
optical systems, polarization-mode dispersion (PMD) is

becoming one of the most critical challenges for the deployment
of robust networks [1]. In the last few years, a great effort has
been spent to analyze and propose new techniques for PMD mit-
igation. The design and development of PMD compensators for
installed systems [2], [3] is a difficult task because of the random
nature of the fiber birefringence. A different approach to PMD
mitigation is to develop low-PMD fibers, which may be done
by spinning a fiber as it is drawn [4]. Some time ago, it was
found that it is more effective to spin fibers periodically as they
are drawn, rather than spinning them at a constant rate [5], [6].
More recently, it was theoretically proven that optimized peri-
odic spin functions yield a differential group delay that does not
increase with distance in fibers with deterministic birefringence
[7].

Manuscript received January 10, 2003; revised August 4, 2003. This
work was supported in part by the European project Information Society
Technology/All optical Terabit per second Lambda Shifted Transmission
(IST/ATLAS) and the Minestro Università e Ricerca (MIUR) 40% project
under Project 2001098217-002.

A. Pizzinat is with the Department of Information Engineering, University of
Padova, 35131 Padova, Italy, and also with the Department of Computer Science
and Electrical Engineering, University of Maryland, Baltimore, MD 21250 USA
(e-mail: annap@wave.dei.unipd.it.).

L. Palmieri and A. Galtarossa are with the Department of Information Engi-
neering, University of Padova, 35131 Padova, Italy.

B. S. Marks is with the Department of Computer Science and Electrical En-
gineering, University of Maryland, Baltimore, MD 21250 USA, and also with
the Laboratory for Physical Sciences, College Park, MD 20740 USA.

C. R. Menyuk is with the Department of Computer Science and Electrical
Engineering, University of Maryland, Baltimore, MD 21250 USA.

Digital Object Identifier 10.1109/JLT.2003.821723

When one wants to study the effects of a periodic spin, one
must take into consideration four quantities: the beat length

, which is inversely proportional to the mean birefringence
strength; the birefringence correlation length , which de-
scribes the length scale over which an ensemble of fibers with
randomly varying birefringence becomes uncorrelated; the spin
period ; and the spin amplitude . In recent papers, spun
fibers have been studied in special limits, where the analysis
can be simplified. In [7] and [8], the case of a short spin pe-
riod compared with the beat length was considered ( ).
In [7], [9], and [10], the fiber birefringence was assumed to be
deterministic, corresponding to . Only in [8] was the
random birefringence of real telecommunication fibers consid-
ered, and it was modeled with a fixed strength and varying ori-
entation (fixed modulus model, or FMM), in accordance with
the first of the two Wai–Menyuk models [11].

However, many experiments have shown that the birefrin-
gence strength is not fixed. Instead, it varies at random [12], in
agreement with the second Wai–Menyuk model (random mod-
ulus model, or RMM) [11]. In addition, in general, it is difficult
to predict the beat length and the correlation length of a
fiber. Measurements performed to date show that bothand

can vary over a wide range of values, from approximately 1
m up to tens of meters, depending on the fiber type and on the
environmental conditions [13], [14].

As a consequence, there are two topics that should be ad-
dressed. First, it is important to characterize the behavior of spun
fibers when the short-period assumption is not satisfied and to
understand in which regimes the spin is effective in reducing the
mean differential group delay (DGD). Second, it is important
to study the behavior of randomly birefringent spun fibers pre-
dicted by the RMM and to understand the differences between
the FMM and the RMM.

The first aim of this paper is to understand whether, and in
which regimes, the two models of birefringence lead to the same
mean DGD as in the case of unspun fibers. The second aim is
to obtain as much information as possible of the consequences
of the RMM by performing a theoretical analysis based on this
model. After a brief description of the two physical models
of birefringence, we perform a set of numerical simulations in
order to understand the spin effects as a function of the bire-
fringence ( and ) and the spin parameters ( and ) for
both models of birefringence. This analysis shows that in some
regimes the two models lead to significantly different results.

We analytically study PMD in spun fibers by means of the
RMM. We obtain an infinite sequence of coupled equations that
can be usefully truncated in some cases but that appear to di-
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verge in other cases. in addition, we apply perturbation tech-
niques and show how the introduction of a periodic spin influ-
ences the PMD of a randomly birefringent fiber in the different
regimes when one of the length scales, e.g., the birefringence
correlation length or the spin period, is much shorter than the
others.

II. TWO MODELS FOR THEBIREFRINGENCE

The evolution along the fiber of the polarization dispersion
vector is governed by the dynamical equation [15]

(1)

where is the angular frequency, and
is the local birefringence vector. For standard telecommunica-
tion fibers is a random function of , whose properties
may be described by appropriate statistical models. In this paper,
we consider the two Wai–Menyuk models [11], which are de-
scribed here briefly for completeness.

Both models assume that no circular birefringence is present,
i.e., . This assumption is not restrictive be-
cause the circular birefringence in telecommunication fibers is
negligible [16]. Both models also assume that only the modulus
of birefringence depends on, so that we can write

, where is the modulus and the direc-
tion. We indicate the derivative of as , and in our
simulations we assume that

(2)

as it is commonly done in the literature [11]. This assumption is
not needed for our analysis and does not qualitatively affect the
results.

The second Wai–Menyuk model is the RMM, which de-
scribes and as independent Langevin processes
[11]

(3)

where and are independent Gaussian white noise
processes. As a consequence, the modulus is a Rayleigh
distributed random variable. Parametersand define the sta-
tistical properties of the birefringence. In particular, the birefrin-
gence correlation length is , and the beat length reads

. Please note that the
new parameter is related to the statistical properties of the
modulus of birefringence by means of . Fur-
thermore, in the long-length regime, the mean DGD becomes
[11]

(4)

where the last equality is obtained using (2).
The RMM is the only fiber model proposed to date that is

consistent with polarization optical time-domain reflectometry
results [12], [17]; however, we will show subsequently that
its analysis is complex. For comparison, we consider also the
FMM, which is simpler and provides the same results as the

RMM for the mean DGD in the case of unspun fibers [11].
According to the FMM, the local birefringence vector is

(5)

where is a Wiener process, i.e., it obeys the equation
. In this expression, is a constant param-

eter, and is a white noise process [11]. According to this
model, the birefringence correlation length and the beat length
are and , respectively.

The two models that we have introduced describe the random
evolution of the intrinsic birefringence of a fiber without spin.
When the spin is applied, the local birefringence vector un-
dergoes a rotation. If we define a spin function , i.e., the
angle of the rotation imposed on the fiber, then the birefringence
vector of the spun fiber is , where

(6)

represents a rotation of anglearound the vector . As
we already stated, only periodic spin functions are considered
in this paper, and hereafterrepresents the spin period, so that

is a -periodic function.

III. N UMERICAL COMPARISON

In order to analyze the effect of spinning on the DGD of a
fiber, it is useful to introduce thespin-induced reduction factor
(SIRF) [8], which is the ratio between the mean DGD of a spun
fiber and the mean DGD that the same fiber would have if it
were not spun, as follows:

(7)

where is the mean DGD of the unspun fiber.
We implement the RMM and the FMM and perform Monte

Carlo simulations solving (1) for a set of 15 000 fibers and for
both birefringence models and different values of and .
For each value of , we consider a fiber of length
so that the transient behavior has completely died out [18]. We
then estimate the mean DGD, first for the unspun fiber and then
for a fiber with the same birefringence parameters, which is spun
using the sinusoidal function

There are four quantities that influence the mean DGD of a
sinusoidally spun fiber— , , , and . In order to sys-
tematically consider a large portion of the possible regimes, we
consider the two ratios: and . Then, each of these
ratios can be much smaller, of the same order, or much bigger
than one.

We divide the remainder of this section into three parts, cor-
responding to , , and , and for
each of them, we vary the birefringence correlation length and
the spin amplitude. Precisely, we varied uniformly from 0.5
m up to 100 m, and from 0 rad/m up to 5 rad/m with a step
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Fig. 1. Numerical estimates of the variation of the SIRF as a function of spin
amplitude, for a sinusoidal spin function withp = 5 m andL = 21.3 m.
Plots (a) and (b) correspond to the FMM and the RMM, respectively. The solid
curves, from the higher to the lower, refer toL = 1, 2, 5, 10, 20, 50, and 100
m, respectively.

of 0.05 rad/m; in this way, we considered both optimized and
nonoptimized spin functions. In the following, we report the re-
sults obtained only for three pairs of values ofand , but
we verified with further simulations that they represent the typ-
ical behavior of the three cases , , and

.

A. First Regime:

We first estimate the variation of the SIRF as a function of the
spin amplitude for 5 m and 21 m. For clarity, we
report in Fig. 1(a) and (b) only a subset of the simulations. The
curves, from the upper to the lower, are obtained for 1,
2, 5, 10, 20, 50, and 100 m. Fig. 1(a) corresponds to the results
obtained with the FMM, and Fig. 1(b) shows the results obtained
with the RMM.

We note that there is very good agreement between the two
plots, confirming that the two models of birefringence produce
the same results in the short-period limit. When is very
short, the spin is not very effective in reducing the mean DGD
for both the FMM and the RMM. However, as the correlation
length increases, deep minima are evident in the SIRF plots.
These minima correspond to those obtained in [7], for the case
of polarization maintaining fibers ( ). In addition, the
curve that corresponds to 10 m is already very close to
the curve for 100 m. This result indicates that a spun
fiber with a birefringence correlation length equal to only 10 m

Fig. 2. Numerical estimates for the variation of the SIRF with the FMM as
a function of spin amplitude, for a sinusoidal spin function withp = 4 m
andL = 4.4 m. Plots (a) and (b) correspond to the FMM and the RMM,
respectively.The solid curves, from the higher to the lower, refer toL = 0.5,
1, 2, 3, 6, 16, and 50 m, respectively.

is already very close to the deterministic limit and confirms that
when , the spin is able to give order to a randomly per-
turbed fiber.

The agreement between Fig. 1(a) and (b) also validates the
expression presented in [8] for the mean DGD of a periodically
spun randomly birefringent fiber in the short-period limit.

B. Second Regime:

As a second case, we fix 4 m and 4.4 m. The
curves in Fig. 2(a) and (b), from the upper to the lower, are
obtained for 0.5, 1, 2, 3, 16, and 50 m.

Fig. 2(a) corresponds to the results obtained with the FMM,
and Fig. 2(b) reports the results obtained with the RMM, respec-
tively. They show that there is a fairly good agreement between
the two models only for the shortest values of , when the
spin is less effective. On the contrary, as the correlation length
increases, the difference between the two models becomes evi-
dent. In particular, we note that in this regime the SIRF curves
obtained with the FMM in Fig. 2(a) have marked local minima,
whose values tend to zero as increases. Conversely, the SIRF
curves obtained with the RMM in Fig. 2(b) have local minima
whose values do not tend to zero, even for the largest values
of , and whose positions do not coincide to those obtained
with the FMM. The difference between the results in these two
models is due to the statistical variation of the birefringence
value itself. If the birefringence strength is fixed in each step of
the fiber, then the spinning may be able to exactly compensate
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Fig. 3. Numerical estimates of the variation of the SIRF with the FMM as a
function of spin amplitude, for a sinusoidal spin function withp = 18 mL =

4.4 m. Plots (a) and (b) correspond to the FMM and the RMM, respectively. The
solid curves, from the higher to the lower, refer toL = 1, 3, 5, 10, 18, 30 and
50 m, respectively.

for it, whereas in the case of randomly varying birefringence
strength, exact compensation is never possible.

C. Third Regime:

As a third case, we fix 18 m and 4.4 m. The
solid curves, from the upper to the lower, in Fig. 3(a) and (b)
correspond to the SIRF function for the following values of the
correlation length: 1, 3, 5, 10, 18, 30, and 50 m.

From Fig. 3(a) and (b), which refers to the FMM and the
RMM, respectively, it can be seen that in this case the spin is not
effective in reducing the mean DGD. Moreover, the two models
only agree for the shortest values of . Also in this regime,
the main difference between the FMM and the RMM is that, as
soon as , the SIRF has marked minima in the FMM
that do not appear when the RMM is used.

D. Summary of the Comparison

Table I shows the comparison between the FMM and the
RMM in the regimes we have identified. We note that the two
models only consistently agree in the short-period limit.

This result confirms that the formula obtained in [8] for the
mean DGD of a periodically spun fiber holds well for both bire-
fringence models when the spin period is shorter than the beat
length. Conversely, when the spin period is of the same order
or bigger than the beat length, the simpler analysis that can be

TABLE I
COMPARISONBETWEEN THEFMM AND THE RMM

performed by means of the FMM leads to a mean DGD that dif-
fers significantly from the mean DGD that is obtained with the
RMM. Therefore, the behavior of randomly birefringent, peri-
odically spun fibers differs significantly from the case of unspun
fibers, where the mean DGD is independent of the model used
for the random birefringence [11].

In addition, in Figs. 1–3, we note that the mean DGD of a
spun fiber decreases as increases, a result that also differs
from the case of unspun fibers.

Moreover, it has only recently become possible to measure
the local birefringence of optical fibers, and it is even more dif-
ficult to predict its value before drawing a fiber. As a conse-
quence, it is reasonable that a large number of spun fibers may
have a spin period of the same order as or even longer than their
beat length. Therefore, it is necessary to analyze spun fibers
using the RMM.

IV. THEORY ON SPUN FIBERS WITH THE RMM

The analysis of periodically spun fibers using the RMM can
be performed following the same procedure that was used for the
FMM [8], [19]. We start by transforming the reference frame in
order to compensate for both the intrinsic rotation of the bire-
fringence and the rotation induced by the spin, using the ma-
trix [7]. The angle in the
RMM is defined in a similar way as in the FMM, i.e., consid-
ering and for the
unspun fiber. In this case, however, is a
random process. If we indicate with and the polariza-
tion dispersion vector and the birefringence vector in the fixed
reference frame, then the change of coordinate system is imple-
mented by , and . The
dynamical equation in the rotating reference frame can be ob-
tained after calculating the matrix ; therefore, we must
calculate the derivative of and we find that

Finally, the dynamical equation in the new reference frame reads

(8)



PIZZINAT et al.: ANALYTICAL TREATMENT OF RANDOMLY BIREFRINGENT PERIODICALLY SPUN FIBERS 3359

where is the derivative of . The matrix is
orthogonal so that the modulus of still equals the DGD.
Equations (8) and (3) form a system of stochastic differential
equations that can be rewritten as

(9)

By means of the theory of stochastic differential equations [20],
we calculate the infinitesimal generatorassociated with (9),
and using Dynkin’s formula, we obtain an equation for the evo-
lution of the mean-square DGD

(10)

Using Dynkin’s formula again, we find

The iterative application of the generator leads to an infinite
sequence of relationships that can be expressed recursively as

(11)

with initial conditions
at for all .

Before proceding with the analysis, we note that (11) is an
infinite system of equations due to the correlation between the
two variables and . If they were uncorrelated, it would be
possible to obtain the same three-dimensional system as was
obtained for the FMM. For unspun fibers, it is reasonable to
assume that these two variables are uncorrelated as was shown
in [21] and is suggested by numerical simulations. Conversely,
numerical simulations show that it is not at all straightforward
to extend this property to the case of spun fibers.

The set of (11) is unlikely to be solved explicitly due to its
evident complexity. To obtain a numerical solution, it must be
possible to truncate the infinite-dimensional system. If the se-
quence that we obtained in (11) does not converge, then trunca-
tion is not possible, and one must solve the original stochastic

differential equation. We will find that in some cases the se-
quence converges and a numerical solution is possible, but in
other cases, it does not converge.

We note that in (11), the forcing term increases asbecause
. Therefore, it is convenient to introduce a

change of variables; we choose

(12)

where we recall that . Using (11), and (12),
we find

(13)

where is the Kronecker delta. Equation (13) can be rear-
ranged as follows: we define the vector , whose th
element equals with and , 1, 2. According
to (13), obeys the equation

(14)

where is a -dependent infinite-dimensional matrix, and
is a constant infinite-dimensional vector, given by (15), shown at
the bottom of the next page. Equation (14) is an inhomogeneous
infinite-dimensional system with periodic coefficients and with
the initial condition . We note that (14) is very similar
to the system obtained studying the twist induced circular bire-
fringence in long single-mode fibers [16]. Analogous to what
was reported in [16] and using the same approach, it is possible
to prove that the following properties hold:

(16)

which state that, as increases, the modulus of de-
creases very quickly. The proof is given in the Appendix. More-
over, the elements of grow linearly with so that the mod-
ulus of the derivative of decreases quickly. As a conse-
quence, it seems reasonable to truncate the recursive equations.
We set for every and for every ,
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with sufficiently large. By means of this approximation, (14)
becomes a system of differential equations of dimension,
which can be numerically integrated. Equation (10) gives an ex-
pression for the growth of the mean-square DGD in terms of

, which is proportional to . Note that even though
we are interested only in the second component , we
have to solve the whole system. We also emphasize that there is
no guarantee that this truncation will converge asincreases.

We solved the system (14), truncated at various values of
using both MATLAB and theCVODEdifferential equation

package [22]. We also exploited sparse matrix methods since the
matrix is banded with dimension 6. We then compared this so-
lution for the mean-square DGD with the mean values obtained
by Monte Carlo numerical simulations, as described in the pre-
vious section. We used this procedure for a sinusoidal spin func-
tion with several values of , , , and . In general, the
solution of the truncated system is much faster than the Monte
Carlo simulations, but the truncation does not always converge.
We found that when approaches or is bigger than , trun-
cating the system gives incorrect results.

We have found empirically that the solution of the truncated
system yields correct results with as small as 20 when both

and are smaller or of the same order as and when is
a few radians.When the spin amplitude is larger, we found that
it is necessary to truncate the system at a larger.

V. PERTURBATIVE ANALYSIS

The analysis performed in the previous section allows one to
gain partial information on the behavior of spun fibers according
to the RMM. Another approach to the problem is to use pertur-
bative methods [23], [24]. These methods are applicable when
one system parameter is much smaller than another, and conse-
quently, we will consider the case of a short spin period and the
case of a short correlation length.

For convenience, we rewrite here the first three equations of
the infinite-dimensional system

(17)

A. Case of a Short Spin Period

We consider the case in which the spin period is shorter than
the beat length and the correlation length. Under this condition,
the leading order terms of the asymptotic expansions for ,

, and are

(18)

We note that the first two equations are coupled, and along with
the initial conditions at , (18)
can be solved by means of variation of parameters. By substi-
tuting

(19)

we find that

(20)

from which we conclude that

(21)

Recalling that , we find that (21) coin-
cides with the expression obtained in this regime with the FMM
[25], confirming the agreement of the two models in the case of
fast spin.

B. Case of a Short Correlation Length

We analyze by means of the perturbative technique, the
regime , , and spin amplitudes of a few ra-

(15)
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dians. The leading-order equations in the asymptotic expansion
are

(22)

Using the initial conditions
, the leading-order solution is

(23)

Substituting the solution for in the expression for the
mean DGD, we obtain the same solution as for an unspun fiber.
The correction at the next order is

(24)

Consequently, at this order, there is no correction to .
Solving the equation for , we introduce the spin
function , and we obtain

(25)

where . Next, the equation for the second-order cor-
rection is

and we find

Finally, the sum can be integrated over
distance to obtain the mean-square DGD, according to (10),
yielding the expression

(26)

This expression was simplified under the condition .
Moreover, it coincides with that obtained for the FMM in [25],
and it has the same range of validity. In particular, it can be
noted that the factor in parentheses is always positive under the
conditions , , and the spin amplitudes of a
few radians. In addition, we have verified that if

and , (26) differs less than 5% from numerical
simulation results. If , the error is less than 5% for even
smaller values of with respect to .

VI. CONCLUSION

We carried out an extensive study of the effects of a periodic
spin on the PMD of randomly perturbed fibers, considering the
two Wai–Menyuk models of random birefringence.

Numerical simulations show that spinning is more effective
in reducing the mean DGD of a fiber when its period is shorter
than the beat length. In this case, the two Wai–Menyuk models
yield the same results. Conversely, when the spin period is of
the same order as or greater than the beat length, the mean DGD
of a periodically spun fiber strongly depends on the model used
for the random birefringence. This result contrasts with previous
results for unspun fibers.

Hence, we carried out a theoretical analysis with the random
modulus model, which is the only model consistent with exper-
imental data. The result of this study is an infinite-dimensional
system of differential equations that can be solved numerically
by truncation and yields the average behavior of the DGD with
less computational time than Monte Carlo simulations when it
converges. However, the truncation does not always converge,
and we found that the system cannot be truncated whenis of
the same order or greater than . One may object that trunca-
tion works in the same regimes where the RMM and the FMM
do provide the same mean DGD. Yet, we believe that the deriva-
tion of the infinite-dimensional system presented in this paper
is the starting point for any analytical treatment of periodically
spun fibers with the RMM, and its knowledge may open the way
to other researchers for a solution of wider validity.

Finally, we studied periodically spun fibers using the RMM
by means of perturbative techniques in the case of a short spin
period and of a short birefringence correlation length. In both of
these cases, we have been able to find an analytical formula for
the mean DGD with the RMM.

APPENDIX

Let and be two real random variables. By means of the
Schwarz inequality, it is possible to prove the property

(27)

Applying (27) to , ( , 1, 2), we obtain (16). Here,
we report the demonstration for ; the same procedure
can be followed for and . We recall that

As a consequence, we may write

(28)
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Now we would like to study the behavior of the term
. It is possible to verify inductively that

and . More-
over the factorial can be approximated using Stirling formula

. Hence, we find

which tends to zero very rapidly.
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