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Abstract—Spun fibers are increasingly used in telecommunica- ~ When one wants to study the effects of a periodic spin, one
tion systems because their polarization-mode dispersion (PMD) is must take into consideration four quantities: the beat length

lower than that in unspun fibers. In this paper, we investigate theef-  ; _ \vnich is inverselv pr rtional he mean birefringen
fects of a periodic spin on the PMD of fibers with randomly varying B ch is inversely proportional to the mean birefringence

birefringence. Numerical simulations show that when the spin pe- Stre_ngth, the birefringence Corre_zlatlon lengthr, Wh'ch de- .
riod is of the same order as or larger than the beat length, the mean Scribes the length scale over which an ensemble of fibers with
differential group delay of a spun fiber depends on the model used randomly varying birefringence becomes uncorrelated; the spin
for the random birefringence. We then carry out a general theo- period p; and the spin amplitudely. In recent papers, spun

retical analysis using the second Wai-Menyuk model, which is the a5 have been studied in special limits, where the analysis
only model of fiber birefringence to date that is consistent with '

polarization optical time domain reflectometry data. Finally, we C_an be Simplifieq. In [7] and [8], the case of_a short spin pe-
consider some particular regimes by means of a perturbative ap- 1od compared with the beat length was consideee( L5g).
proach. In [7], [9], and [10], the fiber birefringence was assumed to be
Index Terms—Beat length, birefringence correlation length, dif- deterministic, corresponding #F — oc. Only in [8] was the
ferential group delay, fiber birefringence, polarization-mode dis- random birefringence of real telecommunication fibers consid-

persion (PMD), spun fibers. ered, and it was modeled with a fixed strength and varying ori-
entation (fixed modulus model, or FMM), in accordance with
I. INTRODUCTION the first of the two Wai—Menyuk models [11].

However, many experiments have shown that the birefrin-
W ITH the increase in bit rate and transmission distance génce strength is not fixed. Instead, it varies at random [12], in
optical systems, polarization-mode dispersion (PMD) iggreement with the second Wai—Menyuk model (random mod-
becoming one of the most critical challenges for the deploymep;s model, or RMM) [11]. In addition, in general, it is difficult
of robust networks [1]. In the last few years, a great effort hag predict the beat lengthy and the correlation lengthy of a
been spent to analyze and propose new techniques for PMD Mar. Measurements performed to date show that tigshand
igation. The design and development of PMD compensators 59; can vary over a wide range of values, from approximately 1
installed systems [2], [3] is a difficult task because of the randogy up to tens of meters, depending on the fiber type and on the
nature of the fiber birefringence. A different approach to PMRyvironmental conditions [13], [14].
mitigation is to develop low-PMD fibers, which may be done agq g consequence, there are two topics that should be ad-
by spinning a fiber as it is drawn [4]. Some time ago, it Wagressed. First, itis important to characterize the behavior of spun
found that it is more effective to spin fibers periodically as thejjpers when the short-period assumption is not satisfied and to
are drawn, rather than spinning them at a constant rate [5], [Ghderstand in which regimes the spin is effective in reducing the
More recently, it was theoretically proven that optimized pefinean differential group delay (DGD). Second, it is important
odic spin functions yield a differential group delay that does ngd study the behavior of randomly birefringent spun fibers pre-
increase with distance in fibers with deterministic birefringencgcted by the RMM and to understand the differences between
[71. the FMM and the RMM.
The first aim of this paper is to understand whether, and in
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verge in other cases. in addition, we apply perturbation tedRMM for the mean DGD in the case of unspun fibers [11].
niques and show how the introduction of a periodic spin infllAccording to the FMM, the local birefringence vector is
ences the PMD of a randomly birefringent fiber in the different T

regimes when one of the length scales, e.g., the birefringence B(z,w) = b(w) (cos 260(z), sin26(z), 0) 5)

correlation length or the spin period, is much shorter than th . ) . . .
others 9 pinp wenere 6(z) is a Wiener process, i.e., it obeys the equation

df/dz = opn(z). In this expressiong ¢ is a constant param-
eter, andy(z) is a white noise process [11]. According to this

model, the birefringence correlation length and the beat length
The evolution along the fiber of the polarization dispersiogre [ = 1/(20%) andLp = 27 /b, respectively.

Il. TwWO MODELS FOR THEBIREFRINGENCE

vector{)(z,w) is governed by the dynamical equation [15] The two models that we have introduced describe the random
00(zw) 9Bz, w) evolution of the intrinsic birefringence of a fiber without spin.
027 = aa; + B(z,w) x Q(z,w) (1) When the spin is applied, the local birefringence vector un-

dergoes a rotation. If we define a spin functidgz), i.e., the

wherew is the angular frequency, aftiz, w) = (61, B2, #3)7  angle of the rotation imposed on the fiber, then the birefringence
is the local birefringence vector. For standard telecommuniagector of the spun fiber iR3[2A4(2)]B8(z), where
tion fibersB(z,w) is a random function of, whose properties

may be described by appropriate statistical models. In this paper, cos ¢ —sing 0
we consider the two Wai—-Menyuk models [11], which are de- Rs(¢) = [ sing cos¢p 0 (6)
scribed here briefly for completeness. 0 0 1

Both models assume that no circular birefringence is present, .
g P represents a rotation of angbearound the vecta(o, 0, 1). As

ie.,8 = (61,02,0)T. This assumption is not restrictive be- o . ) )
s (81,52, 0) P e already stated, only periodic spin functions are considered

cause the circular birefringence in telecommunication fibers 1§ hi dh ft h . iod h
negligible [16]. Both models also assume that only the modullfs{"'S Paper, and hereaitpirepresents the spin period, so that

of birefringence depends an so that we can writd(z, w) = A(2) Is ap-periodic function.
b(z,w)B(z), whereb(z,w) is the modulus ang@(z) the direc-

tion. We indicate thev derivative ofb(z,w) asb,, and in our lll. NUMERICAL COMPARISON
simulations we assume tha n order to analyze the effect of spinning on the of a
lat that In ord I he eff f he DGD of
ob(z,w)  blz,w) fiber, it is useful to introduce thspin-induced reduction factor
bo(2) = —5— = — (2)  (SIRF) [8], which is the ratio between the mean DGD of a spun

- . . ) . _fiber and the mean DGD that the same fiber would have if it
as itis commonly done in the literature [11]. This assumption |Sq e not spun, as follows:

not needed for our analysis and does not qualitatively affect the

results. SIRF = (AT(2)) 7
The second Wai—-Menyuk model is the RMM, which de- (ATun(2))
scribesf;(z) and B2(z) as independent Langevin processes ) ]
[11] where{Arun(z)) is the mean DGD of the unspun fiber.
We implement the RMM and the FMM and perform Monte
dp = —pBiz) + omi(z) i=1.2 (3) Carlo simulations solving (1) for a set of 15000 fibers and for
dz ' ' both birefringence models and different valued.gf and L r.

wheren, (z) andn;(z) are independent Gaussian white noiseor each value of r, we consider a fiber of length > 100L »
processes. As a consequence, the modiflusy) is a Rayleigh SO that the transient behavior has completely died out [18]. We
distributed random variable. Paramete@ndo define the sta- then estimate the mean DGD, first for the unspun fiber and then
tistical properties of the birefringence. In particular, the birefrirfor a fiber with the same birefringence parameters, whichis spun
gence correlation length i = 1/p, and the beat length readsusing the sinusoidal function

Lg =2r/(b*)¥/? = 21, /p/o = \/2r /o 5. Please note that the o

new parametes s is related to the statistical properties of the A(z) = Agsin <—z> .

modulus of birefringence by means @f") = h!(203"). Fur- p

thermore, in the long-length regime, the mean DGD becomesThere are four quantities that influence the mean DGD of a
[11] sinusoidally spun fiber-%z, Ly, p, and Ay. In order to sys-
16217 8 p tematically consider a large portion of the possible regimes, we
(AT(2)) =\ ——(b2(2)) = ——/ 52LF (4) considerthe two ratiogi/ L andLr/Lg. Then, each of these
3 whp Y 3 ratios can be much smaller, of the same order, or much bigger
where the last equality is obtained using (2). than one.
The RMM is the only fiber model proposed to date that is We divide the remainder of this section into three parts, cor-
consistent with polarization optical time-domain reflectometryesponding t/Lg < 1, p/Lp ~ 1, andp/Lg > 1, and for
results [12], [17]; however, we will show subsequently thagach of them, we vary the birefringence correlation length and

its analysis is complex. For comparison, we consider also ttiee spin amplitude. Precisely, we varieég uniformly from 0.5
FMM, which is simpler and provides the same results as theup to 100 m, andi, from 0 rad/m up to 5 rad/m with a step
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2. Numerical estimates for the variation of the SIRF with the FMM as

ig.
Fig. 1. Numerical estimates of the variation of the SIRF as a function of Spgq?unction of spin amplitude, for a sinusoidal spin function with= 4 m

amplitude, for a sinusoidal spin function with=5 m andLpz = 21.3 m. ndL, = 4.4 m. Plots (a) and (b) corres

. = 4. . pond to the FMM and the RMM,
Plots (a) and (b) correspond to the FMM and the RMM, respectively. The SO(’agspe(l:ftively.The solid curves, from the higher to the lower, refdrto= 0.5,
curves, from the higher to the lower, referfe- = 1, 2, 5, 10, 20,50, and 100 1 5 3 6 16. and 50 m respectively.

m, respectively.

. . . o is already very close to the deterministic limit and confirms that
of 0.05. rqd/m, in this way, we con5|dere<_j both optimized a'Whenp < L, the spin is able to give order to a randomly per-
nonoptimized spin functions. In the following, we report the rey,ped fiber.
sults obtained only for three pairs of valuespoénd L, but  the agreement between Fig. 1(a) and (b) also validates the
we ver|f|ed_ with further simulations that they represent the ty%‘xpression presented in [8] for the mean DGD of a periodically
ical behavior of the three caspglp < 1, p/Lp =~ 1, and spun randomly birefringent fiber in the short-period limit.
p/Lg > 1.

B. Second Regimey/Lp ~ 1

A. First Regimep/Lp <1 As a second case, we fix= 4 mandLg = 4.4 m. The

We first estimate the variation of the SIRF as a function of theurves in Fig. 2(a) and (b), from the upper to the lower, are
spin amplitude fop = 5 m andLp = 21 m. For clarity, we obtained forLr = 0.5, 1, 2, 3, 16, and 50 m.
report in Fig. 1(a) and (b) only a subset of the simulations. TheFig. 2(a) corresponds to the results obtained with the FMM,
curves, from the upper to the lower, are obtainedffgr = 1, and Fig. 2(b) reports the results obtained with the RMM, respec-
2,5, 10, 20, 50, and 100 m. Fig. 1(a) corresponds to the resuitely. They show that there is a fairly good agreement between
obtained with the FMM, and Fig. 1(b) shows the results obtainélde two models only for the shortest valuesigf, when the
with the RMM. spin is less effective. On the contrary, as the correlation length

We note that there is very good agreement between the timareases, the difference between the two models becomes evi-
plots, confirming that the two models of birefringence produagent. In particular, we note that in this regime the SIRF curves
the same results in the short-period limit. Wheég is very obtained with the FMM in Fig. 2(a) have marked local minima,
short, the spin is not very effective in reducing the mean DGWhose values tend to zero Bg increases. Conversely, the SIRF
for both the FMM and the RMM. However, as the correlatioourves obtained with the RMM in Fig. 2(b) have local minima
length increases, deep minima are evident in the SIRF plothose values do not tend to zero, even for the largest values
These minima correspond to those obtained in [7], for the casieL r, and whose positions do not coincide to those obtained
of polarization maintaining fibersi(z — ©0). In addition, the with the FMM. The difference between the results in these two
curve that corresponds for = 10 m is already very close to models is due to the statistical variation of the birefringence
the curve forLr = 100 m. This result indicates that a spumvalue itself. If the birefringence strength is fixed in each step of
fiber with a birefringence correlation length equal to only 10 rthe fiber, then the spinning may be able to exactly compensate



3358 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 21, NO. 12, DECEMBER 2003

TABLE |
COMPARISON BETWEEN THEFMM AND THE RMM
p/Lg | Ly/Lp | FMM vs. RMM
<1 Agree
E <1 ~1 Agree
n >1 Agree
<1 Agree
~1 ~1 Disagree
>1 Disagree
<1 Agree
>1 ~1 Disagree
>1 Disagree

performed by means of the FMM leads to a mean DGD that dif-
fers significantly from the mean DGD that is obtained with the
RMM. Therefore, the behavior of randomly birefringent, peri-
odically spun fibers differs significantly from the case of unspun
fibers, where the mean DGD is independent of the model used
for the random birefringence [11].
In addition, in Figs. 1-3, we note that the mean DGD of a
] spun fiber decreases ds- increases, a result that also differs
® from the case of unspun fibers.
) . .
, . . . Moreover, it has only recently become possible to measure
0 [rad] 5 the local birefringence of optical fibers, and it is even more dif-
AO ficult to predict its value before drawing a fiber. As a conse-
guence, it is reasonable that a large number of spun fibers may
Fig. 3. Numerical estimates of the variation of the SIRF with the FMM as Rave a spin period of the same order as or even longer than their
function of spin amplitude, for a sinusoidal spin function with- 18 mLz = o .
4.4 m. Plots (a) and (b) correspond to the FMM and the RMM, respectively. TR€at length. Therefore, it is necessary to analyze spun fibers

solid curves, from the higher to the lower, referlte = 1, 3, 5, 10, 18, 30 and using the RMM.
50 m, respectively.

SIRF

V. THEORY ON SPUN FIBERSWITH THE RMM
for it, whereas in the case of randomly varying birefringence ) o ] ]
strength, exact compensation is never possible. The analysis of periodically spun fibers using the RMM can
be performed following the same procedure that was used for the

FMM [8], [19]. We start by transforming the reference frame in
order to compensate for both the intrinsic rotation of the bire-

As a third case, we fipy = 18 m andLg = 4.4 m. The fringence and the rotation induced by the spin, using the ma-
solid curves, from the upper to the lower, in Fig. 3(a) and (#)ix T(z) = R3[2(A(z) + 6(2))] [7]. The angled(z) in the
correspond to the SIRF function for the following values of thBMM is defined in a similar way as in the FMM, i.e., consid-
correlation lengthZr = 1, 3, 5, 10, 18, 30, and 50 m. ering 31(z) = b(z)cos26(z) andfla = b(z)sin 26(z) for the

From Fig. 3(a) and (b), which refers to the FMM and thenspun fiber. In this case, howevé(z) = (57 + 3)'/? is a
RMM, respectively, it can be seen that in this case the spin is igndom process. If we indicate wifd; and 3 the polariza-
effective in reducing the mean DGD. Moreover, the two model®n dispersion vector and the birefringence vector in the fixed
only agree for the shortest values bf. Also in this regime, reference frame, then the change of coordinate system is imple-
the main difference between the FMM and the RMM is that, @gented by€2(z) = T(z)Qy(z), andb(z) = T(z)Bs(z). The
soon asL.r > Lp, the SIRF has marked minima in the FMMdynamical equation in the rotating reference frame can be ob-
that do not appear when the RMM is used. tained after calculating the matrikT'/dz; therefore, we must
calculate the: derivative off(z) and we find that

C. Third Regimep/Lp > 1

D. Summary of the Comparison

g
Table | shows the comparison between the FMM and the = W(Uzﬁl —mpPa).
RMM in the regimes we have identified. We note that the two
models only consistently agree in the short-period limit. Finally, the dynamical equation in the new reference frame reads
This result confirms that the formula obtained in [8] for the
mean DGD of a periodically spun fiber holds well for both bire- b b/w
fringence models when the spin period is shorter than the bea) /9 = 0 x Q4+ 0
length. Conversely, when the spin period is of the same order —2a — o (n261 — M f2)/b? 0

or bigger than the beat length, the simpler analysis that can be (8)
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where a(z) is the z derivative of A(z). The matrixT(z) is differential equation. We will find that in some cases the se-
orthogonal so that the modulus 8 =) still equals the DGD. quence converges and a numerical solution is possible, but in
Equations (8) and (3) form a system of stochastic differentiather cases, it does not converge.

equations that can be rewritten as We note that in (11), the forcing term increasesblsecause
(b*") = hl(203"). Therefore, it is convenient to introduce a

31 change of variables; we choose
2
&% PR p———

B 0N hih\(20%)" s

P2 1

_ 2h+1
riger: TR T
- - - 2a
== 20 1 (1) Yl(m + 3b(22 1 9) ya(z,h) = ;w?h“m) (12)
b2 b2 0 72 — 0B ’ hi(h + 1)} (203)"
0 b? —p

where we recall that3 = (b?) = 0%/2p. Using (11), and (12),
By means of the theory of stochastic differential equations [20}¢ find

we calculate the infinitesimal generatdrassociated with (9), dyo(z, h)
and using Dynkin’s formula, we obtain an equation for the evo- — ,—— =2p(1 = dn,0)y0(z,h — 1)
lution of the mean-square DGD — 2phyo(z, k) + (h+ 1)ys(z, h)
2 dyi(z, h)
UAT) _ 20y, 10) g =20(1 = bno)yi(z,h 1)
dz w Z 002
Using Dynkin’s formula again, we find — (2h 4+ 1) py1(z, h) + 20y(z, h) + %
W
A(bQ b2 dya(z, I
% - % +2a(bs) — p(b) % =2p(1 — 6.0)ya(z, h — 1) — 201 (2, )
Q —(2h+1 —20%(h4+1 Jh+1
d(bQs) _ — 2a(b) — p(b) — (H2Q23) (2h+1)py2(2, h) —205(h+1)yo(2, h+1)
dz (13)
W) 0205 + 2020 >0
dz p{b™Qs) +20°(Qs) + (b°2) . whereé, ¢ is the Kronecker delta. Equation (13) can be rear-

{anged as follows: we define the vecige), whose(3h + n)th

1

The iterative application of the generator leads to an infini

sequence of relationships that can be expressed recursively%semem equalg,,(z, h) W'th h 2 0andn =0, 1, 2. According
10 (13),y obeys the equation
d<b2h93> —9on2p2(p2(h—1) 2h 2h+1 d

e D) 2(h-1)41 i

dz = +207h(h + 1)(b M) whereA (z) is az-dependent infinite-dimensional matrix, amd

— (2h 4 1)p(b2" 1) + 2a(b?M Q) is a constant infinite-dimensional vector, given b)_/ (15), shown at

d(b2h+1Q,) .th(.e pottom of the next page. Eguatlo!’l (;4) is an mhomogenc_eous
- = 2h(h + 1)o?(?P=DH10,) — 2a(b* 1)) infinite-dimensional system with periodic coefficients and with

the initial conditiony(0) = 0. We note that (14) is very similar

to the system obtained studying the twist induced circular bire-
fringence in long single-mode fibers [16]. Analogous to what
was reported in [16] and using the same approach, it is possible
prove that the following properties hold:

— p(2h + 1)(B* Q) — (2 FHQg)  (11)

with initial conditions(b?"Q3) = (b2"T1Q,) = (b?h+1Qy) = 0
atz = 0 for all h.
Before proceding with the analysis, we note that (11) is 4R

infinite system of equations due to the correlation between the h

two variablesh? and€2;. If they were uncorrelated, it would be
possible to obtain the same three-dimensional system as was
obtained for the FMM. For unspun fibers, it is reasonable to
assume that these two variables are uncorrelated as was shown

2
lyo(2; h)| < W (Q3)
zh S 2
ly1(z;h)| < W ((62Q7)7)
h

in [21] and is suggested by numerical simulations. Conversely, < 2—' <(b293)2>
numerical simulations show that it is not at all straightforward ht
to extend this property to the case of spun fibers. which state that, as increases, the modulus of,(z; h) de-

The set of (11) is unlikely to be solved explicitly due to itxreases very quickly. The proof is given in the Appendix. More-
evident complexity. To obtain a numerical solution, it must bever, the elements A grow linearly withh so that the mod-
possible to truncate the infinite-dimensional system. If the selus of the derivative of,,(z; k) decreases quickly. As a conse-
quence that we obtained in (11) does not converge, then trungaence, it seems reasonable to truncate the recursive equations.

tion is not possible, and one must solve the original stochasie sety,,(z,h) = 0 for everyz > 0 and for everyh > H,

ly2(2; b)| (16)
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with H sufficiently large. By means of this approximation, (14A. Case of a Short Spin Period

becomes a system of differential equations of dimensiii  \yg consider the case in which the spin period is shorter than

which can be numerically integrated. Equation (10) gives an g peat length and the correlation length. Under this condition,
pression for the growth of the mean-square DGD in terms gfq |eading order terms of the asymptotic expansiongior),
(bS21), which is proportional tay; (z, 0). Note that even though (b2,), and (b22;) are

we are interested only in the second compongift,0), we

have to solve the whole system. We also emphasize that there is A1) ©  (b?)

no guarantee that this truncation will convergeFacreases. = + 2a<bﬂz>(0)

We solved the system (14), truncated at various values of dz
H using both MATLAB and theCVODE differential equation b))
package [22]. We also exploited sparse matrix methods since the dz = — 20(bh)
matrix is banded with dimension 6. We then compared this so- (120 >(0)
lution for the mean-square DGD with the mean values obtained T; = - 2a(b§21)(0). (18)

by Monte Carlo numerical simulations, as described in the pre-
vious section. We used this procedure for a sinusoidal spin funge note that the first two equations are coupled, and along with
tion with several values of g, L, p, andAy. In general, the the initial conditions(b2; )@ = (b2,)© = 0 atz = 0, (18)
solution of the truncated system is much faster than the Moni{gn pe solved by means of variation of parameters. By substi-
Carlo simulations, but the truncation does not always convergging
We found that wherd r approaches or is bigger thdns, trun-
cating the system gives incorrect results. (le(z))<0) = ky(2) Sin[24(2)] + ka(2) cos[24(2)]

We have found empirically that the solution of the truncated
system yields correct results wiffi as small as 20 when both (b2(2))O= —ky(2) sin[24(2)]+ k1 (2) cos[2A(2)] (19)
Ly andp are smaller or of the same orderias and whend, is
a few radians.When the spin amplitude is larger, we found th&eé find that
it is necessary to truncate the system at a lafger

k(z) = &) /0 Tanpa) = P

V. PERTURBATIVE ANALYSIS w w
The analysis performed in the previous section allows one to _ /Z _
gain partial information on the behavior of spun fibers according ha(z) = w Jo cos[24(2)] = w ¢ (20)

to the RMM. Another approach to the problem is to use pertur-
bative methods [23], [24]. These methods are applicable wh#@m which we conclude that
one system parameter is much smaller than another, and conse- 2
guently, we will consider the case of a short spin period and the (A7?) = %(02 + 5?%). (21)
case of a short correlation length.
For convenience, we rewrite here the first three equations

f ; 2\ _ 2 _ 2/72 : in
the infinite-dimensional system IQecalllng that(b*) = 20 47 /L%, we find that (21) coin

B =
cides with the expression obtained in this regime with the FMM

d(b2,) _ @ + 20(b60) (420 ][zg,scggﬁrming the agreement of the two models in the case of
dz w '
d(l;f;z) =—2a(b) — p(b) — (b?Q3) B. Case of a Short Correlation Length
d(b2Q3) We analyze by means of the perturbative technique, the

5 = 20%(Q3) — 2p(b*Q3) + (°Q2) . (17) regimeLr < Lp, Lr < p, and spin amplitudes of a few ra-

0 0 +1 0 .
0 —p 2« 0 0 -
0 -2 -p —20% 0 0 e
+2p 0 0 —2p 0 +2 0
A= 0 +2p 0 0 -3p 2« 0 0 e
o 0 +2p 0 —2a —3p —40}23 0 0
0 +2p 0 0 —4p 0 +3
0 +2p 0 0 —5p +2a
+2p 0 —2a  —5p —60?i e

u=(0 203/w 0 0 203/(1w) 0 0 20%/(2w) 0 ...)7 (15)
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dians. The leading-order equations in the asymptotic expansthy andp ~ Lp, (26) differs less than 5% from numerical
are simulation results. IH < Lg, the error is less than 5% for even

(0) 2 smaller values op /(27 Ap) with respect tal .
VI. CONCLUSION
d(b2)(®) 0) . . -
——= = —2p(bS2y) We carried out an extensive study of the effects of a periodic
dz spin on the PMD of randomly perturbed fibers, considering the
d(b2Q3)(©) 269\ (0) two Wai—Menyuk models of random birefringence.
dz = = 2p(b"2a)". (22) Numerical simulations show that spinning is more effective
) . . in reducing the mean DGD of a fiber when its period is shorter
Using the initial conditions(bQ)(® = () =

than the beat length. In this case, the two Wai—Menyuk models

() . ..
(6725)(® = 0, the leading-order solution is yield the same results. Conversely, when the spin period is of

o (b2 the same order as or greater than the beat length, the mean DGD
<b91>( ) = E[l — exp(—2pz)] of a periodically spun fiber strongly depends on the model used
P for the random birefringence. This result contrasts with previous
(b2)© =0 results for unspun fibers.

Hence, we carried out a theoretical analysis with the random
(23)  modulus model, which is the only model consistent with exper-
Substituting the solution fofb€; )(®) in the expression for the imental datg. The result of t'his study is an infinite-dimensipnal
mean DGD, we obtain the same solution as for an unspun fibsystem of differential equations that can be solved numerically

(1%Q3) @ =0.

The correction at the next order is by truncation gnd yiglds the average behaviqr of th_e DGD wit_h
less computational time than Monte Carlo simulations when it
(b)) — — (b0 >(1) converges. However, the truncation does not always converge,
dz ! and we found that the system cannot be truncated viheis of
d(bQy) (V) o W the same o_rder or greater t_hé@. One may object that trunca-
— = 2a(bQ1)™Y = 2p(bQ22)" . (24)  tion works in the same regimes where the RMM and the FMM

_ _ _ do provide the same mean DGD. Yet, we believe that the deriva-
Consequently, at this order, th?re is no correction(t@:).  tion of the infinite-dimensional system presented in this paper
Solving the equation for(b2,)(), we introduce the spin s the starting point for any analytical treatment of periodically

function A(z) = Ao sin(27z/p), and we obtain spun fibers with the RMM, and its knowledge may open the way
2 Agu (b2 to other researchers for a solution of wider validity.
(b)) = —W{Vp cos(vz) + v¥sin(vz) Finally, we studied periodically spun fibers using the RMM

by means of perturbative techniques in the case of a short spin
—exp(—pz)[pv + (¥* + p?)sin(vz)]} (25) period and of a short birefringence correlation length. In both of

these cases, we have been able to find an analytical formula for
whererv = 27 /p. Next, the equation for the second-order cothe mean DGD with the RMM.

rection is
0.\ APPENDIX
UL —p(b21)®) + 2a(bQ) V) _
dz Let v andw be two real random variables. By means of the
and we find Schwarz inequality, it is possible to prove the property
2..2/12
(b2)? = — 2450 (") {P?[1+ cos(2vz)] + 412 Efvw]® < B[’ |E[w’]. @7)

wp(p? + v2)(p? + 4?)
Applying (27) toy,(z; h), (n = 0, 1, 2), we obtain (16). Here,
we report the demonstration fgp(z; #); the same procedure
can be followed fowy, (z; k) andyz(z; k). We recall that

+2pvsin(2vz) — 2(p*v?) exp(—pz)}.

Finally, the sum(b2;)(® + (b92;)(® can be integrated over

distance to obtain the mean-square DGD, according to (10), 1
yielding the expression Yo(2, h) = W<b2hﬂg) :

2 2 2A0V2 .

(AT?) ~ (ATun”) <1 - ﬁ> . (26) As a consequence, we may write
pe+v

This expression was simplified under the conditions> Lp. yo(z,h)? = ﬁ (b*" Q3)?
Moreover, it coincides with that obtained for the FMM in [25], (1) (2‘7/3)
and it has the same range of validity. In particular, it can be 1 b4)(02)
noted that the factor in parentheses is always positive under the = (R4 (203)%" 3
conditionsLr < Lp, Ly < p, and the spin amplitudes of a (2h)1(2)

few radians. In addition, we have verified thapif(2r Ay) > = E (28)
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Now we would like to study the behavior of the term [15] C. D. Poole, J. H. Winters, and J. A. Nagel, “Dynamical equation for
/(2h)!/h!2. It is possible to verify inductively that polarization dispersion,Opt. Lett, vol. 6, pp. 372-374, 1991.

A. Galtarossa and L. Palmieri, “Measure of twist-induced circular bire-

I hp / I h ! . [l
(Qh)' S 2 _h' and (2h+ 1)_' S 2 (h + 1) More fringence in long single-mode fibers: Theory and experimedgtd,ight-
over the factorial can be approximated using Stirling formula  wave Technalvol. 20, pp. 1149-1159, July 2002.
h! ~ h"\/2mhexp (—h) . Hence, we find [17] A. Galtarossa, L. Palmieri, M. Schiano, and T. Tambosso, “Measure-

which tends to zero very rapidly.

ment of birefringence correlation length in long single-mode fibers,”
OSA Opt. Lett.vol. 26, pp. 962—-964, 2001.
(2n)! 2k 1 [18] Y. Tan, J. Yang, W. L. Kath, and C. R. Menyuk, “Transient evolution

T = m = T/ /P of the polarization-dispersion vector’s probability distributiod, Opt.

: ’ 27h ( ) Soc. Amer. Avol. 19, pp. 992-1000, 2002.

[19] A. Galtarossa, L. Palmieri, A. Pizzinat, B. S. Marks, and C. R. Menyuk,
“An analytical formula for the mean differential group delay of
randomly-birefringent spun fibersJ. Lightwave Technalvol. 21, pp.
1635-1643, July 2002.

[20] B. @ksendal,Stochastic Differential Equations Berlin, Germany:
Springer-Verlag, 2000.

[21] C.R. Menyuk and P. K. A. Wai, “Polarization evolution and dispersion
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