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Calculation, characterization, and application of
the time shift function in wavelength-

division-multiplexed return-to-zero systems
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We calculate the time shift function for collisions of pairs of pulses in different channels in a prototypical
return-to-zero wavelength-division-multiplexed system with dispersion management and precompensation
and postcompensation. Once the time shift function is known, the impairments that are due to collision-
induced timing jitter can be rapidly determined. We characterize the shape of this function and determine
how it scales with the initial pulse separation in time and with channel separation in wavelength. Finally,
we apply it to the calculation of the worst-case time shift. © 2005 Optical Society of America
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In wavelength-division multiplexed (WDM) return-
to-zero (RZ) systems, collision-induced timing jitter is
typically the major nonlinear effect that degrades the
performance. Hence several methods have been de-
veloped to model timing jitter and reduce its
effects.1–8 Much of this work is focused on
solitons,1–4,6 but recent work has focused on quasi-
linear systems as well.3,5,7,8 An important simplifying
assumption in all theoretical work except complete
simulations is that an optical pulse’s total time shift
is the sum of time shifts that are due to independent
pairwise collisions. The validity of this assumption is
not obvious because, in modern-day systems, optical
pulses overlap many other pulses simultaneously ow-
ing to dispersion. Nonetheless, simulations demon-
strate the validity of this assumption in both soliton
and quasi-linear systems,3 and some of us recently
showed that it produces a computation of the prob-
ability density function of the time shifts that is ac-
curate over 10 orders of magnitude.7 This assump-
tion vastly reduces the computer time that is
required for calculating the distribution of time shifts
and the impairments induced in WDM RZ systems.3,7

It also leads to important insights into the origin of
timing jitter and to the development of ways to re-
duce it.4,6,8,9

The analysis of collision-induced timing jitter and
its effects begins with the calculation and character-
ization of the time shift function—the function that
describes the time shift of an optical pulse in one
WDM channel as a result of a pulse in another chan-
nel, as a function of the initial time separation be-
tween the pulses and the wavelength separation be-
tween the channels. Once this time shift function has
been found, it can be used to calculate the distribu-
tion of impairments that are due to timing jitter,7 to
design line codes,9 and for numerous other purposes.
Earlier, some of us showed how to calculate this func-
tion by using an asymptotic analysis.5,10 With this

analysis, it is possible to calculate the general shape
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of this function in quasi-linear systems and to show
that the function obeys a scaling law in which its du-
ration increases as �f, and its magnitude decreases
as ��f�−2, where �f is the frequency separation be-
tween the two WDM channels.5,10 In this Letter we
calculate the time shift function in a quasi-linear sys-
tem for a realistic dispersion map with precompensa-
tion and postcompensation that closely resemble
what is found in undersea systems,7 using the com-
putationally determined two-pulse interactions.3 We
find that the scaling predicted by the asymptotic
analysis in simpler systems5,10 holds approximately,
but not exactly, and we discuss the physics of this
function’s behavior. We then apply this function to
determine the worst-case bit patterns. Determining
these patterns is important because the time shift
distribution is approximately Gaussian up to ap-
proximately half of the cutoff times determined by
these patterns.7

We refer to the pulse with respect to which we are
calculating the time shift function as the target pulse
and the channel in which it is located as the probe
channel. The other WDM channels are referred to as
the pump channels. We assume that the bit slots are
initially aligned in all the WDM channels and num-
ber the bit slots from the bit slot of the target pulse
such that the target pulse occupies bit slot 0. We
write the time shift function as ���f , l�, where l is the
initial offset of a bit slot in a pump channel that is
separated by �f from the probe channel. For a par-
ticular pattern of 1s and 0s the total time shift of the
target pulse is

Ttotal = �
k,l

�kl���fk,l�, �1�

where k indexes the pump channels and where �kl
=1 if the lth bit slot in the kth channel contains a
pulse, corresponding to a digital 1, and is 0 other-

wise. The time shift of target pulse uT after propaga-
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tion distance L as a result of a collision with a pulse
ukl in a pump channel is given by

���fk,l� =
�2

2�c
�

0

L

��kl�z�D�z�dz, �2�

where D�z� is the dispersion parameter ps/nm/km
and ��kl�z� is the collision-induced frequency shift,
given by

d��kl

dz
=

2�

ET�z�
�

−�

�

�uT�z,t��2
��ukl�z,t��2

�t
dt, �3�

where ET�z� is the target pulse energy and � is the
Kerr coefficient. This calculation takes into account
gain and loss as well as the nonlinear interactions
and dispersion.3

We consider a 10 Gbit/s system with a propagation
distance of approximately 5000 km.7 The transmis-
sion part included 100 periods of the dispersion map
consisting of 34 km of D+ fiber and 17.44 km of D− fi-
ber followed by an amplifier. The values of disper-
sion, effective core area, nonlinear index, and loss
were, respectively, 20.17 ps/ �nm/km�, 106.7 	m2,
1.7
10−20 m2/W, and 0.19 dB/km for the D+ fiber
and −40.8 ps/ �nm/km�, 31.1 	m2, 2.2
10−20 m2/W,
and 0.25 dB/km for the D− fiber. The average map
dispersion is −0.5 ps/ �nm/km�, and the amount of
precompensation and postcompensation is 1028 and
1815 ps/nm, respectively, which we optimized by
minimizing the interchannel nonlinear amplitude
distortion. We used 35 ps raised-cosine pulses with a
peak power of 5 mW; the channels were copolarized.
We did not consider noise.

In Fig. 1, we plot the time shift function, using Eq.
(2), for the two pump channels with �f= ±100 GHz.
We note first that ���f , l�=−��−�f ,−l�. This symmetry
is exact if there is no higher-order dispersion, as was
reported previously for soliton systems.4 We also ob-
serve that, as l increases from −� in the pump chan-
nel with �f=−100 GHz, the time shift starts from
zero, becomes positive, then changes sign in the
neighborhood of l=−8, becoming negative, after
which it becomes positive again, and finally decays to
zero. We have observed this behavior in a variety of
systems, and it appears to be generic. We now ex-
plain its physical origin.

In long-haul systems with dispersion management,
two pulses in different WDM channels move rapidly
back and forth with respect to each other, resulting in
multiple collisions, each of which we refer to as a mi-
crocollision. If, as is typically the case, the average

Fig. 1. Time shift function for two pump channels.
map dispersion is nonzero, two pulses gradually pass
through each other while they experience multiple
microcollisions. We refer to this process as a macro-
collision. Consider now the collision dynamics of the
target pulse with pulses in the pump channel with
�f=−100 GHz. Figure 2(a) shows the central times
for the pulses with l=1,11,−11. The evolution of the
frequency and time shifts of the target pulses owing
to collisions with these three pulses is shown in Figs.
2(b) and 2(c). The pulse with l=1 undergoes a com-
plete macrocollision, while the pulses with l
=−11,11, undergo incomplete macrocollisions that
occur at the beginning and the end of the system, re-
spectively.

First we consider a complete macrocollision, as in
l=1. In its initial phase, the two interacting pulses
undergo incomplete microcollisions. As the central
time of the pump pulse relative to the target pulse is
positive, from Eq. (3) the frequency shift after each
incomplete microcollision increases. In the second
phase of the macrocollision, the pulses undergo com-
plete microcollisions with no significant change in the
frequency shift. Finally, the pulses undergo incom-
plete microcollisions again, but now the frequency
shift decreases, and it is nearly zero when the mac-
rocollision is over. As the frequency shift is positive
during most of the macrocollision and because the
dispersion accumulated during the macrocollision is
negative, the resultant time shift is negative, from
Eq. (2). We note that the precompensation and post-
compensation fibers have almost no effect on the time
shift in a complete macrocollision. We next consider
an incomplete macrocollision at the end of the sys-
tem, as in l=11. The frequency shift is positive be-
cause the pulses interact only during the initial
phase of a macrocollision. The dispersion accumu-

Fig. 2. Collision dynamics for three pulses.
Fig. 3. Scaled time shift function.
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lated during the macrocollision, including the post-
compensation, is positive. Hence the time shift is
positive. Finally, for an incomplete macrocollision at
the start of the system, as in l=−11, the frequency
shift is negative because the pulses interact only dur-
ing the final phase of a complete macrocollision. After
pulses have separated, the frequency shift is constant
and negative. As the dispersion accumulated from
the end of the collision to the end of the system is
negative, the resultant timing shift is positive.

We found that the details of the dispersion map
and transmission distance do not qualitatively affect
the shape of ���f , l� as long as the average map dis-
persion is large such that the length of the macrocol-
lision is shorter than the system length, as is usually
the case in realistic RZ systems. When the system
length is larger than the collision length, we can still
observe a similar behavior. However, in this case the
details of the map can significantly affect the shape
of ���f , l�.5 We note that a large average dispersion
reduces the effects of nonlinearity, so the parameter
regime considered here is more important in practice.

We now discuss how the time shift function scales.
An asymptotic analysis5,10 predicts that ���f , l�
=a2��a�f ,al�, where a is a scaling parameter. In Fig.
3 we show ���f , l� for channel spacings in the range
�f=50−400 GHz. We have scaled � by ��f�2 and l by
��f�−1. The scaling relation holds approximately, but
there are significant deviations. From a physical
standpoint, the scaling with the offset l occurs be-
cause the velocity difference between a pulse in a
pump channel and the target pulse is proportional to
�f. In the scaling for �, the time shift is determined
mainly by the accumulation of residual frequency
shifts that are due to incomplete microcollisions, as
shown in Fig. 2, while the residual time shift is
small. The frequency shift due to each microcollision
is determined by the maximum overlap of pulses [Eq.
(3)], which is independent of �f, and the interaction
length, which is proportional to ��f�−1. Hence the fre-
quency shift that is due to each microcollision scales
as ��f�−1. Because the number of incomplete microcol-
lisions is proportional to ��f�−1, the total time shift
scales as ��f�−2. For this scaling to hold, the number
of incomplete microcollisions in each macrocollision
should be large, and the maximum separation of the
two pulses in each microcollision should be large
compared with the pulse duration. When �f is large,
the first condition is violated, and oscillations are vis-
ible when �f=400 GHz. When �f is small, the second
condition is violated, blurring the distinction between

Fig. 4. Worst-case time shift versus number of channels.
complete and incomplete macrocollisions, so the tran-
sition between the two occurs more gradually, as can
be seen when �f=50 GHz.

Given ���f , l�, we determine the worst-case time
shift from Eq. (1) by setting �kl=1 when ���fk , l��0
and �kl=0 when ���fk , l��0 or vice versa. From the
relation ���f , l�=−��−�f ,−l�, we find that the worst
case corresponds to an opposite choice of 1s and 0s in
channels with ±�f, just as Xu et al.4 discovered for
solitons. From scaling relation ���f , l�=a2��a�f ,al�,
we would also conclude, with Xu et al.,4 that the
maximum time shift increases logarithmically with
the number of channels, as shown in Fig. 4, where we
have fitted a logarithmic function of the form a
+b log N. This scaling relation breaks down when all
microcollisions are complete, which corresponds to
N�16 for the system that we studied. However, the
residual time shift that is due to microcollisions still
scales as ��f�−2, because the frequency excursion is
proportional to ��f�−1 and so is the length of the mi-
crocollision. Hence, as shown in Fig. 4, the maximum
time shift continues to increase logarithmically be-
yond N=16.

In conclusion, we have discussed the importance of
the time shift function and calculated it for a proto-
typical quasi-linear WDM–RZ system with precom-
pensation and postcompensation. We described the
physical origin of its characteristic shape, which we
have observed in a variety of systems. We also dis-
cussed its scaling properties and the limits in which
this scaling holds. Finally, we applied the time shift
function to the calculation of the worst-case time
shift.
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