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We describe a robust shooting algorithm to model backward-pumped Raman amplifiers. This algorithm uses a
continuation method and a Jacobi weight in conjunction with the shooting algorithm. We compare this algo-
rithm to the commonly used relaxation algorithm. We find that the shooting algorithm is more flexible, in that
it can be applied to amplifiers in which one fixes the gain, in contrast to the standard relaxation algorithm,
which can be applied only to two-point boundary-value problems. However, it is less efficient when applied to
two-point boundary-value problems, in that it requires more computer time. © 2005 Optical Society of
America
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. INTRODUCTION
iber Raman amplifiers have become important in recent
ears. By using multiple pumps, one can tailor the gain
ver a large bandwidth. Moreover, the gain is spatially
istributed, leading to an improvement in the signal-to-
oise ratio relative to systems that employ only erbium-
oped fiber amplifiers.1 The power variation in backward-
umped Raman amplifiers is described by a set of coupled
ifferential equations that accounts for both fiber attenu-
tion and the nonlinear coupling between waves due to
timulated Raman scattering. With forward pumping, it
s not difficult to numerically solve these coupled equa-
ions using standard integration techniques. However,
ackward pumping complicates the problem, because the
nput signal powers are specified at one end of the fiber,
hereas the input pump powers are specified at the other
nd. This two-point boundary-value problem is usually
olved with an iterative scheme.2

When an algorithm for numerically solving a problem
uch as this two-point boundary-value problem is de-
igned, the algorithm must possess the following charac-
eristics: speed, accuracy, robustness, and flexibility.
peed refers to minimizing the amount of computer time
eeded to solve a given problem. Accuracy refers to the
mount of the error associated with a given integration
0740-3224/05/102083-8/$15.00 © 2
cheme or iterative method, given the integration step
ize and the number of iterations. Since the common
ethods for solving the Raman equations are iterative,

ne is concerned with whether the method converges. We
ay that a method is robust if it converges for a realistic
ange of parameters. Finally, a flexible method is an algo-
ithm that can be applied to a large class of problems. In
ur context, a flexible method should be able to solve both
he problem in which boundary values for the pumps are
pecified and the problem in which one fixes the gain of
he Raman amplifier. Both conditions are important in
ractice.
One of the most common approaches for solving the

wo-point boundary-value problem is to first integrate the
ignal waves forward using a fixed pump profile and then
o integrate the pump waves backward using a fixed sig-
al profile to ensure that both boundary conditions are
utomatically satisfied. This relaxation algorithm is then
terated until the solution converges.3,4 The relaxation al-
orithm is fast and accurate, and for the problems we
ave considered (up to eight pump waves and 100 signal
aves with a realistic set of parameters), it is robust.
owever, it is only applicable to two-point boundary-

alue problems. One often wants to fix the amplifier’s
ain rather than the input pump power. In this case, one
005 Optical Society of America
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ust specify the distance-integrated pump power rather
han the boundary value, which is the input power.5–7

his problem is no longer a two-point boundary-value
roblem, and the relaxation algorithm is not flexible
nough to handle it.

In this paper, we describe the alternative approach of
sing a shooting algorithm to solve the propagation equa-
ions of Raman amplifiers.2,8 Although this method has
een presented previously in the literature,9–11 we
resent extensions and details about the implementation
f the shooting algorithm. We show that when applied ap-
ropriately, the shooting algorithm is as accurate and ro-
ust as the relaxation algorithm while being flexible
nough to satisfy the constraint of fixed gain and, in prin-
iple, other constraints.7 We show a comparison of two in-
egration techniques combined with the shooting
lgorithm—the improved Euler method and the power-
verage method3—to investigate efficiency and conver-
ence. We also investigate the use of a Jacobi weight and
continuation method, in which the pump powers are

radually increased to the desired values. Using the Ja-
obi weight and the continuation method in conjunction
ith the shooting algorithm yields a very robust algo-

ithm for solving the Raman amplifier equations. How-
ver, using these extensions typically causes the shooting
lgorithm to be slower than the relaxation algorithm,
hen they can both be applied to the same problem.
ence, if one is solving a two-point boundary-value prob-

em, one should use the relaxation method; whereas if one
equires a different constraint, the shooting method is
referred.

. DESIGN ALGORITHM
e describe wave propagation in a backward-pumped,
ultiple-wavelength fiber Raman amplifier using a

ystem of coupled equations that includes the effects of
pontaneous Raman scattering and Rayleigh
ackscattering.3,12–16 The pump-to-pump, pump-to-signal,
nd signal-to-signal Raman interactions are considered in
he coupled equations

±
dPk

dz
= − �kPk + �

j=1

m+n

gjkPjPk, �1a�

±
dPASE,k

dz
= − �kPASE,k + �

j=1

m+n

gjkPj�PASE,k + h�k��Fjk�,

�1b�

−
dPSRB,k

dz
= − �kPSRB,k + �

j=1

m+n

gjkPjPSRB,k + KPk, �1c�

dPDRB,k

dz
= − �kPDRB,k + �

j=1

m+n

gjkPjPDRB,k + KPSRB,k,

�1d�

here n is the number of pump waves and m is the num-
er of signal waves. The values Pk, �k, and �k describe, re-
pectively, the power, frequency, and attenuation coeffi-
ient for the kth wave, where k=1,2,… ,m+n. The
uantities PASE,k, PSRB,k, and PDRB,k are the powers corre-
ponding to amplified spontaneous emission (ASE) noise,
ingle Rayleigh backscattering (SRB), and double
ayleigh backscattering (DRB), respectively. The gain co-
fficient gjk describes the power transferred by stimulated
aman scattering between the jth and kth waves and

s given by gjk= �1/2Aeff�gj��j−�k� for �j��k and gjk=
�1/2Aeff���k /�j�gk��k−�j� for �j��k, where gi���� is the
aman gain spectrum measured with respect to the pump

requency �i, shown in Fig. 1 for silica fiber at the pump
avelength �0=1 �m, and Aeff is the fiber effective area.
he temperature-dependent term contributing to ASE
oise is given by Fjk=Nphon+1 for �j��k, Fjk=−Nphon for
j��k, where Nphon= �exp�h��j−�k� /kBT�−1�−1. Here, the
arameters K, T, kB, and h are the Rayleigh backscatter-
ng coefficient, the temperature of the system, Boltz-

ann’s constant, and Planck’s constant, respectively. For
fiber span of length L, the boundary conditions are de-

ned at z=0 for the signal waves Pk�0�=Pk0 �k
1,2,… ,m�, and at z=L for the backward-propagating
ump waves Pk�L�=Pk0 �k=m+1,m+2,… ,m+n�. In Eqs.
1a) and (1b), one uses the + sign for forward-propagating
aves and the − sign for backward-propagating waves.
quations (1) are valid under the assumption that the
ain in the Raman amplifier is due only to pump-to-signal
nd signal-to-signal Raman scattering. Therefore we ne-
lect the Raman interaction of the ASE, SRB, and DRB
ith the pumps and signals, as this interaction is very

mall. Also, polarization effects have been neglected in
qs. (1).
Previous publications that describe the numerical

mplementation of the backward-pumped Raman ampli-

ig. 1. (a) Raman gain spectrum gR���� of a typical silica fiber
t the pump wavelength �0=1 �m. (b) Loss profile for a typical
ilica fiber.
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er model use the relaxation algorithm, in which the or-
inary differential equations (ODEs) corresponding to
orward-propagating waves are decoupled from the ODEs
orresponding to backward-propagating waves.3,4 Each
et of ODEs is then solved independently with the appro-
riate boundary conditions. With this algorithm, the
oundary conditions are automatically satisfied, and the
teration is carried out until the entire system of ODEs is
lso satisfied to the desired accuracy. In this paper, we
resent a shooting algorithm, which is an alternative to
he relaxation algorithm. Using the shooting algorithm,
ne solves all of the differential equations simultaneously
n the forward direction using an estimate of the pump
utput powers. Thus the ODEs are automatically satisfied
o the order of accuracy of the numerical integration
cheme, and the iteration is carried out until the bound-
ry conditions or some other shooting target is satisfied.
o backward integration or decoupling of the system of
DEs is necessary. However, one must iterate the solu-

ion until the boundary conditions or other target condi-
ions that specify the solution uniquely are satisfied.

. NUMERICAL MODEL AND SIMULATION
PTIMIZATION
. Shooting Algorithm
he solution that we describe below solves only Eq. (1a).
sually, ASE, SRB, and DRB wave powers are small.
ence, they can be treated as perturbations.15,17 In this

ase, ASE, SRB, and DRB can be included after Eq. (1a) is
olved, since Eqs. (1b)–(1d) are decoupled from Eq. (1a).
hen one has a large Raman pump, Eqs. (1a)–(1d) can be

olved together by using the iterative algorithm described
n this paper. The ASE, SRB, and DRB waves can be con-
idered as additional signal or pump waves according to
heir propagation direction with zero input power.18 The
wo-point boundary-value problem may be stated math-
matically as follows,

dP

dz
= h�P� = �A + G�P��P, �2�

ith the boundary conditions

Pk�0� = Pk0 k = 1,2,…,m,

Pk�L� = Pk0 k = m + 1,m + 2,…,m + n, �3�

here P and h are vectors of length m+n, which is the
otal number of waves, A is the �m+n�� �m+n� diagonal
atrix responsible for the fiber attenuation, and G�P� is

he �m+n�� �m+n� matrix corresponding to the Raman
cattering terms in Eq. (1a). The example of the shooting
lgorithm that we present in this section uses integration
rom z=0 to z=L so that the pump input boundary condi-
ions at z=L are the shooting “targets.” One can alterna-
ively choose the shooting direction from z=L to z=0. The
ffectiveness of the shooting direction depends on the ini-
ial guess and other parameters. One can also modify the
arget for other applications, including in particular the
onstant gain criterion, which often appears in practice.7

The shooting algorithm that we implement is as fol-
ows: Let P�z� be the true solution of Eq. (2), and let P
0
P�0�. Let P̄0 be an approximation to P0, and define P̄�z�
o be the solution of the initial value problem:

dP̄

dz
= h�P̄�, P̄�0� = P̄0. �4�

hus the variable P̄ satisfies the differential equations
ut not the correct boundary conditions. We define the
ector

�P̄�0�,P̄�L��

��
P1�0� − P̄1�0�

P2�0� − P̄2�0�

]

Pm�0� − P̄m�0�

Pm+1�L� − P̄m+1�L�

]

Pm+n�L� − P̄m+n�L�

	 = �
0

0

]

0

Pm+1�L� − P̄m+1�L�

]

Pm+n�L� − P̄m+n�L�

	 �5�

nd note that the first m elements of vector f are zero.
he last n elements of vector f are not zero in general,
ince the pump waves that we obtain from the numerical
ntegration do not automatically satisfy the boundary
onditions at L. Note that Eq. (5) is appropriate only for
he case of the two-point boundary-value problem. We
ow construct the Jacobian matrices Q, M, and N, whose
lements are defined as

Qij =
�hi

�Pj
�z�, Mij =

�fi

�Pj�0�
, Nij =

�fi

�Pj�L�
, �6�

or i, j=1,2,… ,m+n. Note that in matrix M, the upper
eft m�m block is the identity matrix. In matrix N, the
ower right n�n block is the identity matrix. Let 	 P�z�
P�z�−P̄�z�. Finding P�z� is then equivalent to finding
P�z� so that

d�P̄ + 	 P�

dz
= h�P̄ + 	 P�, f�P̄�0� + 	 P�0�,P̄�L� + 	 P�L��

= 0. �7�

xpanding these expressions in a first-order Taylor series
nd using Eq. (4) yields the approximate formula



T
p

	

fi
p
p
p
t

w
t
T
t
s
c
e
o

=
	
v

P

c
s
i
s
s
O
t
o
w
g
t
t

B
I
s
t
p
E

w
z
b

E

w
s
t

n

=

=

P

b
a

C
I
e
t
A
e
v
m
c
t
t
t

w
i

2086 J. Opt. Soc. Am. B/Vol. 22, No. 10 /October 2005 Hu et al.
d 	 P

dz
= Q 	 P, M 	 P�0� + N 	 P�L� = − f�P̄�0�,P̄�L��.

�8�

he partial derivatives are to be evaluated for the ap-
roximate solution P̄.
We now describe an iterative procedure for determining

P and hence P.
1. Estimate the pumps’ boundary values at z=0. We

rst integrate the signal waves forward to get a signal
rofile assuming no pump wave. Then we integrate the
ump waves backward using this signal profile. The
ump power at z=0 will be a good initial guess to start
he shooting iteration.

2. Simultaneously integrate from z=0 to z=L,

dU

dz
= QU U�0� = I, �9a�

dP̄

dz
= h�P̄� P̄�0� = P̄0, �9b�

here I is the identity matrix of dimension m+n. We used
he improved Euler method except as otherwise stated.
his method is second-order accurate.19 If we are solving

he two-point boundary-value problem, then we know the
ignals’ boundary conditions at z=0, which means that m
omponents of P�0� are known. Therefore only n�n+m�
lements in the matrix U must be calculated, instead
f �n+m�2.

3. Compute f�P̄�0� ,P̄�L��.
4. Solve the linear algebraic system �MU�0�+NU�L��S

−f�P̄�0� ,P̄�L��. We used Gaussian elimination.20 Then
P�z�=U�z�S satisfies the required Eq. (8), as may be
erified by direct substitution.

5. Obtain 	 P0=U�0�S, which provides a correction to
¯ �0�=P̄0. Replace P̄0 with P̄0+	 P0 for the pumps.

6. Go to step 2, and iterate until solution converges.
Again, to summarize our shooting algorithm, one must

hoose initial guesses for all pump-power values at the
ignal input side. Before the first shooting iteration, we
ntegrate the ODEs by numerical integration from the
ignal input side to the signal output side under the as-
umption that there is no pump. Then we integrate the
DEs for the pump power from the signal output side to

he signal input side with the signal-power values that we
btained from the first step. The pump-power values that
e obtain at the signal input side are used as the initial
uesses to start the shooting iteration. Then we integrate
he coupled Raman equations for all signals and pumps in
he forward direction.

. Average Pump-Power Model
n Subsection 3.A, we described the shooting method to
olve the two-point boundary-value problem. If one wants
o solve the equations for the case of fixed average pump
ower, the algorithm is modified as follows.
quation (5) changes to
f�P̄�0�, Ī� � �
P1�0� − P̄1�0�

P2�0� − P̄2�0�

]

Pm�0� − P̄m�0�

Im+1 − Īm+1

]

Im+n − Īm+n

	 = �
0

0

]

0

Im+1 − Īm+1

]

Im+n − Īm+n

	 , �10�

here Ij=
0
LPj�z�dz, j=m+1,m+2,… ,m+n is the

-integrated pump power. Correspondingly, Eq. (6) must
e changed to

Qij =
�hi�z�

�Pj�z�
, Mij =

�fi

�Pj�0�
, Nij =

�fi

�Ij
, �11�

quation (7) changes to

d�P̄ + 	 P�

dz
= h�P̄ + 	 P�, f�P̄�0� + 	 P�0�, Ī + 	 I� = 0,

�12�

here 	 Ī=
0
L	 P�z�dz. Similarly, expanding these expres-

ions in a first-order Taylor series and using Eq. (4) yields
he approximate formula

d	 P

dz
= Q	 P, M	 P�0� + N	 I = − f�P̄�0�, Ī�. �13�

Following the iterative procedure in Subsection 3.A, we
eed only to change steps 3, 4, and 5 to the following:
3. Compute f�P̄�0� , Ī�, and Ū, where Uij=
0

LUij�z�dz, i
m+1,m+2,… ,m+n; j=1,2,… ,m+n.
4. Solve the linear algebraic system �MU�0�+NŪ�S

−f�P̄�0� , Ī�.
5. Obtain 	 P0=U�0�S, which provides a correction to

¯ �0�=P̄0. Replace P̄0 with P̄0+	 P0 for the pumps.
After changing the above steps, the algorithm can then

e used to solve the problem in which the distance-
veraged pump power is specified.7

. Integration Method
n the integration process, one solves the coupled Raman
quations by taking small steps in z using a numerical in-
egration method, such as the improved Euler method.
nother method that was recently described uses the av-
rage pump power in a z step, assuming an exponential
ariation in z.3 We have found that this power-average
ethod is also second-order accurate but is more compli-

ated than the improved Euler method, since it requires
he evaluation of exponential functions. In Fig. 2 we show
he run time for the two integration schemes. We define
he convergence parameter c as

c =� 1

nl�i=1

n

�
j=1

l �Pi
�r��zj� − Pi

�r−1��zj�

Pi
�r��zj�


2�1/2

, �14�

here the superscript r indicates the iteration number, l
s the number of z steps used in the integration, and n is
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he number of pumps. We have carried out a simulation of
ight pumps and 100 signals that iterates until a c=5
10−4 is achieved. Figure 2 shows that for the same ac-

uracy, the two integration methods have very similar run
imes. Since the improved Euler method is simpler, we
onclude that it is to be preferred.

. Weighted Jacobi Method
or all the problems to which we applied the relaxation
ethod, up to eight pump waves and 100 signal waves,
e found that this method converges without any prob-

em. By contrast, we found that in order for the shooting
ethod to converge, we have to supplement it with a Ja-

obi weight, 
. Given a vector of pump output powers
rom the rth iteration, P0

�r� at z=0, the shooting algorithm
rovides a new vector of pump output powers at z=0 for
he next iteration, P0

�r+1�, that attempts to correct for the
rror. Rather than using P0

�r+1� directly, we define

P0,J
�r+1� = �1 − 
�P0

�r� + 
P0
�r+1� �15�

nd use P0,J
�r+1� as the vector of pump powers at z=0 for the

ext iteration. Note that 
=1 corresponds to the direct
sage of the result of the shooting algorithm. This tech-
ique speeds the convergence of the iteration when 
 is

ig. 2. Simulation time as a function of the �z step size for dif-
erent integration types with the threshold c=5�10−4. Squares
enote the trapezoidal rule, and triangles denote the power-
verage method.

ig. 3. Convergence parameter c versus iteration number for
ifferent Jacobi weights 
.
hosen appropriately for the problem. In Fig. 3, we plot
he convergence parameter c versus iteration number for
any values of 
 and for the same simulation parameters

s in Fig. 2. Figure 3 shows that the convergence rate
hanges considerably for different choices of 
. For some
alues, c decreases quite rapidly, indicating fast conver-
ence, whereas for others there is no convergence. The
hoice of 
 is problem dependent, and some experimenta-
ion is needed to find the optimum value.

. Continuation Method
e have found that the algorithm that we present here

ometimes has difficulty converging when the pump
ower is high. The value of the pump power that causes
ifficulty is problem dependent. For systems with 100 sig-
al waves and eight pump waves using our fiber param-
ters, we found that this difficulty will occur when the
ump power reaches 140 mW for every pump wave. For
ystems with 100 signal waves and two pump waves, we
ound that the algorithm has no problem until the pump
ower reaches 1900 mW for each pump wave. In our
imulation, the signal powers are all set to 0.5 mW. To ob-
ain convergence, we have used a continuation method in
hich the pump power is gradually raised to its desired
alue. When it is used in conjunction with a shooting al-
orithm, the continuation method therefore allows us to
olve problems that do not converge with the shooting al-
orithm alone.21 Figure 4 shows a block diagram of our
mplementation of the continuation method. Let P̄desire�L�
e the set of desired pump input powers and suppose that
he shooting algorithm fails to converge. If the shooting
lgorithm converges for a set of pump values P̄try�L�
�P̄desire�L�, we wish to slowly increase � to 1 in a way

hat the shooting converges. We follow the algorithm
hown in Fig. 4 for choosing the value of �. In every step,

Fig. 4. Block diagram of the continuation method.
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he initial choice for the pump powers for the Raman it-
ration at a new � comes from the previous iteration.

. RESULTS AND COMPARISON
n this section, we compare the run time for the relax-
tion and shooting algorithms to solve the two-point
oundary-value problem. As an example, in a system of
ength L=50 km with one pump wave and 10 signal
aves, the shooting algorithm is about four times slower

han the relaxation algorithm. For a system with eight
ump waves and 100 signal waves, the shooting algo-
ithm is about nine times slower than the relaxation al-
orithm. The shooting algorithm is slower because of its
omplexity and the extensions required for convergence.
owever, as we pointed out, the shooting algorithm is
ore flexible in that it can solve the Raman equations un-

er the constraint of specified averaged pump power. In
ig. 5, we show the convergence of the shooting algorithm
hen four pump waves are constrained to have a
istance-averaged power of 20 mW, with 50 signal waves.
he initial guesses to start the shooting algorithm are the
ump output powers at z=0 that give 20 mW average

ig. 5. Convergence of the shooting algorithm with the con-
traint that the averaged pump power equals 20 mW for four
ump waves with 50 signal waves. The pump waves are equally
paced between 1437 and 1462 nm. The signal waves are equally
paced between 1530 and 1570 nm with an input signal power of
3 dBm per channel. (a) Average input pump power as a function
f iteration number. (b) Input pump power at z=L as a function
f iteration number.
ump power if the pump waves experience only the fiber
oss. Note that as the average pump powers converge to
he same value shown in Fig. 5(a), the input pump powers
t z=L converge to different values shown in Fig. 5(b), be-
ause of pump-to-pump and pump-to-signal interactions.
n this simulation, the 50 signal waves are spaced equally
etween 1530 and 1570 nm with an input signal power of
3 dBm per channel. The output signal powers are be-
ween −10 and −5.8 dBm. The pump waves are spaced
qually between 1437 and 1462 nm. From the simulation,
e obtain input pump powers between 137 mW and 263
W, as shown in Fig. 5(b). Figure 6 shows the same con-

ergence for eight pump waves and 100 signal waves for
he same shooting target of 20 mW average pump power.
n this case, the continuation method was used in combi-
ation with the shooting algorithm, since the algorithm
annot converge for the desired 20 mW shooting target
ith the initial guesses for the pumps obtained from the
ber loss. Therefore the continuation method sets the
hooting target as 10 mW, following the flowchart in
ig. 4, and after convergence at the fifth iteration, the
hooting target is reset to 20 mW. The initial guess for the
ixth iteration is determined from the converged pump
utput power at z=0. In Fig. 6(a), the solid curve with

ig. 6. Convergence of the shooting algorithm with the con-
traint that the averaged pump power equals 20 mW for eight
ump waves and 100 signal waves. The pump waves are equally
paced between 1430 and 1490 nm. The signal waves are equally
paced between 1525 and 1605 nm with an input power of
3 dBm per channel. (a) Average input pump power as a function
f iteration number. (b) Input pump power at z=L as a function
f iteration number.
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quares shows the evolution for the pump with the short-
st wavelength that needs the highest input pump power
o yield the same average pump power. In this simulation,
00 signal waves are spaced equally between 1525 and
605 nm with an input power of −3 dBm per channel. The
utput signal power is between 0.72 and −6.8 dBm. The
ump waves are spaced equally between 1430 and 1490
m. The input pump powers obtained from the simulation
re between 49 and 399 mW. Setting a larger target
ower will result in more iterations of the continuation
ethod illustrated in Fig. 4. The threshold of c=1�10−3

as the convergence criterion used to finish the iteration
hen generating Figs. 5 and 6. The Raman gain and loss
rofile that we used are shown in Fig. 1.

. VALIDATION
o validate our code, we have compared our simulation re-
ults with other published results.4 Figure 7 shows the
ower evolution of the backward-propagating pumps for a
ystem with eight pump waves and 100 signal waves, us-
ng the relaxation algorithm and the shooting algorithm.
he parameters that we used—Raman gain, loss, pump
avelength, pump power, signal wavelength, and signal
ower—are inferred from the description in Ref. 4. The
hreshold of c=5�10−4 was the convergence criterion

ig. 7. Power evolution of the backward-propagating pumps. (a)
esult using the relaxation algorithm. (b) Result using the shoot-

ng algorithm. The threshold of c=5�10−4 was the convergence
riterion used to stop the iteration for both algorithms.
sed to stop the iteration for both the relaxation algo-
ithm and the shooting algorithm, and hence both meth-
ds are able to achieve the same level of accuracy. The
ump evolution shown in Fig. 7 yields good agreement
ith Fig. 5 of Ref. 4. Because this problem can be solved
sing both algorithms, we also compared the run time of
he two algorithms. We found that the relaxation algo-
ithm solves this problem in about 14 s on an Intel Pen-
ium III 700 MHz machine, while the same problem using
he shooting algorithm takes about 150 s. Hence, the run
ime is about 11 times slower for the shooting algorithm.
n the example that we used in Section 4, which had
ower pump power and signal gain, we found that the
hooting algorithm is about nine times slower than the re-
axation algorithm. The run time ratio is problem depen-
ent, although we expect the shooting algorithm to gen-
rally be slower.

We have demonstrated the shooting algorithm’s
exibility—and in particular its ability to handle the con-
traint of a specified average pump power—by its success-
ul application to a genetic algorithm in which the pump
pacing was optimized to minimize the gain ripple.7 We
alidated it at the time by comparison to previously pub-
ished results by Perlin and Winful.5 Finally, we have also
ompared our simulation results for signal and noise with
xperimental data in our work in Ref. 22. All of these com-
arisons show good agreement.

. CONCLUSION
o summarize, we present a multiple shooting algorithm
or solving the Raman amplifier equations. We have
hown that in conjunction with the continuation method,
he shooting algorithm with the improved Euler integra-
ion method and a Jacobi weight is a robust algorithm for
his problem. However, the shooting method is typically
lower than the relaxation method because of these exten-
ions. Hence, when one is solving a two-point boundary-
alue problem, the relaxation method should be used. On
he other hand, the shooting method is more flexible than
he commonly used relaxation method, as it can solve the
aman equations subject to a wide variety of constraints,

ncluding the constraint of fixed gain, rather than being
estricted to two-point boundary-value problems.

CKNOWLEDGMENTS
his work is supported by the U.S. Department of Energy
nd the National Science Foundation.

J. Hu, the corresponding author, can be reached by
-mail at hu1@umbc.edu.

EFERENCES
1. S. Namiki and Y. Emori, “Ultrabroad-band Raman

amplifiers pumped and gain-equalized by wavelength-
division-multiplexed high-power laser diodes,” IEEE J. Sel.
Top. Quantum Electron. 7, 3–16 (2001).

2. H. B. Keller, Numerical Methods for Two-Point Boundary-
Value Problems (Ginn and Blaisdell, 1968).

3. B. Min, W. J. Lee, and N. Park, “Efficient formulation of
Raman amplifier propagation equations with average



1

1

1

1

1

1

1

1

1

1

2

2

2

2090 J. Opt. Soc. Am. B/Vol. 22, No. 10 /October 2005 Hu et al.
power analysis,” IEEE Photonics Technol. Lett. 12,
1486–1488 (2000).

4. H. Kidorf, K. Rottwitt, M. Nissov, M. Ma, and E.
Rabarijanona, “Pump interactions in a 100-nm bandwidth
Raman amplifier,” IEEE Photonics Technol. Lett. 11,
530–532 (1999).

5. V. Perlin and H. Winful, “Optimal design of flat-gain wide-
band fiber Raman amplifiers,” J. Lightwave Technol. 20,
250–254 (2002).

6. V. Perlin and H. Winful, “On distributed Raman
amplification for ultrabroadband long-haul WDM system,”
J. Lightwave Technol. 20, 409–416 (2002).

7. J. Hu, B. S. Marks, and C. R. Menyuk, “Flat-gain fiber
Raman amplifiers using equally spaced pumps,” J.
Lightwave Technol. 22, 1519–1522 (2004).

8. D. D. Morrison, J. D. Riley, and J. F. Zancanaro, “Multiple
shooting method for two-point boundary value problems,”
Commun. ACM 5, 613–614 (1962).

9. X. Liu and B. Lee, “Effective shooting algorithm and its
application to fiber amplifiers,” Opt. Express 11, 1452–1461
(2003).

0. X. Liu and B. Lee, “A fast and stable method for Raman
amplifier propagation equations,” Opt. Express 11,
2163–2176 (2003).

1. X. Liu, “Powerful solution for simulating nonlinear coupled
equations describing bidirectionally pumped broadband
Raman amplifiers,” Opt. Express 12, 545–550 (2004).

2. S. A. E. Lewis, S. V. Chernikov, and J. R. Taylor,
“Temperature-dependent gain and noise in fiber Raman
amplifiers,” Opt. Lett. 24, 1823–1825 (1999).

3. K. Rottwitt, M. Nissov, and F. Kerfoot, “Detailed analysis of
Raman amplifiers for long-haul transmission,” in Optical
Fiber Communication Conference (Optical Society of
America, 1998), paper TuG1.

4. S. E. Miller and A. G. Chynoweth, Optical Fiber
Telecommunications (Academic, 1979).

5. J. Bromage, “Raman amplification for fiber communication
systems,” J. Lightwave Technol. 22, 79–93 (2002).

6. X. Liu, J. Chen, C. Lu, and X. Zhou, “Optimizing gain
profile and noise performance for distributed fiber Raman
amplifiers,” Opt. Express 12, 6053–6066 (2004).

7. A. H. Hartog and M. P. Gold, “On the theory of
backscattering in single-mode optical fibers,” J. Lightwave
Technol. LT-2, 76–82 (1984).

8. P. B. Hansen, L. Eskildsen, A. J. Stentz, T. A. Strasser, J.
Judkins, J. J. DeMarco, R. Pedrazzani, and D. J.
DiGiovanni, “Rayleigh scattering limitations in distributed
Raman pre-amplifiers,” IEEE Photonics Technol. Lett. 10,
159–161 (1998).

9. W. E. Boyce and R. C. DiPrima, Elementary Differential
Equations and Boundary Value Problems, 6th ed. (Wiley,
1997).

0. G. Strang, Linear Algebra and Its Applications, 3rd ed.
(Harcourt College Publishers, 1988).

1. S. M. Roberts and J. S. Shipman, Two-Point Boundary
Value Problems: Shooting Methods (Elsevier, 1972).

2. G. E. Tudury, J. Hu, B. S. Marks, G. M. Carter, and C. R.
Menyuk, “Spectral gain characteristics of an amplified
hybrid Raman/EDFA 210 km link,” in Conference on Laser
and Electro Optics (Optical Society of America, 2003),
paper CThM52.


