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We describe a robust shooting algorithm to model backward-pumped Raman amplifiers. This algorithm uses a
continuation method and a Jacobi weight in conjunction with the shooting algorithm. We compare this algo-
rithm to the commonly used relaxation algorithm. We find that the shooting algorithm is more flexible, in that
it can be applied to amplifiers in which one fixes the gain, in contrast to the standard relaxation algorithm,
which can be applied only to two-point boundary-value problems. However, it is less efficient when applied to
two-point boundary-value problems, in that it requires more computer time. © 2005 Optical Society of

America
OCIS codes: 060.0060, 060.2320, 190.5650.

1. INTRODUCTION

Fiber Raman amplifiers have become important in recent
years. By using multiple pumps, one can tailor the gain
over a large bandwidth. Moreover, the gain is spatially
distributed, leading to an improvement in the signal-to-
noise ratio relative to systems that employ only erbium-
doped fiber ampliﬁers.1 The power variation in backward-
pumped Raman amplifiers is described by a set of coupled
differential equations that accounts for both fiber attenu-
ation and the nonlinear coupling between waves due to
stimulated Raman scattering. With forward pumping, it
is not difficult to numerically solve these coupled equa-
tions using standard integration techniques. However,
backward pumping complicates the problem, because the
input signal powers are specified at one end of the fiber,
whereas the input pump powers are specified at the other
end. This two-point boundary-value problem is usually
solved with an iterative scheme.?

When an algorithm for numerically solving a problem
such as this two-point boundary-value problem is de-
signed, the algorithm must possess the following charac-
teristics: speed, accuracy, robustness, and flexibility.
Speed refers to minimizing the amount of computer time
needed to solve a given problem. Accuracy refers to the
amount of the error associated with a given integration
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scheme or iterative method, given the integration step
size and the number of iterations. Since the common
methods for solving the Raman equations are iterative,
one is concerned with whether the method converges. We
say that a method is robust if it converges for a realistic
range of parameters. Finally, a flexible method is an algo-
rithm that can be applied to a large class of problems. In
our context, a flexible method should be able to solve both
the problem in which boundary values for the pumps are
specified and the problem in which one fixes the gain of
the Raman amplifier. Both conditions are important in
practice.

One of the most common approaches for solving the
two-point boundary-value problem is to first integrate the
signal waves forward using a fixed pump profile and then
to integrate the pump waves backward using a fixed sig-
nal profile to ensure that both boundary conditions are
automatically satisfied. This relaxation algorithm is then
iterated until the solution converges.>* The relaxation al-
gorithm is fast and accurate, and for the problems we
have considered (up to eight pump waves and 100 signal
waves with a realistic set of parameters), it is robust.
However, it is only applicable to two-point boundary-
value problems. One often wants to fix the amplifier’s
gain rather than the input pump power. In this case, one
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must specify the distance-integrated pump power rather
than the boundary value, which is the input power.‘r’f7
This problem is no longer a two-point boundary-value
problem, and the relaxation algorithm is not flexible
enough to handle it.

In this paper, we describe the alternative approach of
using a shooting algorithm to solve the propagation equa-
tions of Raman amplifiers.”® Although this method has
been presented previously in the literature,” ™ we
present extensions and details about the implementation
of the shooting algorithm. We show that when applied ap-
propriately, the shooting algorithm is as accurate and ro-
bust as the relaxation algorithm while being flexible
enough to satisfy the constraint of fixed gain and, in prin-
ciple, other constraints.” We show a comparison of two in-
tegration techniques combined with the shooting
algorithm—the improved Euler method and the power-
average method®—to investigate efficiency and conver-
gence. We also investigate the use of a Jacobi weight and
a continuation method, in which the pump powers are
gradually increased to the desired values. Using the Ja-
cobi weight and the continuation method in conjunction
with the shooting algorithm yields a very robust algo-
rithm for solving the Raman amplifier equations. How-
ever, using these extensions typically causes the shooting
algorithm to be slower than the relaxation algorithm,
when they can both be applied to the same problem.
Hence, if one is solving a two-point boundary-value prob-
lem, one should use the relaxation method; whereas if one
requires a different constraint, the shooting method is
preferred.

2. DESIGN ALGORITHM

We describe wave propagation in a backward-pumped,
multiple-wavelength fiber Raman amplifier using a
system of coupled equations that includes the effects of
spontaneous ~ Raman  scattering and  Rayleigh
backscattering.3’12716 The pump-to-pump, pump-to-signal,
and signal-to-signal Raman interactions are considered in
the coupled equations

de m+n
i_=—akPk+2gjkPij, (1a)
dz j=1
dPask i
* PP apPasg s + > ginP(Pasg r + hv,AvFy,),
=
(1b)
dPgrg i i
- =— a;Pgpp + > girPiPsrp . + KP;, (1c)
dz j=1
m+n
dPpgg ;
az =— a,Pprpy + 2 8P Ppre,; + KPsgg s
=

(1d)

where n is the number of pump waves and m is the num-
ber of signal waves. The values P;, v, and «;, describe, re-
spectively, the power, frequency, and attenuation coeffi-
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cient for the kth wave, where k=1,2,...,m+n. The
quantities Pygg », Psgp z, and Ppgp , are the powers corre-
sponding to amplified spontaneous emission (ASE) noise,
single Rayleigh backscattering (SRB), and double
Rayleigh backscattering (DRB), respectively. The gain co-
efficient g, describes the power transferred by stimulated
Raman scattering between the jth and kth waves and
is given by gj,=(1/2A.xgi(vj—1,) for v;>1, and gj=
—(1/2A ) (vi/ v))g (v~ vj) for v;<uy, where g;(Av) is the
Raman gain spectrum measured with respect to the pump
frequency v;, shown in Fig. 1 for silica fiber at the pump
wavelength A\yp=1 um, and A is the fiber effective area.
The temperature-dependent term contributing to ASE
noise is given by Fj,=Nyhon+1 for v;> vy, Fj=—Npp,, for
vj< vy, where Npyon=[exp(h|vj—v,|/kpT)-1]"1. Here, the
parameters K, T, kg, and h are the Rayleigh backscatter-
ing coefficient, the temperature of the system, Boltz-
mann’s constant, and Planck’s constant, respectively. For
a fiber span of length L, the boundary conditions are de-
fined at z=0 for the signal waves P.L(0)=Py, (k
=1,2,...,m), and at z=L for the backward-propagating
pump waves P,(L)=P;,, (k=m+1,m+2,...,m+n). In Egs.
(1a) and (1b), one uses the + sign for forward-propagating
waves and the — sign for backward-propagating waves.
Equations (1) are valid under the assumption that the
gain in the Raman amplifier is due only to pump-to-signal
and signal-to-signal Raman scattering. Therefore we ne-
glect the Raman interaction of the ASE, SRB, and DRB
with the pumps and signals, as this interaction is very
small. Also, polarization effects have been neglected in
Egs. (1).

Previous publications that describe the numerical
implementation of the backward-pumped Raman ampli-
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Fig. 1. (a) Raman gain spectrum gz(Av) of a typical silica fiber
at the pump wavelength A\y=1 um. (b) Loss profile for a typical
silica fiber.
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fier model use the relaxation algorithm, in which the or-
dinary differential equations (ODEs) corresponding to
forward-propagating waves are decoupled from the ODEs
corresponding to backward-propagating waves.>* Each
set of ODEs is then solved independently with the appro-
priate boundary conditions. With this algorithm, the
boundary conditions are automatically satisfied, and the
iteration is carried out until the entire system of ODEs is
also satisfied to the desired accuracy. In this paper, we
present a shooting algorithm, which is an alternative to
the relaxation algorithm. Using the shooting algorithm,
one solves all of the differential equations simultaneously
in the forward direction using an estimate of the pump
output powers. Thus the ODEs are automatically satisfied
to the order of accuracy of the numerical integration
scheme, and the iteration is carried out until the bound-
ary conditions or some other shooting target is satisfied.
No backward integration or decoupling of the system of
ODEs is necessary. However, one must iterate the solu-
tion until the boundary conditions or other target condi-
tions that specify the solution uniquely are satisfied.

3. NUMERICAL MODEL AND SIMULATION
OPTIMIZATION

A. Shooting Algorithm

The solution that we describe below solves only Eq. (1a).
Usually, ASE, SRB, and DRB wave powers are small.
Hence, they can be treated as perturbations.15’17 In this
case, ASE, SRB, and DRB can be included after Eq. (1a) is
solved, since Eqgs. (1b)—(1d) are decoupled from Eq. (1a).
When one has a large Raman pump, Eqgs. (1a)—(1d) can be
solved together by using the iterative algorithm described
in this paper. The ASE, SRB, and DRB waves can be con-
sidered as additional signal or pump waves according to
their propagation direction with zero input power.'® The
two-point boundary-value problem may be stated math-
ematically as follows,

dP b
o (P)=[A+G(P)]P, (2)

with the boundary conditions

Pk(0)=Pk0 k=1,2,...,m,

P,(L)=P,y, k=m+1m+2,...m+n, (3)

where P and h are vectors of length m+n, which is the
total number of waves, A is the (m+n)X (m+n) diagonal
matrix responsible for the fiber attenuation, and G(P) is
the (m+n) X (m+n) matrix corresponding to the Raman
scattering terms in Eq. (1a). The example of the shooting
algorithm that we present in this section uses integration
from z=0 to z=L so that the pump input boundary condi-
tions at z=L are the shooting “targets.” One can alterna-
tively choose the shooting direction from z=L to z=0. The
effectiveness of the shooting direction depends on the ini-
tial guess and other parameters. One can also modify the
target for other applications, including in particular the
constant gain criterion, which often appears in practice.7

The shooting algorithm that we implement is as fol-
lows: Let P(z) be the true solution of Eq. (2), and let P,
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=P(0). Let f’o be an approximation to P, and define 1_’(2)
to be the solution of the initial value problem:

P _ _ _
E=h(P), P(0) =P, (4)

Thus the variable P satisfies the differential equations
but not the correct boundary conditions. We define the
vector

f[P(0),P(L)]

P1(0) - P4(0) 0
P,(0) - Py(0) 0
— . 5 _ 0
=| P,0)-P,0) |= (5)

Pp(L) =P, L) | | Pmall) - P,(L)

Prin(L) = Py | [Pmen(L) = PranL)

and note that the first m elements of vector f are zero.
The last n elements of vector f are not zero in general,
since the pump waves that we obtain from the numerical
integration do not automatically satisfy the boundary
conditions at L. Note that Eq. (5) is appropriate only for
the case of the two-point boundary-value problem. We
now construct the Jacobian matrices Q, M, and N, whose
elements are defined as

oh; u af; af;
Qij_ (2)5 iy ﬁPJ(O)’ iy ﬂPJ(L),

P (6)

J

for i, j=1,2,...,m+n. Note that in matrix M, the upper
left m Xm block is the identity matrix. In matrix N, the
lower right n Xn block is the identity matrix. Let 6P(z)

=P(z)-P(2). Finding P(z) is then equivalent to finding
0P(2) so that

d(P + 5P)

P h(P + 5P), f[P(0)+ 6P(0),P(L) + sP(L)]

=0. (7

Expanding these expressions in a first-order Taylor series
and using Eq. (4) yields the approximate formula
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d sP _
- Q 6P, M 6P(0)+N sP(L)=-1[P(0),P(L)].

)

The partial derivatives are to be evaluated for the ap-

proximate solution P.

We now describe an iterative procedure for determining
SP and hence P.

1. Estimate the pumps’ boundary values at z=0. We
first integrate the signal waves forward to get a signal
profile assuming no pump wave. Then we integrate the
pump waves backward using this signal profile. The
pump power at z=0 will be a good initial guess to start
the shooting iteration.

2. Simultaneously integrate from z=0 to z=L,

du
EZQU u) =1, (9a)

P _ _ _
E:h(P) P(0)=P,, (9b)

where | is the identity matrix of dimension m +n. We used
the improved Euler method except as otherwise stated.
This method is second-order accurate.'® If we are solving
the two-point boundary-value problem, then we know the
signals’ boundary conditions at z=0, which means that m
components of P(0) are known. Therefore only n(n+m)
elements in the matrix U must be calculated, instead
of (n+m)2.

3. Compute f[P(0),P(L)].

4. Solve the linear algebraic system [MU(0)+NU(L)]S
=—f[P(0),P(L)]. We used Gaussian elimination.?’ Then
SP(z)=U(2)S satisfies the required Eq. (8), as may be
verified by direct substitution.

5. Obtain 6Py=U(0)S, which provides a correction to
P(0)=P,. Replace P, with Py+ 6P, for the pumps.

6. Go to step 2, and iterate until solution converges.

Again, to summarize our shooting algorithm, one must
choose initial guesses for all pump-power values at the
signal input side. Before the first shooting iteration, we
integrate the ODEs by numerical integration from the
signal input side to the signal output side under the as-
sumption that there is no pump. Then we integrate the
ODEs for the pump power from the signal output side to
the signal input side with the signal-power values that we
obtained from the first step. The pump-power values that
we obtain at the signal input side are used as the initial
guesses to start the shooting iteration. Then we integrate
the coupled Raman equations for all signals and pumps in
the forward direction.

B. Average Pump-Power Model

In Subsection 3.A, we described the shooting method to
solve the two-point boundary-value problem. If one wants
to solve the equations for the case of fixed average pump
power, the algorithm is modified as follows.
Equation (5) changes to
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P1(0) - P4(0)
Py(0) - P5(0)
fip0).I=|P,0-P,0 =] ° | 0
Im+1_7m+1 Im+1_lm+1
Im+n - Tm+n _Im+n B jm+n_

where Ij=féPj(z)dz, j=m+1,m+2,...,m+n 1is the
z-integrated pump power. Correspondingly, Eq. (6) must
be changed to

oh;(z) of; of;
ij= > M;;= N":_y (11)

Yoap0) Y al

Equation (7) changes to

d(P + 6P) _ _ —
———=h(P+6P), f[P(0)+P(0),I+5I]=0,

(12)

where 5I=[ I(j 8P (z)dz. Similarly, expanding these expres-
sions in a first-order Taylor series and using Eq. (4) yields
the approximate formula

dsP _
E:Q&P, MSP(0) + N6I=-f[P(0),I].  (13)

Following the iterative procedure in Subsection 3.A, we
need only to change steps 3, 4, and 5 to the following:

3. Compute f{P(0),I], and U, where Fij:fﬁUij(z)dz, i

=m+1,m+2,...,m+n;j=1,2,...,m+n.
4. Solve the linear algebraic system [MU(0)+NU]S
=—f[P(0),I].

5. Obtain 6P3=U(0)S, which provides a correction to
P(0)=P,. Replace P, with Py+ 6P, for the pumps.

After changing the above steps, the algorithm can then
be used to solve the problem in which the distance-
averaged pump power is speciﬁed.7

C. Integration Method

In the integration process, one solves the coupled Raman
equations by taking small steps in z using a numerical in-
tegration method, such as the improved Euler method.
Another method that was recently described uses the av-
erage pump power in a z step, assuming an exponential
variation in z.> We have found that this power-average
method is also second-order accurate but is more compli-
cated than the improved Euler method, since it requires
the evaluation of exponential functions. In Fig. 2 we show
the run time for the two integration schemes. We define
the convergence parameter ¢ as

n l Pl(r)(zj)_Pl(r—l)(Zj) 2112
I — , (14)

1
c= _2 2 Pir)(zj)

nlis o

where the superscript r indicates the iteration number, [
is the number of z steps used in the integration, and n is
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Fig. 2. Simulation time as a function of the Az step size for dif-
ferent integration types with the threshold c=5x 10~%. Squares
denote the trapezoidal rule, and triangles denote the power-
average method.
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Fig. 3. Convergence parameter ¢ versus iteration number for
different Jacobi weights w.

the number of pumps. We have carried out a simulation of
eight pumps and 100 signals that iterates until a ¢=5
X107 is achieved. Figure 2 shows that for the same ac-
curacy, the two integration methods have very similar run
times. Since the improved Euler method is simpler, we
conclude that it is to be preferred.

D. Weighted Jacobi Method
For all the problems to which we applied the relaxation
method, up to eight pump waves and 100 signal waves,
we found that this method converges without any prob-
lem. By contrast, we found that in order for the shooting
method to converge, we have to supplement it with a Ja-
cobi weight, w. Given a vector of pump output powers
from the rth iteration, Pg) at z=0, the shooting algorithm
provides a new vector of pump output powers at z=0 for
the next iteration, PE)HI), that attempts to correct for the
error. Rather than using Pg”) directly, we define

Pi5Y = (1- 0P + wPy* (15)
and use P"*Y as the vector of pump powers at z=0 for the
next iteration. Note that w=1 corresponds to the direct

usage of the result of the shooting algorithm. This tech-
nique speeds the convergence of the iteration when w is
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chosen appropriately for the problem. In Fig. 3, we plot
the convergence parameter ¢ versus iteration number for
many values of w and for the same simulation parameters
as in Fig. 2. Figure 3 shows that the convergence rate
changes considerably for different choices of w. For some
values, ¢ decreases quite rapidly, indicating fast conver-
gence, whereas for others there is no convergence. The
choice of w is problem dependent, and some experimenta-
tion is needed to find the optimum value.

E. Continuation Method

We have found that the algorithm that we present here
sometimes has difficulty converging when the pump
power is high. The value of the pump power that causes
difficulty is problem dependent. For systems with 100 sig-
nal waves and eight pump waves using our fiber param-
eters, we found that this difficulty will occur when the
pump power reaches 140 mW for every pump wave. For
systems with 100 signal waves and two pump waves, we
found that the algorithm has no problem until the pump
power reaches 1900 mW for each pump wave. In our
simulation, the signal powers are all set to 0.5 mW. To ob-
tain convergence, we have used a continuation method in
which the pump power is gradually raised to its desired
value. When it is used in conjunction with a shooting al-
gorithm, the continuation method therefore allows us to
solve problems that do not converge with the shooting al-
gorithm alone.?! Figure 4 shows a block diagram of our
implementation of the continuation method. Let Pgogiye(L)
be the set of desired pump input powers and suppose that
the shooting algorithm fails to converge. If the shooting

algorithm converges for a set of pump values I_’try(L)

= BP gesive(L), we wish to slowly increase 8 to 1 in a way
that the shooting converges. We follow the algorithm
shown in Fig. 4 for choosing the value of B. In every step,

A = 1
/Bpre = 0

v
———{ 6:= A8+ Fpre |

v

Integrate pumps and
signals forward

[ AB = AB/2

Convergence?

ﬁpre = /6
A3 = 23A8

Fig. 4. Block diagram of the continuation method.
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the initial choice for the pump powers for the Raman it-
eration at a new B comes from the previous iteration.

4. RESULTS AND COMPARISON

In this section, we compare the run time for the relax-
ation and shooting algorithms to solve the two-point
boundary-value problem. As an example, in a system of
length L=50 km with one pump wave and 10 signal
waves, the shooting algorithm is about four times slower
than the relaxation algorithm. For a system with eight
pump waves and 100 signal waves, the shooting algo-
rithm is about nine times slower than the relaxation al-
gorithm. The shooting algorithm is slower because of its
complexity and the extensions required for convergence.
However, as we pointed out, the shooting algorithm is
more flexible in that it can solve the Raman equations un-
der the constraint of specified averaged pump power. In
Fig. 5, we show the convergence of the shooting algorithm
when four pump waves are constrained to have a
distance-averaged power of 20 mW, with 50 signal waves.
The initial guesses to start the shooting algorithm are the
pump output powers at z=0 that give 20 mW average

N
o]

(a)

[a—y
)

Average pump power (mW)
%
»
[ 3
» |

500

Input pump power (mW)
m
4| \

|/
|

1

)
)

0 Iteration number 4

Fig. 5. Convergence of the shooting algorithm with the con-
straint that the averaged pump power equals 20 mW for four
pump waves with 50 signal waves. The pump waves are equally
spaced between 1437 and 1462 nm. The signal waves are equally
spaced between 1530 and 1570 nm with an input signal power of
-3 dBm per channel. (a) Average input pump power as a function
of iteration number. (b) Input pump power at z=L as a function
of iteration number.
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Fig. 6. Convergence of the shooting algorithm with the con-
straint that the averaged pump power equals 20 mW for eight
pump waves and 100 signal waves. The pump waves are equally
spaced between 1430 and 1490 nm. The signal waves are equally
spaced between 1525 and 1605 nm with an input power of
-3 dBm per channel. (a) Average input pump power as a function
of iteration number. (b) Input pump power at z=L as a function
of iteration number.

-)Eﬁm;
z

e

pump power if the pump waves experience only the fiber
loss. Note that as the average pump powers converge to
the same value shown in Fig. 5(a), the input pump powers
at z=L converge to different values shown in Fig. 5(b), be-
cause of pump-to-pump and pump-to-signal interactions.
In this simulation, the 50 signal waves are spaced equally
between 1530 and 1570 nm with an input signal power of
-3 dBm per channel. The output signal powers are be-
tween —10 and —5.8 dBm. The pump waves are spaced
equally between 1437 and 1462 nm. From the simulation,
we obtain input pump powers between 137 mW and 263
mW, as shown in Fig. 5(b). Figure 6 shows the same con-
vergence for eight pump waves and 100 signal waves for
the same shooting target of 20 mW average pump power.
In this case, the continuation method was used in combi-
nation with the shooting algorithm, since the algorithm
cannot converge for the desired 20 mW shooting target
with the initial guesses for the pumps obtained from the
fiber loss. Therefore the continuation method sets the
shooting target as 10 mW, following the flowchart in
Fig. 4, and after convergence at the fifth iteration, the
shooting target is reset to 20 mW. The initial guess for the
sixth iteration is determined from the converged pump
output power at z=0. In Fig. 6(a), the solid curve with
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squares shows the evolution for the pump with the short-
est wavelength that needs the highest input pump power
to yield the same average pump power. In this simulation,
100 signal waves are spaced equally between 1525 and
1605 nm with an input power of -3 dBm per channel. The
output signal power is between 0.72 and —-6.8 dBm. The
pump waves are spaced equally between 1430 and 1490
nm. The input pump powers obtained from the simulation
are between 49 and 399 mW. Setting a larger target
power will result in more iterations of the continuation
method illustrated in Fig. 4. The threshold of c=1x 1073
was the convergence criterion used to finish the iteration
when generating Figs. 5 and 6. The Raman gain and loss
profile that we used are shown in Fig. 1.

5. VALIDATION

To validate our code, we have compared our simulation re-
sults with other published results.* Figure 7 shows the
power evolution of the backward-propagating pumps for a
system with eight pump waves and 100 signal waves, us-
ing the relaxation algorithm and the shooting algorithm.
The parameters that we used—Raman gain, loss, pump
wavelength, pump power, signal wavelength, and signal
power—are inferred from the description in Ref. 4. The
threshold of ¢=5x10"* was the convergence criterion

[\
wn

Pump power (dBm)

I
)

[\
wn

Pump power (dBm)

0 Distance (km) 45

Fig. 7. Power evolution of the backward-propagating pumps. (a)
Result using the relaxation algorithm. (b) Result using the shoot-
ing algorithm. The threshold of ¢c=5x 10~* was the convergence
criterion used to stop the iteration for both algorithms.
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used to stop the iteration for both the relaxation algo-
rithm and the shooting algorithm, and hence both meth-
ods are able to achieve the same level of accuracy. The
pump evolution shown in Fig. 7 yields good agreement
with Fig. 5 of Ref. 4. Because this problem can be solved
using both algorithms, we also compared the run time of
the two algorithms. We found that the relaxation algo-
rithm solves this problem in about 14 s on an Intel Pen-
tium III 700 MHz machine, while the same problem using
the shooting algorithm takes about 150 s. Hence, the run
time is about 11 times slower for the shooting algorithm.
In the example that we used in Section 4, which had
lower pump power and signal gain, we found that the
shooting algorithm is about nine times slower than the re-
laxation algorithm. The run time ratio is problem depen-
dent, although we expect the shooting algorithm to gen-
erally be slower.

We have demonstrated the shooting algorithm’s
flexibility—and in particular its ability to handle the con-
straint of a specified average pump power—by its success-
ful application to a genetic algorithm in which the pump
spacing was optimized to minimize the gain ripple.7 We
validated it at the time by comparison to previously pub-
lished results by Perlin and Winful.? Finally, we have also
compared our simulation results for signal and noise with
experimental data in our work in Ref. 22. All of these com-
parisons show good agreement.

6. CONCLUSION

To summarize, we present a multiple shooting algorithm
for solving the Raman amplifier equations. We have
shown that in conjunction with the continuation method,
the shooting algorithm with the improved Euler integra-
tion method and a Jacobi weight is a robust algorithm for
this problem. However, the shooting method is typically
slower than the relaxation method because of these exten-
sions. Hence, when one is solving a two-point boundary-
value problem, the relaxation method should be used. On
the other hand, the shooting method is more flexible than
the commonly used relaxation method, as it can solve the
Raman equations subject to a wide variety of constraints,
including the constraint of fixed gain, rather than being
restricted to two-point boundary-value problems.
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