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Abstract—This paper shows how to estimate errors in multi-
canonical Monte Carlo (MMC) simulations using a transition-
matrix method. MMC is a biasing Monte Carlo technique that
allows one to compute the probability of rare events, such as the
outage probability in optical-fiber communication systems. Since
MMC is a Monte Carlo technique, it is subject to statistical errors,
and it is essential to determine their magnitude. Since MMC
is a highly nonlinear iterative method, linearized error-propaga-
tion techniques and standard error analyses do not work, and
a more sophisticated method is needed. The proposed method
is based on bootstrap techniques. This method was applied to
efficiently estimate the error in the probability density function
(pdf) of the differential group delay (DGD) of polarization-mode-
dispersion (PMD) emulators that has been calculated using MMC.
The method was validated by comparison to the results obtained
using a large ensemble of MMC simulations.

Index Terms—Multicanonical Monte Carlo (MMC) simula-
tions, optical communications, polarization-mode dispersion
(PMD), statistical error.

I. INTRODUCTION

OLARIZATION-MODE dispersion (PMD) is a major

source of impairment in optical-fiber communication sys-
tems. Since PMD is a random process, Monte Carlo simulations
are often used to compute PMD-related probability distribution
functions (pdfs) of quantities like the differential group delay
(DGD) and the induced penalty. However, the large PMD
penalties that are often of interest to system designers cannot be
efficiently computed using unbiased Monte Carlo simulations,
since they are very rare. Consequently, Monte Carlo simulations
with importance sampling [1] and the multicanonical Monte
Carlo (MMC) method [2]—[4], as well as other biasing Monte
Carlo methods [5]-[10], have recently been applied to compute
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these penalties [11]-[13]. A similar issue arises when calcu-
lating the minimum bit error ratio in optical communications
systems that are dominated by amplified-spontaneous-emission
(ASE) noise and when nonlinear signal-noise and noise—noise
interactions are taken into account [14]. It also arises in other
problems in optical communications [15], [16]. Hence, the
use of biasing Monte Carlo methods is becoming increasingly
common.

In contrast to importance sampling and most of the other
biasing Monte Carlo methods, MMC does not require prior
knowledge of which rare events significantly contribute to the
large penalty values in the tail of the pdf. MMC is an iterative
method, where in each iteration, it produces a biased random
walk that automatically searches the state space for the impor-
tant rare events. This knowledge is accumulated, allowing the
distribution to be obtained further out on the tail from one itera-
tion to the successive iteration. MMC has the additional advan-
tage that it does not require one to combine different biased pdfs
of the quantity of interest in order to obtain the entire pdf, as in
the case with standard importance sampling. Finally, because
the basic algorithm makes relatively little use of the physics
of the system to which it is being applied, it is very flexible and
can be used with a wide variety of systems.

Since Monte Carlo methods are statistical, error estimates are
essential to verify the accuracy of the results. In a previous
publication [12], we showed how to compute errors when
using importance sampling. In this paper, we show how one
can efficiently compute error estimates in MMC simulations
using a transition-matrix method. In practice, users of Monte
Carlo methods often avoid making detailed error estimates. For
example, when using an unbiased Monte Carlo simulation to
calculate the pdf of a quantity such as the DGD, the number
of samples in each bin of the pdfs’ histogram is independent.
Hence, when the histogram is smooth, one can infer that the
error is acceptably low. This procedure is not reliable with
MMC simulations because, as we will show, the MMC algo-
rithm induces a high degree of correlation from bin to bin.
While it is our view that it is always best to estimate error
with any Monte Carlo method, it is particularly important in
MMC simulations.

The goal of any scheme for biasing Monte Carlo simulations,
including MMC, is to reduce the variance of the quantities
of interest. The MMC uses a set of systematic procedures to
reduce the variance, which are highly nonlinear as well as
iterative and have the effect of inducing a complex web of
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correlations from sample to sample in each iteration and be-
tween iterations. These in turn induce the bin-to-bin corre-
lations in the histograms of the pdfs that we mentioned in
the previous paragraph. Thus, calculating the error is signif-
icantly more difficult than in standard Monte Carlo simula-
tions. Due to the existing correlations, one cannot apply to
MMC the standard error analyses that are traditionally used
for simulations with uncorrelated samples. For the same rea-
son, one cannot determine the contribution of the variance
from each iteration using standard error-propagation methods
as in [12]. Thus, the MMC variance cannot be estimated by
applying a standard error analysis to a single MMC simulation.
One can, in principle, run many independent MMC simula-
tions in order to estimate error using the standard sample-
variance formula [17] on the ensemble of MMC simulations.
However, estimating the error of the pdf of the quantity
of interest by running many independent MMC simulations
is computationally costly and, in many cases, not feasible.
One can overcome this problem with the transition-matrix
method that we propose. The transition-matrix method is an
efficient numerical method to estimate statistical errors in
the pdfs computed using MMC. In our method, we use the
estimated transition-probability matrix to rapidly generate an
ensemble of hundreds of pseudo-MMC simulations, which
allows one to estimate errors from only one standard-MMC
simulation. The transition-probability matrix, which is com-
puted from a single standard-MMC simulation, contains all
the probabilities that a transition occurs from any bin of the
histogram of the quantity of interest to any other bin af-
ter a step (or perturbation) in the MMC random walk. The
pseudo-MMC simulations are then made using the computed
transition matrix instead of running full simulations. Each
pseudo-MMC simulation must be made with the same num-
ber of samples per iteration and the same number of itera-
tions as in the original standard-MMC simulation. Once an
ensemble of pseudo-MMC simulations has been calculated,
one can use standard procedures to estimate the error. Since
the transition matrix that is used in the pseudo-MMC sim-
ulations has its own statistical error, it might seem strange
at first that it can be used as the basis from which to esti-
mate the error in the MMC simulations. However, bootstrap
theory assures us that such is the case [18]. Intuitively, the
variation of any statistical quantity among the members of
an ensemble of pseudo-MMC simulations is expected to be
the same as the variation among members of an ensemble
of standard-MMC simulations, because the simulations are of
the same type and size.

To illustrate our proposed transition-matrix method, we cal-
culate the pdf of DGD due to PMD and the associated con-
fidence interval for two types of PMD emulators [19]. We
validate our method by comparison to the results obtained by
using a large ensemble of standard-MMC simulations. We test
our method by applying it to PMD emulators, because it was
the first random phenomenon in optical-fiber communication
to which MMC was applied [3], [4] and has become the sine
qua non for testing biasing Monte Carlo methods. Moreover,
it is computationally feasible to validate our method with a
large ensemble of standard-MMC simulations. That is not the
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case for most other problems, e.g., the error rate due to opti-
cal noise [20] and the residual penalty in PMD-compensated
systems [11].

In Section II, we describe the MMC method, its application
to PMD emulator studies, and we present results showing the
correlations among the histogram bins of the pdf of the DGD.
In Section III, we describe the transition-matrix method in de-
tail. Finally, in Section IV, we apply this method to efficiently
estimate the error in the pdf of the DGD when using 15- and
80-section PMD emulators, and we validate it by comparison
to a large ensemble of standard-MMC simulations.

II. MULTICANONICAL METHOD, PMD EMULATORS,
AND CORRELATIONS

We briefly review the MMC method proposed by Berg and
Neuhaus [2] and show how we implement MMC to compute
the pdf of the DGD for two types of PMD emulators. We then
present results showing the correlation among the histogram
bins of the pdf of the DGD that is generated using the MMC
method.

A. MMC Review

The MMC method is an iterative method, where in each
iteration, it produces a biased random walk that automatically
searches the state space for the important rare events. Within
each iteration, the Metropolis algorithm [21] is used to select
samples for the random walk based on an estimated pdf of the
quantity of interest or control parameter, which is updated from
iteration to iteration. Each new sample in the random walk is
obtained after a small random perturbation is applied to the
previous sample.

In each MMC iteration, a new histogram of the control
parameter is calculated that records how many samples are
in each bin. In each iteration, one generates a predetermined
number of samples that can vary from iteration to iteration.
Typically, each iteration has several thousand samples. Once
the predetermined number of samples in any iteration has been
generated, the histogram of the control parameter is used to
update the estimate of the probability of all the bins as in [2],
which will be used to bias the following iteration. After some
number of iterations, typically 10-30, the number of samples
in each bin of the histogram of the control quantity becomes
approximately equal in the range of interest, indicating that
the estimated pdf of the control quantity is converging to the
true pdf.

B. MMC Implementation to PMD Emulators

In the computation of the pdf of the DGD, the state space
of the system is determined by the random mode coupling
between the birefringent sections in an optical fiber with PMD,
and the control parameter F is the DGD as in [3] and [4]. When
applying MMC, the goal is to obtain an approximately equal
number of samples in each bin of the histogram of the control
quantity. Here, we compute probabilities by dividing the range
of DGD values into discrete bins and constructing a histogram
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of the values generated by the different random configura-
tions of the fiber sections.

The calculations in this paper are based on coarse-step
PMD emulators consisting of birefringent fiber sections
separated by polarization scramblers [22]. We model the
fiber using emulators with Ny = 15 and Ny = 80 birefringent
sections. Prior to each section, we use a polarization scrambler
to uniformly scatter the polarization dispersion vector on the
Poincaré sphere. When polarization scramblers are present,
the evolution of the polarization dispersion vector is equivalent
to a three-dimensional random walk, and an exact solution [23]
is available for the pdf of the DGD that can be compared
with the simulations. In unbiased Monte Carlo simulations,
the unit matrix R = R,(¢)R,(v)R,(¢) rotates the polar-
ization dispersion vector before each section, such that the
rotation angles around the x axis in the ¢th section, ¢; and
1;, have their pdfs uniformly distributed between —7 and T,
while the cosine of the rotation angle ~; around the y-axis
has its pdf uniformly distributed between —1 and 1. Within
each MMC iteration, we use the Metropolis algorithm to
make a transition from a state k£ to a state ! by making
random perturbations A¢;, A~;, and Aw; of the angles ¢;,
~;, and 1); in each section, where A¢;, A~v;, and Aq); are
uniformly distributed in the range [—em, e7]. To keep the av-
erage acceptance ratio close to 0.5 [24], we choose ¢ = 0.09.
This perturbation is small, since it does not exceed 10% of
the range of the angles. To account for the correct statistics
in +;, since the cosine of ; is uniformly distributed in the
coarse-step method, we accept the perturbation A~; with prob-
ability equal to min[l, F'(y; + Av;)/F ()], where F(vy) =
0.5(1 — cos®y)/2. When the perturbation is not accepted, we
set Avy; = 0. The random variable with acceptance probability
given by min[l, F(; + Av;)/F(v;)] can be implemented by
obtaining a random number from a pdf uniformly distributed
between 0 and 1, and then accepting the perturbation A-y; if the
random number obtained is smaller than F'(vy; + Av;)/F (7).
To introduce a bias towards large values of the control pa-
rameter I, each transition from state k to the state [ in the
iteration j + 1 is accepted with probability Pyccept(k — 1) =
min[1, P (E})/ P’ (E;)], and rejected otherwise, where P’ (E)
is the estimate of the pdf of DGD obtained after the first
j iterations. At the end of each iteration, we update P’(FE)
using the same recursion algorithm as in [2], so that the
number of hits in each bin of the control-parameter his-
togram becomes approximately equal as the iteration number
increases.

1) Summary of the MMC Algorithm: In the first iteration,
we use M; samples and set the pdf of the DGD P!(E) of a
PMD emulator with N sections as uniform, P}(E) = 1/N,
(N, = number of bins). Because every step in the Metropolis
algorithm will be accepted with this initial distribution, we
more effectively exploit the first iteration by choosing the
coefficient of perturbation ¢ = 1. To update the pdf of the
DGD at the end of this iteration, we use the recursive equa-
tion as in (1), which is the same equation used in any other
iteration. We then carry out an additional N — 1 iterations
with M; (1 <1 < N) samples in each iteration. We note that,
in general, the number of samples in each iteration does not
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have to be the same. I now present a pseudocode summary of
the algorithm.

Loop over iterations j = 1 to N — 1:
Loop over fiber realizations (samples) m = 1 to M;:
1) start random walk on ¢, =, and v with small steps
A¢, A~, and Ay

Ad) :{A¢1a .. '7A¢NS}
Ay ={Av,...,Avn.}
Ay ={AyY1,...,A¢YpN.}

2) compute the provisional value of the DGD (Epov)
with the angles ¢ + A, v + A~, and ¢ + A
3) accept provisional step with probability equal to
min(l, P/ (E,,)/P?(Eprov))

if step accepted: 41 = Eprov

¢m+1 = ¢m + Ad)
Ym+1 = Vm + AY
¢m+l :¢m + A%b

if step rejected: E,,, 11 = Fp,

¢m+1 = (bm ’ltbm-i-l = I:bm

4) increment the histogram of E with the sample E,, 4
go to next sample m
update the pdf of the DGD P/*1(E)
restart histogram
g0 to next iteration j
End

7m+1 = 77717

To update P’(E) at the end of each iteration j, we use the
recursion relations [2]

] . Pj Hj §i
PJ+1 _ P]"rl k+1 ( k+1> (1)

k+1 i 7 ;
B Hi,

where g;’, the relative statistical significance of the kth bin in
the jth iteration, is defined as

) 7 ) Hj Hj
il = lgk , with g = % )
Hi oy + Hj,

J
> gt
=1

If H ,i gt H ,jc = (0 in a given iteration, then the kth bin has no
statistical significance in this iteration. Therefore, we set gi =0
in that iteration. The statistical significance 0 < g;’ <1 de-
pends on both previous bins and previous iterations, inducing
a significant correlation among P;. Finally, the P} are nor-
malized so that Zgil P,g =1, where N, is the number of
bins. MMC is an extension of the Metropolis algorithm [21],
where the acceptance rule accepts all the transitions to states
with lower probabilities, but rejects part of the more likely
transitions to states with higher probabilities. As the number
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of iterations increases, the histogram of the number of hits in
each bin will asymptotically converge to a uniform distribu-
tion (H}_,/Hj — 1), and the relative statistical significance
will asymptotically converge to zero (g; — 0). Consequently,
PJ*1 will asymptotically converge to the true probability of
the control parameter. Equations (1) and (2) were derived by
Berg and Neuhaus [2] assuming that the probability distribution
is exponentially distributed with a slowly varying exponent that
is a function of the control quantity (the temperature in their
case and the DGD in this paper). This assumption is valid in
a large number of problems in optical-fiber communications,
including the pdf of the DGD in fibers with an arbitrary number
of sections [3], [4]. The recursions in (1) and (2) were derived
by applying a quasi-linear approximation to the logarithm of the
pdf, in addition to a method for combining the information in
the current histogram with that of previous iterations according
to their relative statistical significance [2], [4]. In [3], the author
presents a useful code for programming the multicanonical
procedure.

C. Correlations

As we mentioned earlier, the use of (1) and (2) generates
correlated estimates for the P}, although this procedure signif-
icantly reduces the variance [2]. In this section, we illustrate
this correlation by showing results obtained when we applied
MMC to compute the pdf of the DGD for a PMD emulator with
80 sections.

We compute the correlation between bin ¢ and bin j in the
histogram of the DGD by doing a statistical analysis on an
ensemble of many independent standard-MMC simulations.
Suppose that on the Ith MMC simulation, we have P! as the
probability of the ith bin and suppose that the average over
all L MMC simulations is P;. We then define a normalized
correlation between bin ¢ and bin j as

L (pl_P\ (P _P.
-ty 3 HELET)

=1

3)

Op,0OP;

where op, and op; are the standard deviations of P; and P;,
respectively. The normalized correlation defined in (3) is known
as Pearson’s correlation coefficient [25].

The values for C(i, j) generated by (3) will range from —1
to 1. A value of +1 indicates a perfect correlation between
the random variables. A value of —1 also indicates a perfect
anticorrelation between the random variables. A value of zero
indicates no correlation between the random variables.

In Figs. 1-3, we show the correlation between bin ¢ and
bin j for the DGD in bin ¢+ DGD; equal to 30, 45, and 75 ps,
respectively. In this case, we use a PMD emulator with
80 sections and the mean DGD is equal to 30 ps. To compute
each value of C(3, j), we used L = 32 MMC simulations. We
compute C(i, j) and o¢(; ;) using 32 samples of C'(i, j). Note
that DGD; = 75 ps represents a case in the tail of the pdf of
the DGD, where the unbiased Monte Carlo method has a very
low probability of generating samples, by contrast to a biased
Monte Carlo method such as MMC. The results show that
the correlations are not significant until we use a large value
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Fig. 1. Correlations between bin % and bin j for the 80-section emulator,
where bin ¢ corresponds to DGD; = 30 ps (1 X mean DGD). The correlations
are computed using 32 standard-MMC simulations. Each standard-MMC sim-
ulation consists of 30 MMC iterations with 8000 samples.
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Fig. 2. Correlations between bin ¢ and bin j for the 80-section emulator,
where bin ¢ corresponds to DGD; = 45 ps (1.5 x mean DGD). The correla-
tions are computed using 32 standard-MMC simulations. Each standard-MMC
simulation consists of 30 MMC iterations with 8000 samples.
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Fig. 3. Correlations between bin ¢ and bin j for the 80-section emulator,
where bin ¢ corresponds to DGD; = 75 ps (2.5 x mean DGD). The correla-
tions are computed using 32 standard-MMC simulations. Each standard-MMC
simulation consists of 30 MMC iterations with 8000 samples.

for DGD; compared to the mean DGD, but they do become
significant in this limit.

III. ERROR-ESTIMATION PROCEDURE

Since MMC uses a procedure to estimate a pdf that is
both iterative and highly nonlinear, one cannot apply standard
error analyses to MMC. For the same reason, one cannot
determine the contribution of the variance from each iteration
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using standard error-propagation methods as in [12]. Here, we
introduce an efficient numerical procedure that we refer to
as the transition-matrix method to compute statistical errors
in MMC simulations that properly accounts for the contribu-
tions of all MMC iterations. The procedure is a bootstrap-
resampling method [18], [26] that uses a computed estimate
of the probability of a transition from bin ¢ to bin j of the
histogram of the DGD. In a bootstrap method, one estimates
a complex statistical quantity by extracting samples from an
unknown distribution and computing the quantity. One then
repeatedly and independently draws an ensemble of samples
from the original sample and computes the statistical quantity
of interest using the same procedure by which the statistical
quantity was first estimated. One can then estimate the variance
of the quantity of interest from a limited sample set using
standard techniques. The bootstrap method is applied when it is
computationally far more rapid to resample the original sample
than to generate new samples, allowing for an efficient estimate
of the variance.

A. Bootstrap Method

Efron’s bootstrap [18] is a well-known general-purpose tech-
nique for obtaining statistical estimates without making a priori
assumptions about the distribution of the data. Suppose one
draws a random vector x = (x1, 32, ...,Z,) with n samples
from an unknown probability distribution F' and one wishes to
estimate the error in a parameter of interest 0= s(x). Since
there is only one sample of 6, one cannot use the sample
standard-deviation formula to compute the error. However,
one can use the random vector x to determine an empirical
distribution F' from F' (unknown distribution). One can then
generate bootstrap samples from F, x* = (2%, 2%, ..., 2%), to
obtain 6* = s(x*) by drawing n samples with replacement
from x. The quantity s(x*) is the result of applying the same
function s(-) to x* as applied to x. For example, if s(x) is
the median of x, then s(x*) is the median of the bootstrap
resampled data set. The star notation indicates that x* is not
the actual data set x, but rather a resampled version of x
obtained from the estimated distribution F'. Note that one can
generate as many bootstrap samples x* as one needs, and
then generate independent bootstrap-sample estimates of 0,
0 = s(x3),...,0% = s(x%), where B is the total number of
bootstrap samples. Then, one can estimate the error in 9 using
the standard-deviation formula on the bootstrap samples 6*.

The transition-matrix method that we introduce in this paper
is related to the bootstrap-resampling method as follows.

1) F'is an estimate of the transition matrix obtained from a
single standard-MMC simulation.

2) x7,...,x}p are the collection of samples obtained from
the ensemble of pseudo-MMC simulations. We note that
x; should be computed using the exact same number
of iterations and the exact same number of samples per
iteration as in the original standard-MMC simulation.

3) Each 6}, where b= 1,2,..., B, is a value for the prob-
ability of the kth bin of the histogram of the DGD pj
obtained from each of the pseudo-MMC simulations.
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4) Given that one has B independent p}, one can obtain an
error estimate for each bin in the pdf of the DGD using the
traditional sample standard-deviation formula [17], [18]

1 = Ax e 2%
o5 = ﬁ; (9,, —0 ) @)
where
- 1 B ~
9*:529;;. (5)
b=1

B. Transition-Matrix Method

The transition-matrix method that we introduce in this paper
has two parts. In the first part, we obtain an estimate of the
pdf of the DGD and an estimate of the one-step transition-
probability matrix II. To do so, we run a standard-MMC
simulation, as described in Section II-B1. At the same time, we
compute an estimate of the transition probability 7; ;, which is
the probability that a sample in bin ¢ will move to bin j after
a single step in the MMC algorithm. We stress that a transition
attempt must be recorded, whether or not it is accepted by
the Metropolis algorithm after the fiber undergoes a random
perturbation. The transition matrix is a matrix that contains
the probability that a transition will take place from one bin
to any other bin when applying a random perturbation. It is
independent of the procedure for rejecting or accepting sam-
ples, which is how the biasing is implemented in the MMC
method. An estimate of the transition matrix that is statistically
as accurate as the estimate of the pdf using MMC can be
obtained by considering all the transitions that were attempted
in the MMC ensemble. We use this information to build an
Ny, x N, one-step transition-probability matrix, where NV} is
the number of bins in the histogram of the pdf. The transition
matrix IT consists of elements 7; ;, where the sum of the row
elements of II equals 1. The elements 7; ; are computed as

M;—1
21 Li(Em) 1 (Emir)

M¢—1 ’
2 ()

Mi—1

if Y Li(En)#0 (6)
m=1

Tij =

or m; ; = 0, otherwise. In (6), M; is the total number of sam-
ples in the MMC simulation and E,, is the DGD sample after
m steps. The indicator function I;(FE) is chosen to compute
the probability of having a DGD sample inside bin 7 of the
histogram. Thus, I;(E) =1 inside the DGD range of bin i,
otherwise I;(E) = 0.

In the second part of the procedure, we carry out a series
of MMC simulations, which we refer to as pseudo-MMC
simulations. In each step, if we start, for example, in bin ¢
of the histogram, we pick a new provisional bin j using the
probability 7; ; in the transition matrix IT. We then accept or
reject this provisional transition using the same criteria as in full
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standard-MMC simulations, and the number of samples in the
bins of the histogram is updated accordingly. Thus, we are using
the transition matrix II to replace the random choice of the
Ad¢y, Av;, and A, that we used in the original standard-MMC
simulation. In all other respects, each pseudo-MMC simulation
is like the standard-MMC simulation. In particular, the metric
for accepting or rejecting a step, the number of samples per
iteration, and the number of iterations must be kept the same.
It is possible to carry out hundreds of these pseudo-MMC
simulations in a fraction of the computer time that it takes to
carry out a single standard-MMC simulation. This procedure
requires us to hold the entire transition matrix in memory, which
could in principle be memory intensive, although this issue
did not arise in any of the problems that we considered. This
procedure will be useful when evaluating a transition using the
transition matrix requires far less computation time. It requires
far less computational time than calculating a transition using
the underlying physics. That will typically be the case, and was
certainly the case, for the problems that we considered.

An estimate of the pdf of the DGD is obtained in the final
iteration of each pseudo-MMC simulation. Since the estimates
of the probability of each bin in the pseudo-MMC simulations
are independent, we may apply the standard formula for the

computation of the variance o’fﬁ of the 7th bin

B B
— 1
‘712): E Py —pf), with pf = B E iy (D
)i b=1

where p; , is the probability of the ith bin in the histogram of
the DGD obtained in the bth pseudo-MMC simulation and B is
the total number of pseudo-MMC simulations. Thus, o+ is an
estimate of the error in the :th bin in the histogram of the DGD
obtained in a single MMC simulation.

We now illustrate the details of how we choose the pro-
visional transition from bin 7 to bin j with the following
pseudocode:

bin DGD of current sample = 4
use a random number to generate x from a uniform pdf be-
tween 0 and 1: z < U0, 1]
forj=1to Ny
if (z < 7r°df)
new bin = J
break
end if
end for
current bin = new bin
=>4 transition

where 7r the cumulative

probablhty

—1Tim 18

C. Assessing the Error in MMC Error Estimation

The estimate of the MMC variance also has an error, which
depends on the number of samples in a single standard-MMC
simulation and on the number of pseudo-MMC simulations
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Fig. 4. Relative variation of the pdf of the normalized DGD for the 15-section
PMD emulator using 14 MMC iterations with 4000 samples. The symbols

show the relative variation (& Poab /Ppep). The confidence interval is given

by (8) when we compute an ensemble of standard deviations using bootstrap
resampling for each of the 100 pseudotransition matrices.

(bootstrap samples) [27]. In this paper, the error due to the
bootstrap resampling is minimized by using 1000 bootstrap
pseudo-MMC simulations. Therefore, the residual error is due
to the finite number of samples used to estimate both the pdf
of the DGD and the transition matrix in the single standard-
MMC simulation. Thus, there is a variability in the estimate
of the MMC variance due to the variability of the transition
matrix IT as an estimate of the true transition matrix IT. To
estimate the error in the estimate of the MMC variance, we
apply a procedure known in literature as bootstrapping the
bootstrap or iterated bootstrap [28]. The procedure is based on
the principle that if the bootstrap can estimate errors in one
statistical parameter using I, one can also use the bootstrap
to check the uncertainty in the error estimate using bootstrap-
resampled transition matrices II*.
The procedure consists of the following.

1) Run one standard-MMC simulation.

2) Generate N = 100 pseudo-MMC simulations and com-
puting transition matrices for each of the pseudo-MMC
simulations. Therefore, we obtain N transition matrices
that we call pseudotransition matrices f[g.

3) For each pseudotransition matrix I , we calculate
Np = 100 pseudo-MMC simulations (/N values for the
probability of any given bin of the pdf of the DGD p**).
The double-star notation indicates quantities computed
with bootstrap resampling from a pseudotransition ma-
trix. We then estimate the error for the probability of
any given bin in the pdf of the DGD o+~ for each
pseudotransition matrix.

4) Since we have Np = 100 pseudotransition matrices, we
repeat step 3 Np times and obtain Np values for op«+.
Then, we compute the double-bootstrap confidence in-
terval Ap*™* of the relative variation of the error of p
(statistical error in p, where p is the probability of any
given bin in the pdf of the DGD computed using a
standard-MMC simulation):

ﬁ_aa** ﬁ—i_o-o'**
Ap**: p (p ), p (p ) (8)
p p
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Relative Variation

Fig. 5. Relative variation (&PDGD /Ppap) of the pdf of the normalized
DGD. 1) Circles: Transition-matrix method based on a single standard-MMC
simulation for the 15-section PMD emulator. 2) Solid: 103 standard-MMC
simulations for the 15-section emulator. 3) Dashed: Confidence interval of the
relative variation of the error estimated using the transition-matrix method for
the 15-section PMD emulator. 4) Squares: Transition-matrix method based on
a single standard-MMC simulation for the 80-section PMD emulator. 5) Dot-
dashed: 102 standard-MMC simulations for the 80-section PMD emulator.

where
1 Ng ( e 3
Tlopee) = NB—I;(UPH_UPH> ©)
and

1 Ne (
_ n)
T = N n;ap”. (10)

In (9) and (10), 01(,72 is the standard deviation of p**

computed using the nth pseudotransition matrix.

In Fig. 4, we show the relative variation of p** and its
confidence interval Ap** when we use a PMD emulator with
15 sections and 14 MMC iterations with 4000 samples each
(a total of 56000 samples). The confidence interval of the
relative variation is defined in (8). As expected, we observe that
the error in the estimate of the MMC variance is large when
the MMC variance is also large. We conclude that the estimate
of the relative variation of the probability of a bin is a good
estimate of its own accuracy. This result is similar to what is
observed with the standard analysis of standard Monte Carlo
simulations [17]. Intuitively, one expects the relative error and
the error in the estimated error to be closely related because
both are drawn from the same sample space.

IV. APPLICATION AND VALIDATION

We estimate the pdf of the normalized DGD (Ppgp) and
its associated confidence interval Alf’DGD for PMD emula-
tors comprised of 15 and 80 birefringent fiber sections with
polarization scramblers at the beginning of each section. The
normalized DGD is defined as the DGD divided by its mean
value. We use 14 MMC iterations with 4000 samples each
to compute the pdf of the normalized DGD when we use a
15-section emulator, and 30 MMC iterations with 8000 samples
each when we use an 80-section PMD emulator.

3787

DGD pdf
T

10-8 1 1 | ¥
0 Normalized DGD 5

Fig. 6. pdf of the normalized DGD for the 15-section PMD emulator using
14 MMC iterations with 4000 samples. 1) Diamonds: DGD pdf with error
estimation using the transition-matrix method. 2) Dashed line: Maxwellian pdf.
3) Solid line: Analytical pdf of the DGD for the 15-section PMD emulator.

We monitor the accuracy of our computation by calculating
the relative variation of the pdf of the normalized DGD. The
relative variation of the probability of a bin is defined as the
ratio between the standard deviation of the probability of the bin
and the probability of the bin (65 . /Ppcp). In Fig. 5,
we show the relative variation when we use PMD emula-
tors with 15 and with 80 birefringent sections. The symbols
show the relative variation when we apply the procedure that
we described in Section III with 1000 pseudo-MMC simu-
lations based on a single standard-MMC simulation and the
transition-matrix method, while the solid and the dot-dashed
lines show the relative variation when we use 1000 standard-
MMC simulations. The circles and the solid line show the
results for a 15-section PMD emulator, while the squares and
dot-dashed line show the results when we use an 80-section
PMD emulator. As expected, the result from an ensemble of
pseudo-MMC simulations shows a systematic deviation from
the result of an ensemble of standard-MMC simulations for
both emulators. The systematic deviation changes, depending
on which standard-MMC simulation is used to generate the
pseudoensemble.

In Fig. 5, the two dashed lines show the confidence inter-
val of the relative variation with the 15-section PMD emu-
lator computed using the transition-matrix method, i.e., the
confidence interval for the results that are shown with the
circles. While the relative variation that is computed using
the transition-matrix method from a single MMC simulation
will vary from one standard-MMC simulation to another, the
results obtained from different standard-MMC simulations are
likely to be inside this confidence interval with a well-defined
probability. The confidence interval of the relative variation
was obtained using a procedure similar to the one discussed in
Section III-C, except that we computed the relative variation of
the probability of a bin using the transition-matrix method for
every one of the 1000 standard-MMC simulations. Therefore,
we effectively computed the true confidence interval of the
error estimated using the transition-matrix method. We have
verified that the confidence interval calculated using the double-
bootstrap procedure on a single standard-MMC simulation
agrees well with the true confidence interval in all the cases that
we investigated.
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Fig. 7. pdf of the normalized DGD for the 80-section PMD emulator using
30 MMC iterations with 8000 samples. 1) Diamonds: DGD pdf with error
estimation using the transition-matrix method. 2) Dashed line: Maxwellian pdf.
3) Solid line: Analytical pdf of the DGD for the 80-section PMD emulator.

We observed excellent agreement between the results ob-
tained with the transition-matrix method based on a single
standard-MMC simulation and the results obtained with 1000
standard-MMC simulations for both the 15- and 80-section
PMD emulators when the relative error is smaller than 15%.
For a larger relative error, the true error is within the confidence
interval of the error, which can be estimated using the double-
bootstrap method that we described earlier in Section III-C. The
curves for the 80-section PMD emulator have a larger DGD
range because a fiber with 80 birefringent sections is able to
produce larger DGD values than is possible with a fiber of 15
birefringent fiber sections [19].

In Figs. 6 and 7, we show with symbols the results for the pdf
of the normalized DGD and its confidence interval using the
numerical procedure that we presented in Section III. The solid
line shows the pdf of the normalized DGD obtained analytically
using the solution presented in [23] for 15 and 80 concatenated
birefringent fiber sections with equal length. For comparison,
we also show the Maxwellian pdf for the same mean DGD.
For both 15- and 80-section emulators, we find that the MMC
yields estimates of the pdf of the normalized DGD with a small
confidence interval. We used only 56000 MMC samples to
compute the pdf of the DGD in a 15-section emulator, but we
were able to accurately estimate probabilities as small as 1075,
Since the relative error in unbiased Monte Carlo simulations is
approximately given by IV ;1/ 2, where Ny is the number of hits
in a given bin, it would be necessary to use on the order of 10°
unbiased Monte Carlo samples to obtain a statistical accuracy
comparable to the results that we show in the bin with lowest
probability in Figs. 6 and 7.

We conclude by stressing that the computational time that
is required to estimate the errors using the transition-matrix
method does not scale with the time needed to carry out a
single standard-MMC simulation. It takes approximately 17.5 s
of computation using a Pentium 4.0 computer with 3 GHz
of clock speed to estimate the errors in the pdf of the DGD
for the 80-section emulator using 1000 pseudo-MMC simu-
lations with the transition-matrix method, once the transition
matrix is available. The computational time that is required to
compute the pdf of the DGD using only one standard-MMC
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simulation requires 60 s of CPU time. To obtain 1000 standard-
MMC simulations would require about 16.6 h of CPU time in
this case.

V. CONCLUSION

It is difficult to estimate the statistical errors in multicanon-
ical Monte Carlo (MMC) simulations because the algorithm is
iterative and highly nonlinear. We introduce a transition-matrix
method that allows us to efficiently estimate the statistical errors
from a single standard-MMC simulation, and we show that this
method is a variant of the bootstrap procedure. We then applied
this method to calculate the probability distribution function
(pdf) and its expected error for 15- and 80-section polarization-
mode dispersion (PMD) emulators. Finally, we validated this
method in both cases by comparing the results to estimates
of the error from ensembles of 1000 independent standard-
MMC simulations. The agreement was excellent. We anticipate
that the transition-matrix method will allow one to estimate
errors with any application of MMC, including the computa-
tion of the pdf of the PMD-induced penalty [11], the pdf of
the received voltage in optical communication systems [20],
and the computation of rare events in coded communication
systems [29].
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