2580

IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 17, NO. 12, DECEMBER 2005

Comparison of Two Biasing Monte Carlo Methods
for Calculating Outage Probabilities in Systems
With Multisection PMD Compensators

Aurenice O. Lima, Curtis R. Menyuk, and Ivan T. Lima, Jr.

Abstract—We evaluate the performance of single-section and
three-section polarization-mode-dispersion (PMD) compensators
using the biasing Monte Carlo methods of importance sampling
(IS) and multicanonical Monte Carlo (MMC). We show that stan-
dard IS that biases only first-order PMD is insufficient to compute
penalties in most compensated systems, while multiple IS that bi-
ases both first- and second-order PMD and MMC work well with
all the compensators that we investigated. We show that multiple
IS works well even in a system with a three-section compensator,
when both first- and second-order PMD are compensated. The
applicability of IS in these systems is consistent with the existence
of a large correlation between first- and second-order PMD of the
transmission line and higher orders of PMD after compensation,
so that the first two orders, even when compensated, remain highly
correlated with the residual penalty. We directly demonstrate the
existence of this correlation.

Index Terms—Importance sampling (IS), multicanonical Monte
Carlo (MMC) simulations, outage probability, polarization-mode-
dispersion (PMD) compensators.

1. INTRODUCTION

OLARIZATION-MODE dispersion (PMD) is a major

source of impairment in optical fiber communication sys-
tems. Since PMD is a random process, Monte Carlo simulations
are often used to compute PMD-induced penalties. However,
the large PMD penalties of interest to system designers cannot
be efficiently computed using standard, unbiased Monte Carlo
simulations, since they are very rare. For example, a designer
might require that a penalty larger than 1 dB occurs with
probability 10~ or less, which would require on the order of
107 standard Monte Carlo samples or more to simulate. To
overcome this hurdle, advanced Monte Carlo methods such as
importance sampling (IS) [1], [2] and multicanonical Monte
Carlo (MMC) [3] have recently been applied to compute these
penalties [4], [5] using a much smaller number of samples.

In optical fiber communication systems without PMD com-
pensators, the penalty is correlated with the differential group
delay (DGD) due to PMD. As a consequence, one can apply IS
to bias the DGD [1] for the computation of PMD-induced penal-
ties. However, biasing the DGD alone is inadequate to compute
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penalties in compensated systems. On the other hand, the use
of multiple IS in which both first- and second-order PMD are
biased [2] allows one to efficiently study important rare events
with large first- and second-order PMD. In [4] and [6], we used
multiple IS to bias first- and second-order PMD to compute the
outage probability due to PMD in uncompensated systems and
in compensated systems with a single-section compensator. The
development of IS requires some a priori knowledge of how
to bias a given parameter in the simulations. In this particular
problem, the parameter of interest is the penalty. However, to
date there is no IS method that directly biases the penalty. In-
stead of directly biasing the penalty, we relied on the correlation
of the first- and second-order PMD with the penalty, which may
not hold in all compensated systems. In contrast to IS, MMC
does not require a priori knowledge of which rare events con-
tribute significantly to the penalty distribution function in the
tails. MMC is an iterative method, where in each iteration it
produces a biased random walk that automatically searches the
state space for the important rare events. This knowledge is ac-
cumulated, allowing the penalty distribution function to be ob-
tained further out in the tail from one iteration to the next. In this
work, we use multiple IS and MMC to study the performance of
single-section and three-section PMD compensators. We show
that both methods are appropriate to compute outage probabili-
ties with the compensators that we investigated. They yield the
same results within the limit of their statistical errors, and mul-
tiple IS yields lower errors for comparable run times.

We investigated a single-section PMD compensator, which is
a variable-DGD compensator that was programmed to eliminate
the residual DGD at the central frequency of the channel after
compensation, and a three-section PMD compensator proposed
in [7], which compensates for first- and second-order PMD.
We describe details of the implementation of the single-sec-
tion compensator that we used in a previous publication [6].
The three-section compensator consists of two fixed-DGD ele-
ments that compensate for the second-order PMD and one vari-
able-DGD element that eliminates the residual DGD at the cen-
tral frequency of the channel after compensation. The three-sec-
tion compensator that we use has the first- and second-order
PMD as feedback parameters. This compensator can also, in
principle, operate in the feedforward configuration.

II. SIMULATION RESULTS AND DISCUSSIONS

We evaluate the performance of a single-section and a
three-section PMD compensator in a 10-Gb/s nonreturn-to-zero
system with a mean DGD of 30 ps. We investigated other values
for the mean DGD, spanning the range from 30 to 40 ps and
obtained similar results. We use perfectly rectangular pulses
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Fig. 1. PDF of the eye-opening penalty for a system with a mean DGD of
30 ps and a single-section compensator. (a) Solid line: results using IS in which
only the DGD is biased. (a) Dashed line: results using IS in which both first- and
second-order PMD are biased. The confidence interval is shown with error bars.

filtered by a Gaussian shape filter that produces a rise time of
30 ps. We use a bit string with an 8-bit de Bruijn sequence. It is
sufficient to simulate eight bits, which has all possible three-bit
combinations, because we are studying a single-channel system
in which the probability of intersymbol interference beyond
one bit is negligible. We model the fiber using the coarse step
method with 80 birefringent fiber sections, which reproduces
first- and higher order PMD distortions within the probability
range of interest [6]. The results of our simulations can also be
applied to 40-Gb/s systems by scaling down all time quantities
by a factor of four. To evaluate the performance, we use the eye
opening, which is defined as the difference between the cur-
rents in the lowest mark and the highest space at the sampling
time [6]. The three-section compensator has two fixed-DGD
elements of 45 ps and one variable-DGD element. The results
obtained with the three-section compensation for each fiber
realization are based on the method described in [7]. In our
simulations, we computed the reduction of the polarization
chromatic dispersion and the principal states of polarization
rotation rate components for the two operating points [7] of
the compensator. Then, we selected the one that presented the
largest reduction of the second-order PMD. Note that these
results are not obtained using a tracking system. The results
that we present here were obtained using 30 MMC iterations
with 8000 samples each and using IS with a total of 2.4 x 10°
samples. We estimate the errors in MMC using a transition
matrix method that will be described in detail elsewhere, while
we estimate the errors in IS as in [4].

In Fig. 1, we show the probability density function (pdf) of
the eye-opening penalty for a system with 30-ps mean DGD
and a single-section PMD compensator. We compute the pdf
using IS in which only the DGD is biased, and we also compute
the pdf using IS in which both the first- and second-order PMD
are biased. We observed that it is not sufficient to only bias the
DGD in order to accurately calculate the compensated penalty
and its pdf. This approach can only be used in systems where
the DGD is the dominant source of penalties, which is the case
in uncompensated systems and in systems with limited PMD
compensation.

In Fig. 2, we plot the outage probability for a 1-dB penalty
as function of the DGD element (7.) for a system with the
three-section compensator that we used. The outage probability
is the complement of the cumulative density function (cdfc) of
the eye-opening penalty p, where cdfc(p) = fpoo p(p)dp' and
p(p) is the corresponding pdf. The mean DGD of the system
before compensation is 30 ps. We observed that there is an op-
timum value for 7. that minimizes the outage probability, which
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Fig. 2. Outage probability for a 1-dB penalty as function of the DGD element
(7.) of the three-section compensator for a system with mean DGD of 30 ps.
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Fig. 3. Outage probability as a function of the eye-opening penalty for a
system with mean DGD of 30 ps. (a) Dashed line (MMC) and triangles (IS):
uncompensated system. (b) Dotted—dashed line (MMC) and circles (IS): system
with a single-section compensator. (c) Solid line (MMC) and diamonds (IS):
system with a three-section compensator. The error bars show the confidence
interval for the MMC results.

is close to 45 ps. We set the values for the two fixed-DGD el-
ements of the three-section PMD compensator to this optimum
value. The reason why the outage probability rises when 7. be-
comes larger than this optimum is because large values of 7.
add unacceptable penalties to fiber realizations with relatively
small second-order PMD values that could be adequately com-
pensated at lower values of 7.. We also observed that there is
a relatively small dependence of the outage probability on 7.
That is because the third variable-DGD section of the compen-
sator cancels the residual DGD after the first two sections, which
significantly mitigates the penalty regardless of the value of ..

In Fig. 3, we plot the outage probability (P,,) as a func-
tion of the eye-opening penalty for the compensators that we
study. The histogram of the penalty was divided into 34 evenly
spaced bins in the range —0.1 and 2 dB, even though we show
results from O to 1.5 dB of penalty. The maximum relative error
(6, /Fop) for the curves computed with MMC shown in this
plot équals 0.13. The relative error for the curves computed with
IS is smaller than with MMC, and is not shown in the plot.
The maximum relative error for the curves computed with IS
equals 0.1. The results obtained using MMC (solid lines) are
in agreement with the ones obtained using IS (symbols). The
agreement between the MMC and IS results was expected for
the case that we use a single-section compensator, since this
type of compensator can only compensate for first-order PMD
[5], so that the dominant source of penalty after compensation
is the second-order PMD of the transmission line. Hence, it is
expected that MMC and IS give similar results. We also ob-
serve good agreement between the MMC and IS results for the
three-section compensator. This level of agreement is an indi-
cation that three-section compensators that compensate for the
first two orders of the Taylor expansion of the transmission line
PMD produce residual third and higher orders of PMD that are
significantly correlated with the first- and second-order PMD
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Fig. 4. (a) Conditional expectation of the magnitude of the normalized
second-order PMD, |7,|, given a value of the DGD of the transmission line,
|7|. Conditional expectation before (dashed) and after (solid) the three-section
compensator. (b) Same as (a) for the normalized third-order PMD |7..|.
(c) Same as (a) for the normalized fourth-order PMD |7, o |-

of the transmission line. That is why the use of IS to bias first-
and second-order PMD is sufficient to accurately compute the
outage probability in systems where the first two orders of PMD
of the transmission line are compensated.

In Fig. 4, we quantify the correlation between lower and
higher orders of PMD. In Fig. 4(a), we show the conditional
expectation of the magnitude of second order of PMD before
and after the three-section compensator given a value of the
DGD of the transmission line. We normalize the DGD |7
by the mean DGD (|7|) and |7,| by (|T.|) to obtain results
that are independent of the mean DGD and of the mean of
the magnitude of second-order PMD. We observe a large
correlation between |7| and |7,,| before compensation, while
after compensation |7,,| is significantly reduced and is less
correlated with the DGD, demonstrating the effectiveness of the
three-section compensator in compensating for second-order
PMD. In Fig. 4(b) and (c), we show the conditional expectation
of the magnitude of the third-order PMD and of the fourth-order
PMD, respectively, before and after the three-section compen-
sator, given a value of the DGD of the transmission line. In
both cases, we observed a high correlation of the third- and the
fourth-order PMD with the DGD before and after compensa-
tion. In addition, we observed a significant increase of these
higher order PMD components after compensation, which leads
to a residual penalty after compensation that is correlated to the
original first- and second-order PMD. The second-order PMD
is also correlated to both third- and fourth-order PMD before
and after compensation. These correlations are not shown in
the manuscript due to limited space.

In Fig. 5, we show contour plots of the conditional expecta-
tion of the penalty with respect to the first- and second-order
PMD for a system with a three-section PMD compensator [7].
These results show that the residual penalty after compensa-
tion is significantly correlated with the first- and second-order
PMD. The correlation between the higher orders of PMD with
the DGD that we show in Fig. 4(a)—(c) can be estimated from the
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Fig. 5. Three-section compensated system. The dotted lines are the contour
plots of the joint pdf of the normalized |7| and |T.,| (from bottom to top) at
3 x10~", withn =1,2,3,4,5,6,7,and 10~™, withm = 1,...,11. The
solid lines are the contour plots of the conditional expectation of the eye-opening
penalty in decibels (from bottom to top) at 0.1, 0.2, 0.3, 0.4, 0.5, 0.6.

concatenation rule [8], which explicitly indicates a dependence
of the higher order PMD components on the lower order com-
ponents. The increase in these higher order components after
compensation is also due to our choice of operating point for
this compensator, which is set to compensate only for first- and
second-order PMD, regardless of the higher order PMD com-
ponents. It is possible that this three-section PMD compensator
would perform better if all seven parameters of the compensator
are adjusted to achieve the global optimum of the penalty reduc-
tion. However, finding this global optimum is unpractical due to
the large number of local optima in such a multidimensional op-
timization space, as we found in our investigation of single-sec-
tion PMD compensators [6].

III. CONCLUSION

We have shown that both multiple IS and MMC can be used
to bias Monte Carlo simulations of the outage probability due to
PMD in optical fiber communication systems with both one-sec-
tion and three-section compensators. In particular, multiple IS
can be used to efficiently compute the outage probability even
with a three-section PMD compensator in which both first- and
second-order PMD are compensated, which is consistent with
the presence of a large correlation between first- and second-
order PMD of the transmission line and higher orders of PMD
after compensation. We directly demonstrated that this correla-
tion is present. Finally, we showed that MMC yields the same
results, within the statistical errors of both methods.
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