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Abstract—Due to the temporal drift of the fiber birefringence
in an optical fiber transmission system, the polarization mode
dispersion (PMD) effects measured in a time window can be quite
different for different time windows of the same duration. Every
10 s for 10 days, the accumulated differential group delay (DGD)
was repeatedly measured at 5000 km in a 107-km recirculating
loop with loop-synchronous polarization scrambling. In each DGD
measurement, the polarization dispersion vector of the 107-km-
long fiber was also measured. To model the measured temporal
variation of the DGD, two different perturbation algorithms were
used to construct random walks through the configuration space of
birefringent fibers, where each fiber realization is determined by
the standard coarse-step method. With these simulation models,
the statistical properties of the spread of the DGD samples over a
finite time period were reproduced.

Index Terms—Differential group delay (DGD), fiber drift, opti-
cal fiber communication, optical fiber measurement, polarization–
mode dispersion (PMD).

I. INTRODUCTION

POLARIZATION mode dispersion (PMD) influences the
transmission performance in long-haul optical fiber com-

munication systems and has been studied for more than two
decades [1]. Because the effect of PMD varies randomly due
to random variations in the fiber birefringence [2], [3], it is
important to measure and characterize the probability density
functions (pdfs) of random quantities such as the differential
group delay (DGD). If the fiber in a straight-line system drifts
ergodically over time, which means that over an infinitely long
time period, all possible instances of the fiber birefringence are
realized with equal probability; then, the resulting pdf of the
DGD is Maxwellian [4]. However, any experiment designed to
measure the pdf of the DGD must necessarily be undertaken
in a finite time window. If the measurement time window T is
not long enough, then there can be a large variation between
pdfs of the DGD that are measured in different time windows
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of duration T . For example, we have observed that, when it
is measured over a 3-h time window, the pdf of the DGD at
5000 km in a recirculating loop system can be quite different
for different 3-h time windows. Moreover, in some specific win-
dows, the pdf also differs significantly from a modified Bessel
function, which describes the long-term DGD pdf in a loop with
loop-synchronous polarization scrambling [5]. Consequently,
it is important to statistically quantify the extent to which the
DGD values spread within a time window of duration T . In this
paper, we denote the standard deviation of all DGD samples that
are collected in a time window of duration T as στ (T ). In the
nomenclature of statistical sampling, the quantity στ (T ) is also
called the spread of the DGD over a time window of duration
T . By averaging στ (T ) over many different time windows
of duration T , we obtain the average spread 〈στ 〉(T ), which
statistically quantifies the extent to which the DGD samples
are expected to be spread during a time window of duration
T . In addition, it is important to measure the extent to which
the DGD spread, measured over a time T , varies as the time
window changes. Finally, as simulations are widely used to
study the system performance, it is also important to develop
mathematical models that accurately describe the statistical
properties of the spread of the DGD.

A simple dynamical model for the drift in the fiber bire-
fringence over time is a discrete time series of random fiber
realizations in which the fiber realization at the next time step
is a (small) random perturbation of the current fiber realization.
A fiber realization can be characterized by a choice of the
birefringence vector as a function of distance along the fiber.
This birefringence vector is a real two-vector, whose magnitude
equals the birefringence strength and whose direction corre-
sponds to the birefringence orientation. A fiber can be perturbed
either by changing the magnitude of the birefringence vector
[6], its direction [7], or both as a function of distance.

In general, the fiber birefringence vector at any location drifts
randomly over time. Neither the magnitude nor the direction of
this drift at any time instant can be predicted without knowing
the previous drift history. On the other hand, if the previous drift
history is known, one can approximately predict the drift in the
next relatively short time period, because the fiber drift remains
correlated for some time [8], [9]. Consequently, in order to
accurately model the fiber drift, some temporal correlation
should be included in the perturbation algorithm. In this paper,
we refer to this kind of algorithm as a quasi-deterministic model
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and the direction in which the birefringence vector drifts as the
drift direction.

It is difficult, for several reasons, to construct a quasi-
deterministic model that exactly models the fiber drift. The
measurement of the local fiber birefringence is difficult, and the
environmental variations that influence the local fiber birefrin-
gence are unpredictable. On the other hand, we will show that
it is not necessary to exactly reproduce the fiber birefringence
drift in order to study the statistical properties of the DGD
spread στ . A quasi-deterministic model with an appropriate
amount of temporal correlation will reproduce the measured
average spread 〈στ 〉(T ) for almost all values of T , even though
the drift of the fiber birefringence in the real system is not
exactly reproduced by this model.

We previously mentioned that in a real system, the fiber
drift remains correlated for some time. If one repeatedly makes
measurements with a sampling interval longer than this correla-
tion time, one would observe an uncorrelated drift process. For
example, in an aerial fiber system, where the fiber drift process
rapidly decorrelates due to the wind, the correlation time is
small compared to typical sampling intervals. Therefore, in this
case, a perturbation model in which the magnitude or direction
of the perturbation vector field is not correlated from one step
to the next accurately describes such observed statistical prop-
erties of the fiber drift process as the temporal autocorrelation
function (ACF) of the output polarization state and the ACF
of the polarization dispersion vector [7]. A perturbation model
based on uncorrelated steps also agrees well with the result
of a prior experiment in which the polarization state and the
DGD were measured with a relatively long sampling interval
(∼ 2 h) [6]. By analogy to the well-known Brownian motion,
in which the direction of a particle’s motion at one instant is
uncorrelated with the direction at any other instant in time, a
model in which the change in the magnitude and the direction
of the birefringence vector at each fiber location is uncorrelated
from one step to the next is referred to as a Brownian model
in this paper. A model with no temporal correlation is easier to
implement than a quasi-deterministic model. On the other hand,
this model may not accurately reproduce 〈στ 〉(T ) in a system in
which the DGD is repeatedly measured with a sampling interval
less than the correlation time.

It is useful to compare the models for temporal drift with
the models for the spatial variation of the fiber birefringence
that have been extensively studied [10]. Two different models
have been developed to model the variation of the fiber bire-
fringence with distance, and both of them are accurate in an
appropriate parameter range. One model is the fine-step model,
in which the fiber birefringence gradually varies over distance:
Only after a characteristic length, called the fiber correlation
length h, does the birefringence vector become uncorrelated
with its value at z = 0 [10]. Another model is the coarse-
step model, in which the fiber is divided into multiple constant
birefringence sections and the birefringence vectors in different
sections are uncorrelated [11]. Wai and Menyuk [12] proved
that both models yield the same statistical properties for the
accumulated DGD as long as the birefringence section length
is much longer than the correlation length and the birefringence
strength is appropriately scaled. Replacing β̂(z) with dβ̂/dt,

where β̂ represents the local fiber birefringence, the quasi-
deterministic model of the temporal fiber drift is analogous to
a fine-step model of the spatial variation in the fiber birefrin-
gence, and the Brownian model is analogous to a coarse-step
model. Thus, it is useful to investigate whether the average
spread 〈στ 〉(T ) obtained with the quasi-deterministic model
and with the Brownian model also agree when T exceeds an
appropriately defined characteristic value.

In order to validate this intuitive picture, we repeatedly
measured the DGD at 5000 km in a 107-km recirculating
loop system with loop-synchronous polarization scrambling for
10 days with a sampling interval of 10 s to obtain 〈στ 〉(T ).
We also measured the polarization dispersion vector Ω̂ of the
107-km loop fiber. Then, we applied the simple Brownian
model as well as the quasi-deterministic model to model the
temporal drift of the 107-km-long fiber in the loop. In each
model, we varied the perturbation parameters and with each
choice of the parameters—called a parameter setting in this
paper—we perturbed the local fiber birefringence many times
to obtain the average spread 〈στ 〉(T ) from the fiber realizations.
The simulated average spread 〈στ 〉(T ) was compared with
the experimentally measured average spread to evaluate the
accuracy of the perturbation model for each parameter setting.

Our study shows that for a time window of duration T
longer than a characteristic time, the simple Brownian model
agrees well with the experimental results for all settings of
the perturbation parameters. This characteristic time, which we
called the correlation time, is the time duration ∆t0, beyond
which the ACF of the temporal variation of Ω̂, ACFd(∆t) =
〈(dΩ̂(t)/dt) · (dΩ̂(t + ∆t)/dt)〉, is close to zero. The autocor-
reltion function ACFd is different from the ACF of the po-
larization dispersion vector, ACFs(∆t) = 〈Ω̂(t) · Ω̂(t + ∆t)〉,
which was the focus of previous studies [6], [7]. The quantity
ACFd characterizes the correlation between the drift directions
at different instants in time, while ACFs describes the corre-
lation between the fiber states at different instants. We also
show that when the duration of the time window is shorter
than the correlation time, the quasi-deterministic model with an
appropriate parameter setting reproduces the value of 〈στ 〉(T )
measured in the experiment, even though the details of the fiber
drift may not be exactly reproduced.

In effect, we have developed an approach by which sim-
ulation models may be constructed to study the statistical
properties of the DGD spread. In this approach, the correlation
time ∆t0 of the temporal variation of Ω̂, which is around 25 min
in our system, is measured first. If one is only interested in
the statistical properties of the DGD spread during a time
window longer than the correlation time, a simple Brownian
model is sufficient. In such a Brownian model, the perturbation
parameter can be arbitrarily chosen within a range for which
the amount of the fiber drift in each perturbation step is neither
much larger nor much smaller than its value during one sam-
pling interval in the real measurement. By comparison, a quasi-
deterministic model with an appropriate parameter setting is
accurate for almost any value of T , so that the statistical pro-
perties of the DGD spread during a time window shorter than
∆t0 can be characterized. However, this quasi-deterministic
model only produces results that agree with the experiment
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Fig. 1. Experimental setup. LD: laser diode; AOSW: acoustooptic switch; PC:
polarization controller; PS: polarization scrambler; SMF: single-mode fiber;
DSF: dispersion-shifted fiber; OBF: optical bandpass filter.

when the parameters are properly set. It is not possible to
choose the proper parameter setting directly from the experi-
mental data without an accurate measurement of the temporal
drift of the local fiber birefringence.

In Section II, we describe the procedure that we used for the
10-day-long experimental measurement of the DGD. We intro-
duce the Brownian model and the quasi-deterministic model in
Section III. In Section IV, we compare the long-term pdf of
the DGD in these two models with an analytical formula and
with the experimental results. From this comparison, we show
that in our system, 10 days is almost long enough to accurately
determine the statistical properties of the DGD spread. In
Section V, we discuss the statistical properties of the DGD
spread, and in Section VI, we present our conclusions.

II. EXPERIMENTAL SETUP

In a 107-km recirculating loop system [13], we repeatedly
measured the DGD after 50 round trips, which corresponds
to approximately 5000 km of propagation, every 10 s for
10 days. As shown in Fig. 1, this loop consists of four spans
of dispersion-shifted fiber, each with a length of 25 km, and
two spans of standard single-mode fiber, each with a length
of 3.5 km. The optical signal loss is compensated by five
erbium-doped fiber amplifiers. To reduce the optical noise, we
used an in-line optical bandpass filter with a full-width at half-
maximum bandwidth of 2.8 nm. The polarization-dependent
loss (PDL) was less than 0.5 dB per round trip. To ensure
that the loop system emulates the polarization effects in a
straight-line system as closely as possible, we used a loop-
synchronous LiNbO3 polarization scrambler to randomly rotate
the polarization state of the signal once per round trip [14].

At the transmitter, two laser diodes were used to generate two
continuous-wave signals at 1551 ± 0.04 nm (10-GHz spacing)
that were alternately sent into the loop using two acoustooptic
switches. Each signal was transmitted for 30 ms, which is
longer than the propagation time for 50 round trips of the loop.
Every 60 ms, we made a large change to the input polarization
states using a LiNbO3 polarization controller (PC) located
immediately prior to the point at which the light is launched into
the loop. Thus, within each 180-ms time interval, we launched
two wavelengths each with three different polarization states.
From the input and output polarization states for these six
settings, we calculated the DGD after each of the 50 round trips
using the Jones matrix eigenanalysis (JME) method [15]. From

Fig. 2. Chart of the timing history of one DGD measurement. Upper: Fifty
samples of Stokes vectors are measured in one round trip, and they are averaged
to obtain the Stokes vector for this round trip. Middle: Input polarization
state (dark grey filled) and output polarization states at 1–50 round trips
are sequentially measured in 30 ms. Data from round trips 51–59 were not
used. Lower: Input and output polarization states in six transmitter settings
were measured to obtain the DGD value using the JME method. We used an
additional 60 ms to remeasure the Stokes vector in the first two settings (light
grey filled) in order to estimate the influence of Stokes noise.

these polarization states, we also calculated the polarization
dispersion vector following the procedure in [16].

Fig. 2 shows the timing history of a single DGD mea-
surement. Both the input and output polarization states were
measured with a real-time polarimeter (Adaptif Model A1000)
at a sampling rate of 100 kHz. Because the light propagation
time for one round trip (107 km) was approximately 0.5 ms,
we obtained 50 samples per round trip with the 100-kHz
sampling rate. We averaged these 50 samples to obtain the
Stokes vectors after this round trip. The polarimeter repeatedly
sampled the light for 30 ms. This time duration corresponds
to 60 round trips, including the input. However, we only kept
and analyzed data for the first 50 round trips after the input, so
that the total propagation length corresponded approximately
to 5000 km. In the first 0.5 ms, one of the two acoustic–optic
switches at the transmitter (AOSW1/AOSW2) was on while
the other was off so that the signal at one wavelength was
loaded into the loop as well as the polarimeter. Because the
couplers at the transmitter introduced a negligible amount of
DGD, the average of the 50 samples in this 0.5-ms period was
used as the input polarization state in the calculation of DGD
with no visible loss of accuracy. When both the AOSW1 and
AOSW2 were off and the AOSW inside the loop (AOSW3)
was on, every group of 50 samples in the complete collection
of 50 × 50 = 2500 samples was averaged to obtain the polar-
ization state of each round trip. In 30 ms, we captured both
the input polarization state and output polarization states at
each of the 50 round trips for a given wavelength and for a
given input polarization state setting. To obtain the DGD value,
one needs to measure input and output polarization states in
six transmitter settings—two different wavelengths, each with
three different input polarization state settings. By using the
AOSWs (AOSW1 and AOSW2) to switch wavelengths and the
fast LiNbO3 PC to switch input polarization states, the mea-
surements in the six different settings could be started immedi-
ately, one after another. Consequently, we only needed 180 ms
(30 × 6) to finish all six combinations and, thus, one DGD
measurement.
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As shown in Fig. 2, we set the sampling window to 240 ms.
The first 180 ms was used to measure the DGD, as we just
described. In the remaining 60 ms (180–240 ms), indicated
by the light-grey-filled time slots, we set the transmitter back
to the first two settings (0–60 ms) and remeasured the Stokes
vectors. Even with the same setting at the transmitter, the results
will not be the same as those in 0–60 ms due to Stokes noise,
by which we mean the uncertainty in the measurement of the
polarization states. This uncertainty is induced by imperfect
polarimetry in the instrument, the optical noise, and the fiber
drift during one DGD measurement. In earlier work, we have
shown that in a long-haul system, the Stokes noise is the
major factor limiting the accuracy of the DGD measurement
[17]. To estimate its influence on the DGD measurement, we
first calculated the noise angle, which we defined to be the
angle between the Stokes vector measured during 0–60 ms
and the Stokes vector measured during 180–240 ms. On the
Poincaré sphere, using the noise angle as the radius, we formed
a circle around each of the six output Stokes vectors from the
six transmitter settings measured during 0–180 ms. Then, we
randomly chose six Stokes vectors from these six circles and
used them to recalculate the DGD. The absolute difference
between the newly calculated DGD value and the original DGD
value gives one sample of the DGD uncertainty. To replicate
the random nature of the Stokes noise, we randomly repeated
this estimation procedure 25 times for each DGD measurement
and thus obtained 25 estimates of the DGD uncertainty. To
ensure that the different estimates are statistically independent,
the Stokes vectors were chosen randomly on different circles
for each estimate in each DGD measurement.

Every 10 s, one DGD sample was obtained for each round
trip. At the start of each DGD measurement, the polarization
scrambler was reset to generate a new set of random polariza-
tion rotations so that in each round trip, the signal underwent
an arbitrary polarization rotation that was uncorrelated with the
rotations in other round trips and with other DGD measure-
ments. Note that the duration of one DGD measurement was
only 180 ms, while resetting the polarization scrambler as well
as recording the data from the instrument buffer took about
10 s. For 10 days, we repeated this process continuously and
obtained 80 000 DGD samples, except that there was a 12-h gap
between the first 50 000 samples and the last 30 000 samples
due to an instrument error. During this interval, the system was
not touched. For these 80 000 samples, the average DGD after
50 round trips was 4.16 ps, and this value was used in our
theoretical studies.

In Fig. 3, we show the complement of the cumulative pdf of
the uncertainties in these 80 000 DGD measurements. The total
number of uncertainty samples is 25 × 80 000, since we made
25 statistically independent uncertainty estimates for each DGD
measurement. With a 99% probability, the DGD measurement
uncertainty is less than 1.0 ps at the 50th round trip and is less
than 0.2 ps for the 107-km fiber path. The standard deviation
of the 25 × 80 000 uncertainty samples at the 50th round trip
is around 0.34 ps. Other effects such as higher-order PMD
and PDL also affect the measurement. However, our simulation
study shows that in the JME method, their effects are negligible
if the PDL does not exceed 0.5 dB per round trip [18].

Fig. 3. Complement of the cumulative density function (cdfc) of the uncer-
tainty in the measurement of the DGD in one round trip (dotted line) and of the
DGD after 50 round trips (solid line).

To calculate the average spread 〈στ 〉(T ), for a given time
window duration T , we divided the 10 days into M nonover-
lapping time windows so that M × T = 10 days. We only
chose T values such that M is an integer. We calculated στ (T )
in each window, and we then averaged στ (T ) over all M
windows to obtain 〈στ 〉(T ).

In the experiment, we reset the instruments and repeated the
DGD measurement every 10 s. To ensure that the calculated
value στ (T ) is meaningful, we chose the values of T to be
greater than 150 s so that the shortest time window contained
at least 15 DGD samples. Moreover, to reduce the influence
of the measurement uncertainty on the value of στ (T ), par-
ticularly when T was small and fiber drift was insignificant,
we calculated the value of στ (T ) in each time window to

be στ (T ) = [(σ(meas)
τ )

2 − (σ(uncertainty)
τ )

2
]
1/2

, where σ
(meas)
τ

is the standard deviation of the measured DGD samples, and
σ

(uncertainty)
τ is the standard deviation of the estimated mea-

surement uncertainties of these DGD samples, which was de-
scribed earlier in this section.

III. SIMULATION MODELS

We use the coarse-step method to simulate PMD in our sys-
tem [11]. The 107-km loop fiber is modeled using 75 sections
of birefringent fiber, each with a fixed length z and a fixed
magnitude of birefringence, expressed as

β = 2πν

√
3π

8 × 75
〈τ〉
z

(1)

where ν is the optical frequency and where 〈τ〉 is the average
DGD of the 107-km loop fiber. In the experiment, the polariza-
tion scrambler produces a random polarization rotation of the
signal once per round trip. In the simulation, this polarization
scrambler is modeled by a rotation matrix RPS(i) that varied
randomly with the round trip number i. Consequently, the
polarization transformation matrix for N round trips of the loop
is given by

RN =
N∏

i=1

[
RPS(i)

75∏
m=1

eβz(r̂m×)

]
(2)
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where the unit Stokes vector r̂m represents the direction of
the fiber birefringence in the mth section so that eβz(r̂m×)

represents the polarization rotation matrix of the mth section
of birefringent fiber for an optical signal at frequency ν. The
vectors r̂m in different sections are uncorrelated. In this work,
we assume that the magnitude of the birefringence β does not
change over time. Consequently, the fiber realization of the
entire system at a given time is determined by RPS(i) and r̂m.
Therefore, the vector r̂m also determines the realization of the
107-km length of fiber in the loop, and in this work, it is also
referred to as the state of the fiber at a given instant. Moreover,
at any time instant, the polarization dispersion vector after
N round trips Ω̂N can be calculated from the transformation
matrix RN as a function of the optical frequency. In this work,
we focused on the DGD after N round trips, which is given by
the magnitude of Ω̂N , and the polarization dispersion vector
of the 107-km loop fiber Ω̂, which can be calculated from
Ω̂ = RPS(1)−1 × Ω̂1.

The temporal derivative of r̂m, which represents the variation
of the fiber state over time and is referred to as the drift of the
fiber birefringence in the mth section, is given by

dr̂m

dt
= φrê(p̂m×r̂m) (3)

where φr represents the drift rate and the unit Stokes vector
ê(p̂m×r̂m) represents the drift direction, which is determined
by the cross product between r̂m and a unit vector p̂m on the
Poincaré sphere. When p̂m is constant, as time increases, the
vector r̂m traces out a circular path on the Poincaré sphere.
On the other hand, if the unit vector p̂m varies randomly
over time, then r̂m drifts randomly on the Poincaré sphere.
Moreover, when both p̂m and φr are uncorrelated at two
instants t1 and t1 + ∆t so that 〈p̂m(t1) · p̂m(t1 + ∆t)〉t1 = 0
and 〈φr(t1)φr(t1 + ∆t)〉t1 = 0, the fiber drift is also un-
correlated so that 〈(dr̂m(t1)/dt) · (dr̂m(t1 + ∆t)/dt)〉t1 = 0.
Note, however, that if the drift rate is small, then the state
of the fiber at t1 and t1 + ∆t may still be correlated, i.e.,
〈r̂m(t1) · r̂m(t1 + ∆t)〉t1 �= 0.

In Fig. 4, we show the evolution for the first birefringence
section (m = 1) of r̂m for 800 perturbation steps with the
Brownian model and with the quasi-deterministic model. In the
Brownian model, at any time instant, the unit vector p̂m is uni-
formly distributed over the full solid angle 4π. The drift rate φr

at different instants is also uncorrelated, and at each instant, φr

is Gaussian distributed with zero mean and a standard deviation
σφr

. Consequently, in the Brownian model, one only needs to
set the standard deviation of the drift rate φr, and for the 800
perturbations shown in Fig. 4(a), σφr

= 0.01 rad. As shown in
Fig. 4(a), the vector r̂m drifts in any direction on the Poincaré
sphere with equal probability, and the drift of the fiber dr̂m/dt
at any two instants is uncorrelated. However, as we mentioned
earlier, the state of the fiber r̂m may remain correlated for a
certain length of time. For example, in Fig. 4(a), the vectors r̂m

all lie within a small region of the Poincaré sphere.
In the quasi-deterministic model, instead of being at an

arbitrary position on the Poincaré sphere at any instant, the unit

Fig. 4. Evolution of r̂1 for 800 perturbation steps (a) with the Brownian
model and (b) with the quasi-deterministic model. We show the evolution
by projecting a small region of the Poincaré sphere onto a plane. The angle
between the original r̂1 and r̂1 after 800 perturbations steps (both marked by
circles) is (a) 0.26 rad in the Brownian model and (b) 0.09 rad in the quasi-
deterministic model.

vector p̂m changes more gradually over time, i.e., it traces out
a Brownian-motion-like path, similar to the one traced out by
the vector r̂m in the Brownian model. The standard deviation
of the drift rate of p̂m is denoted by σφp

, which statistically
determines the rate at which the drift direction of r̂m varies. In
this model, the drift rate of r̂m itself φr is held fixed. Thus, the
random properties of the fiber drift in the quasi-deterministic
model is determined by two parameters, namely 1) σφp

and
2) φr. Fig. 4(b) shows r̂1 in 800 perturbation steps with
the quasi-deterministic model when σφp

= 0.2 rad and φr =
0.0005 rad. Since the vector p̂m remains correlated for a certain
amount of time, the drift dr̂m/dt of the mth section preserves
a certain degree of correlation during this correlation time.

In the simulation, the quantity σφr
in the Brownian model is

the standard deviation of the amount by which r̂m is perturbed
in each step. In the quasi-deterministic model, σφp

is the
standard deviation of the perturbation amount of p̂m in one
step and φr is the fixed perturbation amount of r̂m per step.
In this paper, we chose different values for these perturbation
parameters, and for each such parameter setting, we perturbed
r̂m six million times. For each parameter setting, we also
divided the six million perturbations into M perturbation
windows, each with n perturbation steps so that M × n = 6 ×
106, and we calculated 〈στ 〉(n) as a function of n for n > 15
following the same procedure that we used in the experiment.
However, in the simulation, στ is not influenced by the Stokes
noise and is therefore directly calculated from the standard
deviation of the DGD samples in each perturbation window.

Each perturbation step corresponds to an elapsed time
period in the experiment, tperturbation, during which the fiber
realization drifts slightly. Thus, when the value of tperturbation

is determined, 〈στ 〉(n) is converted to 〈στ 〉(T ) using T =
ntperturbation, which is then compared with 〈στ 〉(T ) measured
in the experiment. Because we estimated the statistics of the
DGD using only a finite number of samples in both the experi-
ment and the simulations, there is an uncertainty in the average
value 〈τ〉 of all the DGD samples, and hence in the estimated
values of the average spread 〈στ 〉(T ). To reduce the influence of
this uncertainty, we divided the average spread 〈στ 〉(T ) by the
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TABLE I
PARAMETER SETTING, PERTURBATION STEP TIME, AND AVERAGE DGD AT THE 50TH ROUND TRIP IN

THE BROWNIAN MODEL AND IN THE QUASI-DETERMINISTIC MODEL (QUASI-D)

average of all DGD samples in the long-term measurement or in
the long-term simulation of the fiber drift. We call the resulting
value 〈στ 〉nor(T ) = 〈στ 〉(T )/〈τ〉 the normalized average
spread of the DGD. In the remainder of the paper, we compare
the values of 〈στ 〉nor(T ) in the experiment with those obtained
using simulations. For each parameter setting, we tried different
values of tperturbation, and we chose the one that minimizes
the average absolute difference between the experimental
and simulated functions 〈στ 〉nor(T ), i.e., we minimized∫ |〈στ 〉nor,experiment(T ) − 〈στ 〉nor,simulation(T )|dT .

The value of tperturbation is influenced by the perturbation
parameters and the number of birefringent sections used to
model a given length of the fiber path, which, in this paper,
is 75 sections for the 107-km loop fiber. Conversely, for any
combination of the perturbation parameters and for any number
of birefringent sections that is greater than 10 [12], the value
of tperturbation that minimizes the average absolute difference
between the normalized average spreads in the experiment
and simulation results in a good fit between these two curves.
However, there is no guarantee that the two 〈στ 〉nor(T ) curves
agree at every value of T , or even every T within the range of
interest, since the simulation may not accurately describe the
statistical properties of the DGD spread in the experiment.

In this work, we used three different parameter settings for
the Brownian model and another three different parameter
settings for the quasi-deterministic model. The perturbation
parameters and the corresponding values of tperturbation

chosen for these settings are listed in Table I. The average
DGD at the 50th round trip for the six million DGD samples in
each setting is also given and is the value we used to calculate
〈στ 〉nor(T ) from 〈στ 〉(T ). As shown in the table, when σφr

or
φr increases, the vector r̂m is perturbed on average by a larger
amount in each step, so that each perturbation step corresponds
to a longer drift time in the experiment. By contrast, as σφp

increases, tperturbation decreases, because the drift of r̂m is
less correlated from step to step. This behavior is analogous
to the movement of a particle. For a given velocity, if the
particle moves in a random direction at any instant, the overall
displacement during a given time interval will be less than that
if the particle moves in a straight line.

In principle, one can vary the values of the perturbation
parameters in a range different from that in Table I. The range

of variation in this paper was chosen so that tperturbation is not
significantly different from the measurement interval of 10 s
and so that the values of the normalized average spread of the
DGD, 〈στ 〉nor(T ), in the simulation can be compared to those
in the experiment over as wide a range of T as possible.

The birefringence vector of each fiber section r̂m in these
six million realizations is uniformly distributed on the Poincaré
sphere, which indicates that the fiber drifts ergodically in both
models. In each perturbation, we also randomly varied RPS(i)
to emulate a different setting of the polarization scrambler for
each different measurement.

IV. PDF OF DGD DURING THE 10 DAYS AND IN SIX

MILLION FIBER REALIZATIONS

Every measurement is performed during a finite time win-
dow. In order to accurately characterize the statistical properties
of the spread of the DGD, this time window should be relatively
long. In this work, we compared the pdf of the DGD measured
over 10 days to that obtained numerically from six million
perturbations and to an analytical formula for the pdf of the
DGD [5]. This analytical formula describes the pdf of the DGD
in a recirculating loop with loop-synchronous polarization
scrambling in the case that the samples are collected over an
infinitely long time period [19]. The formula for the pdf of the
DGD, x, after N round trips of a loop with an average DGD
〈τN 〉, is given by [5]

F (x; 〈τN 〉) =
(

1024x2

π4〈τN 〉3
)

K0

(
8x

π〈τN 〉
)

(4)

where K0 is the zeroth-order modified Bessel function of the
second kind. The average DGD after N round trips is related to
the average DGD per round trip 〈τ〉 by 〈τN 〉 =

√
8N/3π〈τ〉. In

the simulation, we used (1) to determine β from 〈τ〉, where the
value of 〈τ〉 was calculated from the measured value of 〈τN 〉.
The values of 〈τN 〉 in both the simulation and in the analyt-
ical formula are set to the value obtained in the experiment:
〈τ50〉 = 4.16 ps.

The pdf in (4) is not Maxwellian, which describes the pdf
of DGD in a straight-line system in some limits [4]. In a
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Fig. 5. PDF of the DGD after the 50th round trip (a) on a linear scale and
(b) on a logarithmic scale, obtained from the 10-day measurement (bars on the
linear scale and dots on the logarithmic scale), from the Brownian model (open
diamonds), from the quasi-deterministic model (open squares), and from the
analytical formula with 〈τ50〉 = 4.16 ps (solid line). Note that on the linear
scale, the tail of the pdf for the DGD values larger than 20 ps is not shown. The
inset in (a) shows the pdf of DGD of the 107-km loop fiber during the 10 days
(bar) and, we compare it with the Maxwellian distribution (dashed curve). The
maximal x-value of the inset is 2.0 ps.

recirculating loop, the measured DGD values at different times
are different due to two factors. First, the loop-synchronous
polarization scrambler settings vary randomly between mea-
surements. Second, the birefringence of the loop fiber drifts
randomly over time. If one does not consider the loop fiber
drift, then the DGD per round trip is constant and the pdf of the
DGD after N round trips will be approximately Maxwellian
[14]. However, fiber drift is inevitable. When the loop fiber
drifts ergodically, one would observe a Maxwellian distribution
[4] of the pdf of the DGD measured after one round trip
when the data is collected for the DGD over many round
trips for a long time period. The Maxwellian pdf of the DGD
in each round trip, together with the Maxwellian conditional
pdf of the accumulated DGD with N 
 1 round trips for a
given DGD per round trip, then yields the pdf of the DGD
described by (4).

Fig. 5 shows the pdf of the DGD in our system at the 50th
round trip on both (a) a linear and (b) a logarithmic scale from
the 80 000 measurements during 10 days. We show the results
from the two models, each with six million perturbation steps
and from the analytical formula (4). As shown in the figure,
the experimentally measured pdf of the DGD agrees well with
the analytical formula (4) for all DGD values up to 20 ps.
The probability that the DGD is larger than 20 ps is approx-
imately 1.9 × 10−4. Because of this low probability, there is
an insufficient number of experimental DGD samples in this
region and a slight discrepancy appears. For all settings listed
in Table I, the pdf of the DGD agrees well with the analytical
formula (4) up to 25 ps. Here, we only show the pdf of the
DGD for setting 2 with the Brownian model and for setting 2
with the quasi-deterministic model, but the agreement is equally
good for the other settings. Despite this good agreement of
the pdfs, we will show in the next section that there is still a
slight discrepancy in the DGD spread even after 10 days, and
we will estimate the additional time required to eliminate this
discrepancy.

V. DGD SPREAD IN FINITE TIME WINDOWS

A. ACF of the Polarization Dispersion Vector

An important property of the Brownian model that we use in
this paper is that from one perturbation step to the next, there
is no correlation between the directions in which the state r̂m

of the fiber drifts. However, in a real fiber transmission system,
these drift directions may well be correlated for a time, which
we refer to as the correlation time of the fiber drift dr̂m/dt.
Because r̂m determines the polarization dispersion vector Ω̂ of
the loop fiber, the evolution of Ω̂ in a real system can therefore
be different from that in the Brownian model.

On the other hand, under certain circumstances, the
Brownian model can still accurately describe the observed
statistical properties of the effects due to PMD in such systems.
For example, if the correlation time of dr̂m/dt is shorter than
the sampling interval in a temporal series of measurements
of r̂m, one would expect the fiber drift directions to be
uncorrelated so that the system could be accurately described
by the Brownian model. In the study of the DGD spread,
we also expect that when the duration of the time window
T is larger than a certain value, the value of 〈στ 〉nor(T )
obtained with the Brownian model would also agree with the
experimental value. Moreover, this value of T should be related
to the time length beyond which dΩ̂/dt becomes uncorrelated,
because if one considers many nonoverlapping time windows,
each with a duration longer than this time length, the temporal
evolution of Ω̂ in two different windows is uncorrelated, as is
the case in the Brownian model.

Thus, in this study of DGD spread, we focused on the
temporal ACF of the time derivative of polarization dispersion
vector ACFd(∆t), which quantifies the degree of correlation
between the temporal variation of Ω̂ at t and t + ∆t and is
defined by

ACFd(∆t) =

〈
dΩ̂(t)

dt
· dΩ̂(t + ∆t)

dt

〉
t

. (5)

In a loop system with loop-synchronous polarization scram-
bling, the polarization dispersion vector after multiple round
trips of the loop will be decorrelated for any two different
samples by the polarization scrambler, since we randomly
change the setting of the polarization scrambler from sample
to sample. Therefore, in this paper, we focus on ACFd for the
polarization dispersion vector of the 107-km straight-line fiber
in the loop, which is not changed by the repeated resetting of
the polarization scrambler, as shown in Fig. 1. In Fig. 6(a),
we show ACFd(∆t) in the simulation, and in Fig. 6(b), we
show ACFd(∆t) measured for the 107-km loop fiber. In the
Brownian model, ACFd is close to zero for all values of ∆t >
tperturbation, while in the quasi-deterministic model, ACFd is
larger than zero when ∆t is less than 30, 12, and 21 min with
settings 1–3, respectively. Due to the correlated drift of r̂m in
this model, the temporal variation of Ω̂ is strongly correlated
when ∆t is small. As ∆t increases, the drift of r̂m becomes less
correlated. Therefore, the temporal variation of Ω̂ also becomes
less correlated and ACFd approaches zero.
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Fig. 6. (a) ACFd(∆t) for setting 3 in the Brownian model (solid line) and
for settings 1–3 in the quasi-deterministic model (1: dot-dashed line; 2: dotted
line; 3: dashed line). (b) Measured ACFd(∆t) for the 107-km loop fiber for
two different choice of the differential δt used to estimate the derivative: 2 min
(lighter dots); and 4 min (darker dots).

Fig. 6(b) shows that the temporal variation of Ω̂ in the
experiment is correlated and ACFd is positive when ∆t is less
than 25 min. Consequently, the fiber drift in the loop system
does show some degree of correlation. This experimentally
observed behavior is similar to the behavior in the quasi-
deterministic model. Note that in the experiment, the temporal
derivative in (5) was estimated by taking a small time difference
δt and dividing the difference between the vectors Ω̂(t) and
Ω̂(t + δt) by δt. In comparison to the measurement of DGD,
the measurement of Ω̂ is more sensitive to the factors such as
PDL, noise, and fiber drift within the 180-ms time of a DGD
measurement. Thus, the differential step δt should be relatively
large so that the evolution dominates the measurement uncer-
tainty. As shown in the figure, ACFd(∆t) is smoother with
δt = 4 min than with δt = 2 min, because the uncertainty in
each Ω̂ measurement is insignificant when compared to the
drift-induced Ω̂ variation during δt = 4 min.

Since the measured ACFd(∆t) is close to zero after 25 min,
there is only a weak correlation between the temporal variation
in Ω̂ at two times that at more than 25 min apart. Thus, we
might anticipate that 〈στ 〉nor(T ) obtained with the Brownian
model and in the experiment will be in close agreement when
T > 25 min.

The auto-correlation function ACFd is related to ACFs by

ACFd(∆t) = −d2 [ACFs(∆t)]
d(∆t)2

. (6)

Here, ACFs(∆t) = 〈Ω̂(t) · Ω̂(t + ∆t)〉 is the ACF of the state
of the fiber, which has been used to characterize the temporal
drift of the fiber [6], [7]. Thus, a measurement of ACFs(∆t)
can also be used to determine ACFd(∆t). However, since
ACFs(∆t) only describes the correlation of the Ω̂ states at two
instants, it does not directly characterize the drift process itself.
Moreover, the correlation time associated with the ACFs(∆t)
in previous work [6] and the correlation time associated with
ACFd(∆t) in this work describe different drift properties.
The correlation time associated with ACFs(∆t) describes how
fast the fiber drifts away from its original state, but in this
work, the correlation time of 25 min, which is associated with
ACFd(∆t), describes how fast the fiber drift direction becomes
decorrelated.

Between 25 and 100 min, the temporal variation of Ω̂
is weakly correlated, rather than fully uncorrelated, because
ACFd(∆t) is slightly negative. Similarly in the Brownian
model, even though the direction of birefringence vector
r̂m is arbitrarily perturbed so that 〈(dr̂m(t)/dt) · (dr̂m(t +
∆t)/dt)〉 = 0 for all values of ∆t > tperturbation, ACFd is also
slightly negative when ∆t is less than 100 min, as shown in
Fig. 6(a). Nevertheless, the correlation is weak when compared
with times for which ACFd(∆t) > 0. Hence, we refer to the
smallest positive time ∆t0 for which ACFd(∆t0) = 0 as the
correlation time of the temporal variation of Ω̂.

B. Average Spread of the DGD 〈στ 〉(T ) in
the Brownian Model

We now investigate the accuracy of the Brownian model.
In Fig. 7, we show 〈στ 〉nor(T ) as a function of T in the ex-
periment and in the Brownian model with the three different
settings of σφr

listed in Table I. We display 〈στ 〉nor(T ) with
T on a logarithmic scale. As described earlier, we choose the
value of tperturbation so as to minimize the integral of the
difference between the experimental curve and the numerical
curve. This procedure is equivalent to horizontally shifting
〈στ 〉nor(T ) in the simulation in Fig. 7 back and forth until
at some value of tperturbation, the experimental curve and the
simulation curve have a minimal average vertical difference.

As shown in Fig. 7, when the duration T is longer than
25 min, which is the correlation time ∆t0 of the temporal
variation of Ω̂ for the 107-km loop fiber, all three simulation
curves agree well with the experimental result. Therefore,
even though the Brownian model may not describe the exact
way in which the fiber drifts, it is sufficient for a study of the
statistical properties of the DGD spread during a time window
with a duration T that is greater than the correlation time of the
temporal variation of Ω̂.

In a recirculating loop with loop-synchronous polarization
scrambling, the spread of the DGD samples during one time
window is caused by the fiber drift as well as by the loop-
synchronous polarization scrambler, which randomly varies in a
different DGD measurement (10 s) in our experiment and every
perturbation step (tperturbation) in the simulations. For a time
window that is short enough so that the fiber drift is insignificant
but is also long enough so that many measurements could be
taken during the window (T 
 10 s), the pdf of the DGD
would approach a Maxwellian distribution, which describes the
pdf of the DGD for a given DGD per round trip. When the
time window is long enough so that the fiber drift and thus
the variation of DGD per round trip becomes significant, the
spread of the pdf of the DGD at the 50th round trip is greater
than that of the Maxwellian distribution with the same mean.
The pdf approaches the analytical formula (4) when the time
window becomes sufficiently long and the fiber drift in each
measurement window is large enough so that the DGD per
round trip is nearly Maxwellian distributed. Consequently, as
shown in Fig. 7, when T is small, 〈στ 〉nor approaches 0.41,
which is the value of 〈στ 〉nor for the Maxwellian distribution
with a mean of 〈τ50〉 = 4.16 ps. When the duration T increases,
we find that 〈στ 〉nor increases. When T > 1000 h, we find
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Fig. 7. Normalized average spread 〈στ 〉nor of DGD as a function of the duration of a time window T , in the experiment (crosses), and in the Brownian model
with the three different settings that were listed in Table I: setting 1 (open circles); setting 2 (open diamonds); and setting 3 (open triangles). In (b), we have
enlarged the portion of (a) in which T < 1 h.

Fig. 8. Normalized average spread 〈στ 〉nor of DGD as a function of the duration of a time window T in the experiment (crosses) and in the quasi-deterministic
model with the three different settings that were listed in Table I: setting 1 (open circles); setting 2 (open diamonds); and setting 3 (open triangles). In (b), we have
enlarged the portion of (a) in which T < 1 h.

that 〈στ 〉nor approaches 0.62, which is the value of 〈στ 〉nor

for the pdf given by the analytical formula (4). Consequently,
for the system that we studied, a time window of 1000 h
(= 42 days) should be sufficiently long for the DGD statistics
to approach those that would be collected over an infinite time
period. Although the pdf of the DGD resembles the analytical
formula (4), a 10-day measurement is still not sufficiently long,
and the pdf of the DGD in another 10 days might be slightly
different.

C. Average Spread of the DGD 〈στ 〉(T ) in
the Quasi-Deterministic Model

In Fig. 7, we show that when T is less than 25 min, the
Brownian model deviates from the experimental results. In this
short time duration, the variation of Ω̂ in neighboring time
windows is correlated, and so the evolution of 〈στ 〉nor with T
is different from that in the Brownian model.

It is difficult to find a model that exactly reproduces the
drift of the fiber realization, because it is not possible to
accurately monitor the drift of the local birefringence in a long-
haul system. Recently, a reflectometric method was reported to
measure the local birefringence in a fiber path whose length
is in tens of kilometers [20]. However, this method cannot

be applied to a long-term continuous monitoring of the local
fiber birefringence in a relatively long transmission system.
Nonetheless, we will show that the quasi-deterministic model
may still reproduce 〈στ 〉(T ) in a real system with gradual
fiber drift.

In Fig. 8, we show 〈στ 〉nor(T ) in the experiment and in
the quasi-deterministic model with the three parameter settings
listed in Table I. With all three settings, we find that 〈στ 〉nor(T )
also converges to the experimental results when T is greater
than 30 min. As shown in Fig. 6, ACFd(∆t) is close to zero with
all three settings as well as in the experiment when ∆t is greater
than 30 min. Consequently, when T is greater than 30 min, the
values of 〈στ 〉nor(T ) obtained with all three settings and from
the experiment all agree well with those obtained using the
Brownian model. In setting 2, we find that 〈στ 〉nor(T ) agrees
well with the experimental result over almost the whole range
of T . Therefore, with an appropriate choice of parameters, the
quasi-deterministic model can accurately describe 〈στ 〉nor(T )
in a real system.

As discussed earlier, the Brownian and quasi-deterministic
models are analogous to the coarse-step and fine-step models,
which are used to model the random spatial variation of the fiber
birefringence. For a length longer than the correlation length
h, the coarse-step model is accurate. By analogy, for a time
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Fig. 9. Second moment σσ(T ) of the standard deviation of the DGD mea-
sured in a time window of duration T , versus T , in the experiment (crosses), in
the Brownian model with setting 2 (open circles), and in the quasi-deterministic
model with setting 2 (open diamonds).

window longer than the correlation time ∆t0 of the temporal
variation of Ω̂, our results show that the Brownian model is
also accurate. In order to accurately calculate the statistical
properties of the DGD in a fiber shorter than h, we require a
model for how the fiber birefringence gradually evolves with
distance. Such a model is given by an appropriate fine-step
model. Similarly, in the study of the DGD spread in a time
window, with an appropriate choice of parameter, the quasi-
deterministic model can be accurate for almost any duration T .

D. Second Moment of στ (T )

We also studied the second moment, σσ(T ) = σστ
(T ), of the

standard deviation of the DGD in a time window of duration
T , στ (T ), where as before the samples were collected over all
time windows of duration T . This quantity measures the extent
to which the width of the pdf of the DGD varies in different
time windows of duration T .

In Fig. 9, we show σσ(T ) in the experiment, in the Brownian
model, and in the quasi-deterministic model. As in the case
of 〈στ 〉nor(T ), the quasi-deterministic model with setting 2
agrees with the experimental result over a wide range of values
of T , and the Brownian model is accurate when T is greater
than 25 min.

When measured over very long time windows, the pdf of
the DGD closely resembles the pdf measured over an infinitely
long duration that is given by the analytical formula (4) in the
case of a recirculating loop with polarization scrambling or by
a Maxwellian function in the case of a straight-line system.
Consequently, as T increases, the values of σσ(T ) measured in
different windows of duration T become closer to each other,
and so, σσ(T ) decreases. When T = 1000 h (42 days), σσ is
less than 0.1 ps, which is less than 2.5% of the average DGD of
4.16 ps. Therefore, in different time windows of this duration,
one would observe almost identical DGD statistics.

When we compare σσ(T ) in the experiment and in the
simulation, the perturbation time step tperturbation was
determined by minimizing the average absolute difference
between σσ(T ) in the experiment and σσ(T ) in the simulation.
The values that we obtained were tperturbation = 32.6 s for

setting 2 with the Brownian model and tperturbation = 4.0 s for
setting 2 with the quasi-deterministic model. By comparison,
when we minimize the difference between 〈στ 〉nor(T ) in the
experiment and 〈στ 〉nor(T ) in the simulation, tperturbation =
32.2 s for setting 2 with the Brownian model and tperturbation =
4.8 s for setting 2 with the quasi-deterministic model. We
found that there is about a 30% discrepancy in the value
of tperturbation for a given setting. This discrepancy occurs,
because the experimental measurement lasted for 10 days,
which is not sufficiently long. Nevertheless, in comparison
with the whole range of T (seven orders of magnitude), a
horizontal shift of the simulation curves by 30% is slight.

VI. CONCLUSION

We used the average spread of the DGD during a time
window of duration T , 〈στ 〉(T ), to quantify the pdf of the DGD
measured during a time window of duration T , which is directly
related to the variation of the system performance during a
finite time window. A systematic approach was developed to
construct temporal fiber drift models that accurately reproduce
〈στ 〉(T ) in the real system. In this approach, the ACF of the
temporal variation of Ω̂, ACFd(∆t), was measured to obtain
the correlation time ∆t0, beyond which ACFd(∆t) is close
to zero. The average DGD spread 〈στ 〉(T ) in a time window
of duration T longer than ∆t0 can be accurately modeled
by a simple Brownian model with any setting of the per-
turbation parameters. By comparison, the quasi-deterministic
model, with an appropriate degree of correlation, accurately
reproduces 〈στ 〉(T ) for almost all values of T . However, the
quasi-deterministic model requires a specific parameter choice
to match the experiments.

We applied this approach to the 107-km straight-line fiber in
a recirculating loop, and we compared the experimental results
and the simulation results for 〈στ 〉(T ) at 5000 km, which
corresponds to 50 round trips in the 107-km loop fiber. The cor-
relation time of the 107-km loop fiber is approximately 25 min.
The measured average spread 〈στ 〉(T ) is accurately described
by the Brownian model when T is longer than 25 min, while
for a time window of almost arbitrary duration, with a proper
choice of parameters, the quasi-deterministic model can accu-
rately reproduce the experimental results. Consequently, with
this approach, we developed fiber drift models with which
〈στ 〉(T ) can be accurately studied. Other effects such as non-
linearity and noise can be incorporated in these models to study
the temporal variation of the system performance.
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