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Abstract—The possible sources of error in Monte Carlo (MC)
simulations are errors in physical modeling, coding errors (bugs),
statistical errors, and algorithmic errors. While most algorithmic
errors lead to large statistical errors, subtle algorithmic errors that
do not lead to statistical errors are at least theoretically possible.
These sources of error are reviewed, with the emphasis on statisti-
cal errors. Methods for calculating the statistical error in two types
of biasing MC simulation, i.e., 1) standard importance sampling
and 2) multicanonical, are described. The former requires a priori
knowledge of how to bias the simulation, while the latter does not.
Examples are drawn from the work of the author and his col-
leagues on calculating the effects of polarization-mode dispersion
in optical fiber communication systems. Potential pitfalls when
MC simulation codes are not carefully validated and statistical
errors are not carefully monitored are described. A proposal for
“best practice” in which statistical errors are always presented in
conjunction with MC simulations is made.

Index Terms—Coding errors, importance sampling, Monte
Carlo (MC) simulations, multicanonical simulations, PMD com-
pensators, polarization-mode dispersion (PMD), statistical errors.

I. INTRODUCTION

I T WOULD BE hard to exaggerate the importance of Monte
Carlo (MC) methods. In a recent list of the ten most im-

portant computer algorithms, MC methods appear first [1], [2].
While this list is in chronological order—not order of
importance—the appearance of MC simulations at the head of
the list is still highly significant. The development of electronic
computers in the 1950s was motivated at least in part by the
desire to carry out MC simulations [3], [4], and conversely,
advances in computer technology have enabled the develop-
ment of increasingly sophisticated MC techniques and their
application to increasingly difficult problems [5].
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While MC methods make it easy to model complex nonlinear
systems that cannot be accurately modeled in any other way and
to validate other more approximate techniques that may be far
more rapid computationally, they suffer from poor convergence
since the statistical errors are expected to decrease only propor-
tional to N1/2, where N is the number of samples. This diffi-
culty is exacerbated when the events of interest are expected to
occur rarely, as is often the case in optical fiber communications
systems. If, for example, one wishes to consider the probability
of obtaining 80 or more heads in 100 fair coin tosses, then
one would have to simulate on the order of 1015 sequences of
100 coin tosses because the probability of obtaining a sequence
with 80 or more heads is about 2.4 × 10−13 [6]. As a more
germane example, if one wanted to accurately determine the
outage probability due to polarization-mode dispersion (PMD)
in a system in which this probability is 10−5 or less, then one
would need to simulate many millions of fiber realizations.

It was recognized in the 1960s that it would be possible to
circumvent or at least reduce this difficulty in some cases by
biasing MC simulations to make the rare events of interest occur
more frequently in the simulations than they do in the systems
being modeled [7], [8]. This biasing must be done in a con-
trolled way so that one can weight the result of the simulation to
take into account that the rare events of interest have occurred
more frequently than in the system being modeled. The goal
of any biasing MC simulation is what statisticians refer to as
“variance reduction.” If we consider a statistic of interest like
the outage probability Pout of a system with PMD, then the ex-
pected relative error in our estimate will be given approximately
by (1/PoutN)1/2 in a conventional unbiased MC simulation,
where N is the number of samples. To obtain anything useful
from a conventional MC simulation, it must be the case that
PoutN � 1, which corresponds to our intuition that we must
simulate enough samples so that an outage occurs many times.
By contrast, in a biased MC simulation, the expected relative er-
ror becomes approximately (1/PbiasN)1/2, where Pbias is the
probability of observing an outage in the biased simulation, re-
gardless of the true outage probability. When Pbias/Pout � 1,
then far fewer samples are needed to calculate the outage
probability with high accuracy. Conversely, we have reduced
the variance (the square of the expected statistical error) of our
estimate of Pout for a fixed number of samples N .
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A difficulty is that one does not know a priori either
Pout—which is after all what one wants to calculate—or Pbias.
One must calculate the statistical error as part of the simulation
procedure and verify that it is acceptably small in any MC
simulation, biased or not. It can happen in practice that biasing
an MC simulation does not significantly reduce the variance
relative to a conventional MC simulation and may even increase
it and, thus, offers no advantage [7], [8]. As the dimensionality
of the configuration space—the space from which the samples
are randomly selected—grows, it becomes increasingly difficult
to find biases that significantly reduce the variance.

Despite these difficulties, biasing MC methods have been
increasingly used to study optical fiber communications sys-
tems and components since their introduction to study PMD
compensators [9], [10]. Other applications have included de-
termining the performance of soliton [11] and quasilinear [12],
[13] amplitude-shift-keyed systems that are dominated by noise
impairments or that are dominated by impairments due to cross-
phase modulation [14], [15], determining the performance of
soliton [16] or quasilinear [17] differential-phase-shift-keyed
systems that are impaired by noise, studying induced crosstalk
[18], [19], and calculating the noise in semiconductor amplifiers
[20], [21]. While the focus here is on PMD applications, the
techniques that will be presented here can be used in all these
contexts, and indeed, more generally, in any context where
biased MC methods are used. A cautionary note is, however,
in order. The dimensionality of the configuration space in
PMD-related problems is typically small—several hundreds at
most—while the configuration spaces in other applications can
be much larger. As the dimensionality of the configuration
space grows, it becomes increasingly difficult to effectively bias
MC simulations.

At the same time, acceptance of biasing MC methods by
the optical fiber communications community has been slower
than the author believes their power warrants. One reason is
that biasing MC methods are subject in principle to errors that
conventional MC methods are not. While these difficulties are
real—in principle—and should be watched for, other sources
of error that conventional MC methods share with biasing MC
methods are far more important in practice, and the use of
biasing MC methods can help alleviate these shared difficulties.
In particular, we note that coding errors (bugs) are a potential
source of error in any computation. One of the best ways of
eliminating coding errors is to compare codes based on two
completely different algorithms that calculate the same quan-
tity. Comparing biasing and conventional MC simulations or
two different types of biasing simulation can be very helpful in
this regard. This point is worthy of emphasis, and we will return
to it several times throughout this paper. It might seem odd to
the reader that a paper whose focus is statistical errors pays so
much attention to coding errors. In fact, coding errors are the
“soft underbelly” of computational work—often encountered
and rarely discussed. The usefulness of biasing MC methods in
eliminating coding errors is an important motivation for their
development and, thus, for the development of the methods for
calculating statistical errors that are discussed in this paper.

The remainder of this paper is organized as follows: In
Section II, we describe the major sources of error in MC

simulations and discuss their relative importance. In Section III,
we describe the model system that we use for the optical
fiber transmission line, the PMD compensator, and the re-
ceiver. In this paper, we will focus on two different biasing
methods, i.e., 1) standard importance sampling, which relies
on a priori knowledge of where in the configuration space
the important regions are located and 2) multicanonical MC
(MMC) method, which is an iterative learning method and
does not require this a priori knowledge. In Section IV, we
discuss standard importance sampling, while in Section V, we
discuss the multicanonical method. In both cases, our focus is
on how to calculate the statistical errors. It is fairly straight
forward with standard importance sampling, but it is not at
all straightforward with the multicanonical method. Section VI
contains the conclusions.

II. SOURCES OF ERROR

In any computation, one must make physical approximations
or assumptions to render the computation tractable. Prior to
the advent of importance sampling methods to calculate the
outage due to PMD, it was not possible to directly compute
outage probabilities of 10−5 or lower in systems with PMD
compensators, and it was common to assume when modeling
compensators with a fixed differential group delay (DGD)
element that the element should be chosen to minimize the
mean DGD after compensation. When importance sampling
became available, it was no longer necessary to make this
assumption, which proved to be incorrect [9], [10], [22]. The
reason is that outages are caused by rare events with large
DGDs. By picking a fixed group delay element to be several
times larger than the mean DGD, it is possible to reduce the
DGD of those few events that would otherwise lead to an
outage and reduce the overall probability of an outage, at the
cost of slightly “increasing” the DGD in the vast majority
of cases and thus slightly increasing the mean DGD and
hence the mean penalty after compensation. At the same time,
physical assumptions that are common to both standard and
biasing importance sampling simulations—like the underlying
fiber transmission, compensator, and receiver models—cannot
be checked by comparing two different simulations. Careful
comparison to experiments is essential.

Another source of error—perhaps the most important in
practice—is coding errors (bugs). The effects of coding errors
can be very subtle in practice and difficult to eliminate. It is
the author’s experience that newcomers to simulation often
attribute strange behavior in their simulations to errors in the
physics—or subtle errors in the computational algorithms—
when in the vast majority of cases they are observing coding
errors. Thus, it is very important to validate a simulation code
by checking it against another independently written computer
code whenever possible. When it is not possible, the simulation
should be checked against known analytical limits. However,
this second option is never as effective as the first. By their
very nature, analytical limits are special, and coding errors often
do not make themselves apparent in these limits. One of the
primary benefits that biasing MC methods offers—and for that
matter the use of more than one biasing MC algorithm—is
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that they allow the user to validate MC simulations. Several
examples will be presented in the remainder of this paper.

A third source of errors is statistical errors. Because a finite
number of samples are selected in any MC simulation, the
value that one calculates for the statistic of interest, such as
the expected outage probability of a compensator, will change
if the simulation is repeated with a new seed for the random
number generator. The expected standard deviation of a statistic
is what we refer to as the statistical error. The statistical error
can be estimated during the simulation. This estimate will also
be subject to a statistical error. However, one does not typically
need to know the value of the statistical error with high
accuracy; one simply wants to verify that it is small compared
to the statistic of interest. In a standard MC simulation with
independently drawn samples of equal weight, the statistical
error is not difficult to estimate. Moreover, when making a
histogram of a quantity of interest, like the eye-opening penalty,
the smoothness of the histogram gives some indication that the
statistical error is small. In biasing MC simulations that use
standard importance sampling, it is still not too difficult to esti-
mate the statistical error, although the variation of the weights
is an added complication. By contrast, it is quite difficult to
estimate the statistical errors in learning methods like the MMC
method, and a way to do so has only recently been found [23].
Moreover, it is important to make these estimates because
the samples from the bin-to-bin histograms of the statistic of
interest—in our case the DGD or the penalty—are correlated,
and hence, the smoothness of the histogram is not a reliable
indicator of convergence. The principal purpose of this paper is
to show how to calculate the statistical error for both standard
importance-sampled and MMC simulations and to illustrate
the importance of making these estimates with examples.

The last source of error—and the least important in
practice—are subtle algorithmic errors due to contributions
from disjoint regions of the configuration space that are not
detectable by calculating the statistical errors. One might con-
sider the following scenario: As was previously discussed,
optical PMD compensators are typically tuned to optimally
compensate a fixed range of DGD values, e.g., three to four
times the mean DGD [10], [22]. After electrical detection, a
receiver might have a signal processing unit that compensates
for most but not all of the PMD errors caused by DGD values
from two to three times the mean DGD, but does not succeed
at all with errors caused by DGD values of four to five times
the mean DGD. There are no errors caused by DGD values in
the range of three to four times the mean DGD because the
optical compensator eliminates them. To assign numbers to this
scenario, we might imagine that one DGD value in ten in our
simulation produces a DGD value in the range of two to three
times the mean DGD, of which the signal processing algorithm
is known a priori to correct all but one error in 105; we might
imagine that the simulation produces one sample in 106 that
is in the DGD range of four to five; finally, we might imagine
that we collect 105 samples in our simulation. Unless by chance
with a probability of one in ten we collect a sample in the DGD
range of four to five, we will estimate a probability of error
of 10−6 with a low statistical error, and we will be off by a
factor of 2!.

It is somewhat easier to construct a scenario in which a
biasing MC simulation will similarly fail. We might suppose
that a PMD compensator is constructed so that a large DGD
leads to an error and a large second-order PMD leads to an
error, but a combination of first- and second-order PMDs with
a similar probability of occurring does not lead to an error. We
might also suppose that we bias the simulation so that we obtain
many samples with high DGD, but no samples with a large
second-order PMD. In this scenario, we will once again obtain
the wrong answer with a low statistical error.

The reader would be forgiven for thinking that both scenar-
ios just outlined are somewhat artificial. It is not difficult to
construct purely mathematical examples of this difficulty [6];
however, the author knows of no concrete examples from
realistic settings in optical fiber communications in which this
difficulty appears. One reason may be that the configuration
spaces in the mathematical settings that illustrate this difficulty
are low dimensional (just one dimensional in the example in
[6]), while the dimensions of typical configuration spaces in
realistic problems are quite large; in large-dimensional spaces,
it is difficult to obtain regions that are truly isolated from one
another.

However, the author knows of several instances in which
differences between biasing MC simulations and standard MC
simulations or two types of biasing MC simulation were
due to coding errors and disappeared once the errors were
corrected—allowing the mutual validation of both simulation
codes, in addition to the solution of problems that could not be
solved using standard MC simulations. Since the mathematical
possibility exists of errors due to disjoint regions in the config-
uration space that also produce low statistical errors, the user
of any MC simulation—biased or unbiased—should keep this
possibility in mind. At the same time, given that coding errors
or statistical errors are a far more likely source of discrepancy
between standard and biasing MC simulations, it is the author’s
view that researchers should not invoke this possibility as a
reason not to validate their MC simulations whenever possible
by comparison to an MC simulation of a different type.

III. SIMULATION MODEL

Our simulation model consists of three principle compo-
nents, i.e., 1) a fiber transmission model, 2) a compensator
model, and 3) a receiver model. These models are described
in detail in [22], [24], and [25], and only the essentials are
repeated here.

We simulate a system that is nominally a 10-Gb/s nonreturn-
to-zero system. The pulses are generated by using perfect rec-
tangular pulses that are filtered by a Gaussian filter to produce a
30-ps rise time. We do not take into account noise, polarization-
dependent loss, chromatic dispersion, or fiber nonlinearity in
the transmission. Consequently, the data rate can be rescaled
to any desired amount by rescaling all the times and filter
frequencies. Since the sources of intersymbol interference in
our system only couple neighboring bits, it is sufficient to
simulate 8-bit de Bruijn sequences that include all possible 3-bit
sequences. In some of our work, we have used longer strings;
the results are consistent [10], [23]–[27].
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We represent the optical fiber transmission using the coarse-
step model [28], [29]. The output field at each radial frequency
ω is represented by a Jones vector Eout(ω), which is related to
the input Jones vector Ein(ω) via a transmission matrix, i.e.,

Eout + T̄(ω)Ein(ω) (1)

where T̄(ω) consists of a concatenation of N linearly birefrin-
gent sections, so that

T̄(ω) =
N∏

n=1

T̄n(ω) (2)

where T̄n(ω) = P̄(ω)S̄n is the transmission matrix of the nth
fiber section. The matrix S̄n shown in (3) at the bottom of
the page, is a Jones matrix that corresponds to a uniformly
distributed rotation on the Poincaré sphere, while

P̄(ω) =
(

exp (−iωτs/2) 0
0 exp (iωτs/2)

)
(4)

models the frequency-dependent phase rotation of the light
through a birefringent section. The parameter τs is the DGD
in a single section. The angles ξn, ψn, and φn are inde-
pendent from each other and at each n. The angles ψn and
φn are uniformly distributed between 0 and 2π, while the
random variables cos ξn are uniformly distributed between −1
and 1. These angles are the same as the Euler angles in
classical mechanics [30], and the Müller matrix Sn, which
is equivalent to the Jones matrix S̄n in (3), is composed of
elementary rotations about the x-axis and y-axis of the Poincaré
sphere, i.e., Sn = Rx(ψn)Ry(ξn)Rx(φn). Similarly, the Müller
matrix corresponding to the Jones matrix P̄(ω) in (4) is
composed of an elementary rotation around the x-axis, i.e.,
P(ω) = Rx(−ωτs). We should choose τs = (3π/8N)1/2〈τ〉,
where 〈τ〉 is the expected DGD at the fiber output. In the
simulations reported here, we chose N = 80 unless otherwise
stated, which is sufficient to obtain a Maxwellian distribution
for the DGD in the output probability range down to 10−6

[22], [31], [32].
The coarse-step model presented here more closely repro-

duces the actual transmission behavior than does the still com-
monly used rotator plate model. As long as the length of the
birefringent sections is long compared to the field correlation
length—which is required for either the rotating plate model
or the coarse-step model to make sense—then the electric
field will be randomly scattered on the Poincaré sphere, as
assumed by the coarse-step model, and not rotated, as assumed
by the rotating plate model. From a more practical standpoint,
if ωτs = 2π, then a Stokes’ vector that is initially on the
equator of the Poincaré sphere will not be able to leave, and
simulation will yield incorrect statistics for the DGD [33]. In

Fig. 1. Schematic illustration of a single-section compensator with a monitor
and a feedback element. In practical systems, the compensator will usually be
part of the receiver, so that the monitor and feedback control are integrated with
the detection circuit. This figure was created by A. O. Lima.

single-channel studies of DGD, this difficulty can be avoided
by choosing enough sections so that |ωτs| � 2π for the largest
frequency in the signal’s bandwidth. However, when systems
that include nonlinearity and chromatic dispersion as well
as PMD are being modeled, so that the full Manakov-PMD
equation should be used [28], [29], it is often not practical to
fulfill the condition |ωτs| � 2π. In that case, one must use the
coarse-step method.

The optical fiber transmission is followed by an optical PMD
compensator. In the examples presented in this paper, we will
discuss the results from single-section compensators with fixed
DGD, single-section compensators with variable DGD, and
three-section compensators. Fig. 1 shows a schematic illustra-
tion of a fixed-DGD compensator. The compensator, shown
inside the dashed lines, has polarization controller, a DGD
element, and a monitor-and-feedback control element. In actual
systems, optical PMD compensators are built into the receiver
and are not independent as shown here. Practical optical com-
pensators typically use either the degree of polarization of the
optical signal or radio frequency tones at one-fourth or one-
half the data rate as the feedback signal [34], [35]. The system
performance can vary by orders of magnitude, depending on
implementation details.

In the studies presented in this paper, we consider two
different feedback models. In the first feedback model, we
calculate the optical compensation that leads to the smallest
eye-opening penalty. Details on how we find the global op-
timum may be found in [22], [24], and [25]. The value of
this feedback model is that it indicates the best that one can
possibly do given the transmission and receiver systems. In the
second feedback model, we exactly compensate for the DGD
at the central frequency or, with three-section compensators,
both the first- and second-order PMDs at the central frequency.
The value of this feedback model is that it allows one to com-
pare the computational models to analytical studies [22], [24],
[34], [35].

The expansion for the polarization dispersion vector—
equivalent to the one in [36]—is given by [22], [24], [25]

τtot(ω) = τc + Tc(ω)Rpcτf (ω) (5)

S̄n =
(

cos(ξn/2) exp [i(ψn + φn)/2] i sin(ξn/2) exp [i(ψn − φn)/2]
i sin (ξn/2) exp [−i(ψn − φn)/2] cos (ξn/2) exp [−i(ψn + φn)/2]

)
(3)
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Fig. 2. Schematic illustration of the receiver model. This figure was created
by R. Holzlöhner.

where τc is the polarization dispersion vector of the com-
pensator, Rpc is the polarization rotation due to the polariza-
tion controller expressed in the Stokes’ space, and Tc(ω) is
the polarization transformation expressed in the Stokes’ space
due to the DGD of the compensator. We may write Rpc =
Rx(φpc)Ry(ψpc)Rx(−φpc), where φpc and ψpc will transform
an arbitrary input Stokes’ vector into a given output Stokes’
vector. We have Tc(ω) = Rτc

(−ωτc), where Rτc
indicates a

rotation about the Stokes’ vector pointing in the τc direction.
A schematic illustration of the receiver model is shown

in Fig. 2. This basic model has been the subject of careful
studies by us and by others [37], dating back to early work by
Marcuse [38] and Humblet and Azizog̃lu [39], which followed
the invention of the erbium-doped amplifier. Prior to that,
most work on optical receivers focused on reducing electrical
noise, which was the major source of impairments in optical
communications systems based on repeaters [40]. The first
element in our receiver model is an optical filter, which in the
studies reported here is a Gaussian filter with a full-width at
half-maximum bandwidth of 60 GHz. The second element is
a square-law photodetector. The third element is an electrical
filter, which in the studies reported here is a fifth-order Bessel
filter with a 3-dB bandwidth of 8.6 GHz. Since there is no noise
in our model system, the electrical filter is the primary source of
intersymbol interference, and we optimized its bandwidth em-
pirically. The final element is the detection algorithm, which we
based on an algorithm described by Trischitta and Varma [41].
We delay the signal by half a bit period and then subtract it from
the original signal, which is then squared. As a result, a strong
tone is produced at 10 GHz. The decision time is set equal to
the time at which the phase of this tone is π/2.

Our penalty measure is the eye-opening penalty. We define
the eye opening as the difference between the lowest mark
and the highest space at the decision time. The eye-opening
penalty is the ratio between the back-to-back and the PMD-
distorted eye opening—after a compensator when one is used.
When we study optimal compensators, we use this penalty
as the feedback element. Thus, just like in real systems, the
compensator and the receiver are not isolated from one another.

IV. STANDARD IMPORTANCE SAMPLING

We recall that the configuration space of the system is the
high-dimensional space that defines all the possible choices of
the random variables. In our system, the configuration space is
defined by the 3N variables, ξn, ψn, and φn, where 1 ≤ n ≤ N .
When N = 80, our most common choice, the configuration
space has 3 × 80 = 240 dimensions. The eye-opening penalty
∆Q is a complicated highly nonlinear function of the 3N
variables that define the configuration space—particularly in

a system with a PMD compensator. We do not have enough
a priori knowledge of the configuration to bias the penalty
directly. Instead, we may take advantage of the strong correla-
tion that exists between ∆Q and the DGD and bias the DGD. As
we will see, it is not sufficient to bias just the DGD in systems
with compensators, and one must bias the first-order PMD as
well. We also note that it is necessary to select several different
biases to obtain sufficient coverage of the important regions of
the configuration space. This technique is referred to as multiple
importance sampling [22], [24]–[27], [32].

We define an indicator function I(x) on the configuration
space {x} as a function that equals 1 when x is in a region
of interest and equals 0 otherwise. Thus, for example, I(x)
might equal 1 when ∆Q > 1 dB and equal 0 otherwise. The
probability PI that the indicator function is 1 may be estimated
as [22], [24]–[27], [32]

P̂I =
J∑

j=1

1
Mj

Mj∑
i=1

I(xij)wj(xij)Lj(xij) (6)

where Lj(xij) = p(xij)/p∗j(xij) is the likelihood ratio of the
ith sample drawn from the jth biasing distribution, and where
Mj is the number of samples drawn from the jth biasing dis-
tribution p∗j . Hats indicate estimators. The quantity p(x) is the
probability density function (pdf) of the unbiased distribution,
and J is the number of different biasing distributions. The
weights wj(xij) allow one to combine different biasing distrib-
utions, and we choose them using the balanced heuristic method
invented by Veach [42] and described in [22], [24]–[27],
and [32]. A confidence interval for the estimator P̂I of the
indicator function I(x) can be defined from the estimator of
the variance of P̂I , which is given by

σ̂2
P̂I

=
J∑

j=1

1
Mj(Mj−1)

Mj∑
i=1

[
I(xij)wj(xij)Lj(xij) − P̂Ij

]2
(7)

where

P̂Ij
=

1
Mj

Mj∑
i=1

I(xij)wj(xij)Lj(xij) (8)

is the contribution of the samples drawn from the jth biasing
distribution to the estimator P̂I . The confidence interval of
the estimator P̂I equals the range [P̂I − σ̂P̂I

, P̂I + σ̂P̂I
]. The

relative variation equals σ̂P̂I
/P̂I .

To underline the importance of carefully monitoring statis-
tical errors, we may compare studies in which we bias only
the DGD τ = |τ | and in which we bias both the DGD and
the second-order PMD |τω|. The subscript ω indicates the
derivative with respect to ω.

When biasing just the DGD, the appropriate parameters to
bias are the angles θn between the polarization dispersion vec-
tor in the first n sections and the polarization dispersion vector
in the (n + 1)th section at the center frequency such that cos θn

is biased toward 1. In earlier work, we selected the cos θn

from the pdf p∗α(cos θ) = (α/2)[(1 + cos θ)/2]α−1 [10], and
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Fig. 3. Calculation of the 1-dB outage probability in a single-section fixed-DGD compensator, as a function of the DGD τc of the fixed element. (a) Only |τ | is
biased. (b) Both |τ | and |τω | are biased. The value τc = 0 corresponds to the uncompensated case. The solid lines show the results when 〈τ〉 = 25 ps, while the
dashed lines show the results when 〈τ〉 = 30 ps. There are no error bars in (a); the error bars in (b) show the confidence interval. The dashed line shows the 10−6

outage probability level. Part (a) of this figure first appeared in [10], and part (b) first appeared in [22].

in later work, we selected the cos θn from the pdf p∗α(cos θ) =
α{exp[−α(1 − cos θ)]}/[1 − exp(−2α)] [22]. In earlier work,
we used three different values of α: α = 1 (unbiased), α = 1.4,
and α = 1.9, with 104 samples each. We combined the results
using a rejection algorithm described in [22]. In later work, we
used α = 0 (unbiased), α = 0.5, and α = 1, with 104 samples
each, and we used the balanced heuristic method to combine
the results. The results are insensitive to these choices. In
uncompensated systems, it has been shown that biasing the
DGD alone produces highly accurate results with a limited
number of samples [22], [24]–[27], [32].

Biasing the DGD alone is not sufficient in a system with
compensators. It is not obvious how to bias both |τ | and |τω|
together. Fortunately, Fogal et al. [43], [44] (see also [32]) have
invented an effective algorithm for doing that, based on the
calculus of variations. One biases the polarization dispersion
vector in the nth section in a direction b̂ that is located in a
plane that contains τ (n−1) and τ (n−1) × τ

(n−1)
ω , where τ (n−1)

and τ (n−1) × τ
(n−1)
ω are the polarization dispersion vector and

its frequency derivative in the after n − 1 fiber sections. One
chooses b̂ so that the expected angle βn between b̂ and τ (n−1)

increases linearly up to some maximum βN = β, so that βn =
(n/N)β. When β = 0, we are only biasing the DGD, and as
β increases, we increasingly bias the second-order PMD. Some
experimentation and on the order of ten combinations of α and
β are required to obtain good coverage of the |τ | − |τω| plane.

In Fig. 3, we show a comparison of the 1-dB outage proba-
bility in a system with a fixed-DGD compensator with optimal
biasing that was simulated just biasing |τ | and biasing both |τ |
and |τω|. The key technical point that these results make is that
the optimal choice of the compensator DGD is several times the
mean DGD of the optical fiber transmission line. The results
of Fig. 3(a) are sufficient to demonstrate the incorrectness
of previous work, based on standard MC simulations, that
purported to show that the optimal choice of the compensator
DGD is close to the mean DGD. Nonetheless, the discrepancy
by several orders of magnitude in the 1-dB outage probability
at the minimum is clearly unacceptable. The reader should note
that Fig. 3(a) does not have statistical error bars, while Fig. 3(b)
does. The large errors in Fig. 3(a) are entirely statistical, and, in-
deed, it was the comparison of these two figures that convinced
the author that statistical errors should always be presented
whenever MC simulations are presented.

To understand what happened in this case, we now turn to
Fig. 4. To generate this figure, we used the following procedure
[25], [26]: We divided the |τ | − |τω| plane into 25 × 25 = 625
evenly spaced bins and then estimated the average eye-
opening penalty and its expected variance using the following
estimators:

µ̂ =
D̂

Ĉ
, σ̂2

µ̂ =
σ̂2

D̂

Ĉ2
+

µ̂2σ2
Ĉ

Ĉ2
(9)

where Ĉ =
∑J

j=1 Ĉj and D̂ =
∑J

j=1 D̂j , with

Ĉj =
1

Mj

Mj∑
I=1

I(xij)wj(xij)L(xij)

D̂j =
1

Mj

Mj∑
i=1

f(xij)I(xij)wj(xij)L(xij). (10)

The meaning of all quantities is the same as in (8), except that
f(xij), which was not defined previously, is the eye-opening
penalty corresponding to the point in the configuration space
xij . In the work presented here, we have J = 10. Finally,
we have

σ̂2
Ĉ
=

J∑
j=1

1
Mj(Mj − 1)

Mj∑
i=1

[
I(xij)w(xij)Lj(xij) − Ĉj

]2

σ̂2
D̂

=
J∑

j=1

1
Mj(Mj − 1)

Mj∑
i=1

[
f(xij)I(xij)w(xij)Lj(xij)−D̂j

]2
.

(11)

The estimators for the mean eye-opening penalty µ̂ and its
variance σ̂2

µ̂ in (9) are biased. The bias in the estimators can be
reduced by computing Ĉ with a much larger number of samples
than are used to compute D̂. This approach is practical because
the computational cost of generating the fiber samples that are
required to calculate Ĉ is significantly smaller than the cost to
compute penalties after compensation, i.e., D̂, in cases where
it is necessary to optimize the compensator. Here, we used 107

samples per biased simulation to calculate Ĉ and 105 samples
per biased simulation to calculate D̂. The maximum value of
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Fig. 4. Contour plots of the eye-opening plots and the associated confidence
intervals, indicated by the solid lines and the dashed lines. The dotted lines show
the contours of the joint pdf of the normalized DGD and second-order PMD.
The contours are at 3 × 10−N , N = 1, . . . , 7, and at 10−N , N = 1, . . . , 11.
(a) Uncompensated system. The penalty curves are at 0.1, 0.2, 0.4, 0.6, 0.9,
1.2, 1.6, 2.2, and 3.2 dB. (b) Fixed-DGD compensator with τc = 2.5〈|τ |〉. The
penalty curves are at 0.1, 0.2, 0.3, and 0.4 dB. (c) Variable-DGD compensator
with optimization of the eye opening. The penalty curves are at 0.1, 0.2, 0.3,
and 0.4 dB. (d) Variable-DGD compensator with the DGD minimized at the
central frequency of the signal: The penalty curves are at 0.1, 0.2, 0.3, 0.4, 0.6,
and 0.9 dB. This figure first appeared as four separate figures in [26].

σ̂2
Ĉ

/Ĉ2 is 1.21 × 10−4. The maximum value for σ̂2
D̂

/D̂2 is
0.14, but it is much smaller in almost all bins, typically between
0.001 and 0.002. All penalty curves in Fig. 4 are smoothed
using N -order Bezier smoothing, where N is the number of
points in the curve.

The region in the |τ | − |τω| plane that dominates the penalty
is where the corresponding penalty contour intersects the con-
tour of the joint pdf of |τ | and |τω| with the highest prob-

ability. In the uncompensated system, the penalty curves are
vertical where this intersection occurs, indicating that large-
DGD regions of the configuration space dominate the penalty.
By contrast, in all the compensated systems, except the system
with a fixed-DGD compensator when the penalty is below
0.1 dB, this intersection occurs when the penalty curves are
nearly horizontal, indicating that large |τω| regions of the
configuration space dominate the penalty. Thus, we must bias
|τω| as well as |τ | to obtain accurate results. We note that
we monitored the statistical error during the entire process of
generating and analyzing Fig. 4.

While it is apparent that biasing |τ | is insufficient, it is
not at all apparent that biasing just |τ | and |τω| will be
sufficient—particularly when compensators with several sec-
tions are used. Biasing higher orders or separately biasing the
components of |τ | and |τω| would require us to adequately
sample a high-dimensional projection of the original configu-
ration space—higher than the two dimensions that we show in
Fig. 4. Moreover, the procedure for jointly biasing |τ | and |τω|
is nontrivial, and it is not at all clear how to jointly bias higher
ω derivatives as well. Using the MMC method, which allows
us to directly bias the eye-opening penalty ∆Q, sidesteps these
difficulties, as we will show in the next section. At the same
time, it makes monitoring the statistical errors considerably
more difficult.

V. MMC SIMULATIONS

The MMC is an iterative learning method that—in con-
trast to standard importance sampling—requires little a priori
knowledge of where in the configuration space the samples of
importance are located. For this reason, since its invention by
Berg and Neuhaus [45]–[47] and its introduction into studies
of optical communications systems by Yevick [48], it has
been successfully applied in a variety of contexts in optical
fiber communications [12], [13], [17]–[21], [27]. In the present
context, it has two advantages. The first is that it allows us to
directly bias the penalty, rather than the DGD, its first derivative
with respect to frequency, and possibly even higher derivatives.
The second is that it is based on different principles from
standard importance sampling. As a consequence, comparison
of simulations based on standard importance sampling and
the multicanonical method allows us to mutually validate both
approaches, giving us confidence that we are avoiding subtle
algorithmic errors and—far more important in practice—do not
have coding errors.

We begin by briefly reviewing our implementation of the
MMC. More details may be found in [23], [25], and [27].
The basic approach that we use was first used by Berg
and Neuhaus [45]–[47] for statistical physics applications and
later by Yevick [48] to calculate DGD pdfs. In this method,
one carries out J iterations of a Metropolis MC simula-
tion, in which one uses the results of the previous iteration
to rebias the next iteration. In a Metropolis MC calcula-
tion, one makes a random walk through the configuration
space, rather than drawing the samples completely at ran-
dom. Thus, in the present context, given a point in the con-
figuration space, i.e., xm = [ξ(m)

i , φ
(m)
i , ψ

(m)
i , i = 1, . . . , N ],
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we make a provisional transition to a new point xm+1,p =
[ξ(m+1)

i,p , φ
(m+1)
i,p , ψ

(m+1)
i,p , i = 1, . . . , N ] by adding a small

random perturbation ∆x = [∆ξi, ∆φi, ∆ψi, i = 1, . . . , N ] to
xm. In the first iteration, j = 1, we carry out a standard
Metropolis random walk. To bias the simulation toward higher
values of ∆Q, in subsequent iterations, we accept the tran-
sition from xm to xm+1,p with a probability that is given
by min{1, P j [∆Q(xm)]/P j [∆Q(xm+1,p)]}, where P j [∆Q]
is the estimate of the pdf of ∆Q that we obtained in the previous
iteration. If the step is accepted, then we set xm+1 = xm+1,p

and ∆Qm+1 = ∆Q(xm+1,p). If the step is rejected, then we set
xm+1 = xm and ∆Qm+1 = ∆Qm. In either case, we update
the appropriate bin of the histogram in which we are accumulat-
ing the samples of ∆Q that we will use to estimate P j+1[∆Q].
In each iteration, the random walk consists of Mj steps, where
j does not have to be the same in every iteration. This random
walk is a Markov process in the configuration space.

Writing the number of elements in the kth histogram bin
k = 1, . . . , K of ∆Q on the jth iteration as Hj

k , a reasonable
estimate for P j+1

k , which is the estimate of the pdf for the
(j + 1)th iteration corresponding to the kth histogram bin,
would be

Pk =
P j

k Hj
k∑K

k′=1 P j
k′H

j
k′

. (12)

However, this approach does not take advantage of any of the
information that has been accumulated prior to the jth iteration
and does not take advantage of the expected correlations from
bin to bin. Berg and Neuhaus [45]–[47] have developed a better
algorithm, in which we set

P j+1
k+1 = P j+1

k

P j
k+1

P j
k

(
Hj

k+1

Hj
k

)ĝj
k

(13)

where ĝj
k, which is the relative statistical significance of the kth

bin in the jth iteration, is defined as

ĝj
k =

gj
k∑j

j′=1 gj′
k

, with gj
k =

Hj
k+1Hj

k

Hj
k+1 + Hj

k

. (14)

They derive this algorithm, assuming that the pdf is exponen-
tially distributed with an exponent that is a slowly varying
function of the control quantity—∆Q in our case. Yevick [49]
has demonstrated the greater effectiveness of (13) relative to
(12) in obtaining the pdf of the DGD.

Fig. 5 shows the 1-dB outage probability as a function of
the eye-opening penalty for uncompensated systems with both
15 and 30 ps of mean DGD and for a system with a one-
stage variable-DGD compensator that minimizes the DGD at
the central frequency, in a system with a mean DGD of 30 ps.
Both standard importance-sampled and MMC simulations are
compared, and the agreement is excellent—serving to mutually
validate the results for both methods. The agreement is an
indication that biasing just the first- and second-order PMDs
is sufficient for the standard importance-sampled simulations

Fig. 5. Calculation of the 1-dB outage probability. Dotted line: Results for
an uncompensated system with a mean DGD of 30 ps. Dashed line and open
circles: Results for a system with a variable-DGD compensator, obtained using
MMC and standard importance sampling, respectively, for a system with a
mean DGD of 30 ps. Solid line and squares: Results for an uncompensated
system with a mean DGD of 15 ps, obtained using MMC and standard
importance sampling, respectively. This figure was obtained from [25].

Fig. 6. Contour lines produced by the MMC method for (a) uncompensated
system and (b) system with a variable-DGD compensator. The dotted lines
show the contours of the joint pdf of normalized |τ | and |τω |. The con-
tours are the same as in Fig. 4. The solid lines show the penalty contours.
(a) Corresponding from left to right to 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, and 1.6 dB.
(b) Corresponding from bottom to top to the same values. This figure was
obtained from [25].

in this case and that neither algorithm has subtle algorithmic
errors or coding errors. The MMC simulations reported here
used 50 iterations with 2000 steps each. Increased insight
into the working of the MMC method can be obtained from
Fig. 6. In Fig. 6(a), we show the contours for the eye-opening
penalty of an uncompensated system with a mean DGD of
15 ps. The penalty contours are only plotted where the MMC
method produced samples. The method automatically placed
its samples in the regions of the |τ | − |τω| plane that have
the highest probability of occurrence and contribute the most
to the penalty. In Fig. 6(b), we show similar results for the
compensated system with a mean DGD of 30 ps. Again, the
MMC method automatically placed its samples in the regions
of the |τ | − |τω| plane that have the highest probability of
occurrence.
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Fig. 7. Schematic illustration of the bootstrap procedure. Left: Operation of
drawing a true realization from the actual unknown distribution F . Right: Same
operation, applied to drawing bootstrap realizations. This figure was created by
A. O. Lima.

The reader should note that no statistical errors were cal-
culated for Figs. 5 and 6. At the time that these figures were
produced, no effective procedures existed for calculating the
statistical errors for MMC simulations. The highly nonlinear
iterative procedure that is used in these simulations induces
large correlations from iteration to iteration and bin to bin,
so that analytical formulas analogous to (7) and (11) do not
exist. An effective procedure for calculating the statistical error
may be found in [23] and [25]. The method is a bootstrap
resampling method [50], [51] that uses a computed estimate
of the probability of a transition from bin k to bin l of the
histogram of the control quantity; we refer to this method as
the transition matrix method. In a bootstrap method, one esti-
mates a complex statistical quantity by extracting a sequence
of samples from an unknown distribution and computing the
quantity. One then obtains an ensemble of sequences from the
original sequence by repeatedly and independently drawing
samples from the original sequence with replacement in exactly
the same way that the original samples were drawn from the
unknown distribution. Since each sequence is independent, one
can then estimate the statistic of interest—in our case, the
variance—using standard techniques. The bootstrap method is
used when it is computationally far more rapid to resample the
original sequence than it is to generate new sequences, allowing
for an efficient estimate of the statistic of interest.

Efron’s bootstrap [50], [51] is a general-purpose technique
for obtaining statistical estimates without making a priori
assumptions about the distribution of the data. A schematic
illustration of this procedure is shown in Fig. 7. Suppose one
draws a random sequence that is represented as a random vector
x = (x1, . . . , xn) with n samples from an unknown pdf F and
one wishes to estimate the standard deviation of a parameter
of interest θ̂ = s(x). Since there is only one realization of the
random vector, there is only realization of θ̂, and one cannot
use the traditional standard deviation formula to compute the
error. However, one can use the random vector x to determine
an empirical distribution F̂ from the unknown distribution
F . One can then generate bootstrap samples from F̂ , x� =
(x�

1, . . . , x�
n), to obtain θ̂� = s(x�) by drawing n samples with

replacement from x. The star notation indicates that x� is not
the actual random vector x, but rather a resampled version
of x obtained from the estimated distribution F̂ . One then
generates as many bootstrap realizations as one needs and

then generates independent bootstrap-sampled estimates of θ̂,
θ̂�
1 = s(x�

1), . . . , θ̂�
B = s(x�

B), where B is the total number of
bootstrap realizations. Then, one can estimate the error in θ̂
using the usual standard deviation formula on the bootstrap
realizations.

The transition matrix method that we describe in this paper
is related to the bootstrap resampling method as follows.

1) The pdf F̂ is an estimate of the transition matrix obtained
from a single standard-MMC simulation.

2) The x�
1, . . . , x�

B are the collection of realizations obtained
from the ensemble of pseudo-MMC simulations. We note
that x�

b should be computed using exactly the same num-
ber of iterations and exactly the same number of samples
per iteration as in the original standard-MMC simulation.

3) Each θ̂�
b , where b = 1, . . . , B, is a value for the probabil-

ity of the kth bin of the histogram of the control quantity
p�

k obtained from each of the pseudo-MMC simulations.
4) Given that one has B independent realizations of p�

k, one
can obtain an estimate for the statistical error in each bin
in the histogram of the pdf of the control quantity using
the traditional standard deviation formula [50], [51], i.e.,

σθ̂� =

[
1

B − 1

B∑
b=1

(
θ̂�

b − θ̂�
)2
]1/2

, where θ̂� =
1
B

B∑
b=1

θ̂�
b .

(15)

The transition matrix method has two parts. In the first part,
we obtain an estimate of the pdf of the control quantity—in
our case ∆Q or the DGD—and an estimate of the one-step
transition probability matrix Π. To do so, we run a standard
MMC simulation, as outlined earlier and described in more
detail in [23] and [25]. At the same time, we compute an es-
timate of the transition probability πkl, which is the probability
that a sample in bin k will move to bin l after a single step in
the MMC algorithm. We stress that a transition attempt must
be recorded, whether or not it is accepted by the Metropolis
algorithm, after the fiber undergoes a random perturbation.
The transition matrix is a matrix that contains the probability
that a transition will take place from one bin to any other
bin when applying a random perturbation. It is independent
of the procedure for rejecting or accepting samples, which
is how the biasing is implemented in the MMC method. An
estimate of the transition matrix that is statistically as accurate
as the estimate of the pdf using MMC can be obtained by
considering all the transitions that were attempted in the MMC
ensemble. We use this information to build a K × K one-step
transition probability matrix, where K is the number of bins
in the histogram of the pdf. The transition matrix Π consists of
elements πkl, where the sum of the row elements of Π equals 1.
The elements πkl are computed as

πkl =
∑Mtotal−1

m=1 Ik(Em)Il(Em+1)∑Mtotal−1
m=1 Ik(Em)

, if
Mtotal−1∑

m=1

Ik(Em) �= 0

(16)
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and πkl = 0, otherwise. In (16), Mtotal is the total number of
samples in the MMC simulation, and Em is the value of the
control quantity after m steps. The indicator function Ii(E) is
chosen to compute the probability of having a sample of the
control quantity inside bin k of the histogram. Thus, we have
Ik(E) = 1 inside the range of bin k, and otherwise, Ik(E) = 0.

In the second part of the procedure, we carry out a series
of MMC simulations, which we refer to as pseudo-MMC
simulations. In each step, if we start, for example, in bin k
of the histogram, we pick a provisional new bin l using the
probability πkl in the transition matrix Π. We then accept or
reject this provisional transition using the same criteria as in
the full standard-MMC simulation, and the number of samples
in the bins of the histogram is updated accordingly. It is possible
to carry out hundreds of these pseudo-MMC simulations in a
fraction of the computer time that it takes to carry out a single
standard-MMC simulation in the problems that we studied.

To validate this procedure, we applied it to calculations of the
DGD distributions of 15- and 80-section PMD emulators. It is
computationally far more rapid to calculate the pdf of the DGD
than it is to calculate the pdf of ∆Q in a compensated system.
Thus, it is feasible to check our approach by running many
independent standard-MMC simulations and comparing the es-
timated statistical error from the transition matrix method to the
estimated statistical error from a large number of independent
standard-MMC simulations. We used 14 MMC iterations with
4000 samples each to compute the pdf of the normalized DGD
when we used a 15-section emulator and 30 MMC iterations
with 8000 samples each when we used an 80-section PMD
emulator.

We monitor the accuracy of our computation by calculat-
ing the relative variation of the pdf of the normalized DGD,
σ̂P̂DGD

/P̂DGD. In Fig. 8, we show the relative variation for
both 15- and 80-section PMD emulators. The symbols show
the relative variation when we apply the transition matrix
method with 1000 pseudo-MMC simulations based on a single
standard-MMC simulation, while the solid and the dot-dashed
lines show the results when we use 1000 standard-MMC sim-
ulations. As expected, the result from an ensemble of pseudo-
MMC simulations shows a systematic deviation from the result
of an ensemble of standard-MMC simulations for both emu-
lators. The systematic deviation changes, depending on which
standard-MMC simulation is used to generate the pseudo-
ensemble.

In Fig. 8, the two dashed lines show the confidence interval of
the relative variation with the 15-section PMD emulator com-
puted using the transition matrix method, i.e., the confidence
interval for the results that are shown with circles. While the
relative variation that is computed using the transition matrix
method from a single MMC simulation will vary from one
standard-MMC simulation to another, the results obtained from
different standard-MMC simulations are likely to be within this
confidence interval with a well-defined probability. In the case
shown here, where we had an ensemble of 1000 standard-MMC
simulations available, we calculated this confidence interval
using this ensemble. More generally, the number of standard-
MMC simulations available will be small (typically only one),
and one must estimate the confidence interval from the pseudo-

Fig. 8. Relative variation σ̂P̂DGD
/P̂DGD of the pdf of the normalized

DGD. Circles: Transition matrix method for the 15-section PMD emulator.
Solid line: 1000 standard-MMC simulations for the 15-section PMD emulator.
Dashed lines: Confidence interval for the 15-section PMD emulator. Squares:
Transition matrix method for the 80-section PMD emulator. Dot-dashed line:
1000 standard-MMC simulations for the 80-section PMD emulator. This figure
first appeared in [23].

MMC simulations through a process referred to as “bootstrap-
ping the bootstrap” or the double-bootstrap procedure [23],
[25], [50], [51]. We have verified that the confidence interval
calculated using the double-bootstrap procedure on a single
standard-MMC simulation agrees well with the confidence
interval calculated using an ensemble of standard-MMC sim-
ulations in the cases considered here.

We observed excellent agreement between the results ob-
tained with the transition matrix method based on a single
standard-MMC simulation and the results obtained with 1000
standard standard-MMC simulations for both the 15- and
80-section PMD emulators when the relative error is smaller
than 15%. For a larger relative error, the actual error is within
the confidence interval predicted by the double-bootstrap proce-
dure. The curves for the 80-section PMD emulator have a larger
DGD range because a fiber with 80 birefringent sections is able
to produce larger DGD values than is possible with a fiber with
15 birefringent sections [31].

At this point, we will mention parenthetically a potential
difficulty that was brought to the author’s attention by Neal
Radford [52]. The random walk that occurs on each iteration
of the MMC algorithm is a Markov process in the configuration
space. However, it does not follow that it is a Markov process
in the space of the control quantity. The reason is that the
map from the configuration space to the control quantity space
is a many-to-one map, so that a manifold of points in the
configuration space correspond to a single point in the control
quantity space. As a consequence, multistep correlations can
be induced by the random walk in the control quantity space.
In our pseudo-MMC simulations, we treat the random walk in
the control space as a Markov process, which implies that it
may not have the same statistics as the original random walk
in the configuration space. Whether this potential difficulty
will lead in practice to errors in the estimates of the statistical
errors or is merely one of those statistical bugaboos, which,
like contributions from disjoint regions of the configuration
space, seem to rarely be important in practice, is uncertain at
this point. Certainly, this issue appeared to have no effect on
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Fig. 9. One-decibel outage probability as a function of the eye-opening
penalty for a system with a mean DGD of 30 ps. Dashed line (MMC)
and triangles (standard importance sampling): Uncompensated system. Dot-
dashed lines (MMC) and circles (standard importance sampling): System
with a single-section compensator. System with a three-section compensator:
Solid line (MMC) and diamonds (standard importance sampling). The error
bars show the confidence interval for the MMC simulation. This figure first
appeared in [27].

our estimate of the statistical error in emulators, which we
directly verified. Moreover, in contrast to our calculation of
the statistical quantities of interest, it is not really necessary
to calculate the statistical error to high accuracy—just well
enough to ensure that it is small relative to the quantity of
interest. Nonetheless, it would have been useful to monitor the
multistep correlations of the control quantity to ensure that they
are small, and we intend to do so in future applications of this
approach.

We now turn to applications of the MMC method to mul-
tisection compensators [25], [27]. In this case, it is possible
to eliminate both first- and second-order PMDs at the central
frequency of the signal. In Fig. 9, we show a comparison of
the 1-dB outage probability as a function of the eye-opening
penalty for a system with a mean DGD of 30 ps for an
uncompensated system, a single-section compensator, and a
three-section compensator. We used both standard importance
sampling and the MMC method. The importance-sampled re-
sults were obtained by biasing both the DGD and the second-
order PMD, as described in Section IV. We show with error
bars the statistical error for the MMC method, calculated us-
ing the transition matrix method. The statistical error for the
standard importance sampling was smaller in all cases, and
the corresponding error bars are not shown. The agreement
between the two biasing methods is excellent even for the
three-section compensator, where one might expect standard
importance sampling to fail since only the first two orders of
PMD are biased. This agreement indicates that the three-section
compensator produces third-order and higher orders of PMD
after compensation that are strongly correlated to the first two
orders of PMD before compensation. We have verified this
inference with detailed studies [25], [27].

In conclusion, the comparison of standard importance sam-
pling to the MMC method not only allowed us to mutually
validate both calculations but also yielded insights that were
not obtained from either method alone.

VI. CONCLUSION

It is important to carefully monitor statistical errors when
carrying out MC simulations. Failure to do so has led to errors
in the past. Effective procedures for calculating the statistical
errors in standard MC simulations have long been known and
are easily implemented. Moreover, when each sample in the
simulation is independently drawn, the statistical errors in each
bin of a histogram will be independent, and the smoothness
of the histogram is often a good indication of low statistical
errors. While calculating the statistical errors with standard
importance sampling is more complicated, analytical formulas
exist and have been successfully implemented. By contrast,
calculating the statistical errors using multicanonical methods
is highly nontrivial. Recently, however, effective methods have
been developed that are based on the calculation of a transition
matrix with a standard multicanonical simulation and use of
this transition matrix to draw a large number of independent
samples. This method is closely related to Efron’s bootstrap—a
general-purpose statistical method.

At the same time, there are even more important sources of
error that must be continually kept in mind. First is incorrect
physical assumptions about the system being modeled. As
the parameter regime being modeled changes, one can often
make a transition from a regime where an assumption that
was valid—or at least unimportant—becomes incorrect and
an important source of errors. No amount of code validation
will guard against them. Only careful and continuous checking
against well-formulated experiments will eliminate these errors.

Second are coding errors. It is the author’s experience that
newcomers to simulation—particularly those with strong exper-
imental backgrounds—are typically far too complacent about
the possibility of coding errors in their computer codes. Often-
times, they will validate their codes by comparison to analyt-
ical results in special limits or—worse yet—by comparison to
experiments. Special analytical limits are by their very nature
special, and codes that work in these limits often fail elsewhere.
Using experiments to validate computer codes conflates the
issue of determining whether a code’s physical foundations
are valid with the issue of removing coding errors. It is the
author’s view that whenever possible—and in the case of MC
simulations it is always possible—a code should be validated by
comparison to an independent simulation, preferably based on
an independent algorithmic approach. Biasing MC simulations
was first developed to solve problems that simply could not
be solved by using standard MC methods. However, once
developed, they also have the major advantage of allowing their
users to validate their standard MC codes.

Finally, there are subtle algorithmic errors. While most
algorithmic errors lead to unacceptably large statistical
errors—indeed all practical cases that lie within the author’s
experience—it is at least theoretically possible to have subtle
algorithmic errors without large statistical errors. Thus, it is
important to not only monitor the statistical errors but also
compare MC simulations that are based on different algorithmic
approaches. In the author’s view, there has been too much con-
cern in the optical communications community with the pos-
sibility of subtle algorithmic errors in biasing MC simulations
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and too little concern with the possibility of errors—particularly
coding errors—in standard MC simulations. Thus, there has
been a tendency when standard and biasing MC simulations are
compared and do not agree to simply attribute the difference
to subtle algorithmic errors in the biasing simulations and not
carry out the full process of code validation. In these cases,
an exaggerated fear of subtle algorithmic errors in biasing MC
simulations has not only become a barrier to further progress
but also become a barrier to the efficient development of
reliable codes.

Good scientific practice should always be a matter of debate
and will change over time. It is the author’s view that the devel-
opment of biasing MC methods, along with reliable methods
for testing their statistical accuracy, has changed what should
be viewed as “best practice” in carrying out MC simulations
and reporting their results. First, any MC simulation should
be carried out using two different codes, preferably based on
different algorithms, with enough cases spread through the
parameter regime of interest that one has thoroughly validated
both codes. Second, when attributing the failure of an MC
method to algorithmic errors, the author should be required to
carefully document the source of the errors. Vague assertions
that halt the process of code validation should not be acceptable.
If it is understood that these proposals for best practice are
offered to hopefully spark a debate and that they represent
an ideal toward which the author and his colleagues have
strived, while occasionally falling short, then the author will
have achieved his goals.
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