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Abstract: We calculate the quantum-limited shape of the comb lines from
a mode-locked Ti:sapphire laser using experimentally-derived parameters
for the linear response of the laser to perturbations. The free-running width
of the comb lines is found across the laser spectrum. By modeling the
effect of a simple feedback loop, we calculate the spectrum of the residual
phase noise in terms of the quantum noise and the feedback parameters.
Finally, we calculate the frequency uncertainty in an optical frequency
measurement if the limiting factor is quantum noise in the detection of the
optical heterodyne beat.
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1. Introduction

When light passes though any gain medium, it will acquire noise through spontaneous emission
(SE) [1]. The SE noise sets a fundamental limit on the linewidth of a laser. For a continuous
wave laser, this Schawlow-Townes limit is due to phase jitter [2]. The situation with mode-
locked lasers is more complicated. A mode-locked laser produces a train of pulses, regularly
spaced in time, and the frequency spectrum is a series of narrow comb lines. The width of each
comb line depends on the timing and phase jitter of the pulse train. The laser dynamics are char-
acterized by four pulse parameters: the pulse energy, the central or carrier frequency, the central
pulse time, the phase, and in addition a fifth parameter: the round-trip gain. In all mode-locked
lasers, strong nonlinearities couple amplitude and frequency fluctuations into timing and phase
jitter. The quantum-limited noise properties of mode-locked lasers were first treated by Haus
and Mecozzi in [3], hereafter referred to as HM. Until recently, subsequent work focused mainly
on quantum-limited timing jitter. With the development of femtosecond frequency combs [4],
the more general problem of timing and phase jitter has received more attention [5–12]. While
HM calculated the timing and phase jitter rather than the comb linewidths, that paper contains
almost all of the information needed to calculate the linewidths. More recent work has included
making extensions to the HM approach to determine the linewidths when bounded contribu-
tions to the timing and phase jitter can be ignored [5], developing more elaborate models of
pulse propagation in the laser [6, 7], including technical noise contributions [8, 12], and includ-
ing the effects of gain dynamics [10]. A major unknown in all theoretical efforts to date was the
strength of couplings between pulse parameters. Theoretical predictions carry large uncertain-
ties and depend on the details of the laser design, including dispersion management. Recently,
we quantitatively measured the linear response of the pulse energy, the central frequency, the
round-trip gain [13], the timing and the phase [14] of a mode-locked Ti:sapphire laser. The mo-
tivation for that work was to quantitatively predict the SE-limited noise properties of the laser,
the subject of this paper.

When considering the shape of the comb lines of a mode-locked laser, there is a fundamental
distinction between the case of a free-running laser and the case of a laser locked to an exter-
nal oscillator. In the former case, when the noise source is SE noise or any other white noise
source, the central time and the phase of the mode-locked pulse undergo a random walk, and the
comb lines have a stationary shape. In the latter case, again assuming white noise, the central
pulse time and the phase are bounded, and there is no stationary line shape; the measured line
width is inversely proportional to the measurement time. However, the phase noise spectrum
of each comb line is stationary, and that spectrum — not the frequency spectrum — is physi-
cally meaningful. Any clock or frequency measurement system consists of an oscillator and a
counter [15]. The clock’s performance depends on the frequency noise of the oscillator and the
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phase noise of the counter. Virtually all theoretical calculations to date of the noise properties of
passively mode-locked lasers have focused on the frequency spectrum of a free-running laser,
but in modern time and frequency metrology applications, these lasers are part of the count-
ing system [4], so it is their phase noise spectrum after they are locked to an oscillator that is
important. Here, we calculate the SE-limited noise properties of a Ti:sapphire laser, comparing
the comb line shape of the free-running laser and the residual phase noise of comb lines of the
phase-locked laser, using experimentally-derived parameters for the linear response of the laser
to noise perturbations.

2. Linear response and noise drivers

The laser is characterized by the pulse energy w = weq +Δw, the gain g = geq +Δg, the central
frequency ϖ = ϖeq + Δϖ , the central pulse time τ = τeq + Δτ , and the phase θ = θeq + Δθ ,
where xeq denotes the equilibrium value of each quantity and Δx the fluctuation about equilib-
rium. Defining TR as the round trip time, we have the repetition rate f rep = 1/TR. Without loss
of generality, we may choose τeq = 0 and θeq = 2π f0TR, where f0 is the equilibrium carrier-
envelope offset frequency. We define the phase with respect to a common reference rather
than the pulse envelope. Consequently, θ is related to the carrier-envelope phase slip Δθ ce by
Δθ = −Δθce + ϖΔτ . The linear response of the laser to perturbations is [3]

dv
dT

= −A ·v+S, (1)

where v = (Δg,Δw,Δϖ ,Δτ,Δθ )t (t denotes the transpose), S is a vector of noise sources for
each parameter, and A is a matrix of coefficients that describe the linear response of each para-
meter to changes in itself or the others. Once A and S are known, one can calculate the timing
and phase jitter [3], which leads to the optical frequency comb line shapes [5]. The noise sources
perturb all five parameters, and also add energy into a continuum of dispersive modes, but these
modes must be damped in order for a passively mode-locked laser to be stable. Consequently,
the noise contributions to those modes do not affect the linewidths.

To calculate the frequency or phase noise spectrum, we use the formalism of stochastic dif-
ferential equations [16]. The second-order moment equations for the laser parameters are

d〈ΔviΔv j〉
dT

= −∑
k,l

(Aik +Ajl)〈ΔvkΔvl〉+Di j, (2)

where vi is one of the dynamical variables and 〈Si(T )S j(T ′)〉 = Di jδ (T − T ′) relates S to a
matrix D of noise drivers. For the 5 dynamical parameters introduced above, there are thus
15 differential equations describing the response of the second-order moments to the noise
sources. The quantum noise drivers Di j were found using a generalized perturbation theory for
Gaussian pulses in a dispersion managed soliton laser [13]. Defining the cavity lifetime τ ph,
the fluorescence lifetime τf, the equilibrium photon number Nph,eq, the equilibrium upper state
population N2,eq, and the pulse width tp, they are

Dww =2w2
eq

1
τph

h̄ϖeq

weq
, Dwg = Dgw =weqgeq

Nph,eq

N2,eq

1
τph

h̄ϖeq
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Dgg =2g2
eq
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τph
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)2
]

1
τph

h̄ϖeq

weq
, Dϖϖ =t−2

p
1

τph
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Dθθ =2F(tp)
1

τph

h̄ϖeq

weq
, Dττ =t2
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1
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(3)
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where F(tp) =C2
1(tp)−C1(tp)C2(tp)+(3/4)C2

2(tp), C1(tp) = (1+3s/t4
p)/(1+5s/t4

p), C2(tp) =
(1+ s/t4

p)/(1+5s/t4
p), and s is a dispersion management parameter. The results above are sim-

ilar to previously used quantities derived from ordinary soliton perturbation theory [3]. While
most of the drivers differ by small factors, the energy and gain drivers are identical.

For the laser studied in [13] and [14], weq = 55 nJ, geq = 0.054, ϖeq = 2.3× 1015 rad/s,
τph = 0.1 μs, N2,eq/Nph,eq ≈ 13, and s/tp = 0.05, which leads to F(t p) = 0.60. We use the
experimentally-measured values from [13] and [14] for the elements of A. One could solve
Eq. (2) in the time domain numerically, but there are practical difficulties arising from the wide
range of time scales involved in the dynamics. We instead found the moments in the frequency
domain, using the formal solution

〈ΔṽmΔṽ∗l 〉(ω) =(−iω I−A)−1 ·D · [(iω I−A)−1]t , (4)

where I is the identity matrix. We then used the inverse Fourier transform to bring this solution
into the time domain symbolically.

3. Free-running lineshape

Taking into account only the effects of timing and phase jitter (amplitude and central frequency
noise both contribute to the linewidth, but are in practice negligible, c.f. [2]), the power spectral
density of the nth comb line is

In(ω) ∝
∫ ∞

0
dT cos(ωT )exp

{
−1

2
Ω2

n〈[Δτ(T )]2〉+ Ωn〈Δτ(T )Δθ (T )〉− 1
2
〈[Δθ (T )]2〉

}
, (5)

where ω is the Fourier frequency with respect to the center of the comb line ω n, and Ωn =
ωn −ϖeq. See Fig. 1 for plots of the free-running noise properties. With no feedback on f rep

and f0, the second-order moments involving only τ and θ do not evolve to equilibrium values at
large T , but rather grow with time. Each can be expressed as γT + β (T ), where γ is a constant
and β (T ) → 0 as T → ∞. The calculated single-sided shape for two comb lines, one in the
center and one on the wing of the spectrum, is shown in Fig. 1(a). The dynamics of the noise on
short time scales arising from the residual oscillatory part β (T ) lead to features on the wings of
the spectrum, shown in Fig. 1(a). The most notable feature is the peak at 400 kHz, the relaxation
oscillation frequency. The width of this peak depends on the strength of the effective saturable
absorber that mode-locks the laser, which is strongly influenced by the pump power [13].

The line is to a very good approximation Lorentzian. The FWHM linewidth of the n th comb
line is simply γn = γθθ −2Ωnγθτ +Ω2

nγττ , where γxy is the asymptotic slope of each correspond-
ing term in the exponent of Eq. (5). The linewidth is plotted as a function of Ω n in Fig. 1(b). The
noise in the phase Δθ is dominated by energy fluctuations coupling into phase noise through the
Kerr effect. The Schawlow-Townes linewidth, the linewidth if the phase noise is driven by D θθ
alone, is more than two orders of magnitude smaller. The noise in the time Δτ is dominated
by fluctuations in the central frequency coupling into timing jitter through cavity dispersion.
These central frequency fluctuations are driven mostly by the direct term D ϖϖ . The noise is
dominated by timing jitter over most of the spectrum, suggesting the importance of minimizing
the cavity dispersion for comb applications. Also note that the correlation term 〈ΔθΔτ〉 leads
to a shift in the frequency of minimum linewidth from the central frequency. This shift is espe-
cially important for the Kerr effect, which affects both phase and timing [17]. We have found
that our linewidth predictions generally agree with those of Kärtner et al [5].

4. Feedback, the phase noise spectrum, and frequency uncertainty

In metrological applications of femtosecond frequency combs, the comb is phase-locked to a
frequency standard, and this has a profound effect on the lineshape. The moments involving

#99059 - $15.00 USD Received 22 Jul 2008; revised 23 Oct 2008; accepted 24 Oct 2008; published 28 Oct 2008

(C) 2008 OSA 10 November 2008 / Vol. 16,  No. 23 / OPTICS EXPRESS  18627



Fig. 1. The calculated free-running comb lineshape. (a) Power spectrum In(ω) for comb
lines near the central frequency (black) and 200 THz from the central frequency (red). (b)
Linewidth γ as a function of Ωn, the offset from ϖeq. The red curve is the result with the full
set of A coefficients measured in [13] and [14]. The black curve is the result when timing
jitter caused by dispersion is neglected (by setting Aτϖ = 0). The blue curve is the result
when, in addition, timing and phase jitter driven by intensity fluctuations is neglected (by
setting Aτw = 0 and Aθw = 0).

only τ and θ are now damped, and their time domain solutions now take the form α + η(T ),
where α is a constant and η(T ) → 0 as T → ∞. The first term leads to a delta function in
frequency with an area proportional to exp(−α). This part of the comb line is coherent, which
makes it useful in metrology applications. The second term corresponds to residual phase noise,
the shape of which depends on the laser dynamics and the details of the feedback system. In
metrology applications, the residual phase noise leads to uncertainty in frequency measure-
ments [15].

In optical frequency metrology [4] or optical clock development and comparison (see [18]
and references therein), f0 is measured and locked using self-referencing and f rep is locked
to a microwave frequency standard or to a heterodyne beat between a comb line and a laser
line locked to an optical atomic transition. Because it depends on the phase with respect to
the envelope, f0 depends on both τ and θ . In general, the phase of a comb line depends on
both parameters as well, so each feedback system, for both f 0 and frep, will measure and act
on fluctuations in both τ and θ . If, for simplicity, one assumes that the feedback mechanism
— a cavity mirror on a piezoelectric transducer or an acousto-optic modulator controlling the
pump power — acts on Δ f0 and Δ fn, rather than some other linear combination of Δτ and Δθ ,
one can proceed by defining a linear transformation which goes from the {τ,θ} basis to the
{ f0, fn} basis. Each feedback loop acts on the latter pair of variables, and the inverse transfor-
mation determines how the feedback affects τ and θ . We have modeled a feedback system with
parallel proportional and integrator stages because it is simple enough that analytical solutions
can still be found. The parameters we choose give a servo bump at about 1 kHz. We assume a
simple radio frequency f rep lock rather than a lock using an optical heterodyne beat. We have
found that shot noise in the detection of beats used for locking the laser introduces a negligi-
ble amount of noise through the feedback loops because the bandwidth of a typical feedback
system is approximately two orders of magnitude smaller than f rep. We note that when the
feedback bandwidth becomes comparable to the dynamical frequencies in the laser, the laser
dynamics participate in the feedback mechanism [10]. That is not the case in the system that
we considered.
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Fig. 2. Calculated phase noise properties of the locked comb. Phase noise spectrum for
comb lines near ϖeq (black), 100 THz away (red), and 200 THz away (blue).

For the nth comb line, the phase noise spectrum is

Sφ
n (ω) =

1
2

Ω2
n〈[Δτ(ω)]2〉−Ωn〈Δτ(ω)Δθ (ω)〉+ 1

2
〈[Δθ (ω)]2〉. (6)

We show this solution for several comb lines in Fig. 2 for the given laser and feedback parame-
ters. While shot noise does not add much noise to the comb lines through the feedback, it does in
general contribute strongly to the phase noise of a heterodyne beat, but we do not consider that
here. The phase noise spectrum contains all the information needed to determine the uncertainty
in a frequency measurement. There has been recent work on how best to estimate uncertainty
from measurements using modern frequency counters, which use interpolation to increase their
accuracy over older style counters [19, 20]. Counting of zero-crossings is well-described by
the Allan variance, whereas the uncertainty in measurements using modern counters is better
described by the triangle variance [20]. We have calculated both uncertainty estimates using
the SE-limited phase noise spectrum and found that, in the center of the spectrum where the
noise is smallest, the Allan (triangle) deviation is 8×10−18 (8×10−21) for 1 second averaging
time. The large difference between the two arises from the triangle variance’s stronger rejection
of high frequency (compared to the gate time) noise. For a comb line 200 THz away from the
center of the spectrum, we find that the Allan (triangle) deviation is 1×10−17 (1×10−20) for 1
second averaging time. Note that these values depend strongly on the feedback parameters.

5. Conclusion

Combs have already been shown to be comparable with 1-s Allan deviation on the order of
10−17 fractional uncertainty [21]. The calculations presented here are of the same order of
magnitude, but we caution that our calculation is specific to the laser studied in [13] and [14],
using the simple feedback model we considered. We note that our approach applies to technical
noise sources as well, if one adds them to the driving terms contained in D. Using that informa-
tion, coupled with experimentally-derived parameters for A and a detailed and accurate model
of the feedback system, it should be possible to make quantitative predictions of uncertainty
in frequency measurements. A program focused on optimizing the linear response of the laser
system could be used to produce better laser designs for optical frequency metrology and other
applications of femtosecond frequency combs.
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