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We have developed a comprehensive simulation model for accurately studying the dynamics in optoelectronic
oscillators (OEOs). Although the OEO is characterized by three widely separated time scales, our model re-
quires neither long run times nor a large amount of memory storage. The model generalizes the Yao—Maleki
model and includes all of the physical effects in the Yao—Maleki model as well as other physical effects that are
needed to calculate important features of the OEO dynamics, such as the impact of the fast response time of
the modulator on the phase noise power spectral density, the fluctuations of the OEO output due to the input
noise, the cavity mode competition during the OEO start-up, and temporal amplitude oscillations in steady
state. We show that the absolute value of the phase noise is 2—3 dB lower than predicted by the Yao—Maleki
model. The Yao—Maleki model does not take into account amplitude noise suppression due to the fast time
response of the modulator, which accounts for this difference. We show that a single cavity mode oscillates in
the OEO at steady state, and this mode is determined by the noise that is present when the OEO is turned on.
When the small-signal open-loop gain is higher than 2.31, we show that the OEO amplitude oscillates in steady
state. This temporal amplitude oscillation can be suppressed by using a narrow filter. Our simulation model,
once extended to include flicker (1/f) noise and different amplifier and modulator designs, will enable its users
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to accurately design OEOs. © 2008 Optical Society of America

OCIS codes: 060.2320, 230.0250, 230.4910.

1. INTRODUCTION
Optoelectronic oscillators (OEOs) were invented by Yao
and Maleki in 1996 [1,2]. Traditional RF oscillators that
operate in the neighborhood of tens of gigahertz are based
on frequency multiplication of a low-frequency reference,
such as a quartz oscillator [3]. Since the required multi-
plication factor of the low-frequency reference source is
high, such devices have a relatively high phase noise [3].
Due to the low loss of optical fibers, the cavity length of
OEOs can be of the order of a few kilometers. Such cavi-
ties have a high @ that can be as large as 10'°, and hence
the phase noise that is obtained can be far lower than can
be obtained using traditional RF oscillators. Moreover, in
contrast to traditional RF oscillators, the phase noise in
OEOs is independent of the oscillation frequency [3].

The cavity length of OEOs is sufficiently long to make
the cavity mode spacing smaller than the bandwidth of
the intracavity RF filter. Therefore, the output of the OEO
may contain spurs that are not acceptable in RF systems.
Several OEO configurations such as the dual-loop OEO
[4,5], the mutually coupled OEOs [6], the coupled OEO
(COEO)[7], and the injection-locked dual OEO [8,9],
based on using two or more cavities have been developed
in an attempt to reduce the spurs. Using a dual injection-
locked OEO in a master—slave configuration, Zhou and co-
workers [8,9] have demonstrated a spur level that is bet-
ter than —140 dBc/Hz and a phase noise that is close to
—100 dBc/Hz at a frequency offset of 70 Hz from the car-
rier frequency. However, even such an excellent perfor-
mance may be insufficient for important applications such
as Doppler radar [10].

A simple model for analyzing the time-averaged noise
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in OEOs was developed by Yao and Maleki [2]. The theo-
retical dependence of the time-averaged phase noise on
the frequency offset from the carrier frequency, the cavity
length, and the oscillation power were verified experimen-
tally [2]. The Yao—Maleki model is only concerned with
the final steady state of the OEO and assumes that the
signal at any point in the OEO, both in the optical and RF
domains, does not depend on time. Thus, this model can-
not be used to study the start-up from noise and does not
enable one to take into account dynamical effects such as
noise fluctuations, mode hopping between cavity modes,
or temporal amplitude oscillations. These effects have
been observed to degrade the performance of OEOs in
some operating regimes. Moreover, the Yao—Maleki model
cannot take into account non-white-noise sources. Experi-
mental results indicate that flicker noise (1/f or pink
noise) plays a significant role in OEOs [5].

It is therefore of great importance to generalize the
Yao—Maleki model to include these additional physical ef-
fects. Systematically identifying and then eliminating or
reducing these effects could lead to a dramatic improve-
ment in the performance of OEOs. Given the large size of
the parameter space to be explored it is necessary to use
an efficient yet accurate computational model that is ca-
pable of predicting the OEO behavior over the entire fre-
quency and parameter range of interest. Such a model
should enable its users to find parameter regimes where
dynamical effects are suppressed and to determine the ul-
timate phase-noise limits in OEOs. The model should be
easily generalizable to allow its users to explore the im-
pact of different device and noise characteristics.

Developing a computational model of the OEO that in-
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cludes the important dynamical effects is a challenging
task since the OEO is characterized by three widely sepa-
rated time or frequency scales. The highest frequency
scale, of the order of few gigahertz, is the frequency of the
output signal. The second frequency scale, of the order of
hundreds of kilohertz, is the cavity mode spacing. The
last frequency scale, of the order of several to thousands
of hertz, corresponds to the frequency of the phase noise
that is of interest. Strictly speaking, there is another
fourth frequency scale, of the order of 100 THz, that cor-
responds to the carrier frequency of the light in the OEQ’s
optical fiber. However, it appears merely as the carrier of
the signal and has no effect on the computational model.

A model for studying the signal dynamics in OEOs has
been developed by Chembo et al. [11] that is based upon a
delay-differential equation. This model makes a number
of simplifying assumptions. The most important of these
assumptions are: (1) The cavity mode spacing is small
compared with the bandwidth of the filter and the ampli-
fier. (2) Both the signal variation at the modulator and
along the cavity are small, so that the order of the com-
ponents does not affect the round-trip signal transmis-
sion. These assumptions are incorrect when the cavity
mode spacing is comparable to the filter bandwidth. In
particular, one cannot use this model to accurately calcu-
late the spurious level when the filter bandwidth is nar-
TOW.

In this paper, we describe a new, comprehensive simu-
lation model of a single-loop OEO. The model includes all
the physical effects in the Yao—Maleki model as well as
additional physical effects such as the fast response time
of the modulator, the ability of the OEO to oscillate in sev-
eral cavity modes, and signal fluctuations that are in-
duced by the input noise. These effects are required to
model the dynamics in OEOs. Our model requires neither
a large amount of memory storage nor long run times. It
can be easily modified to include different device and
noise characteristics. We have calculated the time-
averaged phase noise with an additive white Gaussian
noise source using our model and compared it to the re-
sults of the Yao—Maleki model. Both models yield the
same dependence of the average phase noise on the cavity
length, the oscillating power, and the carrier offset fre-
quency that was verified in previous experiments [2].
However, our model predicts that the phase noise is 2 to
3 dB lower than is predicted by the Yao—Maleki model
when the small-signal open-loop gain is greater than
about 1.5. This discrepancy is due to the fast response
time of the modulator. This effect, which is not included in
the Yao—Maleki model, suppresses most of the amplitude
noise in OEOs. Complete amplitude noise suppression in
OEOs would yield a 3 dB difference between the magni-
tude of the RF spectrum calculated by the two models, but
the suppression is incomplete.

We have studied the oscillation start-up from additive
white Gaussian noise and we have found that several dif-
ferent cavity modes simultaneously oscillate when the
cavity mode spacing is smaller than the filter bandwidth.
However, one cavity mode whose frequency is randomly
determined by the initial noise eventually wins the mode
competition. Once the OEO reaches steady state, we have
observed no mode hopping between cavity modes, indicat-
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ing that experimentally observed mode hopping [12] is
not due to additive Gaussian white noise and must be due
to flicker (1/f or pink) noise that is from the amplifiers or
environmentally driven changes in fiber length.

We have studied the steady-state OEO dynamics, and
we have observed that the amplitude of the steady-state
cavity mode oscillates when the small-signal open-loop
gain Gg=2.31 and the RF filter bandwidth is greater
than 2/7 where 7is the round-trip time. We explain this
threshold value using a simple physical argument.
Chembo et al. [11] have experimentally observed these os-
cillations and theoretically explained them using a delay-
differential equation. However, the threshold that they
derive for the amplitude oscillation does not include the
effect of the filter bandwidth.

When Gg=2.9 and the filter bandwidth I'=2/7, the
amplitude of the steady-state cavity mode oscillates with
more than one frequency, leading to an aperiodic evolu-
tion in time.

Modern-day OEOs are becoming increasingly complex.
They are typically designed with multiple loops, and a va-
riety of different configurations are possible. One must
also choose between several different amplifier designs
and the different noise sources, such as white noise,
flicker noise from the amplifiers, and flicker noise from
environmentally driven changes in the fiber length, all
may play an important role in different parameter re-
gimes. The development of a comprehensive simulation
model that can be used to study these devices has become
imperative and in this paper we present such a model. We
present the basic model and simple, yet important, appli-
cations to single-loop OEOs that allow us to compare our
model to the earlier theoretical work of Yao and Maleki [2]
and Chembo et al. [11], while at the same time serving as
a departure point and basis of comparison for studying
more complex systems in the future.

The remainder of this paper is organized as follows. In
Section 2 we present the simulation model. In particular
we describe the multiple scale approach that we use. This
approach allows us to successfully follow the three widely
disparate time scales that must be simulated. In Section 3
we present the application of our model to the calculation
of the phase noise power spectral density, to the study of
the start-up process, and to the determination of the
threshold for amplitude oscillations in steady state. These
applications are all made within the relatively simple
context of single-loop OEOs, which allows us to connect
our results to the earlier theoretical work of Yao and
Maleki [2] and Chembo et al. [11]. Finally, Section 4 con-
tains the conclusions.

2. OPTOELECTRONIC OSCILLATOR MODEL

The OEO configuration analyzed in this paper is shown
schematically in Fig. 1. The configuration is identical to
that studied theoretically and experimentally in [1-3].
Light from a laser is fed into an electro-optic (E/O) modu-
lator, which is used to convert microwave oscillations into
a modulation of the light intensity. The modulated light is
sent through a long fiber and is then detected using a pho-
todetector. The photodetector converts the modulated
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Fig. 1. Schematic of the OEO.

light signal into an electrical signal. The output electrical
signal is amplified, filtered, and fed back into the electri-
cal port of the modulator.

Since in experiments the bandwidth of the RF filter, I',
as well as the bandwidth of the electrical amplifier are
significantly narrower than the central frequency w,, i.e.,
I'< w,, the bandwidth of the generated signal is limited.
Hence, we assume that the voltage applied to the modu-
lator, V,,(¢,T), is approximately a sinusoidal wave with
an angular carrier frequency ., a time dependent phase
¢(T), and a time dependent amplitude |a$°d(T)|, so that

Vint,T) = |[a2°%T)|cos[wt + ¢(T)]

mod

1
= 5% (Texp(-iwyt) +c.c., (1)

where the angular carrier frequency, w,, is of the order of
27X 10 GHz; ¢ is a fast time scale of the order of 27/ w,
~100 ps; T is a slow time scale of the order of the round-
trip time T'=10 us; and aﬁi"d(T)=|aﬁ‘1°d(T)|exp[—i¢(T)] is
the complex envelope or the phasor of the voltage
Vin@t,T). We assume that d¢/dT<w, and that
d|a™/dT <|a™)w,.

The optical power at the output port of the E/O modu-
lator is related to the input electrical signal by a nonlin-
ear transfer curve. The nonlinearity in the E/O modulator
generates harmonic components at frequencies maw,
where m is an integer. The optical power from the E/O
modulator is converted to an electric signal by a photode-
tector and is then amplified using an electrical amplifier.
The relation between the output electrical signal of the
RF amplifier and the input electrical signal of the modu-
lator V;, may be written [2] as

VOut(t’ ﬂ = Vph(]- -7 Sin{ﬂ-[Vin(t: T)/V‘n' + VB/V‘n']}), (2)

where V_ is the modulator half-wave voltage, Vp is the
DC bias voltage, 7 is a parameter determined by the ex-
tinction ratio of the modulator (1+%)/(1-7), and V, is
the photodetector voltage, defined as [2]

aPypRGy
Vin= — (3)
where « is the insertion loss, P is the input optical power,
p is the responsivity of the photodetector, R is the imped-
ance at the output of the detector, and G4 is the amplifier
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voltage gain. The voltage V, is the voltage at the output
of the amplifier when the modulator is biased with Vp
=V . and its RF port is not connected.

Using the Jacobi—Anger expansion [13], Eq. (2) be-
comes

Vout(,T) = Vi| 1= nsin(aV/V)Jo(wlah™(T)|/V,)

in

%

—29sin(aVe/V,) D (= 1)y (wlaeNT)IV,)
m=1

Xcos[2mw,t + 2m¢(T)] — 27 cos(wVp/V ;)

X D (= 1) g1 (a2 DV )
m=0

Xcos[(2m + V.t + (2m + 1)p(T)] ¢, (4)

where o/, is an mth order Bessel function. To explicitly
separate the fast time scale ¢ from the slow time scale T,
we rewrite Eq. (4) as

Vout(t’T') =D.C.- 7]Vph COS(WVB/VW)Jl(w‘amOd(TY)‘/V-n-)

Xexplid(T)]exp(-iwt) + HH. + c.c., (5)

where D.C. denotes a time-independent term and H.H.
represents higher-order harmonic terms caused by the
E/O modulator nonlinearity that have carrier frequencies
maw,, where m>1. In Eq. (5), the only explicit appearance
of the fast time ¢ is in the factor exp(-iw.t).

The modulator nonlinearity is responsible for the
higher-harmonic components in Egs. (4) and (5), centered
around angular frequencies mw, with m >1, where m is
an integer. In experiments, the bandwidth of the RF filter,
I', as well as the bandwidth of the electrical amplifier,
which are of the order of tens of megahertz, are signifi-
cantly narrower than the carrier angular frequency w,,
i.e., '<w,.. Hence, we may neglect higher-order harmonic
terms in our model. Only the cavity modes that are cen-
tered at the carrier angular frequency w, (m=1) will
propagate through the cavity, while the other cavity
modes are filtered out. In [2], this neglect is referred to as
a quasi-linear approximation. The effect of the higher-
order modes on the amplifier saturation is similarly ne-
glected.

Using the quasi-linear approximation, and including
the effects of the E/O modulator, the photodetector, and
the RF amplifier on the signal amplitude, we obtain the
phasor of the RF amplifier output voltage a2=>(T),

out
alP(T)=-27 cos(WVB/VW)Vpth(Tr|a§11°d(T)|/V7T)exp[i¢(T)] .
(6)

We note that in contrast to [2] our model does not require
the signal in the cavity to be a sinusoidal signal with a
constant amplitude. We allow the amplitude a(7) and the
phase ¢(T) to vary on a slow time scale. In fact, we will
demonstrate that it is possible for the amplitude of the
OEO signal to oscillate even in steady state.

We assume that the RF filter is linear. Hence, in the
time domain the filter response is given by
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a (Texp(- 2mif.T) = J aN(T")exp(- 2mif,. T")AT

-THdT", (7

where aﬁl(T)=a§pr(T) and aﬁ‘lllt(’l’) are the phasors of the
filter input and output signals, respectively; f.=w./27 is
the carrier frequency; and f(T) is the impulse response of
the filter. We note that f, is chosen arbitrarily near to the
central frequency of the filter. The actual oscillation fre-
quency is determined by the OEO dynamics and the RF
filter and may not equal the carrier frequency. The filter
smooths the signal in the time domain and also adds a de-
lay to the signal. The output of the filter is affected by its
input signal at a time interval that is equal to the effec-
tive duration of the filter impulse response Ty=1/I.
Hence, the output of the filter in the time domain is de-
termined by its input in the time interval [T-T,T].

To calculate the filter response in the frequency domain
we consider the complex amplitude a(7) in a time window
[T-Tio,T] such that T > Ty and expand it as a Fourier
series

©

a(D) = 2, a@fy)exp(-2mif,T), (8)

k=

where a(f;,) denote the Fourier coefficients and f,=k/T
is the frequency offset with respect to the chosen carrier
frequency f,. In the frequency domain the filter response
is given by

ail () = F(fy + £, (9)

where a; (fk) and aout(fk) are the Fourier coefficients of the
complex amplitudes a; 11(T) and aﬁlt(T), respectively, and
F(f") is the Fourier transform of the function f(T),

F(f") =J AT)exp2mif T)df". (10)

In our simulations we assumed a filter with a Loren-
zian line shape,

/2
F(fk+f5)=m, (11

where I' is the the full width at half-maximum (FWHM)
of the filter transmission spectrum and f; is the central
frequency of the filter. In the time domain the filter im-
pulse response is given by

AT) = ol exp[- 27i(fy +il/2)Tu(T), (12)

where u(T) is the Heaviside step function.

A. Simulation Model

As noted in the Introduction, the principal difficulty that
prevents a straightforward simulation of the OEO is the
existence of three different frequency scales. Due to the
difference between the highest and the lowest time scales
a straightforward implementation of the OEO simulation
is impractical as one cannot follow fluctuations that occur
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at a millisecond time scale while resolving gigahertz os-
cillations. Our simulation model was developed in order
to overcome this difficulty.

In our model we calculate the complex amplitude of the
signal inside the OEO on each round trip. The voltage en-
velope aﬁl(T) is defined at the input of the filter. We define
the complex amplitude function a/(T) as the complex am-
plitude aﬁl(T) given in a time interval of ([-1)r<T<I7
where [ is an integer, 7=nL/c is the round-trip time added
by the fiber, L is the fiber length, and n is the effective
refractive index of the fiber. We start the simulation as-
suming that a/(T)=0 (I<0), where [ is an index that
counts the number of round trips that the signal makes
after the OEO is switched on. At each iteration we calcu-
late the propagation of the signal through the filter, the
detector, and the modulator in a single round trip. After
each round trip we add noise due to the amplifier, the de-
tector, and the laser.

We assume that the effective duration of the filter im-
pulse response is shorter than the delay of the cavity fiber
7, i.e., > 1. We use the functions a/~X(T) and ¢*(T) to ob-
tain the complex amplitude of the filter input that is de-
fined over the finite time interval ([-2)r<T<I7

F {al‘l(ﬂ for (-2)r<T<(l-1)r

a

in,27 d(T) for(I-1)r<T<Ir (13)

We calculate the complex amplitude of the filter output
aéut 9, using the convolution of a 1.2, and the filter impulse
response as described in Eq. (7). The next round-trip com-
plex amplitude is given by a/*1(T)= aout 9(T'—7) and is de-
fined for [7<T<(l+1)7. The output 31gna1 of the filter is
used as an input to the modulator. The modulator and the
detector response are then calculated using Eq. (6).

There are several effects that contribute to the noise in
the OEO: thermal noise in the amplifier, shot noise in the
detector, and intensity noise of the laser [14]. The total
noise in our system is modeled as a single white noise
source that is injected into the input of the amplifier in
the frequency domain. The noise is added after each
round trip in the oscillator using the relationship

@sa™(f) = Gulas ™ () + w'(P], (14)

where @,*™P(f) and @, P(f) are the Fourier coefficients of
the complex amplitude of the /th round trip at the input
and output of the amplifier, respectively, and @'(f) denotes
white Gaussian noise with a single-sideband power spec-
tral density py that is added after each round trip [15].
Before recording any data we propagated the signal in
the OEO for Nrp=2000 iterations, where Ny is the num-
ber of iterations that it takes for the signal to reach a
steady state. At To=Ngp7 we calculated and stored the
voltage amplitude a;;,(T) over M round trips of the simu-
lation. We have validated that the calculated phase noise
spectrum did not depend on T, as long as Ty>Ngr7.

B. Radio Frequency Spectrum and Phase Noise
Calculation

To determine the low-frequency components of the RF
spectrum in the region of 100 Hz—100 kHz we used the
voltage amplitude ay;(T), defined for Toy<T <Ty+M7. We
define the discrete Fourier transform of a;;(T) as
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1 Mr
Ay = Fyda(D)]= Ef ayAT + To)exp(2mifT)dT.
0

(15)

The calculation requires the storage of the envelope func-
tion aj;, accumulated over M iterations. The lowest fre-
quency that can be resolved using Eq. (15) is of the order
of 1/Mr.

The quality of an OEO is determined by its phase noise.
When the filter bandwidth is wide compared to the cavity
mode spacing, the OEO may operate in one of several dif-
ferent cavity modes. Unless the oscillation frequency is
exactly equal to the chosen carrier frequency f,, the phase
¢(T) depends linearly on time. To calculate the phase
noise in these cases we subtract the linear phase change
from the time-dependent phase. We also subtract the
time-averaged phase when calculating the phase noise,
leaving only quadratic and higher-order dependence on
time. The phase noise is expressed as the power spectral
density of the phase, S,(f), which is equal to the Fourier
transform of the autocorrelation function of the phase
o(T) [16].

In each simulation, we calculated the low-frequency
components of the phase noise using the relation

b = Fud ()] (16)

The phase spectrum calculated over a time interval of M7
is found by dividing the spectral power of the phase by the
frequency resolution &' =1/Mr,

SYP =D (17)

We note that when M —«, the expectation value of the
phase spectrum, S%T(f), approaches the power spectral
density of the phase, S(f). However, the phase spectrum
contains noise that changes from one simulation to the
next, just as is the case in experiments. In Subsection 3.A
we show, by fitting a line to the curve that gives the de-
pendence of the logarithm of the phase spectral power on
the logarithm of the frequency, that it is possible to esti-
mate the function S,(f) accurately when M is as low as
5000. We have also verified, as discussed in Subsection
3.A that the phase noise in OEOs may be obtained to a
very high accuracy by calculating the RF spectrum S%FT(]‘),

~ |FarLa(T)]

SM 7, = SM T(F) = -
+1h =S 2RP,. &'

(18)
where P,.=|a(f=0)]>/2R is the carrier power. The RF
spectrum is approximately equal to the phase noise spec-
trum over a wide frequency range in OEOs since the am-
plitude noise is negligible and the phase fluctuation is
much smaller than unity.

3. SIMULATION RESULTS

In this section, we describe our principal simulation re-
sults. We have implemented our model by discretizing the
function ¢/(T) using an array containing N=200 points,
which induces a finite resolution time 6T'=7/N. The
round-trip time in the cavity was set to 7=0.28 us. As a
result, the frequency resolution, §=1/7, was about &
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=3.5 MHz and the simulation bandwidth, Af=1/5T, was
about Af=700 MHz. We note that the number of points,
N, should be chosen sufficiently high to ensure that the
simulation bandwidth will be significantly broader than
the RF filter FWHM bandwidth.

At each iteration N mutually independent noise vari-
ables zi)f were added to the signal @'(f}), i=1,...,N. The
variance of the noise variables is set by the relation
([@!|* /2R =pydf, where py is the noise spectral density
and R=50 () is the input resistance of the amplifier. As-
suming a complex Gaussian distribution, each of the real
and the imaginary parts of the independent noise vari-
ables was normally distributed with a variance A%;/2,
where

ANL=V2pNR. (19)

The power spectral density of the noise in our simulation
was taken to be py=10"1" mW/Hz unless otherwise speci-
fied. This value is consistent with the power spectral den-
sity used in [2]. We note that the results of the simulation
were not sensitive to the exact distribution of the noise
variables. We verified that all of the simulation results in
this paper are not changed when we assume an input
noise with a uniform phase and a uniform amplitude dis-
tribution.

Each simulation models the propagation of light in an
OEO through 12,000 cycles. The simulation parameters,
unless otherwise specified, were chosen as follows: filter
width I'=20 MHz, average oscillation power at the output
of the amplifier P,,.=30 mW, half-wave voltage of the
modulator V_=3.14V, bias voltage V5=3.14V, and a
voltage gain of G4 ="7.5. The fiber length corresponding to
a loop delay of 0.28 us was equal to 56 m. The values of
these parameters are similar to those used in the theoret-
ical analysis and in the experimental results given in [2].
We note that in a modern OEO the loop length is of the
order of a few kilometers and that mode hopping may be
prevented by using a multiloop OEO [4,5,9,17]. An impor-
tant parameter that determines the OEO behavior is the
small-signal open-loop gain, Gg, given by [2]

7TV n

Gs=

cos(mVgV,), (20)

ks

which can be either positive or negative, depending on the
modulator bias voltage, V. In our simulation, unless oth-
erwise specified, the small-signal open-loop gain is set
equal to Gg=1.5.

The run-time duration of the simulation using a per-
sonal computer, an IBM T43 with a CPU speed of
1.86 GHz and 1 GB of RAM, was of the order of only a few
minutes. To obtain the noise components at low frequen-
cies of the order of 100 Hz—100 kHz, the voltage ampli-
tude ¢/(T) was accumulated over the last M=10,000
round trips of the simulation. This number of round trips
corresponds approximately to a duration of about 3 ms.

A. Phase Noise

Figure 2 shows the phase noise as a function of the fre-
quency offset on a logarithmic scale. The dependence of
the average phase noise on the frequency is obtained by
making a linear fit to the plot. Figure 2 shows that the



Levy et al.

-100r-

Phase noise (dBc¢/Hz)
| [ | [ |
) —_ —_ —_ —_
S ® 2 & D
S & &8 & S
I

—220— “Hum3‘ “Hum4‘ Ll “Hum6‘ “Hum7

10° 10 10 10° 10 10
Frequency offset (Hz)

Fig. 2. (Color online) Phase noise spectral density (solid curve)
as a function of the frequency offset obtained for an OEO with a
loop delay of 7=0.28 us, oscillation power of 14.77 dBm, filter
bandwidth of I'=20 MHz, noise power spectral density of py
=10"1" mW/Hz, small-signal open-loop gain of Gg=1.5, and a
voltage gain of G,=7.5. The noise was calculated over M
=10,000 round trips. A least-squares fit of the phase noise curve
(dashed-dotted line) yields —55.5-20 log,(f).

average phase noise power has a 20 dB per decade depen-
dence on the frequency offset, in agreement with the the-
oretical and experimental results given in [2]. We note
that the exact phase noise level at each frequency is dif-
ferent in each simulation because the noise is random.
The peaks at frequencies 3.57 and 7.14 MHz correspond
to the cavity modes. The ability to simulate dynamical ef-
fects allows us to calculate the fluctuations of the OEO
signal due to random variations of the input noise. These
fluctuations are responsible for the random variations in
the phase spectrum that are visible in Fig. 2.

To check the effect of the integration time M 7 on the re-
sults, we compared the phase noise that was obtained us-
ing three different values of M 7. The results are shown in
Fig. 3. Since the process is ergodic, the phase noise statis-
tics and the phase noise average value at a given fre-
quency should be independent of the finite integration
time M 7. However, since the frequency resolution, which
is also the minimal frequency offset, is equal to &
=1/Mr, Figs. 3(a)-3(c) are slightly different. When M in-
creases, the frequency resolution increases and the varia-
tion in the phase noise also increases. However, the aver-
age phase noise does not change.

Figure 4 demonstrates the ergodicity of the results. The
noise (solid curve) was obtained by averaging the phase
noise of 350 simulation results such as the one shown in
Fig. 2. The result of this average is approximately equal
to that obtained by making a linear least-squares fit to
the phase spectrum. The least-squares fit is shown in Fig.
2 as a dashed-dotted curve. A comparison of the averaged
phase noise to the RF spectral density obtained using the
Yao—Maleki model [2] (dashed curve) shows that both re-
sults have the same dependence on frequency. However,
the Yao—Maleki model produces a noise spectral density
that is 2.5 dB higher than does our simulation model. In
the Yao—Maleki model, the steady-state loop gain is set
equal to 1, and the round-trip gain does not change in
time. Therefore, the reduction of the amplitude noise due
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Fig. 3. (Color online) Phase noise spectral density S,(f) calcu-
lated for three different integration times: (a) M7=(b) 8.4, 2.8,
and (c) 0.84 ms.

to negative feedback from the fast E/O modulator re-
sponse is not taken into account in the Yao—Maleki model.
Our model includes this fast response.

We also verified that the RF spectral density is approxi-
mately equal to the phase noise; i.e., Sgr(f) =S 4(f) [16].
This assumption is valid because the amplitude noise,
which is suppressed by the fast response of the optical
modulator, is small relative to the phase noise and be-
cause the phase fluctuation is significantly smaller than
unity, 6¢(T)<1. Figure 5 shows that the averaged RF
spectrum is almost identical to the averaged phase spec-
trum in a broad frequency range. At a frequency equal to
nearly half the cavity mode spacing, there is a discrep-
ancy between Sgp(f) and S ,(f). This discrepancy is due to
amplitude noise, which has a value of about -170 dB and
is not strongly dependent on the frequency. However,
phase noise dominates when the frequency offset becomes
smaller than the cavity mode spacing, and at a frequency
offset less than about 0.1/7 the difference between Sgp
and S is negligible.

The Yao—Maleki model [2] predicts that when the angu-
lar frequency is significantly lower than the cavity mode
spacing, i.e., when 27f7<1, and when the frequency off-
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Fig. 4. (Color online) Comparison between the phase noise spec-
tral density, S4(f), calculated by averaging the phase noise over
350 simulations (solid curve) and by performing a least-squares
fit to a single simulation result that is shown in Fig. 2 (dashed-
dotted line). The curves are compared to that obtained by using
the Yao—Maleki model [2] (dashed curve). The approximately
2.5 dB difference is due to the neglect in the Yao—Maleki model of
the modulator’s fast gain response.

set is higher than the FWHM bandwidth of the OEO sig-
nal, the dependence of the phase noise, S 4(f), on the noise
power spectral density and on the loop delay is propor-
tional to py/72. The latter dependence has been verified
experimentally [2]. To verify that our simulations produce
the same result, we have analyzed the dependence of the
phase noise on the loop delay and on the noise power spec-
tral density. The phase noise in the frequency range of
10 kHz—-1 MHz was calculated for different -cavity
lengths and different input noise levels. The average
phase noise was calculated for each cavity by averaging
350 runs as was done to obtain Fig. 4. The results were
compared to the results of the Yao—Maleki model [2]. Fig-
ure 6 shows the phase noise of the OEO (circles) at a
30 kHz offset from the carrier as a function of loop delay.
The other cavity parameters were the same as in Fig. 2. A
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Fig. 5. Comparison between a phase noise spectral density S ,(f)
(dark gray curve), amplitude noise (light gray curve), and the
complete RF spectrum Syp(f) (black curve), which are calculated
by averaging the noise over 350 simulations. The comparison jus-
tifies the approximation that Sgp(f)=S,(f) for a wide frequency
range in which the amplitude noise is negligible relative to the
phase noise.
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Fig. 6. (Color online) Phase noise spectral density of the OEO at
a frequency offset of 30 kHz as a function of loop delay 7 (circles)
and the filter bandwidth in each case was I'=5.6/7. The least-
squares fitting of the data points (solid line) is given by: —155.4
—20log o[ (us)], which is in agreement with the results of the
Yao—Maleki model (dashed line): -152.8—-20log;o[(us)]. The
simulation phase noise was extracted by fitting a curve at each
delay using a least-squares fit, as shown in Fig. 2. A difference
between the models of approximately 2.5 dB is visible at all loop
delays.

linear least-squares fit to the averaged phase spectrum
(in decibels) yielded the following dependence of the
phase noise on the loop delay: —155.4—20 log;o[ H(us)]. The
dependence of the phase noise on the loop delay obtained
using the results in [2] is equal to: —152.8—20 logo[ 7(us)].
Figure 7 shows the phase noise at a 30 kHz offset from
the carrier as a function of the noise power spectral den-
sity. The dependence of the phase noise on the noise
power spectral density is equal to 25.62+ py(dBm/Hz).
The Yao—Maleki model [2] yields the dependence 28.25
+pn(dBm/Hz). We note that in the Yao—Maleki model and
in our studies the filter bandwidth I'=20 MHz is taken
into account.
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Fig. 7. (Color online) Comparison between phase noise spectral
density at a frequency offset 30 kHz offset as a function of the
spectral noise density power calculated by using the Yao—Maleki
model (dashed line) and by using our simulation (circles). The
least-squares fit of the simulation data points (solid line), given
by 25.62+pn(dBm/Hz), is compared to the result of the Yao—
Maleki model (dashed line): 28.25+ py(dBm/Hz).
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The dependence of the phase noise on the loop delay
and on the frequency offset obtained in our simulation is
the same as that obtained theoretically and experimen-
tally in [2]. Our simulation, as well as the previous result,
give a 20 dB per decade dependence of the phase noise on
the frequency offset and on the loop delay. As noted pre-
viously, the Yao—Maleki model yields a power spectral
density of the phase that is 2.5 dB higher than our simu-
lation model produces. However, when the small-signal
open-loop gain Gg approaches 1, the amplitude noise be-
comes stronger at lower frequencies. Therefore, in a broad
frequency range the disagreement between the two mod-
els vanishes. For example, for Gg=1.05 the amplitude
noise power becomes similar to the phase noise above a
frequency offset of 0.01/7. Hence, at a frequency range f
>0.01/7 the results of our model and the Yao—Maleki
model in [2] become approximately equal.

B. Cavity Mode Competition and Selection at Start-Up
in the Optoelectronic Oscillator

In the Yao—Maleki model it is assumed that only one cav-
ity mode has a small-signal open-loop gain that is larger
than unity and therefore only one cavity mode is allowed
to oscillate. Since the cavity length of OEOs is long, the
cavity mode spacing is usually far smaller than the band-
width of the filter, so that several cavity modes may have
a small-signal open-loop gain greater than 1. All such
modes can potentially oscillate and hence the OEO can os-
cillate in one of several cavity modes. Our simulation
model includes many cavity modes. The noise that is
present when the OEO is turned on determines the spe-
cific cavity mode that oscillates once the OEO reaches
steady state. After one of the cavity modes starts oscillat-
ing, the small signal gain of the other cavity modes de-
creases due to gain saturation of the modulator. Large
amounts of noise can in principle lead to mode hopping,
but at the noise power levels in our simulations, which
correspond to typical experimental power levels, we have
not observed that to date. This result implies that the ex-
perimentally observed mode hopping [12] is not due to
Gaussian white noise, but is due to other environmentally
driven noise sources.

Figure 8 shows the spectrum and the time dependence
of the OEO signal envelope when the OEO can oscillate in
different cavity modes. The round-trip time was set equal
to 7=2 us and the chosen carrier frequency was equal to
the central frequency of the RF filter f.=f;. The normal-
ized frequency f7 is the offset frequency with respect to
the chosen carrier frequency f, that is normalized by the
cavity mode spacing. Figure 9(a) shows the probability
density function (PDF) of the normalized oscillation fre-
quency. The OEO can oscillate in five different normalized
oscillating frequencies, each of which corresponds to a dif-
ferent cavity mode. The standard deviation of the normal-
ized oscillating frequency, o4, is equal to o,q=0.96.
The standard deviation of the normalized oscillating fre-
quency distribution depends on the ratio between the the
RF filter bandwidth and the cavity mode spacing, I'7. Fig-
ure 9(b) shows the standard deviation of the normalized
oscillating frequency as a function of this ratio. In our
simulations we varied the round-trip time while keeping
the RF filter bandwidth constant. We did not observe that
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Fig. 8. (Color online) Oscillation in one of several oscillating
cavity modes where the RF filter bandwidth I' is equal to 20 MHz
and the round-trip time 7 is equal to 2 us. (a) The RF spectrum
(left) and the real part of the amplitude (right) when the steady-
state cavity mode has a frequency f.. (b) The RF spectrum (left)
and the real part of the amplitude (right) when the cavity mode
that oscillates in steady state has a frequency f.+1/7. (¢c) The RF
spectrum (left) and the real part of the amplitude (right) when
the steady-state cavity mode has a frequency f,+2/7.

the PDF of the normalized frequency was dependent on
the power spectral density of the injected white noise.

C. Nonstationary Steady-State Behavior
We have studied the dependence of the OEO oscillation
amplitude on the small-signal open-loop gain Gg, defined
in Eq. (20), and on the filter bandwidth I". We have found
that when Gg>2.31, amplitude oscillations occurs. These
amplitude oscillations cannot be studied within the con-
text of the Yao—Maleki model, which assumes that in
steady-state the oscillations do not change in time. We
also find that when Gg=2.9, amplitude oscillations at
more than one frequency appear, and the temporal evolu-
tion becomes aperiodic. Finally, we find that when the fil-
ter bandwidth I' is smaller than approximately 2/7, the
amplitude oscillations are suppressed. To suppress oscil-
lations at more than one frequency, the required filter
bandwidth should be narrower than 2/7. Chembo et al.
[11] have experimentally obeserved amplitude oscillations
in the OEO, and they described this effect using a simple
delay-differential equation. However, the model that was
used to derive the threshold for amplitude oscillation does
not include the effect of the RF filter and its transmission
profile. Hence, it cannot explain the suppression of the
amplitude oscillation that is observed in our simulations
when the filter bandwidth narrows.

In Fig. 10 we show the time dependence of the ampli-
tude and phase for Gg=1.5. No amplitude oscillations are
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Fig. 9. (Color online) (a) Probability density function of the nor-
malized oscillating frequency when I'7=40. The normalized oscil-
lating frequency is distributed with a standard deviation of
Omoa=0.96. (b) The standard deviation of the normalized oscillat-
ing frequency distribution as a function of I'7.

observed. Figure 11 shows the amplitude of the OEO as a
function of time for Gg=2.4, which is above the threshold
Gg=2.31 and, in this case, amplitude oscillations with a
period of 27 are observed. The change in the amplitude of
the output signal is about 0.15 of the average amplitude.
Figure 12 shows how the minimum and the maximum
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Fig. 10. (Color online) (a) Normalized amplitude and (b) phase
noise obtained for a small-signal open-loop gain Gg=1.5. The
steady-state amplitude does not depend on time and is equal to
1.75V /7. The other OEO parameters are the same as in Fig. 2.
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Fig. 11. (Color online) Normalized amplitude obtained for a
small-signal open-loop gain Gg=2.4 (solid curve). The normalized
amplitude changes between 2.035 and 2.755 (dashed lines) as

predicted by our threshold condition. The other OEO parameters
are the same as in Fig. 2.

amplitudes depend on the filter bandwidth, and, as stated
previously, temporal amplitude oscillations are only ob-
served when I'>2/7.

When the small-signal open-loop gain is increased to
Gg=2.71 an amplitude oscillation with a period of 47 is
obtained. Figure 13 shows a 47periodic amplitude oscil-
lation that is obtained for Gg=2.75.

When the small-signal open-loop gain is further in-
creased to Gg=2.9, oscillations at two or more frequen-
cies are observed, as shown in Fig. 14, although the
change in the phase remains small. We define a time-
averaged oscillation power Pyq(7),

(1) 1fm S 21)
P, (T)=— — a7, 21
0 Te) g, 2R

where T'p is the time over which the average power is cal-
culated. We have found that although the amplitude in
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Fig. 12. (Color online) Minimum and maximum amplitude ob-
tained for a small-signal open-loop gain Gg=2.4 as a function of
the filter bandwidth. The other OEO parameters and the pulse
shape are the same as in Fig. 2. The dashed lines show our
threshold condition and the minimum and maximum amplitude
excursions.
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Fig. 13. (Color online) Normalized amplitude obtained for a
small-signal open-loop gain Gg=2.75. Amplitude oscillations with
a period of 41 are obtained as predicted by our threshold condi-
tion. The other OEO parameters are the same as in Fig. 2.

Fig. 14(a) varies, its time-averaged oscillation power
P,y(T) approaches a constant value when Tp=57 as
shown in Fig. 14(a). In [2] the amplitude of the oscillation
was calculated for a small-signal open-loop gain Gg that
was varied from 1 to 4. The result was verified experimen-
tally only when the gain varied between 1 and approxi-
mately 2 [2]. Figure 15 compares the dependence of the
time-averaged power on the small-signal openloop gain
that was obtained using our simulation to that calculated
by using the Yao—Maleki model [2]. Our result shows that
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Fig. 14. (Color online) (a) Amplitude and (b) phase obtained for
a small-signal open-loop gain Gg=3. The dashed line in (a) gives
the amplitude derived from the averaged power [2RP, (T)]"2
The power is averaged over a time duration of Tp=57 (dashed
curve) and is compared to the result of the Yao—Maleki model
2.68V ./ (dashed-dotted line). The simulation parameters are
the same as in Fig. 2.
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Fig. 15. (Color online) Dependence of the time-averaged oscilla-
tion power as a function of the small-signal open-loop gain calcu-
lated in the simulations (diamonds) and compared to the power
from the Yao—Maleki model [2] (dashed curve). The averaging
time was 107. Good agreement is obtained between the results
although the assumption in the Yao—Maleki model that the am-
plitude does not change in time is not valid for Gg>2.31.

despite the amplitude oscillations when Gg>2.31, the av-
erage OEO power is still consistent with the Yao—Maleki
model.

The oscillation thresholds that we observe in our simu-
lations and that were found by Chembo et al. [11] may be
derived using a simple physical argument. The small-
signal open-loop gain must be greater than unity in order
for the OEO to oscillate [2]. The nonlinearity of the E/O
modulator limits the amplitude of the oscillating cavity
mode. To obtain a steady-state solution with a time-
independent amplitude, the average loop gain should be
slightly less than one [2]. Therefore, we assume that the
round-trip gain equals unity. Using Eq.(6), we find

Vour = GllaiDlaiplcos(wt + ), (22)
where the round-trip gain coefficient G(|a§]1) is given by
il Va fil
G(lap]) = 2G5WJ1(7T|(11L|V7T). (23)

7la;

m

According to Egs. (22) and (23), the relation between the
oscillation amplitude in two sequential round trips / and
[+1 that is needed to obtain a time-independent ampli-
tude is

7T|al+1(T)|V7T =2Gg- J1(77|al(T)|V7T). (24)

We define a normalized amplitude x'=la!|/V, and re-
write Eq. (24) as

ol = ¥l =fGS(xl)a (25)

where
fay) = 2Gs - J1(x). (26)
Equation (25) has a nontrivial solution only for Gg>1.
This solution corresponds to an oscillation with a time-

independent amplitude. This threshold is the same as ob-
tained in [2].
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However, in addition to the condition of a constant am-
plitude solution that was analyzed in the Yao—Maleki
model, other steady-state conditions may be fulfilled as
well. For example, the oscillation amplitude may repeat
itself after two round trips, in which case

o =22 = f [fa ()] = 3 ). 27)

Equation (27) has a solution only for Gg>2.31. The result
that was shown in Fig. 11 demonstrates an amplitude os-
cillation in time that satisfies the condition in Eq. (27).
The small-signal open-loop gain in this figure is equal to
Gg=2.4. We have verified that the OEO oscillates when
Gg>2.31, as predicted by our threshold condition. Figure
12 shows that a narrowband filter causes the generation
of a time-independent amplitude. The normalized ampli-
tude is in agreement with the solution of Eq. (25); x
=2.447. For a broad bandwidth filter the minimum and
the maximum normalized amplitudes approach the solu-
tions of Eq. (27), xn;,=2.035 and x,,,,=2.755 (dashed lines
in Fig. 12). When Gg=2.71 a solution for the equation
xl=x!** is obtained, which results in an amplitude oscilla-
tion with a periodicity of 47. Figure 13 demonstrates such
an amplitude oscillation, which is obtained for Gg=2.75.
When Gg is further increased, more solutions can arise in
which x/=x/*". In this case two or more frequencies may
be present, leading to an aperiodic evolution as we al-
ready noted. However, as the number of different oscilla-
tion frequencies increases, the rate of change of the am-
plitude becomes increasingly rapid, and the assumption
that the filter does not affect the oscillation, which we
used to derive the threshold condition, becomes invalid.
In practice, one should operate the OEO below the thresh-
old at which amplitude oscillations set in.

4. CONCLUSIONS

We have developed a comprehensive simulation model to
quantitatively study dynamic effects in OEOs. Although
the OEO is characterized by three widely separated time
scales, our model does not require either long run times or
a large amount of memory storage. Our model generalizes
the previously published model of Yao and Maleki [1] in
order to take into account dynamic effects in OEOs. It in-
cludes all of the physical effects in the Yao—Maleki model
as well as other physical effects that are needed to calcu-
late important features of the OEO dynamics, such as the
impact of the fast response time of the modulator on the
phase noise spectral density, the cavity mode competition
during the OEO start-up, and amplitude oscillations in
steady state. Since our model includes all of the physical
effects that are in the Yao—Maleki model, both models ac-
curately describe the dependence of the phase noise on
the cavity length, the oscillating power, and the offset fre-
quency. These features were verified in the previous ex-
periments of Yao and Maleki [1].

A discrepancy of 2 to 3 dB in the absolute value of the
phase noise was found between the two models when the
small-signal open-loop gain is greater than about 1.5.
This discrepancy, which does not contradict the previ-
ously published experimental results of Yao and Maleki
[1], is mainly due to the suppression of the amplitude
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noise that is a consequence of the fast response time of
the modulator. This important effect is not taken into ac-
count in the Yao—Maleki model. Therefore, the magnitude
of the RF spectrum calculated by the Yao—Maleki model is
almost 3 dB too high. When the small-signal open-loop
gain is close to unity, the effect of the modulator on the
amplitude noise is small, and both models give approxi-
mately the same absolute noise. Modeling this dynamical
effect also enables us to calculate fluctuations in the OEO
signal due to random variations of the input noise. These
fluctuations result in random variations in the spectrum
that are obtained in our model.

With our simulation model we are able to observe cav-
ity mode competition during the OEO start-up as well as
temporal amplitude oscillations in steady state. In prac-
tice these effects can degrade the performance of OEOs if
the OEO parameters are not correctly chosen. Hence, it is
important to indicate when these effects are present and
how they may be suppressed. When the filter bandwidth
is wide enough, the OEO can oscillate in one of several
cavity modes. The cavity mode that wins the mode com-
petition and oscillates in steady state is determined by
the noise that is present when the OEO is turned on.

Temporal amplitude oscillations are observed when the
small-signal open-loop gain is greater than 2.31. Our
model yields a threshold condition for this mode of opera-
tion based on simple physical considerations. When the
small-signal open-loop gain is further increased beyond
2.9, two or more oscillation frequencies appear and the
amplitude oscillation becomes aperiodic. We show that
these temporal amplitude oscillations can be suppressed
by using a sufficiently narrow filter.

The simulation model that we have created can be ex-
tended to include a variety of efects that are important in
practice. These include fiber-length-independent flicker
noise in the amplifiers and environmentally driven flicker
noise that depends on the fiber length. This model can be
extended to examine the impact of different amplifier and
modulator designs, investigate the source of experimen-
tally observed mode hopping and determine the require-
ments to suppress it, and to investigate a variety of dual-
loop configurations.
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