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The possibility of using the self-induced transparency effect to achieve laser mode locking has been dis-
cussed since the late 1960s but has never been observed. In prior work, we proposed that quantum cascade
lasers are the ideal tool to realize self-induced transparency mode locking due to their rapid gain recovery times
and relatively long coherence times, and because it is possible to interleave gain and absorbing periods. Here,
we present designs of quantum cascade lasers that satisfy the requirements for self-induced transparency mode
locking at both 8 and 12 �m, indicating that it is possible to satisfy these requirements over a wide wavelength
range. The coupled Maxwell-Bloch equations that define the dynamics in quantum cascade lasers that have
both gain and absorbing periods have been solved both analytically and computationally. Analytical mode-
locked solutions have previously been found under the conditions that there is no frequency detuning, the
absorbing periods have a dipole moment twice that of the gain periods, the input pulse is a � pulse in the gain
medium, and the gain recovery times in the gain and absorbing periods are much longer than the coherence
time T2 and are short compared to the round-trip time. It was shown that the mode-locked pulse durations are
on the order of T2, which is typically about 100 fs in quantum cascade lasers. In this work, these analytical
results are reviewed and extended to include the effects of partial inversion in the gain and absorbing periods
and of frequency detuning. An energy theorem in the limit of long coherence times is derived. The Maxwell-
Bloch equations have been solved computationally to determine the robustness of the mode-locked solutions
when frequency detuning is present, the dipole moment of the absorbing periods differs from twice that of the
gain periods, the gain relaxation time is on the order of 1–10 ps, as is typically obtained in quantum cascade
lasers, and the initial pulse is not a � pulse in the gain medium. We find that mode-locked solutions exist over
a broad parameter range. We have also investigated the evolution of initial pulses that are initially much
broader than the final mode-locked pulses. As long as the initial pulse duration is on the order of T1 or shorter
and has enough energy to create a � pulse in the medium, a mode-locked pulse with a duration on the order of
T2 will ultimately form.
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I. INTRODUCTION

McCall and Hahn �1,2� observed that a pulse with a du-
ration � that is short compared to the coherence time T2 of a
saturable resonant medium will pass through the medium as
if the medium were transparent, as long as the pulse energy
exceeds a critical value. They gave this effect the name self-
induced transparency �SIT�. When the pulse energy is below
the critical value, the pulse damps. SIT reshapes pulses in the
correct energy range, so that they have a hyperbolic-secant
shape with a well-defined energy and duration. This effect
has been used for pulse compression �3,4�, and these pulses
are referred to as 2� pulses.

Self or passive mode locking of lasers �5,6� was discov-
ered experimentally at almost the same time as SIT, and
there was speculation that the mode locking was due to SIT
�7,8�. However, subsequent work made it clear that SIT
could not account for the observed mode locking �9,10�.
Conventional passively mode-locked systems operate in re-
gimes in which the pulse bandwidth is smaller than the gain
bandwidth, so that typically coherence times T2 are short

compared to the pulse duration. With the development of the
standard theory of passive mode locking �11�, work on SIT
mode locking almost ceased. An exception is work by Ko-
zlov �12�, who pointed out the importance of including an
absorbing medium, in which the pulse is a 2� pulse, along
with a gain medium in which the pulse is a � pulse. The
absorbing medium acts as a saturable absorber suppressing
the generation of continuous waves and the Risken-
Nummedal-Graham-Haken �RNGH� instability �13�.

Quantum cascade lasers �QCLs� �14� are important light
sources in the midinfrared range. The light is generated by a
transition between two subbands in the conduction band, in
contrast to interband semiconductor lasers. As a conse-
quence, the subbands have narrow linewidths and long co-
herence times T2 compared to interband semiconductor la-
sers. Values of T2 on the order of 100 fs are achievable �15�.
Another important feature of the QCLs is their rapid gain
recovery times T1 compared to interband semiconductor la-
sers due to fast LO-phonon relaxation. Typical values of T1
are in the range 1–10 ps, which is short compared to Trt, the
round-trip time in the cavity �15�. Typical values of Trt are on
the order of 50 ps.

The narrow linewidths and fast recovery times of QCLs
make it difficult to achieve conventional passive mode lock-
ing. Gain bandwidths that are significantly larger than the
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pulse bandwidths are required, and that is hard to obtain
when the linewidths are narrow, as in QCLs. A saturable
gain, with a recovery time that is long compared to Trt, is
also required for conventional mode locking in order to sup-
press continuous waves, and the typical gain recovery times
in QCLs are shorter than the round-trip times. Thus, conven-
tional passive mode locking cannot work in QCLs that oper-
ate in a standard parameter regime.

In prior work �16�, we proposed that QCLs are an ideal
tool for creating the long-predicted, never-observed SIT
mode locking. The relationship T2�T1�Trt, which is typical
for QCLs, is precisely what is needed for SIT mode locking,
and the ease of band-gap engineering in QCLs makes it pos-
sible to interleave gain and absorbing periods as needed.
Conversely, SIT mode locking of QCLs makes it possible in
principle to obtain mode-locked pulses from a midinfrared
laser that are less than 100 fs in duration. In this work, we
extend our prior work to show that these results are robust
over a broad parameter range.

In related work, Wang et al. �17� and Gordon et al. �18�
observed the Risken-Nummedal-Graham-Haken instability
in QCLs with only gain periods and they modeled their
QCLs using the two-level approximation of the Maxwell-
Bloch equations. They did not find it necessary to include
chromatic dispersion. They did, however, include a saturable
nonlinearity. By carefully separating this effect from the ef-
fect of spatial hole burning, Gordon et al. �18� showed that
its quantitative impact can be significant, but it does not af-
fect the qualitative results. They attributed the saturable non-
linearity to effects that depend on the detailed geometry of
the QCL. By contrast, spatial hole burning qualitatively
changes the evolution of the RNGH instability and can com-
pletely suppress it. However, in SIT mode locking, continu-
ous waves are suppressed and the mode-locked pulses propa-
gate in one direction or the other at any one time so that
spatial hole burning is not an issue. We conclude that the
two-level Maxwell-Bloch equations are an adequate model
for QCLs in the parameter regime of interest for SIT mode
locking.

More recently, Wang et al. �19� obtained 3 ps pulses in an
actively mode-locked system and Choi et al. �20� demon-
strated SIT-related coherence by injecting 200 fs pulses into
a QCL. Like many passively mode-locked lasers, an SIT-
mode-locked QCL will not self-start. These works suggest
that it may be possible to start the SIT mode locking either
by injection locking or by actively modulating it. It might
also be possible to use mechanical or electrical perturbations
to start the mode locking.

The stability of SIT mode locking depends on the magni-
tude of the gain per unit length relative to the absorption per
unit length and the linear loss per unit length. In this study,
we treat these quantities as parameters; we do not calculate
them from first principles. While the gain and absorption per
unit length will be roughly proportional to the current, their
relative magnitude is not easy to calculate. This magnitude
depends on the carrier distribution and coherence times in all
the levels in both the QCL’s active and injector regions, and
must be calculated using a Monte Carlo, quantum kinetic
density matrix, or a nonequilibrium Green’s function ap-
proach �21–24�.

The remainder of this paper is organized as follows: in
Sec. II, we give a physical picture of how SIT mode locking
works. In Sec. III, we present realistic QCL structures de-
signed to operate at 8 and 12 �m that satisfy the design
requirements that the dipole moment in the absorbing peri-
ods is approximately twice that of the gain periods and the
resonant frequencies are nearly equal. These results indicate
that it is possible to satisfy the requirements for SIT mode
locking over a broad parameter range �25�. In Sec. IV, we
present the Maxwell-Bloch equations and discuss analytical
solutions of these equations. Prior work �16� is reviewed and
extended and an energy theorem is derived. In Sec. V, we
present a detailed computational study of the Maxwell-Bloch
equations that shows that SIT mode locking is robust when
the parameter values change from the ideal values for which
analytical solutions can be found. Finally, Sec. VI contains a
discussion of our results.

II. PHYSICAL PICTURE OF SIT MODE LOCKING

In order to obtain SIT mode locking, it is necessary to
have two highly coherent resonant media with nearly equal
resonant frequencies. In one medium, denoted the gain me-
dium, electrons should be injected into the upper lasing state
so that the resonant states are nearly inverted. In the other
medium, denoted the absorbing medium, electrons should be
injected into the lower state so that the resonant states are not
inverted. Also, the dipole strength in the absorbing medium
should be nearly equal to twice the dipole strength in the
gain medium. At the same time, the ratio of the gain per unit
length to the absorption per unit length should be small
enough so that the growth of continuous waves is sup-
pressed, but large enough so that a mode-locked pulse can
stably exist. It is possible to simultaneously satisfy all these
conditions by interleaving gain and absorbing periods that
have the required dipole strengths as shown schematically in
Fig. 1. By appropriately choosing the number of gain periods
and the number of absorbing periods, one can in principle
obtain any desired ratio for the gain and absorption per unit
length. As long as there are many periods within the trans-
verse wavelength of the lasing mode, the gain and absorbing
periods will experience the same light intensity.

In Fig. 2, we show simplified two-level resonant struc-
tures for the gain and absorbing media. In the gain medium,
electrons are injected into level 2g and are extracted from
level 1g. The carrier lifetime in 2g should be longer than the
mode-locked pulse duration and the equilibrium population
inversion should be nearly complete. When an optical pulse
with a photon energy equal to the resonant energy impinges
on the gain medium with its polarization oriented in the di-
rection perpendicular to the layers, electrons scatter to level
1g and photons are emitted. Then, the electrons are nonra-
diatively extracted from level 1g. In the absorbing medium,
electrons are injected into the lower level 1a. The lifetime of
state 1a should again be longer than the pulse width. When a
light pulse of the appropriate wavelength and polarization
impinges on the absorbing medium, photons are absorbed
and electrons jump to level 2a. If a light pulse has enough
intensity, then photons are re-emitted with no overall loss in
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one Rabi oscillation time. In order for these processes in the
gain medium and absorbing medium to occur simulta-
neously, the energy spacing between the resonant levels
should be nearly the same in both media.

In the theory of resonant two-level media, both � pulses
and 2� pulses play an important role �26�. A � pulse is a
pulse with sufficient energy to exactly invert the lower state
population of a two-level medium if the medium is initially
uninverted, or, conversely, to uninvert the upper state if the
medium is initially inverted. In the former case, the pulse
experiences loss and rapidly attenuates, but, in the latter case,
the pulse experiences gain. The pulse duration is approxi-
mately half a Rabi oscillation period. If a pulse lasts a longer
time than required to drive the population from the upper
level to the lower, then the medium will amplify the first part
of the pulse and attenuate the latter part, in a way that short-
ens the pulse. Conversely, if a pulse is initially too short, it is
lengthened. Because a � pulse experiences gain, it is natural
that shortly after the initial observations of passive mode
locking in lasers, it was proposed that the pulses in these
lasers are actually SIT-induced � pulses �7,8�. However,
these pulses are not suitable for use on their own as passively
mode-locked laser pulses. Where one � pulse can exist, there
is nothing to prevent continuous waves from generating mul-
tiple pulses leading to chaos rather than a single stable pulse
oscillating in a laser cavity.

One can in principle circumvent this difficulty by combin-
ing a gain medium in which the optical pulse is a � pulse
with an absorbing medium in which the optical pulse is a 2�
pulse �10�. A 2� pulse is a pulse with sufficient energy so
that in an uninverted medium the lower state population is
first inverted and then returned to the lower state in approxi-
mately one Rabi oscillation. A 2� pulse like a � pulse is
stable. If its initial duration is too long, the duration de-
creases, and, if its initial duration is too short, the duration
increases. The 2� pulse propagates through the medium
without loss, in contrast to continuous waves at the resonant
optical frequency, which experience loss. This remarkable
property is what led to the name “self-induced transparency”
�1,2�. Because of this property, the absorbing medium acts
like the saturable loss in a conventional passively mode-
locked system, suppressing the growth of continuous waves,
while allowing a short pulse to propagate.

It is evidently important that both the gain medium and
the absorbing medium act on the optical pulse simulta-
neously. We may achieve this simultaneous interaction by
designing a QCL structure that has the gain and absorbing
periods interleaved along the growth axis of the structure, as
shown in Fig. 1. By making the dipole moment in the ab-
sorbing periods twice that of the gain periods, a � pulse in
the gain periods is a 2� pulse in the absorbing periods.
Therefore, an injected � pulse completely depletes the gain
medium as it makes its way through the QCL, whereas, the
absorbing medium becomes transparent. We will show that
by controlling the amount of gain and absorption per unit
length in the gain and absorbing media, pulse durations can
be controlled.

In order to suppress spatial hole burning, the RNGH in-
stability, or the growth of multiple pulses, we do not want
continuous waves to grow in an SIT mode-locked laser. The
absorption parameter should be large enough to keep the
laser operating below the threshold for the growth of con-
tinuous waves. Therefore, the laser cannot self-start and it is
necessary to use external means to start the mode locking.
Essentially, we need a seed pulse that has sufficient energy
and a duration on the order of T1. We suggest two optical
approaches. First, we can seed the pulse from an external
source by injection locking, or, second, we can use active
mode locking to generate an initial pulse that will have a
suitable energy and initial duration for SIT mode locking. It
may also be possible to use a mechanical or an electrical
impulse to start the mode locking.

III. QUANTUM CASCADE LASER STRUCTURES

We have designed QCL gain and absorbing periods that
fulfill the SIT mode locking requirements at two different
wavelengths, 8 and 12 �m. Similar structures can be de-
signed over a broad range of mid-ir wavelengths �25�. We
use the In0.52Al0.48As / In0.53Ga0.47As material system for the
active region in our design since most of the demonstrated
QCLs to date have been based on this material system. How-
ever, mode-locking structures operating at less than 8 �m
will be difficult to design using this material system. Since
electrons are injected into the lower state in the absorbing
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FIG. 1. �Color online� Schematic of a QCL structure with gain
and absorbing periods. On the left, we show a cutaway view of the
QCL structure. The active region is shown as a filled-in rectangle.
We are looking in the direction along which light would propagate.
Electrodes would be affixed to the top and bottom so that electrons
flow vertically. The heterostructure would also be stacked vertically
as shown on the right. We show one absorbing period for every four
gain periods, corresponding schematically to the case in which the
electron density in the gain medium �Ng��4� the electron density
in the absorbing medium �Na�, and we show absorbing periods that
are twice as large as gain periods to indicate schematically that the
dipole moment in the absorbing medium ��a��2� the dipole mo-
ment in the gain medium ��g�.
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FIG. 2. �Color online� Schematic of the �a� gain and �b� absorb-
ing media. Black straight-line arrows indicate the direction of elec-
tron flow. Red wavy arrows indicate radiative transitions.
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medium, the upper state approaches close enough to the
conduction-band edge at wavelengths below 8 �m to lead to
a large increase in the carrier loss due to scattering to the
continuumlike states. To design a mode-locking structure at
shorter wavelengths, it should be possible to use a strain-
balanced InAlAs/InGaAs material system.

The gain periods in our design are typical QCL periods.
We design a three-quantum-well active region for the gain
periods that has a diagonal transition, which lowers the di-
pole moment relative to designs that have a vertical transi-
tion. This choice simplifies the design of the absorbing peri-
ods. Population inversion is achieved by confining the
resonant states in separate quantum wells and depopulating
the lower state through phonon relaxation to another state
sitting below the lower resonant state. While the dipole mo-
ment in the gain periods is not high, the upper state lifetime
is larger than in the case of vertical transitions so that the
gain remains high. The design of absorbing periods is differ-
ent from the design of gain periods. The combined require-
ments of carrier injection into and extraction from the lower
resonant level and a dipole moment twice that of the gain
periods make it difficult to design the absorbing periods. To
achieve a large dipole moment, the transition should be be-
tween two excited states. The carrier lifetime is made high
by reducing scattering through phonon relaxation and reduc-
ing the carrier tunneling from the lower resonant state into
the succeeding injector states. The injector regions have dif-
ferent designs when the electrons are tunneling into a gain or
absorbing active region due to the different quantum elec-
tronic structures of gain and absorbing active regions.

The structure in Fig. 3�a� emits light at 12 �m. Electrons
are injected into level 3g, and the gain transition is between
levels 3g and 2g. The dipole moment between the resonant
levels is given by �g /e=1.81 nm. Level 3g has a lifetime of
�2 ps. Level 1g is positioned approximately at phonon
resonance with 2g. Level 2g has a lifetime of �0.5 ps, so
that the population inversion is high. The transition energy is
101 meV. In the absorbing periods, electrons are injected into
level 4a and they jump to level 5a by absorbing photons. The

lifetime of level 5a is �0.83 ps. The absorbing levels are
separated by 101 meV and have a dipole moment �a /e
=3.65 nm. After electrons are injected into level 3g, they
have a long lifetime of 2 ps due to the low scattering rate.
When the optical pulse arrives, the population in level 3g
decreases to level 2g. Level 2g is depopulated quickly to
level 1g through phonon interactions and the electrons then
transit to the following injector stage. Population inversion is
restored before the optical pulse makes a round trip in the
laser cavity. Electrons sit in level 4a after being injected by
the preceding injector stage. When an optical pulse reaches
the absorbing periods, electrons from level 4a move to level
5a by absorbing photons. Since the pulse is a 2� pulse for
the absorbing medium, level 5a is depleted by making a Rabi
oscillation, during which photons are emitted.

In the structure given in Fig. 3�b�, the gain transition is
between levels 3g and 2g. The dipole moment between the
gain levels is 1.55 nm and the lifetime of level 3g is �3 ps.
The resonant transition energy is 150 meV in both the gain
and absorbing periods. In this structure, electrons are in-
jected into level 3a in the absorbing periods and the absorb-
ing transition is between levels 3a and 4a. Level 4a has a
lifetime of �0.8 ps. The absorbing levels have a dipole mo-
ment �a /e=2.95 nm.

In a QCL, the time T1 is determined mainly by the LO-
phonon relaxation rate. The LO-phonon relaxation rate de-
pends mainly on the energy spacing between the levels and
the overlap of the corresponding wave functions, so that T1
depends on the details of the band structure and can vary
greatly from design to design. Indeed, strictly speaking there
is not a single T1 in either the gain or the absorbing medium
since there are more than two levels involved in the dynam-
ics in both media. In the gain stage of the QCL structure
given in Fig. 3, the upper state is confined in a separate
quantum well from the other states in the active region, so
that the phonon relaxation rate is smaller than when all the
active states are in the same well and the lifetime is higher.
However, the absorbing stage is designed such that the upper
and lower state wave functions have a large overlap, which
makes the dipole moment higher, but decreases the lifetime.
Therefore, in practical designs, we find T1g�T1a.

Generally, if the gain and absorbing media are grown
from the same material system, it is reasonable to assume
T2g�T2a. In the QCL structure that we propose, an
In0.52Al0.48As / In0.53Ga0.47As material system is used for both
the gain and absorbing periods, so that T2a should not vary
much from T2g. However, there has yet to be a detailed the-
oretical calculation of these coherence times. In a QCL, the
value of T2 depends mainly on electron-electron scattering,
electron–LO-phonon scattering, and interface scattering.
Therefore, the values of T2g and T2a may differ somewhat,
depending on the details of the design.

IV. MAXWELL-BLOCH EQUATIONS

Wang et al. �17� and Gordon et al. �18� have observed the
RNGH instability in QCLs with only gain periods. They
showed evidence for Rabi oscillations and demonstrated that
the two-level Maxwell-Bloch equations apply to QCLs in
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FIG. 3. �Color online� Conduction-band diagram and moduli-
squared wave functions for one gain and one absorbing period of
the �a� 12 �m, �b� 8 �m mode-locking QCL structures. The se-
quence of layer dimensions is �in Å, starting from left�: �a� 37, 36,
10, 35, 10, 34, 11, 34, 12, 35, 39, 37, 12, 62, 14, 58, 28, 42, 12, 40,
13, 37, 15, 34, 15, 34, 34, 45, 11, 65, 6, 69; �b� 42, 34, 9, 33, 12, 30,
13, 28, 16, 28, 41, 27, 18, 62, 14, 58, 28, 42, 12, 40, 13, 37, 13, 34,
16, 34, 34, 9, 31, 50, 5, 84. The numbers in bold type indicate
In0.52Al0.48As barrier layers and those in roman type indicate
In0.53Ga0.47As well layers. Red wavy arrows indicate radiative
transitions.
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some parameter regimes, although they also showed that
saturable absorption affects the behavior quantitatively, sig-
nificantly reducing the RNGH threshold. Gordon et al. �18�
attributed the saturable absorption to Kerr lensing that in-
creases the mode overlap with the active region and reduces
the wall losses. These effects depend sensitively on the de-
tails of the QCL geometry. They also observed that spatial
hole burning due to the interaction of forward- and
backward-propagating waves has an important effect on the
pulse spectrum. They did not find it necessary to include
chromatic dispersion or other nonlinearities. Motivated by
these results, we use a simple two-level model based on the
standard one-dimensional Maxwell-Bloch equations �26,27�.
The Maxwell-Bloch equations that describe the light propa-
gation and light-matter interaction in QCL having interleaved
gain and absorbing periods may be written as

n

c

�E

�t
= −

�E

�z
− i

kNg�g�g

2�0n2 	g − i
kNa�a�a

2�0n2 	a −
1

2
lE , �1a�

�	g

�t
=

i�g

2

�gE −

	g

T2g
, �1b�

��g

�t
=

i�g



	gE� −

i�g



	g

�E +
�g0 − �g

T1g
, �1c�

�	a

�t
=

i�a

2

�aE −

	a

T2a
, �1d�

��a

�t
=

i�a



	aE� −

i�a



	a

�E +
�a0 − �a

T1a
, �1e�

where the subscripts g and a in Eq. �1� represent gain and
absorption, respectively. The independent variables z and t
are length along the light-propagation axis of the QCL and
time. The dependent variables E, 	g,a, and �g,a refer to the
envelopes of the electric field, gain polarization, and gain
inversion. The parameters �g0 and �a0 refer to the equilib-
rium inversion away from the mode-locked pulse. The pa-
rameters n and c denote the index of refraction and the speed
of light. The parameters Ng,a�g,a denote the effective electron
density multiplied by the overlap factor. The parameters k, l,
�0, and 
 denote the wave number in the active region, the
linear loss including the mirror loss, the vacuum dielectric
permittivity, and Planck’s constant. The notation closely fol-
lows that of Wang et al. �17�, with the differences that we
have an absorbing as well as a gain medium, and we are
considering unidirectional propagation, as is appropriate for
a mode-locked pulse �28�.

In order to achieve SIT mode locking, the growth of con-
tinuous waves must be suppressed. At the end of Sec. II, we
briefly discussed possible approaches for seeding the mode
locking. At this point, we make two observations. First, be-
cause continuous waves are suppressed, forward- and
backward-propagating waves cannot interact, and spatial
hole burning will not occur. Second, we did not include satu-
rable absorption in Eq. �1� because we are not certain how to
do so. This contribution was added phenomenologically to

the Maxwell-Bloch equations by Wang et al. �17� and Gor-
don et al. �18�, based on experimental observations in par-
ticular QCLs and was attributed to effects that depend sensi-
tively on the geometry of those QCLs. In future work, we
will investigate the magnitude of the nonlinearity and chro-
matic dispersion that would impair SIT mode locking.

In order to suppress continuous waves, the gain must be
below threshold. To derive this condition, we set �g=�g0
and �a=�a0 in steady state, where there is no evolution in z.
We then find from Eqs. �1b� and �1d�,

	g = i
�g

2

T2g�g0E, 	a = i

�a

2

T2a�a0E , �2�

where we are considering continuous waves, so that there is
no dependence on t and the t derivatives vanish. After sub-
stitution in Eq. �1a�, we obtain in steady state

kNg�g�g
2T2g�g0

2�0n2

+

kNa�a�a
2T2a�a0

2�0n2

− l = 0, �3�

which may also be written g�g0+a�a0− l=0, where

g =
kNg�g�g

2T2g

2�0n2

, a =

kNa�a�a
2T2a

2�0n2

. �4�

Physically, the parameter g corresponds to the gain per unit
length from the gain periods of the QCL and the parameter a
corresponds to the absorption per unit length from the ab-
sorbing periods. The condition for the linear gain to remain
below threshold is g�g0+a�a0− l�0. In the case of a fully
inverted gain medium, so that �g=�g0=1 and a fully unin-
verted absorbing medium so that �a=�a0=−1, the condition
to suppress continuous waves becomes g−a− l�0.

Assuming that T1g and T1a are large enough so that they
may be set equal to  in Eq. �1�, and focusing on the special
case in which �a=2�g and the pulse is a � pulse in the gain
medium, Eq. �1� has an exact analytical solution that we may
write as

E =



�g�
sech x , �5a�

	g =
iBg

2
�g0 sech x , �5b�

�g = Bg�g0� �

T2g
− tanh x	 , �5c�

	a =
iBa

2
�a0�− sech x tanh x +

�

3T2a
sech x	 , �5d�

�a =
Ba

2
�a0�1 +

�2

3T2a
2 	 − Ba�a0�sech2 x +

2�

3T2a
tanh x	 ,

�5e�

where
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x =
t

�
−

z

v�
, �6�

while

Bg =
1

1 + �/T2g
and Ba =

2

�1 + �/3T2a��1 + �/T2a�
�7�

are chosen such that �g→�g0 and �a→�a0 as t→−, so
that the equilibrium population completely recovers on every
pass of the pulse through the laser. Hence, Eq. �5� shows that
stable mode-locked operation can be achieved in the pro-
posed structure. The parameters � and v that correspond to
the pulse duration and the pulse velocity are determined by
the equations

�/T2g

1 + �/T2g
g�g0 +

�2/3T2a
2

�1 + �/T2a��1 + �/3T2a�
a�a0 − l = 0 �8�

and

1

v
=

n

c
− a�

�/2T2g

�1 + �/T2a��1 + �/3T2a�
�a0. �9�

The full-width half-maximum pulse duration �FWHM equals
1.763�. This solution was previously presented in the special
case �g0=1 and �a0=−1 �16�. We now consider in more
detail the special case T2g=T2a
T2. Writing ḡ=g / l, ā=a / l,
and �̄=� /T2, we find that the condition to suppress the
growth of continuous waves becomes ḡ�g0+ ā�a0−1�0,
and the equation for the pulse duration becomes

3

�̄
=

3ḡ�g0 − 4

2
+ ��3ḡ�g0 − 4

2
	2

+ 3�ḡ�g0 + ā�a0 − 1��1/2

.

�10�

Equation �10� only has a solution when ā� �3ḡ�g0
−2�2 /12�a0, where we note that �a0�0.

The conditions for stability may be summarized as

�ḡ�g0 − 1�
�a0

� ā �
�3ḡ�g0 − 2�2

12�a0
. �11�

When ā is above the upper limit in Eq. �11�, we have found
by solving Eq. �1� computationally that an initial pulse
damps away. When ā is below the lower limit, continuous
waves grow. We have computationally found that multiple
pulses are generated in this case.

Equation �11� defines a parameter regime in which stable
mode-locked operation is possible. In Fig. 4, we present the
stability limits when the population inversion in the gain and
absorbing periods vary. In all cases, the lower lines indicate
the limiting values for ā, below which continuous waves
grow, and the upper lines indicate the limiting values for ā,
above which initial pulses damp. Figure 4 shows that the
minimum value of ḡ that is required for stable operation
increases when �g0 decreases and �a0 increases by the same
amount. There is also a slight decrease in the lower limit for
ā and a larger decrease in the upper limit. Since the upper
limit drops more than the lower limit, the stable parameter
region becomes smaller. We also show contours of the pulse
duration, normalized by the coherence time T2g, denoted �̄,

as given by Eq. �10�. Pulse durations are approximately on
the order of T2g when ḡ�2.5 and ā�2.0. We also note that
pulses become shorter as ḡ and ā increase. However, both ḡ
and ā are directly proportional to the current; so, to increase
the gain and absorption in a fixed ratio, one must increase the
current. At the same time, we note that ḡ and ā are directly
proportional to T2. Hence, it is possible to reduce the re-
quired current by increasing T2.

We have studied what happens to the stability limits if
T2a /T2g vary and we show the results in Fig. 5. In Fig. 5, we
have varied T2a keeping T2g constant. In a QCL, typical val-
ues of T2g and T2a are on the order of 100 fs. A change in T2a
affects the stability limits more than does a change in T2g as
is evident from Eq. �8�. When T2a /T2g increases, the upper
stability limits increase. When ḡ=4.0, we find that the upper
limit for ā varies from 3.75 to 8.3 to 24 as T2a /T2g varies
from 0.5 to 1.0 to 2.0. The lower limit for ā remains un-
changed.

We now derive an energy-balance equation that describes
the energy input limits for stable operation when ��T2. We
define ��z , t�=�−

t E�z , t��dt�. Then, Eqs. �1b� and �1c� can
be written as
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FIG. 4. �Color online� Stability limits of the normalized absorp-
tion �ā� vs the normalized gain �ḡ� coefficients with different �g0

and �a0. The ratio T1 /T2 is infinity in all cases. For a given �̄ and ā,
the required ḡ increases as �g0 and �a0 decrease.
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FIG. 5. �Color online� Stability limits of the normalized absorp-
tion �ā� vs the normalized gain �ḡ� coefficients with different
T2a /T2g. We set T1g=T1a= in all cases. In equilibrium, the gain
medium is completely inverted, i.e., �g0=1.0, and the absorbing
medium is completely uninverted, i.e., �a0=−1.0.

MUHAMMAD ANISUZZAMAN TALUKDER AND CURTIS R. MENYUK PHYSICAL REVIEW A 79, 063841 �2009�

063841-6



�	g�z,t�
�t

=
i�g

2

�g�z,t�

���z,t�
�t

�12�

and

��g�z,t�
�t

= 2
i�g



	g�z,t�

���z,t�
�t

. �13�

In the gain medium, the polarization and population inver-
sion can be written in terms of a single angle � as 2i	g
=cos � and �g=sin �. We integrate both sides of Eq. �12� or
Eq. �13�, after substituting these expressions for 	g and �g
and assuming that �g�z , t→−�=1. We then obtain ��z , t�
=� /2+ ��g /
���z , t�. We may similarly write 2i	a=cos �
and �a=sin � in the absorbing medium, and we then find
��z , t�=−� /2+ ��a /
���z , t�, where we have set �a�z , t→
−�=−1. We now consider Eq. �1a� in steady state, where
there is no evolution in z, and in the limit t→, where there
is no evolution in t. We also define a normalized pulse en-
ergy

�̄�z� = ��g/
���z,t → � . �14�

Equation �1a� now becomes

g sin��̄�z�� = a
�g

�a

T2g

T2a
sin��a

�g
�̄�z�� , �15�

where we note that the linear loss may be neglected in the
limit ��T2. In the special case �a=2�g and T2g=T2a
T2,

we find a��g /�a��T2g /T2a�sin���a /�g��̄�=a cos �̄ sin �̄, so

that Eq. �15� becomes cos �̄=g /a, which defines the limits of
the input energy that is required to generate a single pulse,

cos−1�g/a� � �̄ � 2� − cos−1�g/a� . �16�

When the initial value of �̄ is within these limits, a single

pulse with a final value of �̄=� is generated. When the initial

value of �̄ is below this value, the lower limit in Eq. �16�, the

initial pulse damps. When the initial value of �̄ is above the
upper limit, the initial pulse splits into multiple pulses.

In the analysis up to now it has been assumed that the
central carrier frequency of the light pulse and the transition
frequency in both the gain and absorbing media are the same.
Since the frequency of the light is largely determined by the
gain medium, it is reasonable to assume that there is no
detuning between the light and the gain medium. Even if the
mode locking is seeded by injection locking, analogous to
the experiment of Choi et al. �20� the injection-locking laser
can be tuned to the gain resonance. In principle, there may be
a small detuning between the gain and absorbing media due
to design or growth issues; however, it is possible to design
the gain and absorbing media so that detuning is nearly ab-
sent. QCLs are currently being grown with high accuracy
and experimentally observed wavelengths agree closely with
the designed values.

If there is a detuning of �� between the gain and the
absorbing periods and the light pulses are tuned to the gain
periods, Eq. �1d� becomes

�	a

�t
=

i�a

2

E�a − � 1

T2
− i��		a. �17�

Then the solutions for 	a and �a change. Analytical solutions
for 	a and �a may be found in the presence of detuning ��

when ��T2, so that the term proportional to 1 /T2 may be
neglected in the polarization equation. Then, the solutions for
	a and �a become

	a =
���

1 + �����2sech x + i
1

1 + �����2sech x tanh x ,

�18a�

�a = − 1 +
2

1 + �����2sech x , �18b�

where x= t /�−z /v� and �a0=−1 at t→−.
On physical grounds, it is apparent that the criterion for

acceptable detuning is that ���1 /T2, since ��T2 and the
bandwidth of the pulse in angular frequency is ��−1. If T2 is
100 fs, and we demand conservatively that ���0.1 /T2, then
���1012 s−1, corresponding to an allowed frequency detun-
ing of 1.6�1011 Hz, which is 2% of the carrier frequency of
8 �m light and is not overly demanding.

V. SIMULATION RESULTS

In order for the solution reported in Eq. �5� to be of any
practical interest, it must be robust when �a differs from
2�g, when T1g and T1a are on the order of a picosecond or
less, when an initial pulse that is long compared to its final,
stable duration is injected into the medium, and when the
initial pulse area differs from the ideal value of � in the gain
medium and 2� in the absorbing medium. The Maxwell-
Bloch equations must be solved computationally to deter-
mine what happens under these conditions. For computa-

tional analysis, we normalize Eq. �1�. We define Ē
= ��gT2g /
�E and we introduce the retarded time t�= t
− �n /c�z, the normalized time t̄= t /T2g, and the normalized
distance z̄= lz, so that Eq. �1� becomes

�Ē

� z̄
= − iḡ	g − i

ā

�T2a/T2g��̄
	a −

1

2
Ē , �19a�

�	g

� t̄
=

i

2
�gĒ − 	g, �19b�

��g

� t̄
= i�	gĒ� − 	g

�Ē� +
�g0 − �g

T1g/T2g
, �19c�

�	a

� t̄
=

i

2
�̄�aĒ −

	a

T2a/T2g
, �19d�

��a

� t̄
= i�̄�	aĒ� − 	a

�Ē� +
�a0 − �a

T1a/T2g
, �19e�

where ḡ=g / l, ā=a / l, and �̄=�a /�g.
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In our simulations, we used different window sizes, de-
pending on the pulse evolution, and we verified that the pulse
intensities are always zero at the window boundaries. We
spaced our node points 1–5 fs apart, and we chose a step size
between 1 and 10 �m, depending on the material parameters
in the simulation. In each simulation these values were con-
stant and we checked that reducing these values made no
visible difference in our plotted results. Finally, we verified
by extending the propagation length that we were following
the pulses over a sufficiently long length to reliably deter-
mine whether the pulses are stable or not.

In Fig. 6, we show the limits of ḡ and ā for stable opera-
tion with different values of T1 /T2 when T1g=T1a
T1 and
T2g=T2a
T2. We begin by assuming that a hyperbolic-
secant-shaped pulse having an area of � is injected into the
QCL. Before the pulse is injected, the population is com-
pletely in the upper lasing state in the gain medium, i.e.,
�g0=1.0 and is completely in the ground state in the absorb-
ing medium, i.e., �a0=−1.0. In Fig. 6, the black solid line at
the bottom defines the lower limits of ā for any T1 /T2. The
solid curves on the top are the loss-limited boundaries for
different values of T1 /T2. The injected pulses are only stable
when the gain and absorption parameters are set between
these two boundary limits. Stable pulses propagate in the
laser cavity with no change in shape and energy. We show
the pulse evolution in the stable regime and unstable regimes

in Fig. 7. Figure 7�a� shows stable pulse evolution when ḡ
=4.0 and ā=3.5. The laser becomes unstable when operated
with ā smaller than the lower limits given in Fig. 6 due to the
growth of continuous waves. In this case, the net gain of the
laser becomes positive, i.e., ḡ− ā−1�0, and multiple pulses
may form in the cavity, leading to the generation of multiple
pulses in our simulations. We give an example of this behav-
ior in Fig. 7�b�. In this case, we set ḡ=4.0 and ā=1.0; the
laser becomes unstable when z̄=20 and the laser cavity de-
velops more than one pulse. With ā greater than the upper
limit, the gain medium cannot compensate for absorption and
the linear loss. As a result, pulses damp. In Fig. 7�c�, which
exhibits this behavior, we have set ḡ=4.0 and ā=7.8. The
upper limit for ā decreases when T1 /T2 decreases as shown
in Fig. 6, because the damping increases. We also show con-
tours of the stable normalized pulse duration, �̄
=�FWHM / �1.763T2�, with dashed lines in Fig. 6. Pulse dura-
tions are on the order of T2 when ḡ�2.5 and ā�2.0. The
pulse durations can be made arbitrarily short by increasing ḡ
and ā. However, ḡ and ā are proportional to the current, so
that the current must be increased. If T1 /T2 decreases, then ḡ
must increase if ā is constant in order to maintain �̄ at a
constant value.

As we discussed, in Sec. III, in a practical QCL design,
we must have T1g�T1a. For generality, we consider here the
stability limits as T1a /T1g varies between 0.5 and 2.0. Figure
8 shows the stability limits of ḡ and ā as T1a /T1g is varied.
The solid black line at the bottom is the lower limit of ā and
remains the same for any T1a /T1g. However, the upper limit
of ā decreases when T1a /T1g decreases.

The analytical solution of the Maxwell-Bloch equations
given in Eq. �5� assumes that the absorbing medium has a
dipole moment twice that of the gain medium, i.e., �a=2�g.
The condition �a=2�g will not be exactly satisfied due to
design constraints and growth limitations. The QCL gain is
determined by �g and T1g. To produce large gain, it is pref-
erable that �g is large. In a vertical transition QCL, the di-
pole moment is generally �2 nm. In diagonal-transition
QCLs, the dipole moment is �1.4 nm, which is smaller.
Despite the smaller value of �g with diagonal transitions, we
must have �a /e�2.8 to satisfy the condition �a=2�g.
Therefore, it is useful in practice if SIT mode locking is
possible when �a�2�g. We determine the stability limits of
�̄=�a /�g for stable operation. Figure 9 shows the lower and
upper stability limits of �̄ vs ḡ as ā varies. The solid lines in
Fig. 9 indicate the lower limits for �̄ while the dashed lines
indicate the upper limits. The two ends of each of the lines
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FIG. 6. �Color online� Stability limits of the normalized absorp-
tion �ā� vs the normalized gain �ḡ� coefficients with different T1 /T2.
In equilibrium, the gain medium is completely inverted, i.e., �g0

=1.0 and the absorbing medium is completely uninverted, i.e.,
�a0=−1.0. In each bundle of dashed lines, corresponding to a fixed
value of �̄, T1 /T2 decreases from left to right.
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FIG. 7. �Color online� Pulse evolution in the system. �a� Gain and absorption coefficients are in the stable regime, ḡ=4.0, ā=3.5. �b� Gain
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in the regime where any initial pulse attenuates, ḡ=4.0, ā=7.8. The ratio T1 /T2 equals 10 in all cases. In equilibrium, the gain medium is
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are at the stability boundaries for ḡ at each particular ā. In
each of the cases, the minimum value of �̄ is approximately
2 when ḡ is near its minimum, below which an input pulse
attenuates. As ḡ increases toward the limit at which continu-
ous waves become unstable, the minimum value of �̄ re-
quired for stable operation decreases significantly. Pulses are
stable with �̄�1.2 when ḡ=3.5, 4.0, and 4.5 with ā=2.5,
3.0, and 3.5, respectively, with ḡ just below the stability limit
for generating continuous waves. However, the stable pulse
duration increases significantly as �̄ decreases. When �̄ is
below the solid lines in Fig. 9, pulses attenuate. The mini-
mum value of �̄ required for stable operation increases as ā
increases for any fixed ḡ. We have found no hard upper limit
to stability as �̄ increases, although the pulses are increas-
ingly distorted. The dashed lines in Fig. 9 indicate the values
of �̄ at which the pulses become double peaked.

We have derived an energy balance equation in Eq. �16�
that defines the limits of the input energy for stable opera-
tion. However, Eq. �16� assumes that input pulse has a dura-

tion, �i=�FWHM /1.763�T2�T1, so that the effects of a finite
coherence time T2 and damping due to finite T1 may be ig-
nored. If this condition is not satisfied, then Eq. �16� is no
longer valid. From a practical standpoint, an input pulse hav-
ing a duration on the order of T2 or longer than T2 is advan-
tageous. We have calculated the dependence of the minimum
and maximum input energy on the input pulse duration for
two different combinations of gain and loss. We show the
results in Fig. 10. The input pulse duration is normalized to
T2=T2g=T2a and is plotted on a logarithmic scale. The value
of T1 /T2 has been set to 10. When �i /T2=0.1, we find that

the minimum normalized energy �̄= ��g /
��−
 Edt=�−

 Ēdt̄
that is required for stable operation is 0.30� when ḡ=3.5 and
ā=3.0. However, as we increase �i /T2, the minimum normal-
ized pulse energy that is required for stable operation in-
creases significantly due to the pulse’s decorrelation over its
duration. It increases to 0.42� when �i /T2=1, 1.31� when
�i /T2=10, and 9.59� when �i /T2=100. Pulses are stable for
an input energy of at least 20� when �i /T2�3.

We find that pulses split into multiple pulses when the
input pulse energy is �2�. However, at the stable pulse
duration �̄�0.5 for the parameters ḡ=3.5, ā=3.0, only one
pulse is stable, and the others damp even with an initial
normalized energy of 20� when �i /T2�4. When �i /T2�4,
continuous waves become unstable. We find that multiple
pulses are generated when the input energy is �3� with
�i /T2=10. The upper stability limit for the input energy de-
creases as �i /T2 increases when �i /T2�10. However, beyond
that point, the upper stability limit increases with �i /T2 as
damping due to T1 comes into effect. The stability limits for
the input normalized energy when ḡ=3.5 and ā=3.5 show a
similar trend with the exception that both the stability limits
are shifted upward due to an increase in absorption.

We simulated a number of cases in which we investigated
the effect of detuning the absorbing medium from the gain
medium and the carrier frequency of the light. Setting
T1 /T2=10, �g0=1.0, and �a0=−1.0, we found that stable op-
eration can be obtained with a detuning ��T2�0.53 when
ḡ=3.5, ā=3.5. Stable operation can be obtained with ��T2
�0.36 when ḡ=3.5, ā=3.0, and with ��T2�0.15 when ḡ
=3.5, ā=2.5.
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FIG. 8. �Color online� Stability limits of the normalized absorp-
tion �ā� vs the normalized gain �ḡ� coefficients with different values
of T1a /T1g. We set T2g=T2a and T1g /T2g=10 in all cases. In equi-
librium, the gain medium is completely inverted, i.e., �g0=1.0, and
the absorbing medium is completely uninverted, i.e., �a0=−1.0.
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both the cases, we set T1 /T2=10. In equilibrium, the gain medium
is completely inverted, i.e., �g0=1.0, and the absorbing medium is
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VI. DISCUSSION

In prior work �16�, we showed that by combining absorb-
ing with gain periods in a QCL, one can create nearly ideal
conditions to observe SIT mode locking and thereby obtain
pulses that are less than 100 fs long from a midinfrared laser.
In this work, we extend our prior analytical work, and we
present detailed computational studies of the Maxwell-Bloch
equations, in which we extensively investigated the stability
of the solutions as the equation parameters vary. The solu-
tions demonstrate the robustness of the SIT mode-locking
technique and that QCLs can be mode-locked using the SIT
effect within practically achievable parameter regimes.

The unidirectional, two-level Maxwell-Bloch equations
that we have used in our study are a good starting point for
the investigation of SIT mode locking. However, effects that
are not included in the model are expected to affect the sta-
bility limits. First, it is not possible to determine the effect of
edge reflections with a unidirectional model and we cannot
realistically investigate the consequences when continuous
waves become unstable. For that reason, we have imple-
mented a bidirectional model like that of Wang et al. �17�
and Gordon et al. �18�, but keeping both gain and absorbing
media. We found, as expected, that spatial hole burning is not
present when continuous waves are below threshold, but can
become important when continuous waves become unstable.
We also found that edge effects change the stability limits
somewhat. These results will be presented elsewhere. Sec-

ond, nonlinear saturation and chromatic dispersion will set
limits on the validity of our theory as they become large. The
results of Wang et al. �17� and Gordon et al. �18� indicate
that these effects are not large enough in practice to seriously
impact the validity of our model, but the limits that these
effects impose merits further study. Third, real QCLs have
multiple levels in the active region and the effect of several
relaxation times on the stability limits remains to be ex-
plored. Finally, we have seen in Fig. 5 that the stability limits
depend sensitively on the ratios of the coherence times in the
gain and absorbing media. Calculating the actual values of
T2g and T2a is thus important.

In this work, we have treated g and a as parameters.
While we expect them both to increase proportional to the
current, it is important to calculate the contributions of the
individual gain and absorbing periods, shown in Fig. 3, to g
and a respectively, so that we know how many of each kind
of period should be grown. These calculations require a com-
plete calculation of the carrier distribution and coherence
times in all the QCL levels.
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