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a b s t r a c t

A model to calculate the microscopic parameters of self-induced transparency (SIT) modelocked

quantum cascade lasers (QCLs) is presented and the parameters are then calculated for a particular

structure. These parameters are then used to calculate the gain to absorption ratio that is required to

determine the required ratio of gain periods to absorbing periods that must be grown in order to obtain

stable modelocked pulses. The modelocked pulse parameters, along with the stability limits are then

calculated as the ratio of gain to absorption varies. For the SIT modelocked QCL design that we

examined, we found that three to five gain periods must be grown for each absorbing period in order to

ensure stable operation.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Self-induced transparency (SIT) modelocking is a promising
approach to create sub-ps pulses from mid-infrared quantum
cascade lasers (QCLs) [1,2]. These pulses have the potential to play
an important role in many mid-infrared (3:5220 mm) applica-
tions, such as remote sensing, nonlinear frequency conversion,
time-resolved measurements, coherent control, and frequency
combs [3]. Fundamentally, it is difficult to create ultra-short
pulses in QCLs using standard passive modelocking technique
due to their fast gain recovery times T1 ð � 1 psÞ compared to the
cavity round-trip time ð � 50 psÞ and their narrow linewidths
compared to that in other semiconductor lasers [4,5]. By contrast,
stable pulses on the order of 100 fs can be obtained, in principle,
from QCLs if they are modelocked using the SIT effect [1,2].
To modelock QCLs using the SIT effect, absorbing periods are
grown in addition to the gain periods and interleaved with the
gain periods. The absorbing periods help in the generation of
stable pulses by absorbing the continuous waves and shaping the
pulses as they propagate. Theoretical studies show that SIT-
modelocked lasers are stable over a broad range of parameters.
However, SIT-modelocked lasers do not self-start and must be
injection-locked or seeded. Alternatively, it is possible to actively
modelock the laser by modulating the input current to one of the
segments in a two-segment laser as has been done in Ref. [3] for

conventional QCLs that only have gain periods [6]. Preliminary
experimental work to demonstrate the feasibility of this approach
has been carried out [7].

In an SIT modelocked QCL, the ratio of the gain to the quantum
coherent absorption, Rga, that the pulses experience is an impor-
tant parameter since it determines whether the laser operates
stably. If Rga is below a critical value, the gain is insufficient so
that the pulses will damp. On the contrary, if Rga is above a critical
value, the absorption is insufficient to suppress the growth of the
continuous waves, which may lead the generation of multiple
pulses. The relationship between Rga and the ratio between the
number of gain periods and absorbing periods mga that must be
grown is not simple and depends on the details of the design of
these periods. Normally, the gain per gain period will be smaller
than the absorption per absorbing period. From a practical
standpoint, it is essential to calculate mga in order to grow SIT
modelocked QCLs that operate stably.

In this paper, we show in detail for the first time how to
calculate mga for a realistic set of parameters. This calculation is
difficult because it depends on the quantum coherence between
the quantum levels in the gain and absorbing periods. Standard
design codes that do not take into account quantum coherence
are insufficient. A full density matrix calculation must be made
[8–10]. We note that this approach is more accurate than the
rate-equation approach [11] that is commonly used to design
QCLs. It is less accurate than Monte Carlo approaches [12].
However, it has computational advantage that it is sufficiently
rapid computationally to be applied to realistic QCL structures.

It is necessary to use a multi-scale approach to make the
problem computationally tractable. We first apply the density
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matrix approach to a limited number of gain and absorbing
periods with a realistic structure [2] to determine the microscopic
parameters that are needed to find the gain per gain period and
the absorption per absorbing period. That allows us to relate mga

to Rga. We then solve the Maxwell–Bloch equations [2] to
determine the values of Rga for which SIT modelocking is stable.
The Maxwell–Bloch equations in effect average over the entire
structure. Given Rga, we can infer mga from the previous calcula-
tion. Multi-scale approaches like ours play an important role in
modeling many solid-state devices [13,14].

In this work, we solve the Maxwell–Bloch equations applied to
a two-level system. The Maxwell–Bloch equations applied to
a two-level QCL model have proved sufficient in modeling
experimentally observed phenomena [3–5], which is in contrast
to the approach of Ref. [7] that solves the Maxwell–Bloch
equations applied to a three-level system. We have solved the
Maxwell–Bloch equations applied to a three-level system to
determine the stability limits of SIT-modelocked QCLs. We found
that the results using the three-level system are not significantly
different than those obtained using a two-level system.

2. Theoretical modeling

The total gain per unit length (g) from the gain periods and the
total absorption per unit length (a) from the absorbing periods of
a QCL that has interleaved gain and absorbing periods are given
by [1,2]

g ¼
kNgGgm2

g T2g

2E0n2_
, a¼

kNaGam2
aT2a

2E0n2_
: ð1Þ

In Eq. (1), subscripts g and a refer to a quantity in the gain and
absorbing periods, respectively. The parameters Ng and Na denote
the total electron densities of the resonant levels of all the gain
and absorbing periods. The parameters Gg and Ga denote the
optical mode overlap in one gain period and one absorbing period.
The parameters mg and ma denote the dipole moments between
the resonant levels in the gain and absorbing periods. The
parameters T2g and T2a denote the coherence times between the
resonant levels in the gain and absorbing periods. The parameters
k, E0, n, and _ denote the wavenumber, the vacuum dielectric
permittivity, the index of refraction, and the Planck’s constant,
respectively. Using Eq. (1), the ratio of gain to absorption per unit
length of a QCL that has interleaved gain and absorbing periods is
given by

Rga ¼
g

a
¼

NgGgm2
g T2g

NaGam2
aT2a

: ð2Þ

The parameter Rga can also be written as

Rga ¼mgaR0ga, ð3Þ

where R0ga is the ratio of the gain from one gain period g0 to the
absorption from one absorbing period a0. To calculate R0ga, we
replace Ng and Na in Eq. (2) by N0g and N0a, respectively, where N0g
and N0a are the carrier densities of the resonant levels in one gain
period and one absorbing period, respectively. We assume that
the optical mode overlaps equally in one gain period and one
absorbing period, i.e., Gg �Ga. Therefore, we may write R0ga as

R0ga ¼
g0

a0
¼

N0gm2
g T2g

N0am2
aT2a

: ð4Þ

To calculate R0ga, we have to calculate the carrier densities in
the resonant levels, the dipole moments and the coherence times
between the resonant levels in the gain and absorbing periods.
A complete carrier transport calculation that includes all the
energy levels in a period is required to calculate N0g and N0a.

The carrier transport and hence the carrier distribution in the
quantized energy levels is complicated since several different
incoherent scattering and coherent tunneling processes are
involved [15–18]. However, an accurate model of carrier
transport in QCLs is needed for a number of applications
besides SIT modelocking and is itself an active field of research
[8,12,19,20]. To calculate the carrier densities, we use an
extended density matrix formalism that includes carrier trans-
port due to both incoherent scattering and coherent tunneling
and is similar to the model that is discussed in [8–10]. How-
ever, we do not solve the carrier densities completely in k-
space; instead, we average the scattering rates with a Fermi–
Dirac distribution. The density matrix formulation that takes
quantum coherence into account has been successful in repro-
ducing experimentally observed phenomena [8–10]. We write
the density equations as

dnx

dt
¼
X
x0ax

nx0

sx0x
�
X
x0ax

nx

sxx0
�i
X
x0ax

D0,xx0

2_
ðCxx0�Cn

xx0 Þ, ð5aÞ

dCxx0

dt
¼ i

D0,xx0

2_
ðnx0�nxÞ�

Cxx0

T2,xx0
�i

Exx0

_
Cxx0 : ð5bÞ

In Eq. (5), the quantity n is the carrier density. Subscript x

denotes an energy level. The quantity Cxx0 denotes the coher-
ence between the energy levels x and x0. The coherence Cxx0 has
a nonzero value only between an injector level and an active
region level. The quantities sxx0 and T2,xx0 denote the scattering
and coherence times between the energy levels x and x0. The
parameter D0,xx0 denotes the energy splitting at resonance
between the energy levels x and x0 involved in coherent
tunneling, while Exx0 is the detuning of their energies from
resonance.

We calculate sxx0 from the intersubband electron–LO phonon
(e–ph) and electron–electron (e–e) interactions, so that 1=sxx0 ¼ 1=

se2ph
xx0 þ1=se2e

xx0 . Electron–LO phonon scattering dominates in inter-

subband transitions [21,22], but electron–electron scattering
becomes important when the energy spacing between the levels
is smaller than the LO phonon resonance energy, so that the LO
phonon scattering is forbidden except for the electrons in the high
energy tail [11]. We calculate mg and ma using an approach similar

to that discussed in [23]. We calculate T2,xx0 from intrasubband e–
ph, e–e, and electron–interface roughness (e–ir) interactions, so

that 1=T2,xx0 ¼ 1=Te2ph
2,xx0 þ1=Te2e

2,xx0 þ1=Te2ir
2,xx0 , where Te2ph

2,xx0 , Te2e
2,xx0 , and

Te2ir
2,xx0 are the contributions to the coherence time T2,xx0 due to e–

ph, e–e, and e–ir interactions, respectively. The parameters Te2ph
2,xx0 ,

Te2e
2,xx0 , and Te2ir

2,xx0 are given by

1

Te2ph
2,xx0

¼
1

se2ph,abs
x-x

þ
1

se2ph,em
x-x

þ
1

se2ph,abs
x0-x0

þ
1

se2ph,em
x0-x0

, ð6aÞ

1

Te2e
2,xx0
¼

1

se2e
x,x-x,x

þ
1

se2e
x0x0-x0x0

, ð6bÞ

1

Te2ir
2,xx0

¼
1

se2ir
x-x

þ
1

se2ir
x0-x0
�2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
se2ir

x-xse2ir
x0-x0

q , ð6cÞ

where superscripts ‘‘abs’’ and ‘‘em’’ denote absorption and emis-
sion, respectively.

The implementation of the model starts with calculating the
quantized energy levels and the associated wavefunctions of
QCLs. To calculate the energy levels and the associated wavefunc-
tions, we use the effective mass approach in the envelope
function approximation and take nonparabolicity into account
[23]. The calculated energy values and the associated wavefunc-
tions are used to calculate the scattering and coherence lifetimes.
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The electron–LO phonon and the electron–electron scattering
rates are calculated using an approach that is discussed in [24],
and the electron–interface roughness scattering rate is calculated
using an approach that is discussed in [25]. To solve Eq. (5), we
initially distribute the total carrier density in a period equally
among the injector energy levels, and we leave the active region
levels empty. We then solve Eq. (5) to obtain the steady-state
values of the carrier densities. During the evolution of the carrier
densities, the parameters sxx0 and T2,xx0 are recalculated as the
carrier densities change.

3. Results

In Fig. 1, we show the conduction band edge diagram and the
associated moduli-squared wavefunctions of the same SIT mod-
elocked QCL design that was earlier presented and discussed in
[1,2]. Here, we show one gain period and one absorbing period.
In an actual structure there will be many such gain and absorbing
periods. An appropriate choice of the numbers of gain and
absorbing periods is necessary to obtain stable modelocked
pulses. In the gain periods, levels 2g and 3g are the resonant
levels, while in the absorbing periods, levels 3a and 4a are the
resonant levels. To calculate g0, the gain in a single period, we
must calculate the carrier densities of levels 2g and 3g, and we
must also calculate the dipole moment and the coherence time
between levels 2g and 3g, from which we obtain N0g ¼ n2gþn3g ,
T2g ¼ T2,2g-3g , and mg ¼ m2g-3g . To calculate a0, the absorption in a
single absorbing period, we must calculate the carrier densities of
levels 3a and 4a, and we must also calculate the dipole moment
and the coherence time between levels 3a and 4a, from which we
obtain N0a ¼ n3aþn4a, T2a ¼ T2,3a-4a, and ma ¼ m3a-4a. From g0 and a0,
we then obtain R0ga ¼ g0=a0.

In this work, we assume that the total carrier density per gain
period is equal to the total carrier density per absorbing period,
which is 2� 1011 cm�2. We also assume an interface roughness
height of 0.162 nm and an interface roughness correlation length
of 6 nm in both the gain and absorbing periods. In the results
presented here, we assume a temperature of 100 K. After solving
Eq. (5), we find that n2g ¼ 0:62� 1010 cm�2 and n3g ¼ 5:84�
1010 cm�2, so that, N0g ¼ n2gþn3g ¼ 6:50� 1010 cm�2. We use the

equilibrium values of n2g and n3g to calculate T2g . We find that
T2g � 15:7 fs. In the absorbing periods, the upper resonant level 4a

is far above the injector levels that are injecting current in the
active region, so that we find that n4a � 0. We find that
n3a ¼ 3:21� 1010 cm�2. Therefore, N0a ¼ n3aþn4a � n3a ¼ 3:21�
1010 cm�2. We use the equilibrium values of n3a and n4a to
calculate T2a. We find that T2a � 45:5 fs. From the equilibrium
carrier densities of the resonant levels, we also find that the
equilibrium population inversions in the gain and absorbing
periods are 0.9 and �1, respectively. All these values correspond
to realistic QCL structures [5–10].

We calculate the stability limits of the SIT modelocked QCL
presented in Fig. 1 by solving the Maxwell–Bloch equations using
an approach discussed in [2]. In the Maxwell–Bloch equations, we
use the values of the coherence times and the population inver-
sions in the gain and absorbing periods that we just calculated.
To calculate the stability limits, we assume that the gain recovery
times in the gain and absorbing periods are equal to 1 ps. We note
that the gain recovery times in the gain and absorbing period will
be on the order of � 1 ps, since we find that the carrier densities
in the resonant levels reach steady-state in � 1 ps. The stability
limits are given in Fig. 2 in terms of the normalized gain ðg Þ and
the normalized absorption ðaÞ coefficients. Here, the gain and
absorption coefficients are normalized by the linear loss (l), i.e.,
g ¼ g=l and a ¼ a=l. We obtain stable modelocked pulses if the pair
(g , a) corresponds to a point between the two solid (red) curves
in Fig. 2. If the QCL operates with (g , a) above the upper curve,
then the pulses damp. If the laser operates with (g , a) below the
lower curve, then continuous waves grow.

We next substitute the values of N0g , N0a, mg , ma, T2g , and T2a into
Eq. (4). We find R0ga � 0:2. The operating point of the QCL will
depend on the value of Rga, which may be varied by changing the
number of gain periods for each absorbing period. To obtain a
value of Rga ¼ 1, five gain periods have to be grown for each
absorbing period. In Fig. 2, we plot different lines within the
stable operating limits that correspond to different choices of mga.
If this QCL is grown with less than three gain periods per
absorbing period, the pulses will damp. On the other hand, if this
QCL is grown with more than five gain periods per absorbing
period, continuous waves will grow.

Distance 

Energy 

Fig. 1. Conduction band edge profile and the associated moduli-squared wave-

functions for interleaved one gain and one absorbing period of an SIT modelocked

QCL. The sequence of layer dimensions is (in Å, starting from left): 42, 34, 9, 33, 12,

30, 13, 28, 16, 28, 41, 27, 18, 62, 14, 58, 28, 42, 12, 40, 13, 37, 13, 34, 16, 34, 34, 9,

31, 50, 5, 84. The numbers in bold type indicate In0.52Al0.48As barrier layers and in

roman type indicate In0.53Ga0.47As well layers. Red wavy arrows indicate radiative

transitions. The states that are numbered are in the active regions of the gain and

absorbing periods. To differentiate the states in the gain and absorbing active

regions, we append letters ‘‘g’’ and ‘‘a,’’ respectively, with numbers. (For inter-

pretation of the references to color in this figure caption, the reader is referred to

the web version of this article.)
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Fig. 2. Stability limits of normalized gain ðg Þ vs. normalized absorption ðaÞ for the

SIT modelocked QCL design of Fig. 1. The laser is stable when operates between

the two solid (red) curves. The dashed (blue) lines show the operating lines with

different mga. (For interpretation of the references to color in this figure caption,

the reader is referred to the web version of this article.)
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4. Conclusions

In conclusion, we have presented a multi-scale approach that
allows us to calculate the ratio of the gain per gain period to the
absorption per absorbing period in SIT modelocked QCLs. The
model calculates the microscopic parameters using the density
matrix formalism that takes quantum coherence into account;
then the key macroscopic parameter, i.e., the ratio of gain
to absorption, is calculated using the Maxwell–Bloch equations.
We used the model to find Rga as a function of mga for an SIT
modelocked QCL design that has interleaved gain and absorbing
periods. We have shown lines of constant mga as g and a are
allowed to vary. We find that for this particular design, stable
modelocked pulses can be obtained if three to five gain periods
are grown for each absorbing period.
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