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We computationally investigate fabrication tolerances in
As2S3 negative-curvature antiresonant tube-lattice fibers.
Since the dominant loss mechanisms for silica in the
mid-infrared (mid-IR) is material absorption, As2S3, which
offers a reduced loss over that wavelength range, is a natural
candidate for mid-IR antiresonant fibers. However, any
fiber fabrication technology, including for soft glasses, will
have imperfections. Therefore, it is important to know how
imperfect fabrication will affect the results of a fiber design.
We study perturbations to the fiber, including a nonconst-
ant tube-wall thickness, a single cladding tube with a differ-
ent radius, a single cladding tube with a different tube-wall
thickness, and “key” sections in the jacket. © 2016 Optical
Society of America
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The concept of antiresonance has long been understood as a
method of confining light in a low refractive index material
[1]. However, with recent advances in photonic-crystal fibers
(PCFs) and microstructured optical fibers, there is renewed in-
terest in using this guidance mechanism to realize low-loss,
broadband, hollow-core optical fibers. Several such antireso-
nant fibers (ARFs) have been studied since the perfection of
production methods for PCFs in the late 1990s, including
those described in [2,3]. The resurgence in interest in ARFs
dates to 2010, when Wang et al. [4] discovered that silica
Kagome fibers with a hypocycloid core shape had much lower
loss than structures with a normal circular core shape.

Recent hollow-core ARF designs [5–15] are mostly “tube-
lattice” fibers, meaning that the fiber consists of a hollow core
surrounded by a circular array of hollow tubes. These fibers are
sometimes called “negative-curvature” fibers, or negative-
curvature hollow-core fibers, because the surface normal vectors
at the wall of the microstructured cladding are anti-parallel to a
radial unit vector. The negative wall curvature changes the cou-
pling conditions between core modes and cladding modes so

that coupling between them is far weaker than is the case with
positive curvature. As a consequence of this “inhibited
coupling” effect, the core mode is guided, rather than leaking
out [16].

Silica ARFs have a limited transmission bandwidth in the
mid-infrared (mid-IR) due to material absorption, which
increases rapidly for wavelengths longer than 2.5 μm.
Therefore, an ARF made from a mid-IR transparent material,
such as As2S3, should have much lower loss in the mid-IR.
However, realizing an ARF in As2S3 with an ideal structure
can be difficult in practice because of the softness of chalcoge-
nide glasses and the relative difficulty of the fabrication process.
Therefore, it is essential to know how perturbations to the
design parameters due to imperfect fabrication affect the trans-
mission properties of the fibers. These effects have never been
studied because there are very few investigations into chalco-
genide ARFs [8,15].

The perturbations that we study in this Letter are (1) a non-
constant cladding tube wall thickness on all outer cladding
tubes, both with and without nested tubes [13], (2) a single
cladding tube with a different diameter, (3) a single cladding
tube with a different wall thickness, and (4) a “key” structure
in the jacket to support the nested cladding tubes. We simulate
these perturbations in COMSOL, a commercial finite-element
mode-solver, using a quarter- or half-geometry with appropriate
periodic boundary conditions and a perfectly matched layer
(PML) outside the fiber to simulate confinement loss. The
PML and mesh settings have been optimized and verified
by comparing to published results [13,17]. We use a finite-
element mesh with six elements per wavelength in the air cores
and 16 elements per wavelength in the As2S3 tubes. We have
verified that increasing the spatial resolution does not change
the results of the simulations. The wavelength-dependent
material refractive index and loss of As2S3 are taken from ex-
perimentally measured data. We find the loss per unit length of
the lowest-order HE11 mode from the imaginary part of its
effective refractive index.

The six-tube As2S3 fibers that we study, which are similar in
geometry to the silica fibers proposed by Habib et al. [14], have
the following nominal geometric parameters: a core radius of
Rcore � 54 μm, a cladding tube radius of Rclad � 48 μm, a
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cladding tube wall thickness of t � 0.95 μm, and a separation
between the cladding tubes of d � 4.0 μm. However, the re-
sults here are general since the effect of the perturbations on the
fiber should be qualitatively the same as the dimensions change.
The material refractive index and the nominal tube wall thick-
ness give resonant absorption peaks in the transmission spec-
trum at 2.1 and 4.25 μm. These absorption peaks are evident in
figures where we plot the loss versus wavelength.

We first study perturbations of the thickness of the cladding
tube walls. In this study, the thickness of the cladding tube wall
is equal to its design value on the core side of the cladding tube
but increases toward the jacket side of the cladding tube. This
imperfect structure is implemented by decreasing the radius of
the circle that delineates the inner-cladding tube wall and shift-
ing it along the radial direction toward the center of the fiber.
Figure 1 shows the structure of the fiber for tdiff � t2−
t1 � 4 μm, where t2 is the thickness on the jacket side of
the cladding tube, and t1 is the thickness on the core side
of the cladding tube. The fiber in Fig. 1 has nested elements,
but again we study this perturbation for fibers with and without
nested elements.

In silica ARFs, the glass stock used is based on commercially
available tubes, which can be purchased with tight tolerances.
The same is not yet true for chalcogenide glasses, meaning that
small custom batches of tubes are made for each application. If
the tubes used in the stacking process show any anisotropy in
thickness, the pressure applied to the tube during the fiber draw
could lead to a spatially dependent blow out. This type of blow
out could lead to the perturbation observed in Fig. 1. It must be
said that Fig. 1 represents the best-case scenario where the per-
turbations are all aligned. Hartung et al. [18] recently studied
similar perturbations in square-core silica ARFs in the ultravio-
let. They showed that variations of the cladding wall thicknesses
along the longitudinal axis of the fiber can significantly increase
the loss in those fibers.

In this study, all the cladding tubes have this same imper-
fection. We study three particular perturbed fibers, where the

difference between the thickness on the jacket side of the clad-
ding tube, t2, is tdiff � 1, 2, and 4 μm thicker than on the core
side of the cladding tube, t1 � 0.95 μm. We study the cases of
fibers having these imperfections with and without nested el-
ements. However, since the advantage of nested elements is ap-
parent from comparing Figs. 2 and 3, nested elements are
included in all of our other fiber designs. Again, due to the
symmetry of this system, we keep only one-quarter of the
geometry in our simulation, as shown in Fig. 1.

The simulated loss spectra for the fibers without nested el-
ements are shown in Fig. 2. Increasing the cladding tube wall
thickness on the jacket side of the cladding tube increases the
bandwidth of the high-loss resonant absorption peaks, espe-
cially on the long-wavelength side of the peak, which is con-
sistent with the ARROW model of Litchinitser et al. [19].
Additionally, it increases the minimum loss in the transmission
bands between the peaks. As expected, the effect is worse when
the thickness difference increases. However, even for a thick-
ness difference of tdiff � 1 μm, the minimum loss in the trans-
mission bands increases by almost 1 order of magnitude over
the baseline result, where the wall thickness is constant over the
circumference of the cladding tube.

Fig. 1. Geometry of a fiber with nonconstant tube thickness. The
cladding tube wall thickness increases from its nominal value on the
core side of the cladding tube, t1, toward the jacket side of the cladding
tube, where it is equal to t2.

Fig. 2. Loss as a function of wavelength for a fiber with a varying
cladding tube thickness and no nested elements with tdiff � 1 (blue
dashed), tdiff � 2 (green dotted), tdiff � 4 (red dashed–dotted), and
tdiff � 0 or a constant wall thickness (black solid).

Fig. 3. Loss as a function ofwavelength for a fiber with a varying clad-
ding tube thickness and constant-thickness nested elements with tdiff �
1 (blue dashed), tdiff � 2 (green dotted), tdiff � 4 (red dashed–dotted),
and tdiff � 0 or a constant wall thickness (black solid).
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This effect is not entirely expected. For wavelengths that are
in the absorption bands, we have found that the core modes
couple more readily to modes in the cladding tube dielectric
walls than they do to modes in the cladding tube hollow air
cores. In the unperturbed case, the core mode can resonantly
couple to dielectric cladding tube wall modes for only the one
single width of the cladding tube wall and, hence, at one par-
ticular wavelength. When the cladding tube wall thickness in-
creases around the half-circumference of the tube, there are
more wavelengths where this coupling can occur resonantly.
In accordance with the ARROW model, all of these additional
resonant wavelengths are longer than the resonant wavelengths
in the unperturbed case.

The simulated loss spectra for the fibers with nested elements
are shown in Fig. 3. In this case, the nested elements have a con-
stant cladding tube wall thickness, even though the outer clad-
ding tubes do not. Still, as in the case with no nested tubes, a
small difference in the thickness of the cladding tube wall on one
side of the cladding tube results in greatly increased loss, espe-
cially on the long-wavelength side of the absorption peaks near
2.1 and 4.25 μm. The small-scale fluctuations in the loss spectra
in fibers with nested tubes are from the core mode coupling to
nonlocalized whispering-gallery-type cladding tube-wall modes,
which are lossy due to their proximity to the jacket.

We next study a perturbed fiber in which a single cladding
tube has a diameter that is different from the design value. We
simulate this perturbation using a half-geometry with appropri-
ate periodic boundary conditions and changing the diameter of
one tube that is half-included in the geometry, so that only one
cladding tube in the total geometry has a different size. We
show a schematic illustration of the simulated geometry, which
is half of the actual fiber, showing the different cladding tube
dimension in Fig. 4. We note that, on the left side of the figure,
cladding tubes with different diameters are separated by a
different gap than are tubes with the same diameter. Also, since
the ratio of the inner nested tube diameter to the outer tube
diameter is fixed, the nested tube inside the tube with a differ-
ent diameter will also have a different diameter than the nested
tubes in the rest of the fiber.

Figure 5 shows the simulated loss for a fiber with a single
cladding tube radius that is increased by 10%, decreased by
10%, and with no change (for reference). Both perturbed fibers
have a larger loss almost everywhere in the transmission band
than does the baseline fiber. However, the perturbed fiber with
a 10% increase in cladding tube radius shows a smaller increase
in loss almost everywhere in the spectrum than does the
perturbed fiber with a 10% smaller cladding tube radius.
Also, the loss is only slightly increased at most wavelengths.

In both cases, the difference between the baseline result and
the results for the perturbed fiber are small, especially compared
to the effect of a nonconstant cladding tube wall thickness as in
the previous study. Still, changing the cladding tube diameter
changes the core mode, so that it is no longer circularly sym-
metric, which could be detrimental for some applications.

In the next perturbation study, we simulate the effect of hav-
ing a cladding tube with a tube wall thickness, t, that is differ-
ent from the design value. In this study, we change the tube wall
thickness of a single cladding tube, instead of changing its
diameter. In this study, we do not change the tube wall thick-
ness of the nested tube inside the perturbed tube. Figure 6
shows the loss for a fiber with a single cladding tube wall thick-
ness increased by 10%, decreased by 10%, and with no change
(for reference).

As expected, changing the tube wall thickness increases the
loss near the transmission band. Increasing the thickness
increases the loss on the long-wavelength side of the absorption
peak, while decreasing the thickness increases the loss on the

Fig. 4. Half-fiber geometry with a single differently sized cladding
tube. In this figure D1 < D2, but we also study the case of D1 > D2.

Fig. 5. Loss as a function of wavelength for a fiber with a single
cladding tube with a different size when the cladding tube radius is
increased by 10% (blue dashed) or decreased by 10% (red dashed–
dotted), relative to a fiber with no change in the cladding tube radius
(black solid).

Fig. 6. Loss as a function of wavelength for a fiber with a single
outer cladding tube with a different wall thickness. The thickness
is decreased by 10% (blue dashed), increased by 10% (red dashed–
dotted), or unchanged (black solid).
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short-wavelength side of the absorption peak. This behavior
can be predicted from the ARROW [19] model. In an actual
fiber, if the tube wall thickness both increases and decreases for
different cladding tubes, the increase in loss will be spectrally
broadened on both sides of the absorption peaks, which is a
worst-case scenario.

Decreasing the cladding tube thickness should decrease the
loss in the transmission bands, because the reduced-thickness
cladding tubes support fewer modes that can couple to core
modes. This effect is evident in Fig. 6, especially for longer
wavelengths. However, the decrease in loss at longer wave-
lengths is still small, and does not compensate for the increase
in loss from the broadening of the absorption peak. Hence, the
fiber with a larger tube wall thickness has significantly higher
loss in the transmission bands than either the baseline fiber or
the fiber with a smaller wall thickness.

In the final perturbation study, we investigate the effect of
including “key” sections in an As2S3 ARF. The orientation of
the nested tubes inside the cladding tubes can be difficult to
maintain in practice while drawing a fiber. A way to minimize
the movement of the nested tubes relative to the larger tubes is
to include “key” sections in the fiber jacket or outer cladding
that hold the nested tubes in place. An example of such a fiber
geometry is shown in Fig. 7.

In this study, the geometric parameters of the fiber are un-
changed, except for the inclusion of the extra key sections. In
this model, we take the outer ring of the key section to have a
refractive index of n � 1.5 − i1 × 10−4, which approximates the
refractive index of silica. The inside circle of the key sections is
assumed to be As2S3.

Figure 8 shows the results for a fiber with and without key
sections. Aside from the inclusion of the key sections, all other

fiber geometric and material parameters are the same. Except
for a slight broadening of the resonant absorption peak, the key
sections do not significantly influence the loss of the fiber. The
reason is that the key sections are far away from the central core
mode of the fiber and are included in an already lossy section of
the fiber. We therefore find that the inclusion of these key sec-
tions in a practical fiber design should not greatly influence the
loss of the fundamental core mode as compared to a design that
does not include these sections.

In conclusion, we have computationally studied fabrication
tolerances in As2S3 ARFs by simulating the effect of perturbations
to the geometric parameters of the fiber. We found that a non-
constant cladding tube wall radius strongly affects the transmission
properties of an As2S3 ARF. We also found that increasing or
decreasing the cladding radius or cladding tube wall thickness
by 10% causes a small, but noticeable, increase in the loss.
Including key sections did not significantly increase the loss.

The effects of perturbing a single cladding tube can be added
to deduce the effect of multiple perturbations. In that case, the
loss could be significantly worse, especially if all cladding tubes
had a reduced diameter or if there were cladding tubes with
increased and decreased thickness. Additionally, variations in
these perturbations along the longitudinal axis of the fiber
could significantly increase the loss over a wide bandwidth.

Funding. Naval Research Laboratory (NRL) (N00173-09-
2-C016, N00173-15-1-G905).
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Fig. 7. Fiber geometry showing nested elements with corresponding
“key” sections.

Fig. 8. Loss as a function of wavelength for a fiber with (red dashed)
and without (blue solid) “key” sections.
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