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Abstract. Guided-mode coupling in a microresonator generally manifests itself through avoided crossings
of the corresponding resonances. This coupling can strongly modify the resonator local effective dispersion
by creating two branches that have dispersions of opposite sign in spectral regions that would otherwise
be characterized by either positive (normal) or negative (anomalous) dispersion. In this paper, we study,
both analytically and computationally, the general properties of nonlinear frequency comb generation at
an avoided crossing using the coupled Lugiato-Lefever equation. In particular, we find that bright solitons
and broadband frequency combs can be excited when both branches are pumped for a suitable choice of
the pump powers and the detuning parameters. A deterministic path for soliton generation is found.

1 Introduction

High-quality (Q) microcavities play a fundamental role in
linear and nonlinear optics [1,2]. The strength of the non-
linear light-matter interactions in a microcavity is pro-
portional to the product of the atomic transition rate of
the medium filling the cavity and the cavity Q-factor.
Hence, a high Q increases the efficiency of the nonlin-
ear interaction and thus enhances the material’s effective
nonlinearity [1]. Among high-Q optical microcavities, a
particularly interesting category is the one that includes
dielectric micro-toroid resonators [3] and dielectric micro-
spheres [4,5]. In both the micro-toroid resonator and the
microsphere, the electromagnetic field is concentrated in
the immediate vicinity of the dielectric-air interface and
propagates along the circumference in a similar fashion to
what acoustic waves do in a circular acoustic resonator,
as first described by Lord Rayleigh [6] for the whisper-
ing gallery of St. Paul’s Cathedral in London, from which
the name “whispering-gallery-mode” (WGM) resonators
is derived. In the last few years a great deal of theo-
retical and experimental effort has been devoted to the
study of mode-locked soliton generation in WGM res-
onators with a Kerr nonlinearity [7–12]. In the Fourier
domain, the mode-locked train of solitons gives rise to
a frequency comb made of narrow and nearly equidis-
tant spectral lines, which is promising for applications
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to metrology, high-resolution spectroscopy, and microwave
photonics. In particular, recent theoretical and experimen-
tal efforts [13,14] have demonstrated that the spectrum
of a soliton train generated in the anomalous dispersion
region of the resonator can be broadened well into the
normal dispersion region due to the mode interaction and
the emission of soliton Cherenkov radiation. Achieving a
broadband frequency comb with more than one octave of
bandwidth in a microresonator is important because it al-
lows the measurement of the carrier-envelope offset [15]
and might open the door to self-referencing combs on
chip-scale dimensions [16,17]. Other experiments have also
shown that strong modification of the effective disper-
sion properties of the resonator with respect to the ma-
terial properties can occur in spectral regions near the
avoided-mode-crossing points of the resonator [18,19]. In
these regions, two frequency-degenerate guided modes of
the resonator undergo a strong linear interaction, with a
group velocity mismatch (GVM) practically equal to zero,
leading to the formation of two new hybrid guided modes
with group velocity dispersions (GVDs) of opposite sign.
An example is provided in Figure 1. In the example an
avoided crossing is simulated for a Si3N4 resonator em-
bedded in SiO2 with radius 942.8 μm (total path length
5.92 mm) and a waveguide cross-section 2 μm × 550 nm.
The corresponding waveguide admits two transverse elec-
tric (TE) guided modes, TE10 and TE20, in the normal
dispersion regime. A family of resonator eigenfrequencies,
indicated with asterisks in the figure, can be calculated for
each one of the guided modes. Close to the wavelength of
λ = 1.542 μm, the resonator eigenfrequency of the TE10
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mode and that of the TE20 mode are degenerate. The
two frequency-degenerate guided modes of the resonator
undergo a strong linear interaction with a group veloc-
ity mismatch practically equal to zero. This strong inter-
action leads to the formation of two new hybrid guided
modes (ω±), that we call respectively Hybrid 1 and Hybrid
2 in the figure, that are no longer frequency-degenerate,
and whose frequency splitting depends on the coupling
strength of the frequency-degenerate modes. This resonant
mode-coupling is described by the following equation

ω± =
ωTE10 + ωTE20

2
±

√
(ωTE10 − ωTE20)2

4
+ κ2 (1)

where ωTE10 is the resonator eigenfrequency of the TE10

mode, ωTE20 that of the TE20 and κ is the coupling coef-
ficient. The value of the coupling coefficient has been cho-
sen according to the experimental data reported in [18].
In this case, one of the two modes (Hybrid 2) acquires
anomalous dispersion in a spectral region that would oth-
erwise be characterized by normal dispersion. The figure
shows the free spectral range (FSR) vs. wavelength of the
unperturbed modes, TE10 and TE20, and that of the per-
turbed modes. It is noted that both unperturbed modes
have normal dispersion, i.e. their FSR increases as the
wavelength increases, while the dispersion is normal for
Hybrid 1 and anomalous for Hybrid 2.

In a recent publication [20], the coupled Lugiato-
Lefever equation (CLLE) that governs the nonlinear inter-
action between two families of modes with different trans-
verse profiles in a generic WGM resonator was derived
from first principles. In this paper, we use the CLLE to
study the general properties of nonlinear frequency comb
generation at an avoided crossing. In particular, we find
that bright solitons and broadband frequency combs can
be excited when both branches are indipendently pumped
for a suitable choice of the pump powers and the detun-
ing parameters. Moreover, the soliton generation follows
a deterministic path. The use of two independent pumps
plays a critical role in the deterministic generation of soli-
tons. While use of independent pumps has previously been
discussed [21,22], their usefulness in the deterministic gen-
eration of solitons has not been pointed out previously.

Nonlinear interactions are ubiquitous and the phe-
nomenon of avoiding crossings does not only appear
in guided-wave optics, but also appears in many other
fields such as quantum chemistry, nuclear physics, quan-
tum electrodynamics and quantum chromodynamics [23].
Hence, we expect that the results discussed in this paper
will have a similar broad range of applicability.

2 Results and discussion

We start with the CLLE, recently derived in reference [20],
that governs the nonlinear interaction of two modes in a

Fig. 1. Shown is an example of a simulated avoided crossing
for a Si3N4 resonator embedded in SiO2 with radius 942.8 μm
(total path length 5.92 mm) and 2 μm × 550 nm waveguide
cross-section. The inset on the right is a schematic drawing
of the waveguide cross-section. The details of the figure are
described in the main text.

generic WGM resonator:

∂ψ(j)

∂τ
= δ(j)

∂ψ(j)

∂θ
− i

β̄
(j)
2

2
∂2ψ(j)

∂θ2
−

( τ̄

τ (j)
+ iα(j)

)
ψ(j)

+ ih(j) + iψ(j)
2∑

k=1

D(j,k)|ψ(k)|2, (2)

with j = 1, 2. In equation (2), τ = t/τ̄ is the time normal-
ized to the average cavity photon lifetime of the two modes
[τ̄ = (τ (1) + τ (2))/2]; θ is the resonator azimuthal coordi-
nate in the retarded coordinate system; δ(j) is the nor-
malized GVM; α(j) = δω(j)τ̄ is the normalized detuning;
δω(j) = ω

(j)
m̄ −ω

(j)
p is the detuning of the frequency of the

pump field with respect to the m̄th cavity eigenfrequency;
m̄ labels the cavity eigenfrequency closest to the pump fre-
quency, which we call the dominant eigenfrequency; ω(j)

p is
the pump frequency associated with the jth mode (ω(1)

p
∼=

ω
(2)
p

∼= ωp); ω
(j)
m denotes the mth cavity eigenfrequency as-

sociated with the jth mode; ψ(j) =
√

2χ(3)Qe−iα(j)τ
Ψ (j)

is the dimensionless field envelope and Ψ (j) the field enve-
lope; χ(3) is the resonator cubic nonlinearity;Q ∼= τ̄ωp/2 is
the cavity Q-factor referred to the average cavity photon
lifetime; β̄(j)

2 = β
(j)
2 τ̄ is the normalized GVD parameter;

β
(j)
2 = −(ω(j)

m̄+1−2ω(j)
m̄ +ω(j)

m̄−1) denotes the GVD parame-
ter (the dispersion is normal when β(j)

2 > 0 and anomalous
when β(j)

2 < 0); h(j) = H(j)
√

2χ(3)Q3 is the dimensionless
pump field coupled with the jth mode and H(j) the pump
field; and D(j,k) are the overlap integrals of the modes. In
particular,D(1,1) andD(2,2) account for the nonlinear self-
coupling of mode-1 and mode-2, respectively, while D(1,2)

and D(2,1) account for the cross-coupling between the two
modes (D(1,2) = D(2,1)). For a detailed derivation of equa-
tion (2), the reader can consult reference [20]. In general,
each mode, j = 1, 2, can be independently pumped [21,22].
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We will show that this extra degree-of-freedom makes it
possible to generate a soliton deterministically.

In the case considered here, the two modes are the two
hybrid modes of an avoided crossing and equation (2) can
be simplified. First, at the avoided crossing, the GVM of
the two interacting modes is practically zero, i.e. the two
modes have approximately the same FSR, as shown in
Figure 1. Hence, we can set δ(j) = 0. Second, the GVD
parameters of the two modes are opposite in sign, but
approximately equal in absolute value (|β̄(1)

2 | ∼= |β̄(2)
2 | ∼=

|β̄2|). Third, the cross-coupling terms are twice as large as
the self-coupling terms. These simplifications lead to the
following equation

i
∂U (1)

∂τ
− 1

2
∂2U (1)

∂σ2
+ (i− α(1))U (1)

+ U (1)(|U (1)|2 + 2|U (2)|2) = −
√
P (1), (3a)

i
∂U (2)

∂τ
+

1
2
∂2U (2)

∂σ2
+ (i− α(2))U (2)

+ U (2)(2|U (1)|2 + |U (2)|2) = −
√
P (2), (3b)

where, without loss of generality, following the example
provided in Figure 1, we have supposed that the hybrid
mode 1 is in the normal dispersion regime and the hy-
brid mode 2 is in the anomalous dispersion regime. In
equation (3), we rescale the azimuthal coordinate, the
field envelope, the pump power so that σ = θ/(|β̄2|)1/2,
U (j) =

√
D(1,1)ψ(j), and P (j) = D(1,1)h(j)2 > 0. In equa-

tion (3), we also assumed that the cavity photon lifetimes
associated with the two modes are equal. If the detun-
ing, the loss and the pump are all suppressed in equa-
tion (3), equation (3) becomes formally identical to the
equations that describe the nonlinear, incoherent coupling
of two light pulses co-propagating in a single-mode fiber
in the normal and anomalous dispersion regime, respec-
tively [24].

We find by substitution into equation (3) that a par-
ticular class of continuous-wave (CW) solutions is the one
given by

U
(1)
0 = i

√
P (1), U

(2)
0 = i

√
P (2), (4)

with α(1) = P (1) + 2P (2) and α(2) = 2P (1) + P (2).
The formation of a train of solitons is generally initi-
ated by the modulational instability (MI) of the CW
solutions [25,26]. Hence, we search for parameters for
which the MI appears. We write the field envelope as
U (j) = [U (j)

0 + v(j) + iw(j)], where v(j)(σ, τ) and w(j)(σ, τ)
are small perturbations, and we next linearize equation (3)
around U (j)

0 . We then search for forward-propagating wave
solutions in the form v(j) = Re{x(j) exp[i(Kσ−Ωτ)]} and
w(j) = Re{y(j) exp[i(Kσ−Ωτ)]}, where Ω is the frequency
shift with respect to the dominant frequency and K is the
corresponding shift in the wavenumber. Substituting the
traveling wave solutions into the linearized system, we ob-
tain the following system of linear, homogeneous, algebraic

equations

⎛
⎜⎜⎝

K2/2 iΩ − 1 0 0
−iΩ + 1 K2/2 0 4

√
P (1)P (2)

0 0 −K2/2 iΩ − 1
0 4

√
P (1)P (2) −iΩ + 1 −K2/2

⎞
⎟⎟⎠

⎛
⎜⎜⎝
x(1)

y(1)

x(2)

y(2)

⎞
⎟⎟⎠

=

⎛
⎜⎝

0
0
0
0

⎞
⎟⎠ . (5)

Equation (5) admits non-trivial solutions when the deter-
minant of the matrix is zero. This compatibility condition
yields the dispersion relation, Ω(K), which has four solu-
tions

iΩ(±,±) = 1 ±
{
−K

4

4
± 2iK2

√
P (1)P (2)

}1/2

. (6)

The MI occurs at those values of K at which Re(iΩ) < 0
and the traveling waves grow exponentially. The solutions
iΩ(+,+) and iΩ(+,−) never satisfy the condition Re(iΩ) <
0. Instead, the solutions iΩ(−,+) and iΩ(−,−) both satisfy
this condition, but iΩ(−,+) corresponds to the backward
propagating wave because Im(iΩ(−,+)) < 0. Hence, the
solution that yields MI for the forward-propagating wave
is the fourth one, iΩ(−,−). Due to the 2π-periodicity of
the system in the azimuthal coordinate θ, the wavenum-
ber K can only assume discrete values, K = p(|β̄2|)1/2,
where p = m − m̄ = ±1,±2, ... is the shift of the eigen-
frequency number of the perturbation with respect to the
eigenfrequency number m̄ of the dominant eigenfrequency.
Explicit expressions for the eigenvector components are

x(1) = C, (7a)

y(1) = −CK2/Δ, (7b)

x(2) =
CΔ[K4 +Δ2]

8K2
√
P (1)P (2)Δ

, (7c)

y(2) =
C[K4 +Δ2]

8
√
P (1)P (2)Δ

, (7d)

where Δ = 2[iΩ(−,−) − 1] and C is an arbitrary constant
that quantifies the magnitude of the modulation around
the CW solutions.

To verify the results of our analytical study, we have
performed a numerical integration of equation (3), us-
ing a symmetrized fast Fourier transform, split-step al-
gorithm [27] with the initial conditions

U (j)(σ, τ = 0) = U
(j)
0 + Re

[
x(j) exp (iKσ)

]

+ iRe
[
y(j) exp (iKσ)

]
, (8)

with j = 1, 2, where U (j)
0 is given by equation (3) and x(j)

and y(j) are given by equation (7). The initial conditions
described in equation (8) are the CW solutions modulated
by the solutions of the linearized system, setting C = 0.1.
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Fig. 2. Parameter values (shaded) in the parameter space
for which the MI occurs according to the dispersion relation,
equation (6). In this case, the dispersion has been calculated
at K = 16(|β̄2|)1/2 for the fourth solution, iΩ(−,−). The circles,
the squares and the diamonds indicate the position of spatio-
temporal periodic patterns, hyperparametric oscillations and
bright solitons, respectively. The results have been obtained
by the numerical integration of equation (3) with the initial
conditions reported in equation (8). The numerical integration
has been performed for the following values of the parameters:
α(1) = P (1) + 2P (2), α(2) = 2P (1) + P (2), K = 16(|β̄2|)1/2, and
|β̄2| = 0.01. It is noted that all the states exist near the border
of the MI region, as expected.

In Figure 2, we show the results of a large scale numer-
ical integration of equation (3) in the parameter space
(P (1), P (2)) to search for bright solitons at the avoided
crossing. The numerical integration has been performed
using the following values of the remaining parameters:
α(1) = P (1) + 2P (2), α(2) = 2P (1) +P (2), K = 16(|β̄2|)1/2,
and |β̄2| = 0.01. Three different regimes can be clearly
identified near the border of the MI region. The first
regime is obtained when both branches are pumped with
comparable powers (P (1) ≈ P (2)). In this case, the light
self-organizes into spatio-temporal periodic patterns. An
example is provided in Figure 3.

By increasing the pumping level on the anomalous dis-
persion branch, hyperparametric oscillations are obtained.
An example is provided in Figure 4. In the Fourier space,
these hyperparametric oscillations are characterized by a
coarse-tooth frequency comb. Although for many appli-
cations a dense-tooth frequency comb is generally more
desirable than a coarse-tooth one, that is not always the
case. Frequency combs with coarse-tooth characteristics
are useful, for example, in quantum networking [28] or as-
trocombs [29], where limiting the number of comb lines
and precisely controlling their amplitudes is required. In
the transition region between the periodic patterns and
the hyper-parametric oscillations, the field initially self-
organizes into periodic patterns, but then at some point
suddenly changes into a CW solution. Finally, by further
increasing the pump level on the anomalous dispersion
branch, (P (2) � P (1)), solitons, and hence dense-tooth

(broadband) frequency combs, become accessible. In Fig-
ure 5, we show an example of a 2-soliton state. To exploit
this mechanism, two different pumps are needed, where
each of them is closely detuned from only one of the trans-
verse modes.

We emphasize two points. First, the soliton genera-
tion just described strictly depends on the presence of the
cross-coupling term. Hence, it is the result of the non-
linear interaction among the two hybrid modes. If the
cross-coupling term in equation (3) is neglected, solitons
are not generated. Second, the region of hyperparametric
oscillations is directly connected to the region of bright
solitons with no chaotic region in between. Hence, we
have identified a deterministic path for soliton genera-
tion. By contrast, in standard soliton generation in mi-
croresonators [9], a region of chaotic oscillations separates
the region of solitons from the region of hyperparamet-
ric oscillations. Our finding is consistent with previous
experimental results where, close to an avoided cross-
ing of a microresonator, the direct generation of coher-
ent, bandwidth-limited pulses (solitons) has been observed
without the need to first pass through a chaotic state [18].

3 Conclusions

In conclusion, we have studied nonlinear mode coupling
in WGM resonators at an avoided crossing, and we have
found a deterministic path to generate bright solitons and
broadband combs. The generation of bright solitons in
a microresonator is often believed to only be possible in
the anomalous dispersion regime. Yet, it would be highly
beneficial for many applications to generate bright soli-
tons and broadband combs in the visible and near-UV,
where most of the dielectric materials have normal dis-
persion. Recently, several approaches have been proposed
to broaden the frequency comb into the normal dispersion
region. Such approaches include, among others, the gen-
eration of Cherenkov radiation [13,14], second harmonic
generation [30,31], and the use of concentric-racetrack-
resonators [32]. In this work, we have proposed a different
approach that is based on the peculiar dispersion proper-
ties that can be achieved at an avoided crossing. We have
shown that bright solitons and broadband combs can be
deterministically generated at an avoided crossing by us-
ing two independent pumps at different pump frequencies.
Regardless of whether the resonator is in a normal or an
anomalous dispersion region, an avoided crossing provides
two branches with dispersion of opposite sign whose non-
linear coupling can lead to a deterministic path for bright
soliton and broadband comb generation.
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Fig. 3. Example of a spatio-temporal periodic pattern calculated for P (1) = 0.75 and P (2) = 0.6. (a, b): Spatio-temporal
evolution of the numerical solutions. (c, d): Numerical solutions calculated at τ = 600. (e, f): Fourier transform (Ft) of the
solutions.

Fig. 4. Example of hyperparametric oscillations calculated for P (1) = 0.15 and P (2) = 1.95. (a, b): Spatio-temporal evolution
of the numerical solutions. (c, d): Numerical solutions calculated at τ = 600. (e, f): Fourier transform (Ft) of the solutions.
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Fig. 5. Example of a 2-soliton state calculated for P (1) = 0.3 and P (2) = 3. (a, b): Spatio-temporal evolution of the numerical
solutions. (c, d): Numerical solutions calculated at τ = 1200. (e, f): Fourier transform (Ft) of the solutions.
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